[image: image2.png]Microsoft

[image: image3.jpg]

XLinq
.NET Language Integrated Query
for XML Data
September 2005 DOCVARIABLE Version * MERGEFORMAT
Notice

© 2005 Microsoft Corporation. All rights reserved.

Microsoft, Windows, Visual Basic, Visual C#, and Visual C++ are either registered trademarks or trademarks of Microsoft Corporation in the U.S.A. and/or other countries/regions.

Other product and company names mentioned herein may be the trademarks of their respective owners.

The example companies, organizations, products, domain names, e-mail addresses, logos, people, places, and events depicted herein are fictitious. No association with any real company, organization, product, domain name, email address, logo, person, places, or events is intended or should be inferred.

Table of Contents

11. Introduction

1.1 Sample XML
1
2. Programming XML with XLinq
3
2.1 XLinq Design Principles
3
2.1.1 Key Concepts
3
2.1.1.1 Functional Construction
3
2.1.1.2 Document "Free"
4
2.1.1.3 XML Names
6
2.1.1.4 Text as value
6
2.2 The XLinq Class Hierarchy
7
2.3 XML Names
8
2.3.1.1 XML Prefixes and Output
9
2.4 Loading existing XML
9
2.5 Creating XML from Scratch
10
2.6 Traversing XML
12
2.6.1.1 Getting the Children of an XML Element
12
2.6.1.2 Getting the Parent and Document of an XML Element
14
2.7 Manipulating XML
14
2.7.1.1 Inserting XML
14
2.7.2 Deleting XML
15
2.7.3 Updating XML
15
2.7.4 Careful of deferred query execution
16
2.8 Working with Attributes
17
2.8.1 Adding XML Attributes
17
2.8.2 Getting XML Attributes
17
2.8.3 Deleting XML Attributes
17
2.9 Working with other types of XML Nodes
18
2.10 Outputting XML
18
3. Querying XML with XLinq
19
3.1 Querying XML
19
3.1.1 Standard Query Operators and XML
19
3.1.1.1 Creating multiple peer nodes in a select
20
3.1.1.2 Handling Null in a Transform
20
3.1.2 XML Query Extensions
21
3.1.2.1 Elements and Content
21
3.1.2.2 Descendants and Ancestors
22
3.1.2.3 Attributes
23
3.1.2.4 ElementsBeforeThis, ElementsAfterThis, ContentBeforeThis, ContentAfterThis
23
3.1.2.5 Technical Note: XML Query Extensions
24
3.1.3 XML Transformation
24
3.2 Using Query Expressions with XML
26
4. Mixing XML and other data models
27
4.1 Reading from a database to XML
27
4.2 Reading XML and Updating a Database
28
5. Layered Technologies Over XLinq
29
5.1 XLinq in Visual Basic 9.0
29
5.1.1 XML Literals
29
5.1.2 Late Bound XML
30
5.1.3 Putting it all together
31
5.2 Schema aware XML Programming
32
6. XLinq PDC Preview Release Notes
34
7. References
37

1. Introduction
XML has achieved tremendous adoption as a basis for formatting data whether in Word files, on the wire, in configuration files, or in databases … XML seems to be everywhere. Yet, from a development perspective, XML is still hard to work with. If you ask the average software developer to work in XML you will likely hear a heavy sigh. The API choices for working with XML seem to be either aged and verbose such as DOM or XML specific such as XQuery or XSLT which require motivation, study, and time to master. XLinq, a component of the LINQ project, aims to address this issue. XLinq is a modernized in-memory XML programming API designed to take advantage of the latest .NET Framework language innovations. It provides both DOM and XQuery/XPath like functionality in a consistent programming experience across the different LINQ-enabled data access technologies.
There are two major perspectives for thinking about and understanding XLinq. From one perspective you can think of XLinq as a member of the LINQ Project family of technologies with XLinq providing an XML Language Integrated Query capability along with a consistent query experience for objects, relational database (DLinq), and other data access technologies as they become LINQ-enabled. From a another perspective you can think of XLinq as a full feature in-memory XML programming API comparable to a modernized, redesigned Document Object Model (DOM) XML Programming API.

XLinq was developed with Language Integrated Query over XML in mind from the beginning. It takes advantage of the Standard Query Operators and adds query extensions specific to XML. From an XML perspective XLinq provides the query and transformation power of XQuery and XPath integrated into .NET Framework languages that implement the LINQ pattern (e.g., C#, VB, etc.). This provides a consistent query experience across LINQ enabled APIs and allows you to combine XML queries and transforms with queries from other data sources. We will go in more depth on XLinq’s query capability in section 3, "Querying XML with XLinq".

Just as significant as the Language Integrated Query capabilities of XLinq is the fact that XLinq represents a new, modernized in-memory XML Programming API. XLinq was designed to be a cleaner, modernized API, as well as fast and lightweight. XLinq uses modern language features (e.g., generics and nullable types) and diverges from the DOM programming model with a variety of innovations to simplify programming against XML. Even without Language Integrated Query capabilities XLinq represents a significant stride forward for XML programming. The next section of this document, "Programming XML", provides more detail on the in-memory XML Programming API aspect of XLinq.
XLinq is a language-agnostic component of the LINQ Project. The samples in most of this document are shown in C# for brevity. XLinq can be used just as well with a LINQ-enabled version of the VB.NET compiler. Section 5.1, "XLinq in Visual Basic 9.0" discusses VB specific programming with XLinq in more detail.
1.1 Sample XML

For the purposes of this paper let's establish a simple XML contact list sample that we can use throughout our discussion.

<contacts>

<contact>

<name>Patrick Hines</name>

<phone type="home">206-555-0144</phone>

<phone type="work">425-555-0145</phone>

<address>

<street1>123 Main St</street1>

<city>Mercer Island</city>

<state>WA</state>

<postal>68042</postal>

</address>

<netWorth>10</netWorth>

</contact>

<contact>

<name>Gretchen Rivas</name>

<phone type="mobile">206-555-0163</phone>

<address>

<street1>123 Main St</street1>

<city>Mercer Island</city>

<state>WA</state>

<postal>68042</postal>

</address>

<netWorth>11</netWorth>

</contact>

<contact>

<name>Scott MacDonald</name>

<phone type="home">925-555-0134</phone>

<phone type="mobile">425-555-0177</phone>

<address>

<street1>345 Stewart St</street1>

<city>Chatsworth</city>

<state>CA</state>

<postal>91746</postal>

</address>

<netWorth>500000</netWorth>

</contact>
</contacts>

2. Programming XML with XLinq
This section details how to program with XLinq independent of Language Integrated Query. Because XLinq provides a fully featured in-memory XML programming API you can do all of the things you would expect when reading and manipulating XML. A few examples include the following:
· Load XML into memory in a variety of ways (file, XmlReader, etc.).
· Create an XML tree from scratch.

· Insert new XML Elements into an in-memory XML tree.

· Delete XML Elements out of an in-memory XML tree.

· Save XML to a variety of output types (file, XmlWriter, etc.).

And much more. You should be able to accomplish pretty much any XML programming task you run into using this technology.
2.1 XLinq Design Principles

XLinq is designed to be a lightweight XML programming API. This is true from both a conceptual perspective, emphasizing a straightforward, easy to use programming model, and from a memory and performance perspective.
2.1.1 Key Concepts
This section outlines some key concepts that differentiate XLinq from other XML programming APIs, in particular the current predominant XML programming API, the W3C DOM.

2.1.1.1 Functional Construction

In object oriented programming when you create object graphs, and correspondingly in W3C DOM, when creating an XML tree, you build up the XML tree in a bottom-up manner. For example using XmlDocument (the DOM implementation from Microsoft) this would be a typical way to create an XML tree.
XmlDocument doc = new XmlDocument();
XmlElement name = doc.CreateElement("name");
name.InnerText = "Patrick Hines";
XmlElement phone1 = doc.CreateElement("phone");
phone1.SetAttribute("type", "home");
phone1.InnerText = "206-555-0144";
XmlElement phone2 = doc.CreateElement("phone");
phone2.SetAttribute("type", "work");
phone2.InnerText = "425-555-0145";
XmlElement street1 = doc.CreateElement("street1");
street1.InnerText = "123 Main St";
XmlElement city = doc.CreateElement("city");
city.InnerText = "Mercer Island";
XmlElement state = doc.CreateElement("state");
state.InnerText = "WA";
XmlElement postal = doc.CreateElement("postal");
postal.InnerText = "68042";
XmlElement address = doc.CreateElement("address");
address.AppendChild(street1);
address.AppendChild(city);
address.AppendChild(state);
address.AppendChild(postal);
XmlElement contact = doc.CreateElement("contact");
contact.AppendChild(name);
contact.AppendChild(phone1);
contact.AppendChild(phone2);
contact.AppendChild(address);
XmlElement contacts = doc.CreateElement("contacts");
contacts.AppendChild(contact);
doc.AppendChild(contacts);
This style of coding provides few clues to the structure of the XML tree. XLinq supports this approach to constructing an XML tree but also supports an alternative approach referred to as functional construction. Here is how you would construct the same XML tree by using XLinq functional construction.
XElement contacts =

new XElement("contacts",

new XElement("contact",

new XElement("name", "Patrick Hines"),

new XElement("phone", "206-555-0144",

 new XAttribute("type", "home")),

new XElement("phone", "425-555-0145",

 new XAttribute("type", "work")),

new XElement("address",

new XElement("street1", "123 Main St"),

new XElement("city", "Mercer Island"),

new XElement("state", "WA"),

new XElement("postal", "68042")

)

)

);

Notice that by indenting (and squinting a bit) the code to construct the XML tree shows the structure of the underlying XML.

Functional construction is described further section 2.5, "Creating XML from Scratch".
2.1.1.2 Document "Free"
When programming XML your primary focus is usually on XML elements and perhaps attributes. This makes sense because an XML tree, other than at the leaf level, is composed of XML elements and your primary goal when working with XML is traversing or manipulating the XML elements that make up the XML tree. In XLinq you can work directly with XML elements in a natural way. For example you can do the following:

· Create XML elements directly (without an XML document involved at all)

· Load them from XML that exists in a file
· Save (write) them to a writer
Compare this to W3C DOM, in which the XML document is used as a logical container for the XML tree. In DOM XML nodes, including elements and attributes, must be created in the context of an XML document. Here is a fragment of the code from the previous example to create a name element:

XmlDocument doc = new XmlDocument();
XmlElement name = doc.CreateElement("name");
Note how the XML document is a fundamental concept in DOM. XML nodes are created in the context of the XML document. If you want to use an element across multiple documents you must import the nodes across documents. This is an unnecessary layer of complexity that XLinq avoids.

In XLinq you create XML elements directly:
XElement name = new XElement("name");
You do not have to create an XML Document to hold the XML tree. The XLinq object model does provide an XML document to use if necessary, for example if you have to add a comment or processing instruction at the top of the document. The following is an example of how to create an XML Document with an XML Declaration, Comment, and Processing Instruction along with the contacts content.

XDocument contactsDoc =

new XDocument(

new XDeclaration("1.0", "UTF-8", "yes"),

new XComment("XLinq Contacts XML Example"),

new XProcessingInstruction("MyApp", "123-44-4444"),
 new XElement("contacts",

new XElement("contact",

new XElement("name", "Patrick Hines"),

new XElement("phone", "206-555-0144"),

new XElement("address",

new XElement("street1", "123 Main St"),

 new XElement("city", "Mercer Island"),

 new XElement("state", "WA"),

 new XElement("postal", "68042")

)

)

)

);

After this statement contactsDoc contains:

<?xml version="1.0" standalone="yes"?>
<!--XLinq Contacts XML Example-->
<?MyApp 123-44-4444?>
<contacts>
 <contact>
 <name>Patrick Hines</name>
 <phone>206-555-0144</phone>
 <address>
 <street1>123 Main St</street1>
 <city>Mercer Island</city>
 <state>WA</state>
 <postal>68042</postal>
 </address>
 </contact>
</contacts>
2.1.1.3 XML Names

XLinq goes out of its way to make XML names as straightforward as possible. Arguably, the complexity of XML names, which is often considered an advanced topic in XML literature, comes not from namespaces, which developers use regularly in programming, but from XML prefixes. XML prefixes can be useful for reducing the keystrokes required when inputting XML or making XML easier to read, however prefixes are just a shortcut for using the full XML Namespace. On input XLinq resolves all prefixes to their corresponding XML Namespace and prefixes are not exposed in the programming API. In XLinq, an XName represents a full XML name consisting of the XML namespace and the local name concatenated together into an expanded name. Most often XNames appear as expanded names in string format (for example, "{http://mynamespace}contacts"). An automatic conversion from string to XName exists so this string format is automatically turned into an XName.
For example, to create an XElement called contacts that has the namespace "http://mycompany.com" you could use the following code:

XElement contacts = new XElement("{http://mycompany.com}contacts");

Conversely, W3C DOM exposes XML names in a variety of ways across the API. For example, to create an XmlElement, there are three different ways that you can specify the XML name. All of these allow you to specify a prefix. This leads to a confusing API with unclear consequences when mixing prefixes, namespaces, and namespace declarations (xmlns attributes that associate a prefix with an XML namespace).
XLinq treats XML namespace prefixes as serialization options and nothing more. When you read XML, all prefixes are resolved, and each named XML item has a fully expanded name containing the namespace and the local name. On output, the XML namespace declarations (xmlns attributes) are honored and the appropriate prefixes are then displayed. If you need to influence prefixes in the XML output, you can add xmlns attributes in the appropriate places in the XML tree. See Section 2.3, “XML Names,” for more information.
2.1.1.4 Text as value

Typically, the leaf elements in an XML tree contain values such as strings, integers, and decimals. The same is true for attributes. In XLinq, you can treat elements and attributes that contain values in a natural way, simply cast them to the type that they contain. For example, assuming that name is an XElement that contains a string, you could do the following:

string nameString = (string) name;
Usually this will show up in the context of referring to a child element directly like this:

string name = (string) contact.Element("name");
Explicit cast operators are provided for string, bool, bool?, int, int?, uint, uint?, long, long?, ulong, ulong?, float, float?, double, double?, decimal, decimal?, DateTime, DateTime?, TimeSpan, TimeSpan?, and GUID, GUID?.
In contrast, the W3C DOM treats text as an XML node. Consequently in many DOM implementations the only way to read and manipulate the underlying text of a leaf node is to read the text node children of the leaf node. For example just to read the value of the name element you would need to write code similar to the following:
XmlNodeList children = name.ChildNodes;
string nameValue = "";
foreach (XmlText text in children) {
 nameValue = nameValue + text.Value;
}
Console.WriteLine(nameValue);
This has been simplified in some W3C DOM implementations, such as the Microsoft XmlDocument API, by using the InnerText method. However, the possibility of having multiple text nodes exists in DOM, and the corresponding complexity shows up in the DOM API. With XLinq, you are never exposed to a text node. Instead, you work with directly with the basic .NET Framework-based types, reading them and adding them directly to the XML you are working with.
2.2 The XLinq Class Hierarchy

In Figure 1 XLinq Class Hierarchy" you can see the major classes defined in XLinq.

[image: image1.emf]XAttribute

XNode

XCharacterNode

XCData

XComment

XContainer XDeclaration

XDocument

XDocumentType

XElement

XName

XProcessingInstruction

XText

(internal)

Figure 1 XLinq Class Hierarchy
Note the following about the XLinq class hierarchy:

· Although XElement is low in the class hierarchy, it is the fundamental class in XLinq. XML trees are generally made up of a tree of XElements. XAttributes are name/value pairs associated with an XElement. XDocuments are created only if necessary, such as to hold an XML declaration (XDeclaration) or top level XML processing instruction (XProcessingInstruction). All other XNodes can only be leaf nodes under an XElement, or possibly an XDocument (if they exist at the root level).

· XAttribute and XNode are peers and not derived from a common base class (other than object). This reflects the fact that XML attributes are really name value pairs associated with an XML element not nodes in the XML tree. Contrast this with W3C DOM.

· XText is internal. The internal representation of text within XLinq is hidden. As a user, you can get back the value of the text within an element or attribute as a string or other simple value. Do not assume that that the implementation stores one or more XText nodes when there is text, because this is not necessarily the case. For example, when there is only one piece of text, as an optimization, the parent element stores an pointer to the string itself instead of an XText node. Not providing text nodes back to the user improves the programming model and allows for a more efficient implementation.
· The only XNode that can have children is an XContainer, meaning either an XDocument or XElement. An XDocument can contain an XElement (the root element), an XDeclaration, an XDocumentType, or an XProcessingInstruction. An XElement can contain another XElement, an XComment, an XProcessingInstruction, and text (which can be passed in a variety of formats, but will be represented in the XML tree as text).

2.3 XML Names
XML names, often a complex subject in XML programming APIs, are represented simply in XLinq. An XML name is represented by an XML namespace (also referred to as an XML namespace URI) and a local name. An XML namespace serves the same purpose that a namespace does in your .NET Framework-based programs, allowing you to uniquely qualify the names of your classes. This helps ensure that you don’t run into a name conflict with other users or built-in names. When you have identified an XML namespace, you can choose a local name that needs to be unique only within your identified namespace. For example, if you want to create an XML element with the name contacts, you would likely want to create it within an XML namespace such as http://yourCompany.com/ContactList.
Another aspect of XML names is XML namespace prefixes. XML prefixes cause most of the complexity of XML names. XML prefixes allow you to create a shortcut for an XML namespace, which makes the XML document more concise and understandable. XML prefixes depend on their context to have meaning. The XML prefix myPrefix could be associated with one XML namespace in one part of an XML tree, but be associated with a completely different XML namespace in a different part of the XML tree.

XLinq simplifies XML names by removing XML prefixes from the XML Programming API and treating them as a shortcut for representing an XML namespace. When reading in XML, each XML prefix is resolved to its corresponding XML namespace. Therefore, when developers work with XML names they are working with a fully qualified XML name: an XML namespace, and a local name.

In XLinq, the class that represents XML names is XName. XML names appear frequently throughout the XLinq API, and wherever an XML name is required, you will find an XName parameter. However, you seldom work directly with an XName. XName contains an implicit conversion from string. The string representation of an XName is referred to as an expanded name. An expanded name looks like the following:

"{NamepaceURI}LocalName"
or, if there is no namespace you can just use local name as you see in most of the examples in this document.

An expanded name with the XML namespace http://yourCompany.com and the local name contacts looks like the following:
{http://myCompany.com}contacts

You can use this expanded name format any time an XName is required. For example, the constructor for XElement takes an XName as its first argument:

XElement contacts = new XElement("{http://myCompany.com}contacts", …);
Notice how an expanded name string is passed in and implicitly converted to an XName. This code is exactly the same as:

XElement contacts = new XElement(

 XName.Get("{http://myCompany.com}contacts"), …);
You do not have to type the XML namespace every time you use an XML name. You can use the facilities of the language itself to make this easier. For example, you can use the following common pattern:

string myNs = "{http://mycompany.com}";

XElement contacts =

new XElement(myNs+"contacts",

new XElement(myNs+"contact",

new XElement(myNs+"name", "Patrick Hines"),

new XElement(myNs+"phone", "206-555-0144",

 new XAttribute("type", "home")),

new XElement(myNs+"phone", "425-555-0145",

 new XAttribute("type", "work")),

new XElement(myNs+"address",

new XElement(myNs+"street1", "123 Main St"),

new XElement(myNs+"city", "Mercer Island"),

new XElement(myNs+"state", "WA"),

new XElement(myNs+"postal", "68042")

)

)

);
The resulting XML will look like:

<contacts xmlns="http://mycompany.com">

<contact>

<name>Patrick Hines</name>

<phone type="home">206-555-0144</phone>

<phone type="work">425-555-0145</phone>

<address>

<street1>123 Main St</street1>

<city>Mercer Island</city>

<state>WA</state>

<postal>68042</postal>

</address>

</contact>
</contacts>
2.3.1.1 XML Prefixes and Output

Earlier in this section we mentioned that, when reading in XML, prefixes are resolved to their corresponding XML namespaces. But what happens on output? What if you need or want to influence prefixes when outputting the XML? You can do this by creating xmlns attributes (XML namespace declarations) that associate a prefix to an XML namespace. Therefore, if you have a specific output in mind, you can manipulate the XML to have the XML namespace declarations with your desired prefixes exactly where you want them.
2.4 Loading existing XML
You can load existing XML into an XLinq XML tree so that you can read it or manipulate it. XLinq provides multiple input sources, including a file, an XmlReader, a TextReader, or a string. To input a string, you use the Parse method. Here is an example of the Parse method:
XElement contacts = XElement.Parse(
 @"<contacts>

 <contact>

 <name>Patrick Hines</name>

 <phone type=""home"">206-555-0144</phone>

 <phone type=""work"">425-555-0145</phone>

 <address>

 <street1>123 Main St</street1>

 <city>Mercer Island</city>

 <state>WA</state>

 <postal>68042</postal>

 </address>

 <netWorth>10</netWorth>

 </contact>

 <contact>

 <name>Gretchen Rivas</name>

 <phone type=""mobile"">206-555-0163</phone>

 <address>

 <street1>123 Main St</street1>

 <city>Mercer Island</city>

 <state>WA</state>

 <postal>68042</postal>

 </address>

 <netWorth>11</netWorth>

 </contact>

 <contact>

 <name>Scott MacDonald</name>

 <phone type=""home"">925-555-0134</phone>

 <phone type=""mobile"">425-555-0177</phone>

 <address>

 <street1>345 Stewart St</street1>

 <city>Chatsworth</city>

 <state>CA</state>

 <postal>91746</postal>

 </address>

 <netWorth>500000</netWorth>

 </contact>
 </contacts>");

To input from any of the other sources, you use the Load method. For example, to load XML from a file:

XElement contactsFromFile = XElement.Load(@"c:\myContactList.xml");
2.5 Creating XML from Scratch

XLinq provides a powerful approach to creating XML elements. This is referred to as functional construction. Functional construction lets you create all or part of your XML tree in a single statement. For example, to create a contacts XElement, you could use the following code:
XElement contacts =

new XElement("contacts",

new XElement("contact",

new XElement("name", "Patrick Hines"),

new XElement("phone", "206-555-0144"),

new XElement("address",

new XElement("street1", "123 Main St"),

new XElement("city", "Mercer Island"),

new XElement("state", "WA"),

new XElement("postal", "68042")

)

)

);
By indenting, the XElement constructor resembles the structure of the underlying XML. Functional construction is enabled by an XElement constructor that takes a params object.

public XElement(XName name, params object[] contents)
The contents parameter is extremely flexible, supporting any type of object that is a legitimate child of an XElement. Parameters can be any of the following:

· A string, which is added as text content

· An XElement, which is added as a child element

· An XAttribute, which is added as an attribute

· An XProcessingInstruction, XComment, or XCData, which is added as child content

· An IEnumerable, which is enumerated, and these rules are applied recursively

· Anything else, ToString() is called and the result is added as text content

· null, which is ignored

In the above example showing functional construction, a string ("Patrick Hines") is passed into the name XElement constructor. This could have been a variable (for example, new XElement("name", custName)), it could have been a different type besides string (for example, new XElement("quantity", 55)), it could have been the result of a function call like this
{
...

XElement qty = new XElement("quantity", GetQuantity());
...
}

public int GetQuantity() { return 55; }
or it could have even been the an IEnumerable<XElement>. For example, a common scenario is to use a query within a constructor to create the inner XML. The following code reads contacts from an array of Person objects into a new XML element contacts.
class Person {
 public string Name;
 public string[] PhoneNumbers;
}

var persons = new [] { new Person

{Name="Patrick Hines",
 PhoneNumbers = new string[]

{"206-555-0144", "425-555-0145"}
 },
 new Person {Name="Gretchen Rivas",
 PhoneNumbers = new string[]

{"206-555-0163"}
 }
 };

XElement contacts = new XElement("contacts",
 from p in persons
 select new XElement("contact",
 new XElement("name", p.Name),
 from ph in p.PhoneNumbers
 select new XElement("phone", ph)
)
);

Console.WriteLine(contacts);

This gives the following output:

<contacts>
 <contact>
 <name>Patrick Hines</name>
 <phone>206-555-0144</phone>
 <phone>425-555-0145</phone>
 </contact>
 <contact>
 <name>Gretchen Rivas</name>
 <phone>206-555-0163</phone>
 </contact>
</contacts>

Notice how the inner body of the XML, the repeating contact element, and, for each contact, the repeating phone were generated by queries that return an IEnumerable.
When an objective of your program is to create an XML output, functional construction lets you begin with the end in mind. You can use functional construction to shape your goal output document and either create the subtree of XML items inline, or call out to functions to do the work.

Functional construction is instrumental in transforms, which are described in more detail in section 3.1.4, “XML Transformation.” Transformation is a key usage scenario in XML, and functional construction is well-suited for this task.
2.6 Traversing XML

When you have XML available to you in-memory, the next step is often to navigate to the XML elements that you want to work on. Language Integrated Query provides powerful options for doing just this, as described in section 3, "Querying XML with XLinq", this section describes more traditional approaches to walking through an XML tree.

2.6.1.1 Getting the Children of an XML Element

XLinq provides methods for getting the children of an XElement. To get all of the children of an XElement (or XDocument), you can use the Content() method. This returns IEnumerable<object> because you could have text mixed with other XLinq types. For example, you might have the following XML loaded into an XElement called contact:

<contact>

Met in 2005.

<name>Patrick Hines</name>

<phone>206-555-0144</phone>

<phone>425-555-0145</phone>

<!-- Avoid whenever possible -->

</contact>
Using Content(), you could get all of the children and output the results by using this code fragment:
foreach (c in contact.Content()) {

Console.WriteLine(c);
}
The results would show on the console as:

Met in 2005.
<name>Patrick Hines</name>
<phone>206-555-0144</phone>
<phone>425-555-0145</phone>
<!-- Avoid whenever possible -->
The first child was the string, "Met in 2005.", the second child was the XElement name, the third child was the first phone XElement, the fourth child was the second phone XElement, and the fifth child was an XComment with the value "<!—Avoid whenever possible -->". Notice that ToString() on an XNode (XElement, for example) returns a formatted XML string based on the node type. This is a great convenience, and we will use this many times in this document.
If you want to be more specific, you can ask for contents of an XElement of a particular type. For example, you might want to get the XElement children for the contact XElement only. In this case, you can specify a parameterized type:

foreach (c in contact.Content<XElement>()) {

Console.WriteLine(c)
}
And you would only get the element child written to the console:
<name>Patrick Hines</name>
<phone>206-555-0144</phone>
<phone>425-555-0145</phone>
Because XML Elements are prevalent and important in most XML scenarios, there are methods for navigating to XElements directly below a particular XElement in the XML tree. The method Elements() returns IEnumerable<XElement>, and is a shortcut for Content<XElement>. For example, to get all of the element children of contact, you would do the following:

foreach (x in contact.Elements()) {

Console.WriteLine(x);
}
Again, only the XElement children would be output:

<name>Patrick Hines</name>
<phone>206-555-0144</phone>
<phone>425-555-0145</phone>
If you want to get all XElements with a specific name, you can use the Elements(XName) overload that takes an XName as a parameter. For example, to get only the phone XElements, you could do the following:

foreach (x in contact.Elements("phone")) {

Console.WriteLine(x);
}
This would write all of the phone XElements to the console.

<phone>206-555-0144</phone>
<phone>425-555-0145</phone>

If you know that there is only one child element with a particular name, you can use the Element(XName) (not plural) method, which returns a single XElement. If there is more than one element with this name, you will get the first one. For example, to get the name XElement, you could do the following:

XElement name = contact.Element("name");
Or, you could get the value of name like this:

string name = (string) contact.Element("name");
Content(), Content<T>, Elements(), Elements(XName), and Element(XName) are the basic methods for simple traversal of XML. If you are familiar with XPath, these methods are analogous to child::node(), child::node(nodeType), child::*, child::name, and child::name[1], respectively. XML Query extensions such as Descendants() and Ancestors() as discussed in section 3, "Querying XML with XLinq", serve a similar traversal purpose and are often combined with the basic traversal methods.

2.6.1.2 Getting the Parent and Document of an XML Element

To traverse upwards in the XML tree, you can use the Parent property of XElement. For example, if you had a phone XElement, you retrieve the associated contact with the following:

XElement contact = phone.Parent;

Note that the Parent property of a root element is null. It is not the associated document as it is in some other XML APIs. In XLinq, the XML document is not considered a part of the XML tree. If you want the document associated with an XElement (or any XNode), you can get to it from the Document property. If you want to associate an XElement as the root element of a document, you can pass the element into the XDocument constructor or you can add the root to the document as a child element. For example, to establish the contacts XElement as the root element of a contactsDoc XDocument, you could do the following:

XDocument contactsDoc = new XDocument(contacts);

or
XDocument contactsDoc = new XDocument();
contactsDoc.Add(contacts);
2.7 Manipulating XML
XLinq provides a full set of methods for manipulating XML. You can insert, delete, copy, and update XML content.

2.7.1.1 Inserting XML

You can easily add content to an existing XML tree. To add another phone XElement by using the Add() method:

XElement mobilePhone = new XElement("phone", "206-555-0168");
contact.Add(mobilePhone);

This code fragment will add the mobilePhone XElement as the last child of contact. If you want to add to the beginning of the children, you can use AddFirst(). If you want to add the child in a specific location, you can navigate to a child before or after your target location by using AddBeforeThis() or AddAfterThis(). For example, if you wanted mobilePhone to be the second phone you could do the following:

XElement mobilePhone = new XElement("phone", "206-555-0168");
XElement firstPhone = contact.Element("phone");
firstPhone.AddAfterThis(mobilePhone);
The Add methods work similarly to the XElement and XDocument (actually XContainer) constructors so you can easily add full XML subtrees using the functional construction style. For example, you might want to add an Address to a contact.

contact.Add(new XElement("address",

new XElement("street", "123 Main St"),

new XElement("city", "Mercer Island"),

new XElement("state", "WA"),

new XElement("country", "USA"),

new XElement("postalCode", "68042")

));
Let's look a little deeper at what is happening behind the scenes when adding an element child to a parent element. When you first create an XElement it is unparented. If you check its Parent property you will get back null.
XElement mobilePhone = new XElement("phone", "206-555-0168");
Console.WriteLine(mobilePhone.Parent); // will print out null
When you use Add to add this child element to the parent, XLinq checks to see if the child element is unparented, if so, XLinq parents the child element by setting the child's Parent property to the XElement that Add was called on.

contact.Add(mobilePhone);
Console.WriteLine(mobilePhone.Parent); // will print out contact
This is a very efficient technique which is extremely important since this is the most common scenario for constructing XML trees.
To add mobilePhone to another contact:

contact2.Add(mobilePhone);

Again, XLinq checks to see if the child element is parented. In this case, the child is already parented. If the child is already parented, XLinq clones the child element under subsequent parents. The previous example is the same as doing the following:

contact2.Add(new XElement(mobilePhone));
2.7.2 Deleting XML

To delete XML, navigate to the content you want to delete and call Remove(). For example, if you want to delete the first phone number for a contact:

contact.Element("phone").Remove();
Remove() also works over an IEnumerable, so you could delete all of the phone numbers for a contact in one call.

contact.Elements("phone").Remove();
You can also remove all of the content from an XElement by using the RemoveContent() method. For example you could remove the content of the first contact's first address with this statement:
contacts.Element("contact").Element("address").RemoveContent();

Another way to remove an element is to set it to null using SetElement, which we talk further about in the next section.
2.7.3 Updating XML

To update XML, you can navigate to the XElement whose contents you want to replace, and then use the ReplaceContents() method. For example, if you wanted to change the phone number of the first phone XElement of a contact, you could do the following:

contact.Element("phone").ReplaceContent("425-555-0155");
You can also update an XML subtree using ReplaceContent(). For example, to update an address we could do the following:
contact.Element("address")

 .ReplaceContent(new XElement("street", "123 Brown Lane"),

 new XElement("city", "Redmond"),

 new XElement("state", "WA"),

 new XElement("country", "USA"),

 new XElement("postalCode", "68072"));
ReplaceContent() is general purpose. SetElement() is designed to work on simple content. You call ReplaceContents() on the element itself; with SetElement(), you operate on the parent. For example, we could have performed the same update we demonstrated above on the first phone number by using this statement:
contact.SetElement("phone", "425-555-0155");
The results would be identical. If there had been no phone numbers, an XElement named “phone” would have been added under contact. For example, you might want to add a birthday to the contact. If a birthday is already there, you want to update it. If it does not exist, you want to insert it.
contact.SetElement("birthday", "12/12");
Also, if you use SetElement() with a value of null, the XElement will be deleted. You can remove the birthday element completely by:

contact.SetElement("birthday", null);
Attrributes have a symmetric method called SetAttribute() which is discussed in section 2.8, "Working with Attributes".
2.7.4 Careful of deferred query execution

Keep in mind when manipulating XML that in most cases query operators work on a "deferred execution" basis (also called "lazy"), meaning the queries are resolved as requested rather than all at once at the beginning of the query. For example take this query which attempts to remove all of the phone elements in the contacts list:

// Don't do this! NullReferenceException
foreach (var phone in contacts.Descendants("phone")) {

phone.Remove();
}

The query will fail with a NullReferenceException when it tries to iterate on the phone that you just deleted. You can resolve this issue by forcing resolution of the entire sequence using ToList() or ToArray(). For example, this approach will work.

foreach (var phone in contacts.Descendants("phone").ToList()) {

phone.Remove();
}

This will cache up the list of phones so that there will be no problem iterating through them and deleting them.

The query extension Remove() is one of the few extension methods that does not use deferred execution and uses exactly this ToList() approach to cache up the items targeted for deletion. We could have written the previous example as:

contacts.Descendants("phone").Remove();
2.8 Working with Attributes

There is substantial symmetry between working with XElement and XAttribute classes. However, in the XLinq class hierarchy, XElement and XAttribute are quite distinct and do not derive from a common base class. This is because XML attributes are not nodes in the XML tree; they are unordered name/value pairs associated with an XML element. XLinq makes this distinction, but in practice, working with XAttribute is quite similar to working with XElement. Considering the nature of an XML attribute, where they diverge is understandable.

2.8.1 Adding XML Attributes

Adding an XAttribute is very similar to adding a simple XElement. In the sample XML, notice that each phone number has a type attribute that states whether this is a home, work, or mobile phone number:

<contacts>

<contact>

<name>Patrick Hines</name>

<phone type="home">206-555-0144</phone>

<phone type="work">425-555-0145</phone>

</contact>

...
You create an XAttribute by using functional construction the same way you would create an XElement with a simple type. To create a contact using functional construction:

XElement contact =

new XElement("contact",

new XElement("name", "Patrick Hines"),

new XElement("phone",

new XAttribute("type", "home"),

"206-555-0144"

),

new XElement("phone",

new XAttribute("type", "work"),

"425-555-0145"

)

);

Just as you use SetElement to update, add, or delete elements with simple types, you can do the same using the SetAttribute(XName, object) method on XElement. If the attribute exists, it will be updated. If the attribute does not exist, it will be added. If the value of the object is null, the attribute will be deleted.
2.8.2 Getting XML Attributes

The primary method for accessing an XAttribute is by using the Attribute(XName) method on XElement. For example, to use the type attribute to obtain the contact’s home phone number:

foreach (p in contact.Elements("phone")) {

if ((string)p.Attribute("type") == "home")

 Console.Write("Home phone is: " + (string)p);
 }

Notice how the Attribute(XName) works similarly to the Element(XName) method. Also, notice that there are identical explicit cast operators, which lets you cast an XAttribute to a variety of simple types (see section 2.1.1.4, Text as value for a list of the types defined for explicit casting from XElements and XAttributes).
2.8.3 Deleting XML Attributes

If you want to delete an attribute you can use Remove or use SetAttribute(XName, object) passing null as the value of object. For example to delete the type attribute from the first phone using Remove.

contact.Elements("phone").First().Attribute("type").Remove();

Or using SetAttribute:
contact.Elements("phone").First().SetAttribute("type", null);
2.9 Working with other types of XML Nodes

XLinq provides a full set of the different types of XML nodes that appear in XML. To illustrate this, we can create a document that uses all of the different XML node types:

XDocument xdoc = new XDocument(
 new XDeclaration("1.0", "UTF-8", "yes"),
 new XDocumentType(),
 new XProcessingInstruction("myApp", "My App Data"),
 new XComment("My comment"),
 new XElement("rootElement",
 new XAttribute("myAttribute", "att"),
 1234,
 new XCData("Text with a <left> bracket"),
 "mystring"

)

);
When you output xdoc you get:

<?xml version="1.0" standalone="yes"?>
<!--DOCTYPE-->
<?myApp My App Data?>
<!--My comment-->
<rootElement myAttribute="att">

1234<![CDATA[Text with a <left> bracket]]>mystring
</rootElement>

XLinq makes it as easy as possible to work with XML elements and attributes, but other XML node types are ready and available if you need them.

Note that in the XLinq PDC 2005 Preview Release parts of the XLinq implementation are incomplete. For example, the XDocType class is not complete yet. This section is meant to emphasize that XLinq will support the full set of XML nodes.
2.10 Outputting XML

After reading in your XML or creating some from scratch, and then manipulating it in various ways, you will probably want to output your XML. To accomplish this, you can use one of the overloaded Save() methods on an XElement or XDocument to output in a variety of ways. You can save to a file, a TextWriter, or an XmlWriter. For example, to save the XElement named contacts to a file:

contacts.Save(@"c:\contacts.xml");

3. Querying XML with XLinq
The major differentiator for XLinq and other in-memory XML programming APIs is Language Integrated Query. Language Integrated Query provides a consistent query experience across different data models as well as the ability to mix and match data models within a single query. This section describes how to use Language Integrated Query with XML. The following section contains a few examples of using Language Integrated Query across data models.

The Standard Query Operators form a complete query language for IEnumerable<T>. The Standard Query Operators show up as extension methods on any object that implements IEnumerable<T> and can be invoked like any other method. This approach, calling query methods directly, can be referred to as “explicit dot notation.” In addition to the Standard Query Operators are query expressions for five common query operators:

· Where
· Select
· SelectMany
· OrderBy
· GroupBy
Query expressions provide an ease-of-use layer on top of the underlying explicit dot notation similar to the way that foreach is an ease-of-use mechanism that consists of a call to GetEnumerator() and a while loop. When working with XML, you will probably find both approaches useful. An orientation of the explicit dot notation will give you the underlying principles behind XML Language Integrated Query, and help you to understand how query expressions simplify things.
3.1 Querying XML

We encourage you to review the reference materials in section 7, “References,” for in-depth information about Language Integrated Query. This section describes Language Integrated Query from a usage perspective, focusing on XML querying patterns and providing examples along the way.

The XLinq integration with Language Integrated Query is apparent in three ways:

· Leveraging the Standard Query Operators

· Using XML Query extensions

· Using XML Transformation

The first is common with any other Language Integrated Query enabled data access technology and contributes to a consistent query experience. The last two provide XML-specific query and transform features.

3.1.1 Standard Query Operators and XML

XLinq fully leverages the Standard Query Operators in a consistent manner exposing collections that implement the IEnumerable interface. Review the Standard Query Operator document (see section 7 "References ") for details on how to use the Standard Query Operators. In this section we will cover two scenarios that occasionally arise when using Standard Query Operators.

3.1.1.1 Creating multiple peer nodes in a select

Creating a single XElement with the Select Standard Query Operator works as you would expect when doing a transform into XML but what if you need to create multiple peer elements within the same Select? For example let's say that we want to flatten out our contact list and list the contact information directly under the root <contacts> element rather than under individual <contact> elements. Like this:

<contacts>

<!-- contact -->

<name>Patrick Hines</name>

<phone type="home">206-555-0144</phone>

<phone type="work">425-555-0145</phone>

<address>

<address>

<state>WA</state>

</address>

</address>

<!-- contact -->

<name>Gretchen Rivas</name>

<address>

<address>

<state>WA</state>

</address>

</address>

<!-- contact -->

<name>Scott MacDonald</name>

<phone type="home">925-555-0134</phone>

<phone type="mobile">425-555-0177</phone>

<address>

<address>

<state>CA</state>

</address>

</address>
</contacts>
To do this, you can use this query:

new XElement("contacts",

from c in contacts.Elements("contact")

select new object[] {

new XComment("contact"),

new XElement("name", (string)c.Element("name")),

c.Elements("phone"),

new XElement("address", c.Element("address"))

}
);
Notice that we used an array initializer to create the sequence of children that will be placed directly under the contacts element.
3.1.1.2 Handling Null in a Transform

When you are writing a transform in XML using functional construction, you sometimes encounter situations where an element is optional, and you do not want to create some part of the target XML if the element is not there. For example, the following is a query that gets names and phone numbers putting the phone numbers under a wrapping element <phoneNumbers>.
new XElement("contacts",

from c in contacts.Elements("contact")

select new XElement("contact",

c.Element("name"),

new XElement("phoneNumbers", c.Elements("phone"))

)
);
If the contact has no phone numbers, the phoneNumbers wrapping element will exist, but there will be no phone child elements. The following example demonstrates how to resolve this situation:

new XElement("contacts",

from c in contacts.Elements("contact")

select new XElement("contact",

c.Element("name"),

c.Elements("phone").Any() ?

new XElement("phoneNumbers", c.Elements("phone")) :

null

)
);

Functional construction has no problem with null, so using the ternary operator inline (c.Elements("phone").Any() ? ... : null) lets you suppress the phoneNumber if the contact has no phone numbers. This same result could be achieved without using the ternary operator by calling out to a function from the query:

new XElement("contacts",

from c in contacts.Elements("contact")

select new XElement("contact",

c.Element("name"),

GetPhoneNumbers(c)

)
);

...

static XElement GetPhoneNumbers(XElement c) {

if (c.Elements("phone").Any())

return new XElement("phoneNumbers", c.Elements("phone"));

else

return null;
}
3.1.2 XML Query Extensions

XML-specific query extensions provide you with the query operations you would expect when working in an XML tree data structure. These XML-specific query extensions are analogous to the XPath axes. For example, the Elements method is equivalent to the XPath * (star) operator. The following sections describe each of the XML-specific query extensions in turn.
3.1.2.1 Elements and Content
The Elements query operator returns the child elements for each XElement in a sequence of XElements (IEnumerable<XElement>). For example, to get the child elements for every contact in the contact list, you could do the following:

foreach (XElement x in contacts.Elements("contact").Elements())
{
 Console.WriteLine(x);
}

Note that the two Elements() methods in this example are different, although they do identical things. The first Elements is calling the XElement method Elements(), which returns an IEnumerable<XObject> containing the child elements in the single XElement contacts. The second Elements() method is defined as an extension method on IEnumerable<XObject>. It returns a sequence containing the child elements of every XElement in the list. The results of the above query look like this:

<name>Patrick Hines</name>
<phone type="home">206-555-0144</phone>
<phone type="work">425-555-0145</phone>
<address>

<street1>123 Main St</street1>

<city>Mercer Island</city>

<state>WA</state>

<postal>68042</postal>
</address>
<netWorth>10</netWorth>
<name>Gretchen Rivas</name>
<phone type="mobile">206-232-4444</phone>
<address>

<street1>123 Main St</street1>

<city>Mercer Island</city>

<state>WA</state>

<postal>68042</postal>
</address>
<netWorth>11</netWorth>
<name>Scott MacDonald</name>
<phone type="home">925-555-0134</phone>
<phone type="mobile">425-555-0177</phone>
<address>

<street1>345 Stewart St</street1>

<city>Chatsworth</city>

<state>CA</state>

<postal>92345</postal>
</address>
<netWorth>500000</netWorth>

If you want all of the children with a particular name, you can use the Elements(XName) overload. For example:

foreach (XElement x in contacts.Elements("contact").Elements("phone"))
{

Console.WriteLine(x);
}
This would return:
<phone>206-555-0144</phone>
<phone>425-555-0145</phone>
<phone>925-555-0134</phone>
<phone>425-555-0177</phone>
3.1.2.2 Descendants and Ancestors

The Descendants and Ancestors query operators let you query down and up the XML tree, respectively. Descendants with no parameters gives you all the child content of an XElement and, in turn, each child's content down to the leaf nodes (the XML subtree). Optionally, you can specify an XName (Descendants(XName)) and retrieve all of the descendants with a specific name, or specify a type (Descendants<T>) and retrieve all of the descendants of a specified XLinq type (for example, XComment).

For example, to get all of the phone numbers in our contact list, you could do the following:

contacts.Descendants("phone");

Descendants and Ancestors do not include the current node. If you use Descendants() on the root element, you will get the entire XML tree except the root element. If you want to include the current node, use SelfAndDescendants, which lets you specify an XName or type.

Ancestors and SelfAndAncestors work similarly to Descendants and SelfAndDescendants; they just go up the XML tree instead of down. For example, you can retrieve the first phone number in the contacts XML tree, and then print out its ancestors:

XElement phone = contacts.Descendants("phone").First();
foreach (XElement a in phone.Ancestors()) {

Console.WriteLine(a.Name);
};

The results will show:

contact
contacts

If you do the same thing with SelfAndAncestors, the output will also show phone:

XElement phone = contacts.Descendants("phone").First();
foreach (XElement a in phone.SelfAndAncestors()) {

Console.WriteLine(a.Name);
};

The results will show:

Phone
contact
contacts

The Descendants and Ancestors XML query extensions can greatly reduce the code needed to traverse an XML tree. You will find that you use them often for quick navigation in an XML tree.
3.1.2.3 Attributes

The Attributes XML query extension is called on an IEnumerable<XElement> and returns a sequence of attributes (IEnumerable<XAttribute>). Optionally, you can specify an XName to return only attributes with that name. For example, you could get a list of the distinct types of phone numbers that are in the contact list:

contacts.Descendants("phone").

Attributes("type").Select(t => t.Value).Distinct();
which will return:

home
work
mobile

3.1.2.4 ElementsBeforeThis, ElementsAfterThis, ContentBeforeThis, ContentAfterThis
These query operators are not implemented in the XLink PDC 2005 Preview Release however they are planned to be in an upcoming release.

If you are positioned on a particular element, you sometimes want to retrieve all of the child elements or content before that particular element, or the child elements or content after that particular element. The ElementsBeforeThis query extension returns an IEnumerable<XElement> containing the sibling elements that occur before that element. ElementsAfterThis returns the sibling elements that occur after that element. The ContentBeforeThis query extension returns the previous siblings of any type (e.g., string, XComment, XElement, etc.). Consequently, it returns an IEnumerable<object>. Similarly, ContentAfterThis returns the following siblings of any type.

3.1.2.5 Technical Note: XML Query Extensions
The XLinq specific extension methods are found in the XElementSequence class. Just as the Standard Query Operators are generally defined as extension methods on IEnumerable<T>, the XML query operators are generally defined as extension methods on IEnumerable<XElement>. XElementSequence is just a container class to hold these extension methods. Most likely you will never call these static methods through XElementSequence – but you could. For example, consider the following query to get all of the phone numbers in the contact list.
IEnumerable<XElement> phones =

contacts.Elements("contact").Elements("phone");

This could be rewritten using the static extension method Elements(this IEnumerable<XElement> source, XName name) in ElementSequence like this:
IEnumerable<XElement> phones =

XElementSequence.Elements(contacts.Elements("contact"), "phone");

You can learn more about the technical details of query extensions in the C# 3.0 Overview document (see section 7, "References").

3.1.3 XML Transformation
Transforming XML is a very important XML usage scenario. It is so important that it is a critical feature in two key XML technologies: XQuery and XSLT. In XLinq, the major enabler of transformation into XML is functional construction. Most transformations to an XML document can be thought of in terms of functionally constructing your target XML. In other words, you can “begin with the end in mind,” shaping your goal XML and filling in chunks of the XML by using combinations of queries and functions as needed.

For example, you might want to transform the format of the contact list to a customer list. Beginning with the end in mind, the customer list needs to look something like this:

<Customers>

<Customer>

<Name>Patrick Hines</Name>

<PhoneNumbers>

<Phone type="home">206-555-0144</Phone>

<Phone type="work">425-555-0145</Phone>

</PhoneNumbers>

</Customer>
</Customers>
Using functional construction to create this XML would look like this:

new XElement("Customers",
 new XElement("Customer",
 new XElement("Name", "Patrick Hines"),
 new XElement("PhoneNumbers",
 new XElement("Phone",
 new XAttribute("type", "home"),
 "206-232-2222"),
 new XElement("Phone",
 new XAttribute("type", "work"),
 "425-555-0145")
)
)
);

To transform our contact list to this new format, you would do the following:

new XElement("Customers",
 from c in contacts.Elements("contact")
 select new XElement("Customer",
 new XElement("Name", (string) c.Element("name")),
 new XElement("PhoneNumbers",
 from ph in c.Elements("phone")
 select new XElement("phone", (string) ph,
 ph.Attribute("type")
)
)
)
);

Notice how the transformation aligns with the structure of our target document. You start by creating the outer, root element of the target XML:

new XElement("Customers", ...
You will need to create a Customer XElement that corresponds to every contact in the original XML. To do this, you would retrieve all the contact elements under contacts, because you have to select what you need for each contact.

... from c in contacts.Elements("contact")...

The Select begins another functional construction block that will be executed for each contact.

select new XElement("Customer",
You now construct the <Customer> part of the target XML. You start by creating a Customer XElement:

select new XElement("Customer",
 new XElement("Name", (string) c.Element("name")),
The <PhoneNumbers> child is more complex because the phone numbers in the contact list are listed directly under the contact:

<contact><phone>...</phone><phone>...</phone></contact>
To accomplish this, query the phone numbers for the contact and put them as children under the <PhoneNumbers> element:

...
new XElement("PhoneNumbers",

from ph in c.Elements("phone")
 select new XElement("phone", (string) ph,
 ph.Attribute("type")
)
)
In this code, you query the contact's phone numbers, c.Elements("phone"), for each phone. We also create a new XElement called Phone with same type attribute as the original phone, and with the same value.

You will often want to simplify your transformations by having functions that do the work for portions of your transformation. For example, you could write the above transformation using more functions to break up the transformation. Whether you decide to this is completely up to you, just as you might or might not decide to break up a large, complex function based on your own design sensibility. One approach to breaking up a complex function looks like this:

new XElement("Customers", GetCustomers(contacts));

 static IEnumerable<XElement> GetCustomers(XElement contacts) {
 return from c in contacts.Elements("contact")
 select FormatCustomer(c);
 }

static XElement FormatCustomer(XElement c) {
 return new XElement("Customer",
 new XElement("Name", (string) c.Element("name"),
 GetPhoneNumbers(c)));
}

static XElement GetPhoneNumbers(XElement c) {
 return !c.Elements("phone").Any() ? null :
 new XElement("PhoneNumbers",
 from ph in c.Elements("phone")
 select new XElement("Phone",
 ph.Attribute("type"),
 (string) ph)
);
}

This example shows a relatively trivial instance of the power of transformation in .NET Framework Language Integrated Query. With functional construction and the ability to incorporate function calls, you can create arbitrarily complex documents in a single query/transformation. You can just as easily include data from a variety of data sources, as well as XML.
3.2 Using Query Expressions with XML
There is nothing unique in the way that XLinq works with query expressions so we will not repeat information in the reference documents here. The following shows a few simple examples of using query expressions with XLinq.
This query retrieves all of the contacts from Washington, orders them by name, and then returns them as string (the result of this query is IEnumerable<string>).
from c in contacts.Elements("contact")
where (string) c.Element("address").Element("state") == "WA"
orderby (string) c.Element("name")
select (string) c.Element("name");
This query retrieves the contacts from Washington that have an area code of 206 ordered by name. The result of this query is IEnumerable<XElement>.
from c in contacts.Elements("contact"),
 ph in c.Elements("phone")
where (string) c.Element("address").Element("state") == "WA" &&

ph.Value.StartsWith("206")
orderby (string) c.Element("name")
select c;

Here is another example retrieving the contacts that have a net worth greater than the average net worth.

from c in contacts.Elements("contact"),
 average = contacts.Elements("contact").

Average(x => (int) x.Element("netWorth"))
where (int) c.Element("netWorth") > average
select c;
4. Mixing XML and other data models
Language Integrated Query provides a consistent query experience across different data models via the Standard Query Operators and the use of Lambda Expressions. It also provides the ability to mix and match Language Integrated Query enabled data models/APIs within a single query. This section provides a simple example of two common scenarios that mix relational data with XML, using the Northwind sample database.

We will use the Northwind sample database and for these examples.
4.1 Reading from a database to XML
The following is a simple example of reading from the Northwind database (using DLinq) to retrieve the customers from London, and then transforming them into XML:

XElement londonCustomers =

new XElement("Customers",

from c in db.Customers

where c.City == "London"

select new XElement("Customer",

new XAttribute("CustomerID", c.CustomerID),

new XElement("Name", c.ContactName),

new XElement("Phone", c.Phone)

)

);

Console.WriteLine(londonCustomers);

The resulting XML output is this:

<Customers>

<Customer CustomerID="AROUT">

<Name>Mark Harrington</Name>

<Phone>(171) 555-0188</Phone>

</Customer>

<Customer CustomerID="BSBEV">

<Name>Michelle Alexander</Name>

<Phone>(171) 555-0112</Phone>

</Customer>

<Customer CustomerID="CONSH">

<Name>Nicole Holliday</Name>

<Phone>(171) 555-0182</Phone>

</Customer>

<Customer CustomerID="EASTC">

<Name>Kim Ralls</Name>

<Phone>(171) 555-0197</Phone>

</Customer>

<Customer CustomerID="NORTS">

<Name>Scott Culp</Name>

<Phone>(171) 555-0173</Phone>

</Customer>

<Customer CustomerID="SEVES">

<Name>Deepak Kumar</Name>

<Phone>(171) 555-0117</Phone>

</Customer>
</Customers>
4.2 Reading XML and Updating a Database

You can also read XML and put that information into a database. For this example, assume that you are getting a set of customer updates in XML format. For simplicity, the update records contain only the phone number changes.

The following is the sample XML:

<customerUpdates>

<customerUpdate>

<custid>ALFKI</custid>

<phone>206-555-0103</phone>

</customerUpdate>

<customerUpdate>

<custid>EASTC</custid>

<phone>425-555-0143</phone>

</customerUpdate>
</customerUpdates>

To accomplish this update, you query for each customerUpdate element and call the database to get the corresponding Customer record. Then, you update the Customer column with the new phone number.

foreach (var cu in customerUpdates.Elements("customerUpdate")) {

Customer cust = db.Customers.

First(c => c.CustomerID == (string)cu.Element("custid"));
 cust.Phone = (string)cu.Element("phone");
}
db.SubmitChanges();

These are just a few examples of what you can do with Language Integerated Query across data models. For more examples of using DLinq, see the DLinq Overview document (see section 7, “References.”).
5. Layered Technologies Over XLinq

The XLinq XML Programming API will be the foundation for a variety of layered technologies. Two of these technologies are discussed below.
5.1 XLinq in Visual Basic 9.0
VB 9.0 will provide deep support for XLinq. Instead of using methods to construct and navigate XML, VB 9.0 uses XML literals for construction and late-binding for navigation. This is an important distinction and is closer to the design center of VB. XML literals allow VB developers to construct XLinq objects such as XDocument and XElement directly using familiar XML syntax. Values within these objects can be created with expression evaluation and variable substitution. Late-binding will allow developers to access XML nodes directly by name, rather than indirectly using method calls. These two features will provide deep, explicit, easy to use and powerful support for XML and XLinq programming in VB.
5.1.1 XML Literals
Let us revisit the first example in this paper, (section 2.1.1.1), but this time written in VB. The syntax is very similar to the existing C# syntax:

Dim contacts As XElement = _
 New XElement("contacts", _
 New XElement("contact", _
 New XElement("name", "Patrick Hines"), _
 New XElement("phone", "206-555-0144", _
 New XAttribute("type", "home")), _
 New XElement("phone", "425-555-0145", _
 New XAttribute("type", "work")), _
 New XElement("address", _
 New XElement("street1", "123 Main St"), _
 New XElement("city", "Mercer Island"), _
 New XElement("state", "WA"), _
 New XElement("postal", "98040"))))
The above VB statement initializes the value of the variable contacts to be a new object of type XElement using the traditional API approach. VB allows us to go one-step further than calling the XLinq APIs to create new objects; it lets us write the XML inline using actual XML syntax:

Dim contacts As XElement = _
 <contacts>
 <contact>
 <name>Patrick Hines</name>
 <phone type="home">206-555-0144</phone>
 <phone type="work">425-555-0145</phone>
 <address>
 <street1>123 Main St</street1>
 <city>Mercer Island</city>
 <state>WA</state>
 <postal>98040</postal>
 </address>
 </contact>
 </contacts>
The XML structure of the result XElement is obvious, which makes the VB code easy to read and maintain. The VB compiler translates the XML literals on the right-hand side of the statement into the appropriate calls to the XLinq APIs, producing the exact same code as in the first example. This ensures full interoperability between Visual Basic and other languages that use XLinq.

Note that we do not need line continuations in XML literals. This allows developers to copy and paste XML from/to any XML source document.

Let us take another example where we create the same contact object but use variables instead. VB allows embedding expressions in the XML literals that create the XML values at run time. For example suppose that the contact name was stored in a variable called MyName. Now we may write as follows:

Dim myName = "Patrick Hines"
Dim contact As XElement = <contact>

<name><%=myName%></name>
 </contact>
People familiar with ASP.NET will immediately recognize the "<%=" and "%>" syntax. This syntax is used to bracket VB expressions, whose values will become the element content. Substituting the value of a variable like MyName is only one example, the expression could just as easily have been a database lookup, an array access, a library function call, that return a type that is valid element content such as string, List of XElement etc.

Within the angle brackets of XML syntax, VB expressions are enclosed with parentheses to distinguish literal values from expressions. In the following example, the value of the attribute "type" is set from an expression:

Dim phoneType = IIf(i = 1, "home", "work")
Dim contact = <contact>

 <phone type=(phoneType)>206-555-0144</phone>
 </contact>

 Similarly, the name of an element can be computed from an expression:

Dim MyName = "Patrick Hines"
Dim elementName = "contact"
Dim contact As XElement = <(elementName)>

 <name><%=MyName%></name>
 </>

Note that it is valid to use "</>" to close an element. This is a very convenient feature, especially when the element name is computed.
5.1.2 Late Bound XML

In addition to using XML literals for constructing XML, VB 9.0 also simplifies accessing and navigating XML structures via late binding over XML. That is, identifiers in VB code are bound at run time to corresponding XML attributes and elements. As a result, instead of calling explicit methods to navigate and locate elements and attributes, we can use their names as XLinq object properties. For example:

· use the child axis contact.phone to get all "phone" elements from the contact element,

· use the attribute axis phone.@type to get the "type" attribute of the phone element,

· use the descendants axis contact...city – written literally as three dots in the source code – to get all "city" children of the contact element, no matter how deeply in the hierarchy they occur,

· and finally, use the extension indexer on IEnumerable(Of T) to select the first element of the resulting sequence.

We put all these innovations together to make the code simpler, for example printing the phone's type and the contact's city looks as follows:

 For Each Dim phone In contact.phone
 Console.WriteLine(CStr(phone.@type))
 Next
 Console.WriteLine(CStr(contacts...city(0)))

The compiler knows to use late binding over normal objects when the target expression of a declaration, assignment, or initialization is of type Object rather than of some more specific type. Likewise, the compiler knows to use late binding over XML when the target expression is of type XElement, XDocument, or XAttribute or a collection of these types.

The compiler translates the late binding over XML as follows:

· the child-axis expression contact.phone into the raw XLinq call contact.Elements("phone"), which returns the collection of all child elements named "phone" of the contact element,

· the attribute axis expression phone.@type into phone.Attribute("type"), which returns the single child attribute named "type" of phone,

· and finally, the descendant axis contact...city(0) expression into a combination of ElementAt(contact.Descendants("city"),0), which returns the collection of all elements named city at any depth below contact.
The equivalent code after translation into XLinq calls is as below:

For Each Dim phone In contact.Element("phone")

Console.WriteLine(CStr(phone.Attribute("type")))
Next
Console.WriteLine(CStr(ElementAt(contact.Descendants("city"),0)))
5.1.3 Putting it all together
Used together, Language Integrated Query and the new XML features in VB 9.0, provides a simple but powerful way to perform many common Xml programming tasks. Let us examine the query in 3.1.1.1 that creates a flattened contact list and removes the contact element:

 <contacts>
 <!-- contact -->
 <name>Patrick Hines</name>
 <phone type="home">206-555-0144</phone>
 <phone type="work">425-555-0145</phone>
 <address>
 <address>
 <state>WA</state>
 </address>
 </address>
 </contacts>
The following is the C# version:
XElement contacts =

new XElement("contacts",

from c in contacts.Elements("contact")

select new object[] {

new XComment("contact"),

new XElement("name", (string)c.Element("name")),

c.Elements("phone"),

new XElement("address", c.Element("address"))

}

);
In VB 9.0 it can be written as follows:

 Dim contacts as XElement = _
 <contacts>
 <%= _
 Select _
 <>
 <!-- contact -->
 <name><%=CStr(c.name(0))%> </name>
 <%=c.phone %>
 <address><%= c.address %> </address>
 </>
 From c In contacts
 %>
 </contacts>
5.2 Schema aware XML Programming

As discussed in previous section Visual Basic will be providing late bound access and navigation of XLinq by translating operators into XLinq queries at run time. This section discusses the opportunity to take advantage of XML Schema to provide strong typing at compile time.
You may have noticed in the examples throughout this paper that the XLinq code has a significant number of quotes and casts in it. Take the following code sample which will total orders for a specific zip code.

public static double GetTotalByZip(XElement root, int zip) {

return (from order in root.Elements("order"),
 item in order.Elements("item"),
 where (int)order.Element("address").Element("postal") == zip
 select ((double)price * (int)qty)).Sum();
 }

The underlying XLinq XML programming API knows nothing about the shape of the XML, it is not aware that there will be a zip attribute under an order element and that its type is int. Consequently, you as a developer must know and assert that information (using quotes and casts).

This situation can be improved substantially if there is meta-data around that can be used to generate Common Language Runtime types that contain the knowledge of how the XML is structured and the appropriate simple types. XML Schema can be leveraged for exactly this purpose. We are actively investigating strongly typed, schema based support on top of XLinq. For example, with XML Schema meta-data for the above XML it would be possible to write code like:

public static double GetTotalByZip(Orders root, int zip) {

return (from order in root.OrderCollection,
 item in order.Items
 where order.Address.Postal == zip
 select (item.Price * item.Quantity)).Sum();
 }

Instead of quotes and casts you are working with types such as Orders and Items, and properties such as Price, and Quantity.

6. XLinq PDC Preview Release Notes
The XLinq implementation is incomplete and has some known limitations. Here is a non-exhaustive list of features we are planning to include.
· Several more extension methods are expected based on feedback.

· Extension methods for querying siblings ElementsBeforeThis, ElementsAfterThis, ContentBeforeThis, ContentAfterThis are expected.

· The Name property on XElement and XAttribute will have a setter.

· An XPathNavigator implementation is prototyped but not a part of the PDC release.

· GetNamespaceOfPrefix and GetPrefixOfNamespace methods are expected.
· XDocType, which represents a Document Type Definition, isn't complete yet. For example we expect to at least add properties for System and Public IDs.
· The name table implementation, defined as a simple static dictionary on the XName class, currently grows indefinitely as new XML names are encountered. Planned features for the name table includes generations and manual control functions such as Clear.
· Helper methods for creating namespace declarations (xmlns attributes) will be implemented. In the meantime you can create a default namespace declaration by specifying adding an attribute that fully qualified xmlns name. For example:

contact.SetAttribute("{http://www.w3.org/2000/xmlns/}xmlns", "http://mycompany.com");

Or in a functional constructor:

string myNs = "{http://mycompany.com}";

XElement contacts =

new XElement(myNs+"contacts",

new XElement(myNs+"contact",

 new XAttribute("{http://www.w3.org/2000/xmlns/}xmlns",
 "http://mycompany.com"),

new XElement(myNs+"name", "Patrick Hines"),

new XElement(myNs+"phone", "206-555-0144",

 new XAttribute("type", "home")),

new XElement(myNs+"phone", "425-555-0145",

 new XAttribute("type", "work")),

new XElement(myNs+"address",

new XElement(myNs+"street1", "123 Main St"),

new XElement(myNs+"city", "Mercer Island"),

new XElement(myNs+"state", "WA"),

new XElement(myNs+"postal", "68042"))));

This will result in an explicit default namespace declaration in the output XML. Like this:

<contacts xmlns="http://mycompany.com">
 <contact xmlns="http://mycompany.com">
 <name>Patrick Hines</name>
 <phone type="home">206-555-0144</phone>
 <phone type="work">425-555-0145</phone>
 <address>
 <street1>123 Main St</street1>
 <city>Mercer Island</city>
 <state>WA</state>
 <postal>68042</postal>
 </address>
 </contact>
</contacts>

If you want an explicit prefix defined you specify the prefix as the local name of the a fully qualified attribute that uses the xmlns namespace. Like this.
contact.SetAttribute("{http://www.w3.org/2000/xmlns/}foo", "http://mycompany.com");

Or in a functional constructor:

string myNs = "{http://mycompany.com}";

XElement contacts =

new XElement(myNs+"contacts",

new XElement(myNs+"contact",

 new XAttribute("{http://www.w3.org/2000/xmlns/}foo",
 "http://mycompany.com"),

new XElement(myNs+"name", "Patrick Hines"),

new XElement(myNs+"phone", "206-555-0144",

 new XAttribute("type", "home")),

new XElement(myNs+"phone", "425-555-0145",

 new XAttribute("type", "work")),

new XElement(myNs+"address",

new XElement(myNs+"street1", "123 Main St"),

new XElement(myNs+"city", "Mercer Island"),

new XElement(myNs+"state", "WA"),

new XElement(myNs+"postal", "68042"))));

This will result in an explicit foo prefix being defined in the output XML and the corresponding names being prefixed with foo. Like this:

<contacts xmlns="http://mycompany.com">
 <foo:contact xmlns:foo="http://mycompany.com">
 <foo:name>Patrick Hines</foo:name>
 <foo:phone type="home">206-555-0144</foo:phone>
 <foo:phone type="work">425-555-0145</foo:phone>
 <foo:address>
 <foo:street1>123 Main St</foo:street1>
 <foo:city>Mercer Island</foo:city>
 <foo:state>WA</foo:state>
 <foo:postal>68042</foo:postal>
 </foo:address>
 </foo:contact>
</contacts>

7. References
These documents can be found online at the Project LINQ website (http://go.microsoft.com/fwlink/?LinkId=51461).
· The LINQ Project Overview, .NET Language Integrated Query, Don Box, Anders Hejlsberg, September 2005

· The .NET Standard Query Operators, September 2005

· C# Version 3.0 Specification, September 2005

· Overview of VB 9.0, Erik Meijer, Amanda Silver, Paul Vick
· DLinq .NET Language Integrated Query for Relational Data, September 2005

Other documents, samples, and tutorials are also available.
Copyright SYMBOL 211 \f "Symbol" Microsoft Corporation 2005

IF DATE \@ "yyyy" = "1998" "1998-" . All Rights Reserved.

Copyright SYMBOL 211 \f "Symbol" Microsoft Corporation 2005

IF DATE \@ "yyyy" = "1998" "1998-" . All Rights Reserved.

_1186296840.vsd
XAttribute

XCharacterNode

XCData

XNode

XComment

XContainer

XDeclaration

XDocument

XDocumentType

XElement

XName

XProcessingInstruction

XText
(internal)

