Ideal Solutions – Assignment 1
Part A:

done

HydrogenCount@17182c1

1

HydrogenCount@13f5d07

1

HydrogenCount@f4a24a

3

Jason Ansel
UML:

[image: image1.png]
Zoom to 500% or more to see the image clearly.

There is only one error in this one. The following classes should have a self loops to themselves:

Nonempty_Bond_List
Nonempty_Atom_List

Brian Foster and Thiago Da Silva
Another UML in um1.png file by Jason Ansel
Program Description in English

The program begins in the Main.main function, which reads in the input from System.in (program.input) and creates a Molecule object with the information. The way this works is the Molecule object creates a Parser object that knows how to create the Molecule based on the program input information. The code for the Parser object (in Parser.java) is automatically generated by JavaCC, as explained in the Table of Contents of the DemeterJ quick help.

The print method (in Molecule.java) creates a Print object, which is a type of universal visitor, and has the ability to pass it down through the class hierarchy. The visitor is created in Molecule then can be passed down through the following classes: Atoms , Atom_List, Nonempty_Atom_List, Atom, HydrogenCount (where to go). When a visitor arrives at a HydrogenCount object, it performs the operations defined in the before method defined in the Print class (what to do). This code prints out information about the object.

Brian Foster and Thiago Da Silva

`java Main < ../program.input runs`, the Java virtual machine executes the byte code in file Main.class. This code will execute function Main.main which creates a Molecule-object from file program.input using a parser whose functioning will not be explained here; the parser is automatically generated by a parser generator called demeterj. This produces a Molecule made up of bonds and atoms.

The print() traverses the Molecule to find HydrogenCount objects, and when it finds them it prints them out.

Jason Ansel
Part B:

UML

[image: image2.png]
Zoom to 200% or more to see the image clearly.

Brian Foster and Thiago Da Silva
Another UML in um2.png file by Jason Ansel
Program Description in English:

This application provides similar functionality as the program described in part A, but structured differently. The traversal code is generated from DAJ, therefore the language is AspectJ. The major difference is that the parse and print methods are physically contained separately from the Molecule class. Similar to the program from part A, the Main.main method uses the information from the System.in File (program.input), and parses the information with a Parser object to create the Molecule object. However, the parse method is defined in a separate file (programParsing.java) from the Molecule class, using intertype declarations.

The print method is also defined separate from the Molecule class. It is defined in a DAJ generated aspect file (hydrogen.java), which is based on a traversal file. These generated methods are defined to allow the traversals previously described in part A, all the way down to HydrogenCount (where to go). Similar to part A, when the visitor reaches the HydrogenCount object, it executes the code in the Print.before method which prints out the object information.

Brian Foster and Thiago Da Silva

`java Main < ../program.input runs`, the Java virtual machine executes the byte code in file Main.class. This code will execute function Main.main which creates a Molecule-object from file program.input using a parser whose functioning will not be explained here; the parser is automatically generated by a parser generator called daj. This produces a Molecule made up of bonds and atoms.

Rather than using a print method and traversal, this uses an aspect to print out the hydrogen count. It has similar behavior but accomplishes it through a aspect that can be turned off and off.

Jason Ansel
Part C:

UNKNOWN1 = PersonalInfo

UNKNOWN2 = Address

UNKNOWN3 = City

UNKNOWN4 = Date

UNKNOWN5 = bad way

UNKNOWN6 = personalInfo

UNKNOWN7 = address

UNKNOWN8 = name

UNKNOWN9 = cg

UNKNOWN10 = DJ

UNKNOWN11 = The class graph is

UNKNOWN12 = Employee

UNKNOWN13 = Employee

UNKNOWN14 = personalInfo_

UNKNOWN15 = d

UNKNOWN16 = a

UNKNOWN17 = fetch

UNKNOWN18 = Boston

UNKNOWN19 = Boston

Jason Ansel (and most of you)
Part D:

CFG for atoms:

Atoms -> Atoms | Atom | E

Atom -> “<atom id=” ID “elementType=” Type “hydrogenCount=” Count “> </atom>”

ID -> String

Type -> String

Count -> String

Brian Foster and Thiago Da Silva
Part E:

Adaptive Programming

Most of you got this one!
