
7
Software Creation Industry

Competition has been shown to be useful up to a certain point and no further, but
cooperation . . . begins where competition leaves off.

Franklin Delano Roosevelt

Chapter 6 addressed the industrial organization of the software value chain from
software creation to use. Software creation, one of the more important links of the
chain, starts with a set of requirements and culminates in a software distribution
that can be provisioned, including analysis of user needs, development, maintenance,
customer support, and upgrades (see section 5.1).

This chapter addresses the internal structure of the software creation industry.
It is common for a total solution to be composed of software products from
multiple firms, whether the integration is performed by a system integrator or by a
software supplier who licenses modules from other suppliers. Thus, cooperation (as
well as competition) among firms in the software industry is crucially important.
Interesting issues addressed in this chapter include how the organization of this
production industry arises, how and why it is changing, and how firms coordinate
themselves to arrive at composable solutions meeting user needs. This chapter first
discusses the industrial organization, then the ways in which firms coordinate them-
selves, and finally the supply chain arising within the industry based on software
components.

7.1 Industrial Organization of the Software Industry

A relation between software architecture and industrial organization was pointed
out in section 6.1; industry responsibility must follow interfaces of software modules
at the top level of architectural decomposition. Is the architecture determined by
the marketplace, or is industrial organization determined by architecture? What is

THIS PDF FILE
FOR PROMOTIONAL USE ONLY

the industrial organization of the software creation industry, and how is it chang-
ing, and why? These issues are dealt with in this chapter.

7.1.1 Applications and Infrastructure
The most fundamental architectural concept in software is the decomposition into
application and infrastructure. With some notable exceptions, firms in the industry
generally specialize in one or the other.

Example There are three major types of exceptions. One is firms that combine the
businesses of infrastructure supplier and application software supplier, for instance,
Apple (particularly historically) and Microsoft. They strongly encourage indepen-
dent application software suppliers to use their platforms but also supply their own
applications. Another exception is firms that combine the business of infrastructure
software supply and consulting services, the latter focused on helping end-user orga-
nizations acquire and provision new applications. Examples are IBM and Compaq,
the latter a merger (Compaq and Digital) specifically designed to combine these
businesses. A third exception is firms that combine infrastructure software with
contract development of applications, for instance, IBM.

While both applications and infrastructure require technical development skills,
the core competencies are different. Applications focus the value proposition on end-
users, and infrastructure provides value primarily to application developers and to
operators. Applications are valued most of all for functionality and usability; their
performance and technical characteristics are more dependent on infrastructure.
It is advantageous to move as much technical capability to the infrastructure as
possible, so application developers can focus on user needs. This leads to a natural
maturation process whereby novel technical functionality is first pioneered in
leading-edge applications and then migrates to enrich infrastructure, or applications
evolve (at least partially) into infrastructural platforms for other applications.

Example The playing of audio and video media was originally built into
specialized applications. Today much of the required support is found in common
infrastructure, usually at the level of operating systems. Individual productivity
applications (such as office suites) have been augmented with ever richer user
programmability support, so many interesting specialized applications now build
on them (see section 4.2.7).

From a business perspective, application software has the advantage over infra-
structure of providing value directly to the end-user, who ultimately pays for every-
thing in the software value chain. This direct relationship provides rich opportunities

200 7.1 Industrial Organization of the Software Industry

to differentiate from competitors and to leverage it for selling complementary prod-
ucts. Ceding this valuable direct relationship between supplier and user is a dis-
advantage of the application service provider model (from the supplier perspective)
and also a motivation to become a service provider as well as a software supplier.

In some cases there are considerable marketplace obstacles to application
adoption that make business difficult for application suppliers, such as lock-in
and network effects (see chapter 9), but in other cases these are less important.
Application software suppliers who provide variations on competitive applications
find lock-in a greater obstacle but also benefit from a moderation of network effects,
for instance, through providing backward compatibility or translations (Shapiro
and Varian 1999b). There are many opportunities to pursue entirely new applica-
tion categories, as illustrated by the recent explosion of Internet e-commerce.

As observed in section 3.1, applications are becoming increasingly numerous,
diverse, and specialized. This is especially true of sociotechnical applications, which
are often specific to the group or organizational mission they serve. This has several
implications for industrial organization. First, a strong separation of applications
and infrastructure reduces the barriers to entry to new application ideas.
Where applications and infrastructure are supplied by separate firms, the latter find
it advantageous to define open and well-documented applicator programming
interfaces (APIs) that make it easier to develop applications, which in turn attracts
application ideas from more sources and provides more diversity and competitive
options to users. A good test of the application infrastructure separation is whether an
application can be developed and deployed without the knowledge or cooperation
of the infrastructure supplier or operator.

Second, application diversity is enhanced by doing whatever is necessary to make
it faster, cheaper, and requiring less development skill. This includes incorporating
more needed functionality in the infrastructure. Making use of software components
(see section 7.3), and rapid prototyping and end-user programming methodologies
(see section 4.2).

Third, application diversity is enhanced by an experimental approach seeking
inexpensive ways to try out and refine new application ideas (see section 3.1.6).
Applications should be a target for industrial and academic research, because a
research environment is well suited to low-cost experiments and the refinement
of ideas unfettered by the immediate goal of a commercially viable product (NRC
2000b) (see chapter 8). In reality, applications have traditionally not been an empha-
sis of the information technology (IT) research community for many reasons, includ-
ing the importance of nontechnical considerations, the need for specific end-user

Software Creation Industry 201

domain knowledge, the difficulty of gaining access to users for experimentation, and
the inherent difficulty in assessing experimental outcomes.

Fourth, innovative new applications are a good target for venture capital fund-
ing and startup companies. The funding of competing startups is a good mechanism
for the market to explore alternative application approaches. Venture capitalists
specialize in managing the high risks of new applications and have effective
mechanisms to abandon as well as start new businesses. This should not rule out
large company initiatives, but large companies are usually not attracted by the
limited revenue potential of a specialized application, put off by the financial risks
involved, and sensitive to the opportunity costs of tying up scarce development
resources.

Returning to the separation of application and infrastructure, the successes here
also build on the economics underlying infrastructure (see chapter 9). If a new appli-
cation requires a new infrastructure, then the required investment (as well as invest-
ment risk) is much larger than if the application is built on existing infrastructure.
Thus, the separation of applications from infrastructure reduces barriers to entry
and encourages small companies.

Example The history of the telephone industry illustrates these factors. Telephone
companies are historically application service providers with one primary applica-
tion—telephony. They are also infrastructure service providers, providing not
only the infrastructure supporting telephony but also data communications (e.g., the
Internet) and video (e.g., broadcast television distribution). They have shown inter-
est in expanding their application offerings, primarily in directions with mass market
appeal. In the United States, the telephone industry has launched three major appli-
cation initiatives of this character: video telephony (extending telephony to include
video), videotext (an early proprietary version of the Web), and video-on-demand.
In all three cases, the financial risk in deploying an expensive capital infrastructure
to support a new application with uncertain market potential proved too great, and
the efforts were abandoned. The telephone industry also illustrates numerous suc-
cesses in deploying applications building on the existing telephony infrastructure,
including products from independent suppliers like the facsimile machine and voice-
band data modem.

The telecommunications industry strategy addresses one serious challenge
following from the complementarity of applications and infrastructure and from
indirect network effects: an infrastructure supporting a diversity of available
applications offers more value to users, and an application utilizing a widely

202 7.1 Industrial Organization of the Software Industry

available infrastructure enjoys an inherently larger market. Industry thus faces the
chicken-and-egg conundrum that a new infrastructure cannot be marketed without
supported applications, and an application without a supporting infrastructure
has no market. The telephone industry strategy has been to define a compelling
application with mass market appeal and then to coordinate the investment in
application and infrastructure, while making the infrastructure fairly specialized to
support that application.1

The computer industry has generally followed the different strategy of deploying
a generic infrastructure that supports a diversity of applications. In part this can
be attributed to the culture of the industry, flowing from the original idea of pro-
grammable equipment whose application functionality is not determined at the time
of manufacture. The Internet (a computer industry contribution to communication)
followed a similar strategy; the core design philosophy for Internet technologies
always valued low barriers to entry for new applications and a diversity of
applications.

However, a pure strategy of deploying a generic infrastructure and waiting for
applications to arrive is flawed because it does not address the issue of how to get
infrastructure into the hands of enough users to create a market for applications
that build on that infrastructure. The computer industry has found numerous ways
to deal with this challenge (and has also suffered notable setbacks), all focused on
making one or more compelling applications available to justify investment in infra-
structure. An approach for totally new infrastructure is to initially bundle a set of
applications with it, even while keeping the infrastructure generic and encouraging
other application suppliers (e.g., the IBM PC and the Apple Macintosh were
both bundled initially with a set of applications, and the Internet initially offered
file transfer and e-mail). For infrastructure that has similar functionality to existing
infrastructure, interoperability with older applications and offering higher
performance characteristics for those older applications is another approach (e.g.,
layering; see section 7.1.3). Related to this, it is common for infrastructure
to be incrementally expanded while maintaining backward compatibility for older
applications. Application and infrastructure suppliers can explicitly coordinate
themselves (e.g., by sharing product road maps; see section 7.2). Yet another
approach is for applications to evolve into infrastructure by offering APIs or open
internal interfaces (e.g., the Web; see section 7.1.2).

Another difference between the computer and telecommunications industries is
the long-standing role of a service provider in telecommunications. Selling applica-
tions as a service bundled with a supporting infrastructure is advantageous in

Software Creation Industry 203

providing a single integrated solution to customers and freeing them of responsi-
bility for provisioning and operation. The software industry is moving in this direc-
tion with the application service provider model.

The goal should be to combine the most desirable features of these models, and
indeed the separation of application and infrastructure at the technological level
is not inconsistent with a service provider model and a bundling of application and
infrastructure as sold to the user. One of the trade-offs involved in these strategies
is summarized in the fundamental relationship (Shapiro and Varian 1999b).

Revenue = Market share ¥ Market size.

An infrastructure that encourages and supports a diversity of applications
exchanges market share (by ceding many applications to other suppliers or service
providers) for an increase in total market size (by providing more diversity and value
to users). Just as software suppliers must decide on their degree of application/infra-
structure separation, service providers face similar issues. They can offer only appli-
cations bundled with infrastructure, or enhance the diversity of application offerings
while ceding revenues and part of the customer relationship by giving third-party
application providers access to their infrastructure. To maximize revenues in the
latter case, use-based infrastructure pricing models can maximize the financial
return from application diversity. These issues will become more prominent with
the emerging Web services (see section 7.3).

7.1.2 Expanding Infrastructure
The growing cost of software development and the shortage of programming pro-
fessionals concerns software development organizations. This is exacerbated by the
increasing specialization and diversity of applications (see section 3.1.5); specialized
applications may be economically feasible only if development costs can be con-
tained. Several trends reduce developments costs, including improved tools, rapid
development methodologies (see section 4.2), greater use of software components
and frameworks (see section 7.3.6), and expanding infrastructure to make it cheaper
and faster to develop and deploy applications.

The idea behind expanding infrastructure is to observe what kind of functional-
ities application developers reimplement over and over, and to capture those func-
tionalities in a generic and flexible way within the infrastructure. It is important to
capture these capabilities in a generic and general way so that they can meet the
needs of a wide range of present and future applications. End-users for infrastruc-
ture software include application developers and operators.

204 7.1 Industrial Organization of the Software Industry

Example Many applications need authentication and access control for the
end-user (see section 5.4). Many aspects of this capability are generic and separated
from the specific needs of each application. If authentication and access control are
included within the infrastructure to be invoked by each application for its own
purposes, reimplementation is avoided and users benefit directly by being authenti-
cated only once for access to multiple applications.

These economic realities create an opportunity for the infrastructure to expand
in capability over time. This may happen directly, or sometimes software developed
as part of an application can be made available to other software and subsequently
serve as infrastructure.

Example Early applications had to manage much of the graphical user interface
on their own, but later this capability was moved to the operating system (initially
in the Apple Macintosh). Software to format screen documents based on the Web
markup language (HTML) was first developed in the Web browser but was also
potentially useful to other applications (like e-mail, which frequently uses HTML
to format message bodies). For example, Microsoft made this HTML display for-
matting available to other applications in its Windows operating system and to the
system itself in displaying help screens. The company provided an API to HTML
formatting within the Internet Explorer browser and included the Internet Explorer
in the Windows software distribution.

Sometimes, an entire application that becomes ubiquitous and is frequently com-
posed into other applications effectively moves into the infrastructure category.

Example The Web was originally conceived as an information access application
for scholarly communities (World Wide Web Consortium 2002) but has evolved
into an infrastructure supporting e-commerce and other applications. Many new
distributed applications today incorporate the Web server and browser to present
application-specific information to the user without requiring application-specific
client software. Office suites are commonly used as a basis for custom applications
serving vertical industry markets.

Valued-added infrastructure adds additional capability to an existing infrastructure.

Example A major area for innovation in infrastructure is middleware, defined
roughly as infrastructure software that builds on and adds value to the existing
network and operating system services. Middleware sits between the existing infra-
structure and applications, calling upon existing infrastructure services to provide
enhanced or extended services to applications. An example is message-oriented

Software Creation Industry 205

middleware, which adds numerous message queuing and prioritization services valu-
able to work flow applications.

Market forces encourage these additions because of the smaller incremental
investments compared to starting anew and because of the ability to support legacy
applications utilizing the earlier infrastructure. From a longer-term perspective, this
is problematic in that it tends to set in stone decisions made earlier and to intro-
duce unnecessary limitations, unless designers are unusually visionary. Economists
call these path-dependent effects.

Example Early Internet research did not anticipate streaming audio and video
services. The core Internet infrastructure therefore does not include mechanisms to
ensure bounded delay for transported packets, a capability that would be useful for
delay-sensitive applications like telephony or video conferencing.2 While acceptable
quality can be achieved without these delay guarantees, better quality could be
achieved with them. Unfortunately, once a packet is delayed too much, there is no
way to make up for this, as time moves in only one direction. Hence, no value-
added infrastructure built on the existing Internet technologies can offer delay
guarantees—a modification to the existing infrastructure is required. Value-added
infrastructure lacks complete freedom to overcome earlier design choices, particu-
larly in performance dimensions.

The chicken-and-egg conundrum—which comes first, the applications or the
infrastructure they depend on—is a significant obstacle to establishing new infra-
structure capability. One successful strategy has been to move infrastructure with a
compelling suite of applications into the market simultaneously, presuming that even
more applications will come later.

Example The Internet illustrates this, as it benefited from a couple of decades of
refinement in the academic research community before commercialization. A key
was developing and refining a suite of “killer apps” (e.g., file transfer, e-mail, Web
browsing). This, plus an established substantial community of users, allowed the
Internet to reach commercial viability and success quickly once it was made com-
mercially available. This is an oft-cited example of the important role of govern-
ment-funded research (see chapter 8), subsidizing experimentation and refinement
of infrastructure and allowing a suite of compelling applications to be developed.
Such externally funded experimental infrastructure is called a test bed for the new
space to be populated.

Middleware illustrates another strategy. Applications and (future) infrastructure
can be developed and sold as a bundle while maintaining strict modularity so that

206 7.1 Industrial Organization of the Software Industry

the infrastructure can later be unbundled and sold separately. A variation is to estab-
lish APIs to allow independent use of capabilities within an application.

Example A way to establish a message-oriented middleware (MOM) product
might be to develop and bundle it with an enterprise work flow application, such
as a purchase order and accounts payable application. By providing open APIs to
the MOM capabilities, other application suppliers are encouraged to add applica-
tion enhancements or new application capabilities that depend on the MOM. If this
strategy is successful, eventually the MOM assumes a life of its own and can be
unbundled and sold separately as infrastructure.

7.1.3 Vertical Heterogeneity: Layering
The modularity of infrastructure is changing in fundamental ways, driven primar-
ily by the convergence of the computing (processing and storage) and telecommu-
nications industries. By convergence, we mean two industries that were formerly
independent becoming competitive, complementary, or both. This convergence is
manifested primarily by the Internet’s enabling of globally distributed software (see
section 4.5), leading to applications that emphasize communication using distrib-
uted software (see section 3.1). This led to competing data networking solutions
from the telecommunications and computer industries3 and made networking
complementary to processing and storage.

The top-level vertical architecture of both the telecommunications and computer
industries prior to this convergence resembled a stovepipe (see figure 7.1). This
architecture is based on market segmentation, defining different platforms for dif-
ferent application regimes. In the case of computing, mainframes, servers (originally
minicomputers and later microprocessor-based) and desktop computers were intro-
duced into distinct market segments (see table 2.3), each segment offering typically
two or three major competitive platforms. Each segment and platform within that
segment formed a separate marketplace, with its own applications and customers.
Mainframes served back-office functions like accounting and payroll, servers
supported client-server departmental functions like customer service, and desktop
computers served individual productivity applications.

Similarly, the telecommunications industry segmented the market by application
or information medium into telephony, video, and data. Each of these media was
viewed as a largely independent marketplace, with mostly separate infrastructure
sharing some common facilities.

Example Telecommunications firms have always shared right-of-way for different
applications and media, and also defined a digital multiplexing hierarchy (a recent

Software Creation Industry 207

example is SONET, or synchronous optical network) that supported a mixture of
voice, data, and video services.

While the telecommunications and computer architectures look superficially similar,
historically the approach has been different, primarily arising out of the importance
of the service provider in telecommunications but not in computing. With notable
exceptions, in telecommunications the infrastructure and application suppliers sold
to service providers, who did the provisioning and operation, and the service
providers sold application services (and occasionally infrastructure services) to users.
In computing, it was common for infrastructure suppliers to sell directly to users or
end-user organizations, who acquire (or develop themselves) applications and do
their own provisioning and operation. This is partly due to the different cultures
and the relative weakness of data networking technologies (necessary to sell appli-
cation services based on processing and storage) in the early phases of the computer
industry.

These distinct industry structures led to fundamental differences in business
models. Firms in the telecommunications industry historically saw themselves as
application service providers, viewed the application (like telephony or television-
video distribution) as their business opportunity, and constructed a dedicated infra-
structure for their application offerings. Infrastructure was a necessary cost of
business to support applications, the primary business opportunity. Further, service
providers viewed alternative applications and application suppliers as a competitive
threat.

208 7.1 Industrial Organization of the Software Industry

Telecommunications Computing
T

el
ep

h
o

n
y

V
id

eo

D
at

a

M
ai

n
fr

am
e

S
er

ve
r

D
es

kt
o

p

Figure 7.1
Historically, the telecommunications and computing industry both used an architecture
resembling a stovepipe.

In contrast, the relatively minor role of a service provider in the computer industry
and the cultural influence of the technical genesis of computing (programmability, and
the separation of application from infrastructure) resulted in a strikingly different
business model. Infrastructure and application suppliers sold independently to end-
user organizations, and the users integrated the two. As a result, neither the applica-
tion supplier nor the user perceived much freedom to define new infrastructure but
focused on exploiting existing infrastructure technologies and products. The infra-
structure supplier encouraged a diversity of complementary applications and applica-
tion suppliers to increase the value of its infrastructure and simultaneously provide
customers better price, quality, and performance through application competition.

To summarize the difference in the telecommunications and computing business
strategies, in telecommunications the infrastructure chased the applications, whereas
in computing the applications chased the infrastructure. While there are many nec-
essary qualifications and notable exceptions to this statement, for the most part it
rings true. In a sense, the telecommunications business model formed a clearer path
to dealing with the indirect chicken-and-egg network effects mentioned earlier.
Regardless of whether applications chase infrastructure or the reverse, investments
in new infrastructure technologies have to proceed on faith that there will be suc-
cessful applications to exploit new infrastructure. In the telecommunications indus-
try this was accomplished by directly coordinated investments, and in the computer
industry an initial suite of applications was viewed as the cost of establishing a new
infrastructure.

Example To complement its PC, IBM initially supplied a suite of personal pro-
ductivity applications, as did Apple Computer with the Macintosh. In both cases,
open APIs in the operating system encouraged outside application developers, and
it was not long before other application software suppliers supplanted the original
infrastructure supplier’s offerings (particularly for the PC).

This is all historical perspective, and not an accurate view of the situation today,
in part because of the convergence of these two industries. The infrastructure has
shifted away from a stovepipe form and toward a horizontal architecture called lay-
ering. The layered architecture organizes functionality as horizontal layers (see figure
7.2), each layer elaborating or specializing the functionality of the layer below. Each
layer focuses on supporting a broad class of applications and users rather than
attempting to segment the market. A natural way to enhance and extend the infra-
structure is to add a new layer on top of existing layers. If applications are permit-
ted to directly access services from lower layers, the addition of a new layer does

Software Creation Industry 209

not disrupt existing applications but creates opportunities for new applications.
While applications are allowed to access any layer, each layer is usually restricted
to invoke only the services of the layer immediately below. This restriction can be
eased by allowing two or more layers in parallel, at the same level.

Example As illustrated in figure 7.3, the Internet is built on a foundation layer
called the internet protocol (IP) and on top of that two widely used layers, trans-
mission control protocol (TCP) and user datagram protocol (UDP). IP offers a
service that conveys packets from one host to another with no guarantee of deliv-
ery order or reliability (analogous to sending postcards through the postal system).

210 7.1 Industrial Organization of the Software Industry

Existing layers

Elaboration and/or specialization

➴➴➴➴ ➴➴➴➴➴➴➴➴

Diversity of applications

➴➴➴➴

Figure 7.2
The layered architecture for infrastructure modularizes it into homogeneous horizontal layers.

Internet protocol (IP)

TCP UDP

RTPIIOP

Higher infrastructure layers and applications

Figure 7.3
A simplified architecture of the Internet illustrates how new layers are added while future
layers and applications can still invoke services of previous layers.

TCP and UDP invoke the services of IP to direct packets to a specific application
running on the host. TCP also offers reliability and guaranteed ordering of deliv-
ery, achieved by detecting lost (or excessively delayed) packets and resending them.
Later, the internet inter-ORB protocol (IIOP) and the real-time protocol (RTP) layers
were added on top of TCP and UDP, respectively, to support distributed object-
oriented applications and streaming audio and video. HTTP (hypertext transfer
protocol) is an important protocol layered on TCP, the main protocol underlying
the Web and easily recognized in Web addresses (http://). In the future, more layers
may be added; future layers and applications are permitted to access lower layers.
Applications can even invoke IP services directly, although this would be unusual.

Since the layered architecture dominates the converged computing and telecom-
munications industries, it largely displaces the stovepipe architecture historically
characteristic of both industries. There are several forces driving this shift and
accompanying implications for industrial structure. The first is the effect of the Inter-
net on the computer industry. By enabling distributed applications to communicate
across platforms, it creates a new technical and commercial complementarity among
them. End-users do not want to uniformly adopt a single platform to use a partic-
ular distributed application, nor do they want to participate in an application with
only a subset of other users, reducing value because of network effects. Suppliers
of new distributed applications don’t want to limit their market to a subset of users
on a given platform, or take specific measures to support different platforms. For
applications to be easy to develop, deploy, and operate in an environment with het-
erogeneous platforms, application suppliers want to see homogeneity across those
platforms. Horizontal homogeneity can potentially be achieved in a layered archi-
tecture by adding layers above the existing heterogeneous platforms, those new
layers hiding the heterogeneity below. Because of path-dependent effects, this results
in a hybrid stovepipe-layered architecture.

Example The virtual machine and associated environment for code portability can
be viewed as a layer added to the operating system within each platform (see section
4.4.3). As illustrated in figure 7.4, this new layer adds a uniform execution model
and environment for distributed software applications. It can be viewed as a homo-
geneous layer that sits on top of existing heterogeneous platforms (like Windows,
Mac OS, and different forms of UNIX). Further, there is no reason (other than
inconvenience in provisioning and application composability) not to have two or
more parallel virtual machine layers supporting different groups of applications.

A layer that hides the horizontal heterogeneity of the infrastructure below and is
widely deployed and available to applications is called a spanning layer. The most

Software Creation Industry 211

important spanning layer today, the internet protocol, was specifically designed to
hide heterogeneous networking technologies below. The virtual machine is another
example of a spanning layer, arguably not yet widespread enough to deserve this
appellation. One way to view the relation between these spanning layers was illus-
trated earlier in the “hourglass” of figure 4.6.

A second driver for layering is the trend toward applications that integrate pro-
cessing, storage, and communication and mix data, audio, and video (see section
3.1). In contrast to the stovepipe, each horizontal layer (and indeed the entire infra-
structure) supports a variety of technologies, applications, and media.

Example Within the communication infrastructure, the IP layer has been extended
to support data by the addition of the TCP layer and extended to support stream-
ing audio media by the addition of an RTP layer on top of UDP (see figure 7.3). A
given application can mix these media by accessing the TCP layer for data and the
RTP layer for audio and video.

A third and related driver for layering is value added to infrastructure that can
support the composability of different applications (see section 3.2.12), which is
one of the most important roles of infrastructure. By binding different applications
to different infrastructures, a stovepipe architecture is inherently constrained in its
ability to support composability, but a layered architecture is not.

A fourth driver for layering is its allowance for incremental extension and
elaboration while continuing to support existing applications. This reduces the
barrier to entry for applications that require new infrastructure capabilities, since

212 7.1 Industrial Organization of the Software Industry

Virtual machine layer

Diversity of distributed applications

Heterogeneous platforms

Figure 7.4
The widely deployed virtual machine can create a homogeneous spanning layer for applica-
tions that hides the heterogeneity of platforms.

most of the supporting infrastructure does not need to be acquired or provisioned.
Looking at it from the computer industry perspective (infrastructure first,
applications later), this allows incremental investments in infrastructure for both
supplier and customer.

Modularity introduces inefficiency, and layering is no exception. Compared to a
monolithic stovepipe, layering tends to add overhead, no small matter in a shared
infrastructure where performance and cost are often important. The processes
described by Moore’s law are thus an important enabler for layering (see section 2.3).

Layering fundamentally shifts the structure of industry competition. Each layer
depends on the layers below (they are complementary), and an application requires
the provisioning and operation of all layers upon which it depends. This creates
complementary infrastructure suppliers, and a burden on infrastructure provision-
ing to integrate layers. Competition in the infrastructure is no longer focused on
segmentation of the market for applications but rather on competition at each layer,
each supplier attempting to provide capabilities at that layer for a wide range of
applications. The integration of layers requires coordination among suppliers (see
section 7.2), and functionality and interfaces are fairly constrained if alternative
suppliers are to be accommodated.

Layering fundamentally changes the core expertise of industry players. Expertise
about particular application segments no longer resides with infrastructure suppli-
ers but primarily within application suppliers. Market forces encourage infrastruc-
ture suppliers to extend the capabilities they supply to serve all (or at least a broader
range of) applications because this increases market size. This increases their needed
range of expertise, and if this proves too daunting, they may narrow their focus
vertically by specializing in only one or two layers. Startup companies especially
face a challenge in this industry structure because of the generality and hence high
development costs and wide-ranging expertise required. Thus, startup companies
tend to focus either at the top (applications) or bottom (technology) of the layering
architecture, where diverse solutions thrive and there are fewer constraints and less
need to coordinate with others (see section 7.1.5.).

Example The physical layer of communication (transporting a stream of bits via
a communication link) is a ripe area for startup companies, especially in light of the
variety of media available (optical fiber, radio, free-space optical, coaxial cable, and
wirepair). As long as they interface to standard solutions for the layers above, inno-
vation is relatively unconstrained. The analogous opportunity in processing is
the microprocessor, so one might expect a similar diversity of startups. In fact,
microprocessor startups are rare because the instruction set is deeply intertwined

Software Creation Industry 213

with the software layers above, greatly limiting the opportunity for differentiation.
The emulation or virtual machine idea is one way to address this, but this reduces
performance, one of the prime means of differentiation. An interesting attempt
at combining the virtual machine and the custom microprocessor concepts is
Transmeta’s Crusoe, a small, energy-efficient processor with a proprietary instruc-
tion set complemented by a software layer that translates standard Intel instruction
sequences into Crusoe instructions.

It is useful to examine the appropriate modularity of layering in more detail. It
is striking that no single organization has responsibility for consciously designing
the overall layered architecture. Rather, it is determined by research and company
initiatives, collaborations among companies, and standardization bodies. The result
is “creative chaos” that introduces strengths and weaknesses. On the plus side, inno-
vations are welcome from many quarters, and good ideas have a reasonable chance
of affecting the industry. On the negative side, application suppliers and provisioness
must deal with a lot of uncertainty, with competing approaches to consider and no
clear indication as to which ones will be successful in the long term.

Example The first successful attempt at enabling cross-platform middleware as a
spanning layer was the Object Management Group’s common object request broker
architecture (CORBA), a suite of standards to enable distributed object-oriented
applications. CORBA has been successful in intraenterprise integration, where
platform variety arises out of acquisitions and mergers and yet cross-platform
integration is required. CORBA did not achieve similar success in interenterprise
integration, where heterogeneous platforms are even more prevalent. A later
approach to cross-platform integration was Java, now usually used in conjunction
with CORBA in enterprise solutions. Again, interenterprise integration remains
beyond reach for technical reasons. The latest attempt at global integration is Web
services based on XML (extended markup language) and other Web standards (see
section 7.3.7). With Web services emerging as the most likely universal spanning
layer, competition in the layer immediately below heats up: Microsoft’s. NET
Common Language Runtime and its support for Web services compete against the
Java virtual machine and its emerging support for Web services.

Historically, the approach was very different in the telecommunications industry.
This arguably resulted in less change and innovation (but still a remarkable amount)
but in a more reliable and stable infrastructure.

Example Until about two decades ago, each country had a monopoly national tele-
phone service provider (often combined with the post office). In the United States

214 7.1 Industrial Organization of the Software Industry

this was the Bell System, with its own research, equipment, software development,
and manufacturing. Suppliers and providers coordinated through standardization
bodies in Geneva, predominantly the International Telecommunication Union (ITU),
formerly called Comité Consultatif International Téléphonique et Télégraphique
(CCITT). Through these processes, the national networks and their interconnection
were carefully planned top-down, and changes (such as direct distance dialing) were
carefully planned, staged, and coordinated. This resulted in greater reliability and
stability but also fewer competitive options or diversity of choice.

Since the networked computing infrastructure has not followed a top-down
process, beyond the core idea of layering there is no overall architectural vision that
guides the industry. Rather than pointing to a guiding architecture, we must resort
to an analysis of the current state of the industry. An attempt at this analysis is
shown in figure 7.5 (Messerschmitt 1999b). It illustrates three stovepipes of lower
layers, one specific to each technology (processing, storage, and connectivity). Dis-
tributed applications (as well as nondistributed applications that combine process-
ing and mass storage) want a homogeneous infrastructure that combines these three
technologies in different ways, and thus the top layers are common to all three (see
table 7.1).

The essential idea behind figure 7.5 is illustrated in figure 7.6. The intermediate
layers provide a common set of services and information representations widely used

Software Creation Industry 215

Integrated services

Processing Storage Connectivity

Common representations

Generic services

Segmented application services

Diversity of applications

Figure 7.5
A layered architecture for distributed applications and the supporting infrastructure.

216 7.1 Industrial Organization of the Software Industry

Table 7.1
Description of Layers Shown in Figure 7.5

Layer Description Examples

Applications A diversity of applications
provide direct and specific
functionality to users.

Segmented Captures functionality useful to a Message-oriented middleware
application narrower group of applications, emphasizes work flow applications;
services so that those functions need not information brokering serves as an

be reimplemented for each intermediary between applications
application. This layer has or users and a variety of
horizontal heterogeneity because information sources.
each value-added infrastructure
element is not intended to serve
all applications.

Integrated Provides capabilities that Directory services use stored
services layer integrate the functions of information to capture and identify

processing, storage, and the location of various entities—
connectivity for the benefit of essential to virtually all distributed
applications. applications.

Generic Provides services that integrate The reliable and ordered delivery
services layer processing, storage, and of data (connectivity); the

connectivity in different ways. structured storage and retrieval of
data (storage); and the execution
of a program in an environment
including a user interface
(processing and display).

Common Provides abstract representations A virtual machine representing an
representations for information in different abstract processing engine (even
layer media (like processing across different microprocessors

instructions, numerical data, text, and operating systems); a relational
pictures, audio, and video) for table representing the structure of
purposes of processing, storage, stored data (even across different
and communication. They are platforms); and a stream of bytes
deliberately separated from (eight-bit data) that are delivered
specific technologies and can be reliably in order (even across
implemented on a variety of different networking technologies).
underlying technologies.

Processing, Provide the core underlying Microprocessors, disk drives, and
storage, and technology-dependent services. local-area networking.
connectivity

by applications. The goal is to allow a diversity of technologies to coexist with a
diversity of applications without imposing the resulting chaos on applications—
applications and technologies can evolve independently without much effect on each
other. Providing a reimplementation of the common representation and services
layers for each distinct technology accommodates this.

Of particular importance is the spanning layer. Assuming it is not bypassed—all
layers above make use of its services but do not interact directly with layers below—
a well-designed spanning layer can eliminate the dependence of layers above from
layers below, allowing each to evolve independently. Successfully establishing a
spanning layer creates a large market for solutions (application and infrastructure)
that build upon it, both above and below. The spanning layer brings to bear the
positive feedback of network effects without stifling technical or competitive diver-
sity of layers below. It illustrates the desirability of separating not only application
from infrastructure but also infrastructure from infrastructure.

Example The internet protocol can be viewed as a spanning layer, although it is
limited to the connectivity stovepipe. As illustrated by the hourglass of figure 4.6,
the IP layer does effectively separate applications from underlying networking tech-
nologies and has become virtually ubiquitous. Suppliers creating new communica-
tion and networking technologies assume they must support an IP layer above, and
application suppliers assume they can rely on IP layers below for connectivity. Appli-
cations need not be redesigned or reconfigured when a different networking tech-
nology (e.g., Ethernet local-area network, wireless local-area network, fiber-optic

Software Creation Industry 217

Diversity of applications

Diversity of processing,
storage, and

connectivity technologies

Common services and
representations

and structures for
information

Figure 7.6
Layering provides separation of a diversity of technologies from a diversity of applications.

wide-area network, wireless wide-area network, or satellite network) is substituted.
The existence of IP also creates a ready and large market for middleware products
building on internet protocols.

There are, however, limitations to layering. Mentioned earlier is the added over-
head necessary to implement any strong modularity, including layering. In addition,
intermediate layers can hide functionality but not performance characteristics of the
underlying technology from applications.

Example When the user substitutes a slow network access link for a faster one,
the delay in packet delivery due to transmission time will be increased. Nothing in
the intermediate layers can reverse this.

The preferred approach today to dealing with performance variations is to make
applications robust and adaptive to the actual performance characteristics.4 Appli-
cations should be able to take advantage of higher-performance infrastructure and
offer the best quality they can subject to infrastructure limitations.

Example A Web browser-server combination will display requested pages with low
delay when there is ample processing power and communication bandwidth. When
the bandwidth is much lower (say a voiceband data modem), the browser and
server should adjust by trading off functionality and resolution for added delay in
a perceptually pleasing way. For example, the browser may stop displaying high-
resolution graphics, or ask the server to send those graphics at a lower resolution,
because the resulting diminution in delay more than compensates perceptually for
lost resolution.

Many current industry standardization and commercialization efforts would
support the layered model (see figure 7.7 for examples). For each standard illus-
trated, there are standards competing for adoption. At the common representation
layer, the Java virtual machine, the relational table, and the Internet’s TCP are widely
adopted. At the generic services layer are shown three standards that support object-
oriented programming (OOP), a standard programming technique that emphasizes
and supports modularity (see section 4.3). Programs constructed according to this
model consist of interacting modules called objects, and the generic services layer
can support execution, storage, and communication among objects. Java supports
their execution, the object-relational database management system (ORDBMS) sup-
ports the storage of objects, and IIOP allows objects to interact over the network
in much the same way as they would interact within a single host.

At the integrative services layer, CORBA attempts to identify and standardize a
set of common services that integrate processing and connectivity (by incorporat-

218 7.1 Industrial Organization of the Software Industry

ing Java mobile code capabilities) and processing and storage (by providing for
the storage of objects). Examples include the creation or storage of objects on
demand, and directories that discover and locate objects and services on the network
to make distributed applications easier to develop. The Web was mentioned earlier
as an application that “grew up” to become an infrastructure supporting applica-
tions that access and update information over the network. On the other hand, the
Web does not support all applications (e.g., those not based on a client-server archi-
tecture). Thus, the Web-as-infrastructure falls at the segmented application services
layer.

7.1.4 Core Competencies
Earlier, the historical approaches of the telecommunications and computer indus-
tries were contrasted. This contrast raises an important issue for industrial organi-
zation: Who is responsible for provisioning and operation? As described in section
6.2, there are three primary options: an independent service provider (the histori-
cal telecommunications industry model), the application or infrastructure supplier
(rare), or the user (the historical computer industry model). Of course there are
other options, such as splitting responsibility for provisioning and operation, appli-
cation and infrastructure, or different parts of the infrastructure.

Software Creation Industry 219

JavaBeans

Java virtual
machine

Process File system
Bearer
service

Relational
table

TCP
connection

ORDBMS IIOP

CORBA and LDAP services

World Wide Web

Applications

Figure 7.7
Examples of industry standards fitting the layered model of figure 7.5.

The increasing role of application service providers in the software industry, and
the trend in the telecommunications industry to focus on the provisioning and oper-
ation of infrastructure and not applications (particularly in the Internet segment of
their market) suggests that radical change in industry structure may be occurring.
This change can be traced to at least three undercurrents. One is the ubiquity and
performance of the Internet, which opens up the option of operations shifted to a
service provider while making application functionality available over the wide-area
network. From the user perspective it makes no difference where the operations
reside, except for important factors like performance, availability, and customer
service. A second undercurrent leading to organizational change is the growing
specialization and diversity of applications, and the resulting importance of appli-
cation suppliers’ focusing their efforts on satisfying user needs and requirements.
Infrastructure suppliers and service providers have not proven as effective at this as
more specialized application suppliers; this suggests an organizational separation of
applications and infrastructure.

These observations provide hints as to how the industrial organization may evolve
in the future. Like good software architecture (see section 4.3), market forces
encourage an industrial organization with weak coupling of functions and exper-
tise across different companies and strong cohesion within companies. These prop-
erties can be interpreted in different ways, such as transaction costs and coupling
of expertise. In the long term, it seems that market forces reward firms that spe-
cialize in certain responsibilities but share core competencies, because many
managerial approaches, such as compensation and organizational structures and
processes, are tied to these competencies. Of course, there are many other consid-
erations of importance, such as the desire of customers for a complete product
portfolio or turn-key solution, or opportunities to gain competitive advantage by
synergies among complementary responsibilities.

This suggests a fresh look at the software value chain (see section 6.2), not in
terms of responsibilities but in terms of core competencies. Seven core competen-
cies can be identified (see table 7.2).

To the extent that industrial organization is presaged by natural groupings of core
competencies, the independent service provider (as embodied in the application
service provider model) seems a likely outcome, because the core competencies
resident there are quite distinct from those of the other roles. Telecommunications
service providers should not try to be exclusive application suppliers; rather, they
should focus on making their infrastructure services suitable for a wide range of
applications and encourage a diversity of applications from many sources. They may

220 7.1 Industrial Organization of the Software Industry

exploit their core competency in operation by extending it from today’s narrow
range of applications (telephony, video distribution) to a wider range acquired from
independent application suppliers, increasing the diversity of application service
providers’ offerings.

The increasing diversity and specialization of applications, and the need to con-
sider the organizational and process elements of information technology and the
interface between organization and technology, have profound implications for
application software suppliers. As the core competencies differ sharply from
software development, these enterprise and commerce software suppliers should
look more and more to industry consultants to assist in needs and requirements
definition.

Software Creation Industry 221

Table 7.2
Core Competencies Relating to the Software Industry

Competency Description

Business function An end-user organization should understand its business functions,
which in most cases are not directly related to software or
technology or software-based services.

User needs and Industry consultants should understand end-user needs, which
requirements increasingly requires specialized knowledge of an industry segment

or specific organizational needs, in order to help organizations
revamp business models, organization, and processes to take
maximum advantage of software technology.

Application needs Infrastructure suppliers should understand needs common to a wide
variety of applications and application developers, and also market
forces that strongly influence the success or failure of new
infrastructure solutions.

Software Both application and infrastructure software suppliers need software
development development and project management skills, with technical,

organizational, and management challenges. Application suppliers
must also be competent at human-centered considerations such as
user interfaces.

Provisioning Constrained by the built-in flexibility and configurability of the
application, the system integrator and business consultant must
understand unique organizational needs and be skilled at choosing
and integrating software from different firms.

Operation Operators must be competent at the technical aspects of achieving
availability and security, administrative functions like trust and
access, and customer service functions such as monitoring, billing,
and helpdesk.

For end-user organizations, focusing on core competencies would imply out-
sourcing application development to application software suppliers, and provi-
sioning and operation to system integrators, consultants, and service providers. In
fact, this is becoming prevalent.

7.1.5 Horizontal Heterogeneity
From a technical perspective, an infrastructure layer that is horizontally homoge-
neous is advantageous (see section 7.1.3). This is an important property of a span-
ning layer because it creates a large market for layers above and below that can
evolve independently. However, as shown in figure 7.5, it is entirely appropriate for
horizontal heterogeneity to creep into the layers near the top and the bottom. Near
the top, this segments the market for infrastructure to specialize in narrower classes
of applications. With platforms supporting applications, one size does not fit all.

Example Distributed applications benefit from an infrastructure that hides the
underlying host network structure, but this is unnecessary overhead for applications
executing on a single host. Work flow applications benefit from a message and
queuing infrastructure, and online transaction processing applications benefit from
a database management system.

Near the bottom, it is desirable to support a diversity of technologies. This diver-
sity arises out of, as well as encourages, technological innovation.

Example Innovation in microprocessor architecture has accompanied Moore’s law
as an important enabler for improving performance. Sometimes these architectural
innovations can be accomplished without changing the instruction set—which
clearly contributes to horizontal heterogeneity—but innovations in instruction sets
enable greater advances. An example is the idea of a reduced instruction set com-
puter (RISC), which traded simplicity in the instruction set for higher instruction
execution rates. Numerous technological innovations have spawned heterogeneity
in storage (e.g., recordable optical disks) and communication (e.g., wireless) as well.
As underlying technology changes, so does the implementation of the lower layer
infrastructure.

History and legacy technologies are another reason for heterogeneity.

Example Many historical operating system platforms remain, and several remain
vibrant, evolving, and attracting new applications. The Internet brought with it dis-
tributed applications and network effects that place a premium on interoperability
across platforms, e.g., a Web server running on a UNIX server and a Web browser
running on a Macintosh desktop platform. The Internet has also brought with it a

222 7.1 Industrial Organization of the Software Industry

need for composability of different applications running on different hosts. For
example, MIME5 is a standard that allows a wide variety of applications on differ-
ent platforms to agree on content types and the underlying data formats and encod-
ings (it originated to support e-mail attachments but is now used more broadly).

It was argued earlier that unconditional software portability is neither a practi-
cal nor a desirable goal (see section 4.4.3), and for the same reason evolving toward
a single platform is not desirable. There is no predetermined definition of which
functionalities belong in applications and which in infrastructure, but rather capa-
bilities that many applications find valuable (or that keep appearing in multiple
applications) work their way into the underlying platform. The commonality
inherent in ever-expanding platforms enables greater diversity of applications and
especially supports their interoperability and composability. That this can occur in
multiple platforms speeds the diversity of ideas that can be explored, and offers
application developers some choice among differentiated platforms. At the same
time, industry must deal with the reality of heterogeneous platforms, especially for
distributed applications that would otherwise become Balkanized, confined to one
platform and a subset of users, with the resulting network effect diminution of value.
Fortunately, the owners of individual platforms—especially those with a smaller
market share and especially with the rising popularity of distributed applications—
have a strong incentive to ensure that their platforms can participate in distributed
applications with other platforms. But specifically what can they do about it?
Adding a layer with the hope that it becomes widespread enough to be considered
a spanning layer is one approach.

Example Sun’s Java effort, including the Java programming language, runtime
environments (including virtual machines), libraries, and interfacing standards,
created such a candidate for spanning layer, abstracting from underlying platforms,
software, and hardware. Other examples include the CORBA standards and
Microsoft’s COM and .NET.

However, given the difficulties of establishing a totally new layer that achieves a
high enough market penetration to attract a significant number of applications, new
layers can arise out of an existing application or infrastructure.

Example The Web migration from application to infrastructure resulted from two
factors. First, it had become ubiquitous enough to attract application developers,
who were not ceding much market potential by adopting it as a foundation. Second,
the Web provided open APIs and documented internal interfaces that made it
relatively straightforward to exploit as an infrastructure. This illustrates that an

Software Creation Industry 223

application that is more open or less proprietary is more likely to be adopted as the
basis for other applications, that is, as infrastructure.

Another response to heterogeneous platforms is to design an application to be
relatively easy to port to different platforms. This places special requirements on
interfaces between the application and its underlying platform; if they are designed
in a relatively platform-independent and open way, the porting becomes easier (but
exploiting the strengths of specific platforms becomes harder).

Example The Web is a good illustration of this. As a distributed application, the
Web had to deal with two primary challenges. First, if the Web was to be more than
simply a vehicle for displaying static stored pages (its original purpose), it had to
allow other applications to display information via the Web browser and server. For
example, dynamic Web pages based on volatile information stored in a database
management system required an intermediary program (encompassing what is
usually called the application logic) that requested the appropriate information from
the database and displayed it in the proper formats in the browser. For this purpose,
an open and relatively platform-independent API called the common gateway inter-
change (CGI) was standardized. The second challenge was the interoperability
between browser and server running on different platforms. Fortunately, this
problem was already partially solved by IP, which provided a communication span-
ning layer that allowed one host to communicate data to another using a standard
packet representation, and a TCP that provided reliable and ordered transport of a
stream of bytes. The Web simply had to standardize an application-layer transfer
protocol (HTTP). These open standards made the Web relatively platform-
independent, although different versions of the browser and server still had to be
developed for the different platforms. Later, these open interfaces were an impor-
tant factor in the evolution of the Web into infrastructure. For example, other appli-
cations could make use of HTTP to compose the entire browser or server into an
application, or could even use HTTP independently (e.g., Groove, an application
that uses HTTP as a foundation to share files and other information among col-
laborating users).6 The latest generation of standardization focuses on Web services,
and one of the core protocols in this space (SOAP: simple object access protocol)
usually operates on top of HTTP (see section 7.3.7).

Another approach is to embrace horizontal heterogeneity but arrange the infra-
structure so that interoperability and even composability are achieved across
different platforms by appropriate industry standards or by platform-specific
translators.

224 7.1 Industrial Organization of the Software Industry

Example Different platforms for both servers and desktop computers tend to use
different protocols and representations for file storage and print services. Users, on
the other hand, would like uniform access to their files across all platforms (includ-
ing Mac OS, the different forms of UNIX, and Windows), for example, to access
files or print services on a UNIX server from a desktop (Linux or Mac OS or
Windows) platform. Various open source solutions (e.g., Samba) and commercial
solutions (e.g., Netware, NFS, Appletalk, Banyan Vines, and Decnet) provide this
capability. See section 7.3 for additional examples in the context of software com-
ponents and Web services.

Instead of tackling protocols (which specify how information gets from one
platform to another) other industry standards focus on providing a common, flex-
ible representation for information (without addressing how that information gets
from one platform or application to another). These are complementary, since
information must be transferred and must be understandable once it has been
transferred.

Example XML is a flexible and extensible language for describing documents. It
allows standardized tags that identify specific types of information to be identified.
A particular industry can standardize these tags for its own context, and this allows
different firms to exchange business documents and then extract the desired
information from those documents automatically. For example, one industry might
define an XML-based standard for describing purchase orders, and then each
company can implement translators to and from this common representation for
purchase orders within its (otherwise incompatible) internal systems. Unlike HTML,
XML separates the formatting of a document from its content. Thus, workers can
display XML purchase orders in presentations specific to their internal needs or
practices.

A fourth approach to dealing with heterogeneous platforms is to add a service
provider who either acts as an intermediary or centralizes the application.

Example Some companies have created a common intermediary exchange as a
place to procure products and services from a set of suppliers. Sometimes this is
done on an industry basis, as in the automotive industry (covisint 2000). Consid-
ering the latter case, the exchange does not directly overcome platform and appli-
cation incompatibilities among the participating organizations, but it does make the
challenges considerably more manageable. To see this, suppose there are n distinct
firms involved in the exchange. The intermediary has to deal with these n firms
separately. Without the intermediary, each firm would have to work out similar

Software Creation Industry 225

interoperability issues with each of the n - 1 other firms, or in total there would be
n · (n - 1). such relationships to manage, a much greater total burden. Interestingly,
intermediaries tend to compete as well, leading to k intermediaries and thus k - n
relationships. For k = 1, the single intermediary can gain substantial market control,
and the desire of the coordinated firms to retain agility tends to encourage forma-
tion of a competing intermediary. As k approaches n, the benefit of having inter-
mediaries disappears. Market forces thus tend to keep the number of competing
intermediaries low.

Distinct types of infrastructure can be identified in the layered architecture of
figure 7.5. In classifying a particular type of infrastructure, it is important at
minimum to ask two basic questions. First, does this infrastructure support a broad
range of applications (in the extreme, all applications), or is it specialized to one
segment of the application market? Second, is the infrastructure technology-specific,
or does it not matter what underlying technologies are used? Neither of these dis-
tinctions is black-and-white; there are many nuances. The answers can also change
over time because new infrastructure typically must start with only one or a few
applications and then grow to more universal acceptance later. Table 7.3 gives exam-
ples of infrastructure categorized by application and technology dependence. Each
category in the table suggests a distinct business model. As a result, infrastructure

226 7.1 Industrial Organization of the Software Industry

Table 7.3
Examples of infrastructure Defined by Application and Technology Dependence

Particular to One Application
Not Application-Dependent Market Segment

Not technology- The Internet TCP transport layer Message-oriented middleware
dependent is widely used by applications supports work flow applications,

desiring reliable, ordered delivery and the Web supports
of data. The specific networking information access and
technologies present are hidden presentation. Each emphasizes
from TCP and layers above by distributed applications across
the Internet IP spanning layer. heterogeneous platforms.

Particular to one Operating systems are specific Information appliances
technology to a computer platform, although typically support a single
platform some (like Linux, Solaris, application, and build that

Windows NT, and Windows CE) application on a single
have been ported to several. Each infrastructure technology
is designed to support a wide platform.
variety of applications on that
platform.

suppliers tend to specialize in one (with a couple of notable exceptions): infra-
structure suppliers at the lower layers focus on technology-dependent infrastructure,
and those at the higher layers on application-dependent infrastructure. In the
extreme of application dependence, some infrastructure may support a specific
application but offer open APIs in the hope that other applications come later. In
the extreme of technology dependence, an infrastructure may be embedded software
bundled with hardware and sold as equipment or an appliance. In this case, the
software is viewed as a cost of development, with no expectation of selling it
independently.

Application- and technology-independent infrastructure clearly has the greatest
market potential as measured by adoptions or unit sales. However, this type offers
little opportunity for differentiation as to functions or features. To actually achieve
universality, it must be highly standardized and hence commoditized. If it is well
differentiated from other options, it is likely struggling for acceptance. Thus, this
type of infrastructure probably represents the least opportunity for profit but is
nevertheless quite important and beneficial. The current trend is therefore to use
community-based development methodologies to create and maintain this type of
software (as illustrated by the Samba example earlier; also see section 4.2.4),
although not exclusively. Its universal appeal and wide use lend themselves to
community-based development. This is leading to new types of software licensing
approaches that mix the benefits of community-based development such as open
source with commercial considerations such as deriving revenue and profit (see
chapter 8).

Example Sun Microsystems has been a leading proponent of community-based
development of infrastructure, examples being its Java middleware layer for
portable execution (see section 4.4.3) and Jini, a platform for plug-and-play inter-
operability among information appliances (Sun microsystems 1999b). Other firms,
such as Apple Computer (Mac OS X) and Netscape (Mozilla browser) have fol-
lowed this approach. Several firms (e.g., IBM and Hewlett-Packard) have chosen
open source Linux as an operating system platform.

At the other extreme, application- and technology-dependent infrastructure is
characteristic of the stovepipe architecture (see section 7.1.3), and for the reasons
discussed earlier is disappearing because of shrinking market opportunity. Most
commercial infrastructure differentiates itself in the application or technology space,
but not both.

Software Creation Industry 227

7.1.6 Competition and Architecture
This section has enumerated some global architectural alternatives and their rela-
tion to industry structure. Architecture, because it defines the boundaries of com-
petition and complementarity, is an important strategic issue for software suppliers
(see section 6.1), and successfully defining and promulgating an architectural model
is an important element of long-term success (Ferguson and Morris 1994). In con-
trast, suppliers who provide point solutions or who must plug solutions into an
architecture defined elsewhere lose some control over their own destiny and have
less strategic maneuvering room. Doubtless because of its significance, architectural
control has also been a source of industry controversy and even government
antitrust complaints (see chapter 8).

Within a given architecture, competition exists at the module level, and
where a supply chain is created by hierarchical decomposition, at the submodule
level as well. On the other hand, interacting modules are complementary. Suppliers
naturally try to avoid direct competition in modules, particularly because high
creation costs and low replication and distribution costs for software make
competitive pricing of substitutes problematic (see chapter 9). Generally, open
standardized interfaces (see section 7.2.3) make head-on competition more
difficult to avoid, and for this reason industry standards are increasingly defined
with a goal of enabling competitive suppliers to differentiate themselves with
custom features or extensions while maintaining interoperability. In contrast, if
suppliers choose not to offer complementary modules themselves, they encourage
competitive options for those modules so that customers have a wider range of
options with attractive prices and features and so that the overall system pricing is
more attractive.

The architectural options and evolution discussed here have considerable impli-
cations for competition. Applications and infrastructure are complementary, and
thus suppliers of each generally encourage competitive options in the other. While
the expansion of infrastructure capabilities is a way to improve economic efficiency
through sharing (see chapter 9) and to improve performance and quality, it also
changes the competitive landscape by shrinking some application markets or at least
introducing new competition.

No architectural issue has had more effect than the evolution from stovepipe
toward layering architecture. This shifts the landscape from horizontal market seg-
mentation, with an inclination toward vertical integration within each segment, to
a vertical segmentation of functions where multiple complementary suppliers must
cooperate to realize a full system solution.

228 7.1 Industrial Organization of the Software Industry

The spanning layer is a key element of a layered architecture. Because it allows
greater independence of evolution in the layers below and above, it is another form
of common intermediary that makes practical a larger diversity of interoperable
options below and above. Even if not initially defined with open interfaces, the ubiq-
uity of a spanning layer implies that its interfaces below and above become de facto
standards. In order for the entire infrastructure to evolve, a spanning layer and its
interfaces must also evolve over time, insofar as possible through extensions rather
than changes. While the spanning layer offers compelling advantages, commercial
control of such a layer raises complaints of undue influence over other layers and
overall system evolution. One response is government-imposed limits on the busi-
ness practices of the owner of a spanning layer (see chapter 8). Another is to
abandon the spanning layer in a way that preserves most advantages, such as hor-
izontal heterogeneity within a layer, while maintaining interoperability or portabil-
ity (see sections 7.1.5 and 7.3). Another is to promulgate a spanning layer in the
public domain (through community-based development or similar methodologies,
as in the Samba example).

7.2 Cooperation in the Software Industry

Just as participants in the software value chain (including nonsoftware companies)
maintain ongoing business relationships (see section 6.3), so do participants within
the software creation industry. Monolithic software solutions are today the excep-
tion rather than the rule; in most cases, a total solution of value to users integrates
content from a number of software companies.

Example A single desktop computer with a standard suite of office software might
serve the needs of some users, and the software on such a platform might come
from a single supplier like Apple Computer, Microsoft, or Sun Microsystems. Even
in this simple case there will likely be contributions from other suppliers. For
example, Microsoft Word XP includes modules and content acquired from other
suppliers, like the equation editor, the document version comparer, parts of the
spelling correction system, thesaurus, hyphenators, and dictionaries for many dif-
ferent languages, as well as some templates and fonts. Further, when the user
browses the Web, the Web server may well be open source software (like Apache)
or proprietary Web server software from another supplier (like IBM WebSphere or
BEA WebLogic).

A pervasive issue is the coordination of software suppliers so that their solutions
are either automatically composable or can at least be purposefully integrated. This

Software Creation Industry 229

creates a conspicuous need and opportunity for different software companies to
coordinate through business or cooperative arrangements. As in other industries,
coordination can take many forms, the extremes being proprietary bilateral busi-
ness relationships on the one hand, and cooperative standards processes open to all
interested parties on the other.

7.2.1 Supplier-Consumer Relationships
Some business relationships within the software industry take the traditional
supplier-consumer form, although this does not evoke standard images of ware-
houses, shipping, and inventory. Since software can be freely replicated, a supplier
need only provide a single copy to the customer together with the appropriate
authorization, in the form of a licensing agreement (see chapter 8) spelling out the
terms and conditions, for the customer to replicate the software in its products or
to provision within its environment.

Where one software supplier is incorporating modules supplied by others, those
modules must be integrated. This system integration step frequently requires mod-
ification of the purchased modules. The license permitting, changes to acquired
modules may be made by the integrator (this requires source code). More often, the
supplier makes these changes, and these repairs or refinements benefit all customers.
Generally, the process and issues to be addressed are similar to end-user acquisition
of software (see section 6.3.4). Differences do arise if the customer passes this soft-
ware through to its own customers rather than provisioning it internally. Thus, the
revenue stream expected from its customers, rather than its internal value proposi-
tion, becomes an element of price negotiation. Further, there is the issue of customer
support: How do operators and users obtain support for modules acquired rather
than developed by their immediate supplier? Is this a two-step process, or should
the supplier directly support operators and users? Of course, customers generally
prefer an integrated customer support solution. A common form of licensing agree-
ment refers to the indirect suppliers as original equipment manufacturers (OEMs)
and leaves all customer support with the immediate supplier of a product. Inter-
nally, that supplier will draw on technical support from the OEM.

Example Comparable OEM agreements exist between manufacturers of personal
computers and the suppliers of preinstalled operating systems and applications.
Customers receive integrated support from the computer manufacturer, who may
in turn depend on the OEM when it cannot deal with an issue.

230 7.2 Cooperation in the Software Industry

7.2.2 Application Program Interface
Recall that the API is an interface designed to support a broad class of extensions
(see section 4.3.4). The open API allows one software supplier to extend or incor-
porate software from another supplier without establishing a formal business rela-
tionship. The owner of the open API exports services through an interface that is
documented and where the software license allows for the unfettered use of this
interface unconstrained by intellectual property restrictions and without payment.
Technically, it is possible for a module from another supplier to invoke actions at
this interface, which requires that it be accessible through mechanisms embodied in
industry-standard infrastructure. One of the roles of infrastructure is to enable the
composability of modules from different suppliers, and the API is one of the key
constructs made possible.

Example An application may offer an API that allows other suppliers to add value
to that application, for instance, in the common gateway interface to a Web server
that allows other applications to display their content via a Web browser. This API
is technically feasible because the operating system provides mechanisms for one
program to interact with another program executing on the same host.

It should be emphasized that not all interfaces in a software product are APIs.
Most interfaces are proprietary, designed for internal interaction of modules and
neither documented nor made available through technical means to software from
other suppliers. Other interfaces may be documented and technically available, but
because they are designed for a specific and narrow purpose, they fail to quality as
an API. Further, suppliers reserve the right to change internal interfaces but implic-
itly or explicitly commit to extending but not changing an API (so as not to break
other modules depending on it). Choosing to include an API in a software product
is a serious business decision. Besides potential benefits, there are significant
costs. Future versions of the product will either have to maintain compatibility, thus
possibly requiring substantial engineering effort, or abandon existing clients
using the API, thus risking dissatisfied customers and opening an opportunity for
competitors.

If future extensions can be anticipated and are of broad interest, the supplier may
wish to create and market these extensions itself, rather than ceding this opportu-
nity to other suppliers, by building in an API. Infrastructure software’s value is
through the applications supported, and the API is the enabler. To the application
software supplier, the API may be a vehicle by which other suppliers or even cus-
tomers may customize that application to more specific (company or vertical indus-
try) needs, increasing its value.

Software Creation Industry 231

An alternative to the API is to offer contract development services to customize
software. The supplier may maintain a services organization that contracts for cus-
tomizations or extensions to meet specific customer needs.

The API is a software interface for software executing within a single host. A
similar idea can be achieved over the network, where software from one supplier
can interface with software from another supplier using the network. In this case,
the API is replaced by a network protocol with similar business issues and
characteristics.

7.2.3 Open Standards
An industry standard is a specification that is commonly agreed upon, precisely and
completely defined, and well documented so that any supplier is free to implement
and use it. Of course, it may or may not be widely adopted or uniformly imple-
mented. In the software industry, the most common targets for standardization are
architectural decomposition and the interfaces or network protocols defining the
interactions of modules within that architecture. This type of standard seeks inter-
operability among modules, either within the same host or across the network (see
section 4.5).

Example The USB (universal serial bus) port is a standard interface to personal
computer peripherals that includes physical (plug geometry, functions of the differ-
ent pins) and electrical (voltage and waveform) characteristics, as well as the formats
of bit streams that allow messages to be passed between a CPU and a peripheral.
Like most standards, it does not address the complementarity of function in the
computer and the peripheral, such as printing a page or communicating over a tele-
phone line.

Another common target for standardization is the representation used for specific
types of information, so that information can be exchanged among different appli-
cations or within an application.

Example JPEG and MPEG are popular industry-standard compressed representa-
tions for pictures and audio/video, respectively. They allow one application to
capture music in a file and another application to access that file and recreate the
music. MP3 is a popular standard for sharing compressed music based on the audio
portion of MPEG.

Programming languages are often standardized as well.

Example The International Standards Organization (ISO) has standardized
COBOL, FORTRAN, PL/1; the American National Standards Institute (ANSI) has

232 7.2 Cooperation in the Software Industry

standardized C and C++; the European Computer Manufacturers Association
(ECMA) has standardized ECMAscript (also known as JavaScript or JScript) and C#.

An open standard is available for anybody to implement, well documented, and
unencumbered by intellectual property restrictions, so any supplier is free to imple-
ment the standard without making prior business arrangements.

Example Many open standards are created by independent standardization bodies
in which a number of companies collaborate in finding a mutually satisfactory solu-
tion. The body that creates the open Internet standards (including IP, UDP, and TCP)
is the Internet Engineering Task Force (IETF). The World Wide Web Consortium
(W3C) defines open standards for the evolution of the Web.

“Openness” is not an absolute because some of these properties can be relaxed,
making the standard less open but still not closed or proprietary.

Example Sometimes a standard encumbered by intellectual property rights may be
considered open if a promise has been made to exercise those rights in a measured
fashion. In the most common arrangement, in return for inclusion in the standard
the owner promises that a license will be granted to any and all under terms that
are reasonable (moderate in cost) and nondiscriminatory (the same terms for all).
For instance, the MP3 audio compression standard is an ISO/IEC standard, but is
still covered by patents held by Fraunhofer IIS-A and Thomson multimedia that
require licensing and fee payment for any but private and small-scale use.7

Other interfaces, protocols, or representations may carry more restrictions and
still be labeled an industry standard, even if not considered an open standard.

Example Java is promulgated as a programming language, associated virtual
machine for supporting portable execution, and an environment for portable and
mobile code (see section 4.4). The specifications and associated tools were first devel-
oped by Sun Microsystems, which maintained licensing terms intended to prevent
variants. Sun imbued Java with the characteristics of a standard (widely promul-
gated and used) while retaining control through intellectual property laws (see
chapter 8). Among those provisions, any implementations that use the Java trade-
mark must meet certain acceptance tests.

7.2.4 Why Standards?
The industry standard helps coordinate suppliers of complementary products, but
it is not the only such mechanism. The supplier-customer business relationship
allows a supplier to buy rather than make some portion of its software product.

Software Creation Industry 233

The API enables a one-to-many relationship, where one software supplier deliber-
ately creates an opportunity for all other suppliers to extend or exploit its product
without the need for a formal business relationship. The industry standard excels
at supporting a multilateral relationship among suppliers. The typical approach is
to define and document an interface or a network protocol that can be exploited
by many companies. In contrast to the API, where one supplier maintains a pro-
prietary implementation of one side of an interface and allows other suppliers to
define products on the other side of that interface, a standardized interface allows
companies to define products that support the interface from either side.

From the customer and societal perspectives, open standards allow competition
at the subsystem level: suppliers can create competitive substitutes for subsystems
and know that the customer will have available the necessary complementary sub-
systems from other suppliers to forge a complete solution. Similarly, customers can
mix and match subsystems from different suppliers if they feel this results in a better
overall solution in dimensions such as price, features, performance, and quality.
Modules can be replaced without replacing the entire system, reducing switching
costs and lock-in. The disadvantage is that the customer must integrate subsystems
from different vendors. In spite of standards, this additional integration takes time
and effort, and sometimes introduces problems.

Example The PC offers open standards for serial and parallel connections between
CPU and peripherals, including modems, printers, and display, so customers can
mix and match PCs and peripherals from different manufacturers. Apple Computer
pursued a more monolithic approach with the original Macintosh, which had the
advantage that the system was operational out of the box. As the PC platform has
matured, plug-and-play technology has made integration more seamless, and
vendors like Dell accept customized system orders and perform the integration for
the customer. Meanwhile, the Macintosh has moved toward an open standards
approach (supporting open industry standards such as the universal serial bus).
Today this distinction between the two platforms is minimal.

Network effects sometimes drive standardization (see section 3.2.3) in a multi-
vendor solution. The incentive for standardization in this case is to avoid the pro-
liferation of multiple networks, with the resulting fragmentation and reduced value
to users and the benefits of positive feedback.

Example The peer-to-peer architecture for distributed applications creates a need
for standards to support interoperability among peers (see section 4.5.3). Without
such a standard, users could only participate in the application with users who have

234 7.2 Cooperation in the Software Industry

adopted that same vendor’s solution. This is illustrated by instant messaging, where
several firms offer services (AOL, Microsoft, and Yahoo, among others) that are
currently incompatible, creating fragmented networks. The DVD illustrates the
benefit of a standardized information representation that tames indirect network
effects. Two industrial consortiums proposed incompatible standards for video play-
back but ultimately negotiated a single standard, driven by concern about the
market dampening effect of network effects and consumer confusion if two or more
standards were marketed, and by pressure from content suppliers, who were con-
cerned about these issues.

7.2.5 How Standards Arise
An industry standard is the outcome of a process, sometimes a long and messy one.
Influences on the eventual standard may be user needs, market forces, the interests
of or strategy pursued by individual suppliers, and occasionally government laws
or regulations. The possibilities range from a de facto standard to a de jure stan-
dard. The de facto standard begins life as a proprietary interface or protocol, but
through market forces becomes so commonly adopted by many companies that it
is an industry standard in fact (Shapiro and Varian 1999a). In the case of interfaces,
some de facto standards begin life as APIs. Undocumented proprietary interfaces
are less likely to become de facto standards because they prohibit (using intellectual
property laws) or discourage participation by other suppliers.

Example The Hayes command set started as an API chosen by a leading voice-
band modem manufacturer and was initially offered by most suppliers of telecom-
munications software to control the Hayes modem. Since this API was widely
supported by software, other modem manufacturers began to implement the same
API, and it became a de facto standard. Later, Hayes attempted to force other
modem manufacturers to pay royalties based on patented technology it had incor-
porated into the implementation. Another example is the operating system APIs,
allowing programs to send a packet over the network or save a file to disk. The
primary purpose is encouraging application software suppliers to build on the oper-
ating system; a diversity of applications provides greater value to users. A side effect
is to potentially enable an alternative infrastructure software supplier to indepen-
dently implement and sell a direct substitute operating system, except to the extent
that the API may be protected by intellectual property restrictions (see chapter 8.)
Such independent reimplementation is unlikely for an operating system, however,
because of the large investment and unappealing prospect of head-to-head

Software Creation Industry 235

competition with an entrenched supplier with substantial economies of scale (see
chapter 9).

In the case of both interfaces and protocols, de facto standards often begin as an
experimental prototype from the research community.

Example The protocol and data format used to interact between client and server
in the Web (HTTP and HTML) allows a Web browser and server to compose regard-
less of who supplies the client and server. It began as a way to share documents
within a research community. Later, it was popularized by the innovative Mosaic
Web browser from the University of Illinois, which provided a general graphical
user interface. Today, there are more than a half-dozen suppliers of servers and
browsers, and within the limits of the imprecise definitions of HTML, any server
can interoperate with any browser using these standards (and their successors).
Similarly, the socket is an operating system API that allows applications to com-
municate over the network. It has become a de facto standard resident in several
operating systems, but it started as an API for the Berkeley UNIX operating system
from the University of California.

At the other end of the spectrum, the de jure standard is sanctioned by a legal or
regulatory entity.

Example Regulatory forces are most likely to impose themselves when some public
resource like the radio spectrum is required. In most countries there is a single legally
sanctioned standard for radio and television broadcasting, as for wireless telephony.
In the latter case the United States is an exception; the Federal Communications
Commission specifically encouraged the promulgation of several standards. These
standards deal with the representation and transmission of voice only across the
wireless access link, and admit the conversions that allow for end-to-end voice con-
versations; direct network effects do not intervene. Another example is the Ada pro-
gramming language, defined by the U.S. Department of Defense and imposed on its
contractors until the late 1990s.

There are many cases intermediate to de facto and de jure, some of which are dis-
cussed later in conjunction with standards processes.

As applied to interfaces and network protocols, an essential first step in defining
such standards is to locate interfaces or protocols that are candidates for standard-
ization. This is an architectural design issue for purposes of standardization as well
as implementation. There are several approaches to determining where there should
be an interface or protocol to standardize. The first is to explicitly define the loca-
tion of an interface as part of the standardization process. Such decomposition is

236 7.2 Cooperation in the Software Industry

called a reference model, a partial software architecture covering aspects of the
architecture relevant to the standard. A reference model need not be a complete
architecture; for example, modules within an implementation may be hierarchically
decomposed from a single reference-model module, an implementation choice not
directly affecting compliance with the standard.

Example CORBA is a standard for a middleware infrastructure supporting object-
oriented distributed systems promulgated by the Object Management Group. One
of its primary contributions is a reference model for a number of common services
that support such distributed applications.

A second approach to defining the location of a standardized interface is creat-
ing an interface and putting it into the public domain as a standard or letting it
grow into a de facto standard.

Example Desktop computer vendors (both IBM and Apple) defined a number of
interfaces that grew into industry standards, including interfaces to monitor and
peripherals, an API for application programs, and standards for the bus that sup-
ports expansion cards.

Third, the location of an open interface might be defined by market dynamics or
be a side effect of the preexisting industrial organization. These types of interfaces
typically follow the lines of core competencies, such as integrated circuit manufac-
ture and infrastructure of application software.

Example When IBM designed its first PC, it made decisions on outside suppliers
that predefined some interfaces within the design, and those interfaces later evolved
into de facto standards. By choosing an Intel microprocessor rather than develop-
ing its own, IBM implicitly chose an instruction set for program execution. By decid-
ing to license its operating system (MS-DOS) from Microsoft (which importantly
targeted this instruction set) rather than develop its own, IBM adopted operating
system APIs that were later used by alternative operating systems (for example,
Linux uses a FAT32 file system adopted from DOS, and Novell marketed a version
of DOS). These choices reduced the time to market but also created an opportunity
for other suppliers, including the PC clone manufacturers (Compaq was an early
example) and AMD (which manufactures microprocessor chips compatible with
Intel’s).

Standards also address a serious problem in software engineering. In principle, a
new interface could be designed whenever any two modules need to compose.
However, the number of different interfaces must be limited to contain the devel-
opment and maintenance costs arising from a proliferation of interfaces. Besides

Software Creation Industry 237

this combinatorial problem, there is the open-world problem. The open-world
assumption in systems allows new modules to be added that weren’t known or in
existence when the base system was created—this is the motivation for APIs. It is
impractical (indeed impossible) to have a complete set of special-case or proprietary
interfaces to connect a full range of modules that may arise over time. A practical
alternative is to define a limited set of standardized interfaces permitting interoper-
ability over a wide range of functionality and complementarity.

Example The CORBA standards standardize IIOP, a network protocol layered on
top of TCP, which allows modules (in this case, the most limited case of objects) to
interface with one another in a similar way whether they reside on the same host
or different hosts. In effect, IIOP hides the details of the underlying network pro-
tocols (potentially multiple) and multiple platform implementations of those pro-
tocols behind a familiar interface. While individual applications would be free to
develop a similar capability on a proprietary basis, an industry-standard solution
reduces the number of implementations that are developed and maintained.

7.2.6 The Evolution of Standards Processes
Interfaces, the functionality related to these interfaces, the preferred decomposition
of systems, and the representations used for sharing information can all be stan-
dardized to enable interoperability. For needs that are well understood and can be
anticipated by standardization bodies (such as industrial consortiums or govern-
mental standardization institutions) standards can be forged in advance of needs
and later implemented by multiple vendors. This process has unfortunately not
worked well in the software industry because of the rapid advances made possible
by software’s inherent flexibility and rapid distribution mechanisms, with the result
that new products are often exploring new technology and applications territory.
Thus, this industry has relied heavily on de facto standardization.

Another approach has been to emphasize future extensibility in standards that
are developed. This is a natural inclination for software, which emphasizes elabo-
ration and specialization of what already exists (e.g., through layering; see section
7.1.3). For example, it is often feasible to elaborate an existing API rather than to
define a new one. This can be accomplished by following the open-closed principle,
which requires that interfaces be open to extension but closed to change. As long
as existing actions are unchanged, the interface can be elaborated by adding new
actions without affecting modules previously using the interface.

Example Successive generations of an operating system try to maintain compati-
bility with existing applications by not changing the actions available in its API.

238 7.2 Cooperation in the Software Industry

The new version may be new or improved “under the hood,” for example, improv-
ing its stability or performance without changing the API. The new version may add
new capabilities (added actions) to benefit future applications without changing
those aspects of the API used by old applications.

The Internet has increased the importance of standards because of the new depen-
dence (and direct network effects) it creates across different platforms. In an attempt
to satisfy this thirst for standards, but without introducing untoward delay and fric-
tion in the market, industry has experimented with more facile and rapid stan-
dardization processes.

One trend is standardization processes well integrated with a research or exper-
imental endeavor, in which the standard is deliberately allowed to evolve and expand
in scope over time based on continual feedback from research outcomes and real-
world experience. In fact, this type of standardization activity shares important char-
acteristics (like flexibility and user involvement) with agile software development
processes (see section 4.2.5).

Example IETF has always recognized that its standards are a work in progress.
The mechanism is to publish and than never change specific standards but to allow
newer versions to make older ones obsolete. Most IETF standards arise directly from
a research activity, and there is a requirement that any additions to the suite of stan-
dards be based on working experimental code. One approach used by the IETF and
others is to rely initially on a single implementation that offers open-world exten-
sion hooks. Once it is better understood, a standard may be lifted off the initial
implementation, enabling a wider variety of interoperable implementations.

In contrast to this continual refinement, a traditional top-down process is less
chaotic and allows greater reflection on the overall structure and goals. It attempts
to provide a lasting solution to the whole problem, all at once. A refinement process
acknowledges that technologies are dynamic; whereas a reference architecture must
be reasonably well defined to begin with, the details of functionality and interfaces
can evolve over time.

Much depends on the maturity of an industry. For the time being, the de facto
and continual refinement standardization processes are appropriate for many
aspects of software because they allow innovation and evolution of solutions, reflect-
ing market realities. When a stage of maturity is reached where functionality is better
defined and stable, traditional top-down standardization processes can take over.

Layering is important because it allows standards to be built up incrementally
rather than defined all at once (see section 7.1.3). The bottom layer (called wiring
or plumbing standards) is concerned with simple connection-level standards.

Software Creation Industry 239

Functionality can then be extended one layer at a time, establishing ever more elab-
orate rules of interoperation and composability.

Example The early Internet research, as more recently the IETF, used layering.
The bottom layer consisted of existing local-area networking technologies and dis-
played horizontal heterogeneity because there were numerous local-area and access
networking technologies. The Internet standard added an IP layer interconnecting
these existing technologies, and it provides today a spanning layer supporting a
number of layering alternatives above. The IETF has systematically added layers
above for various specific purposes. Sometimes lower layers need to be modified.
For example, version four of the IP layer is widely deployed today, and the next
version (version six) has been standardized. Because IP is widely used, any new
version should satisfy two key constraints if at all possible. First, it should coexist
with the older version, since it is impractical to upgrade the entire network at once.
Second, it should support existing layer implementations above while offering new
services or capabilities to new implementations of those layers or to newly defined
layers.

Another trend is standardization processes that mimic the benefits of de facto
standards but reduce or eliminate the time required for the marketplace to sort out
a preferred solution. A popular approach is for a group of companies to form a
consortium (often called a forum) that tries to arrive at good technical solutions by
pooling expertise; the resulting solutions do not have the weight of a formal stan-
dard but rather serve as recommendations to the industry. Often such a consortium
will request proposals from participants and then choose a preferred solution or
combine the best features of different submissions or ask that contributors work to
combine their submissions. Member companies follow these standards voluntarily,
but the existence of these recommendations allow the market to arrive at a de facto
standard more quickly.

Example The Object Management Group, the developer of the CORBA standards,
was formed to develop voluntary standards or best practices for infrastructure
software supporting distributed object-oriented programs. It now has about
800 member organizations. W3C was formed by member companies at the
Massachusetts Institute of Technology to develop voluntary standards for the
Web; it now has more than 500 member organizations. ECMA was formed to
reach de facto standards among European companies but has evolved into a
standards body that offers a fast track to the International Organization for
Standardization.

240 7.2 Cooperation in the Software Industry

7.2.7 Minimizing the Role of Standards
While standardization has many benefits, they have disadvantages as well. In an
industry that is changing rapidly with robust innovation, the existence of standards
and the standardization process can impede technical progress. Sometimes standards
come along too late to be useful.

Example The Open Systems Interconnect (OSI) model was a layered network pro-
tocol providing similar capabilities to the Internet technologies. It was an outgrowth
of a slow international standardization process and, because it attempted to develop
a complete standard all at once, was expensive and slow to be implemented as well.
By the time it arrived, the Internet had been widely deployed and was benefiting
from positive feedback from network effects. OSI was never able to gain traction
in the market.

Where standards are widely adopted, they can become a barrier to progress. This
is an example of lock-in of the entire industry resulting from the difficulty and
expense of widely deploying a new solution.

Example Version six of IP has been much slower to deploy than expected. While
it will likely gain acceptance eventually, version four has been incrementally
upgraded to provide many of the capabilities emphasized in version six, and the
substantial trouble and expense of deploying version six is an obstacle.

Another disadvantage of standards is that they may inhibit suppliers from dif-
ferentiating themselves in the market. A way to mitigate this, as well as to allow
greater innovation and faster evolution of the technology, is to define flexible or
extensible standards.

Example XML is a W3C standard for representing documents. Originally
defined as a replacement for HTML in the Web, XML is gaining momentum as a
basis for exchanging information of various types among departmental, enterprise,
and commerce applications, and is one underpinning of Web services (see section
7.3.7). One advantage is that unlike HTML, it separates the document meaning from
screen formatting, making it useful to exchange meaningful business documents
whose content can be automatically extracted and displayed according to local for-
matting conventions. Another advantage is its extensibility, allowing new industry-
or context-specific representations to be defined. XML and its associated tools
support a variety of context-specific standards or proprietary representations.

Where reasonable to do so, it is appropriate to minimize or eliminate the role of
standards altogether. Although standards are always necessary at some level,

Software Creation Industry 241

modern software technologies and programmability offer opportunities to reduce
their role, especially within applications (as opposed to infrastructure).

Example The device driver shown in figure 7.8 is used in connecting a peripheral
(like a printer) to a personal computer. The idea is to exploit the programmability
of the computer to install a program that communicates with the printer, with
complementary embedded software in the printer. This allows the operating
system to focus on defining standard high-level representations for printed
documents (such as Postscript), while the device driver encapsulates low-level
protocols for interoperation between the computer and the printer. Since the
device driver is supplied by the printer manufacturer, it can do whatever it
chooses (like differentiating one printer from another) without requiring an inter-
operability standard. Of course, the device driver and printer build on a standard
for exchanging content-blind messages, such as the computer serial or parallel
port.

Mobile code can realize the same idea dynamically (see figure 7.9). Interoper-
ability issues suggest the need for standardization when two modules on different

242 7.2 Cooperation in the Software Industry

Device
driver

Figure 7.8
The device driver can allow interoperability while moving standardizations to a higher
abstraction.

hosts may originate with different suppliers. However, if both modules originate
with the same supplier, they may be interoperable by construction with no need for
standardization. Their interfaces can even be changed in new versions, as long as
both modules are upgraded simultaneously.

Example Real Networks supplies complementary streaming audio-video
RealServer and a RealPlayer for the client desktop. Over time, Real has been rela-
tively free to upgrade its RealServer capabilities, even at the expense of compati-
bility with the RealPlayer, because it is reasonable to expect users to upgrade the
client to the latest available version over the network. (Users with no Internet con-
nection would not be candidates to use streaming audio-video.)

Downloaded software or mobile code is a particularly powerful way to bypass
direct network effects, as evident in a peer-to-peer architecture.

Example Successful peer-to-peer applications like Napster (music file sharing) and
Groove (file sharing and collaborative tools) have benefited from the ability to
download the peer software from a central server. To join the network, a new user
can easily download and install the necessary software (or with mobile code it can
even be made transparent). Were it necessary to purchase equipment or software in
a store, these sorts of applications would find it dramatically more difficult to reach
critical mass and benefit from positive feedback.

Another approach to mitigating some problems with standardization is to stan-
dardize languages that can describe application elements, such as the interaction
between modules, the functionality of modules, or the representation of infor-
mation elements. We call this a meta-standard because it standardizes a way of

Software Creation Industry 243

Application Application

Repository

Download

Figure 7.9
Direct network effects can be eliminated by mobile code.

describing something rather than standardizing that something directly. This can
substantially increase the ability of suppliers to innovate and differentiate.

Example For communicating images from one host to another, a representation
that includes a way of digitizing the image and compressing it must be shared by
the transmitter and receiver. To avoid standardization, a meta-standard might take
the form of a language capable of describing a large collection of decompression
algorithms. A typical description of a compression algorithm would be something
like “use an n by n discrete cosine transform with n = 8 followed by a quantization
algorithm of the following form. . . .” Constrained only by the linguistic expres-
siveness of the meta-standard language, a transmitter is free to choose any com-
pression algorithm and convey it (this is a form of mobile code) along with the
image representation to the receiver. An early example is self-extracting archives,
which are compressed collections of computer files arriving as an executable bundle
that, upon execution, unpacks itself, yielding the collection of files.

Rudimentary forms of meta-standards already exist.

Example The interface definition language (IDL) of CORBA allows modules to
disclose their capabilities by describing the actions that are available. XML for doc-
uments provides a language for describing, in effect, new markup languages.

7.3 Component Software

Most new software is constructed on a base of existing software (see section 4.2).
There are a number of possibilities as to where the existing software comes from,
whether it is modified or used without modification, and how it is incorporated into
the new software. Just as end-users face the choice of making, buying, licensing, or
subscribing to software, so do software suppliers. This is an area where future indus-
try may look very different (Szyperski 1998).

7.3.1 Make vs. License Decisions
Understanding the possible sources of an existing base of software leads to insights
into the inner workings of the software creation industry. Although the possibilities
form a continuum, the three distinct points listed in table 7.4 illustrate the range of
possibilities. In this table, a software development project supports the entire life cycle
of one coherent system or program through multiple versions (see section 5.1.2).

The handcrafting methodology was described in section 4.2. In its purest form,
all the source code for the initial version is created from scratch for the specific

244 7.3 Component Software

needs of the project and is later updated through multiple maintenance and version
cycles. Thus, the requirements for all the modules in such a handcrafted code base
are derived by decomposition of a specific set of system requirements.

In the intermediate case, software reuse (Frakes and Gandel 1990; Gaffney and
Durek 1989), source code is consciously shared among different projects with the
goal of increasing both organizational and project productivity (recall the distinc-
tion made in section 4.2.3). Thus, both the architecture and requirements for at
least some individual modules on one project anticipate the reuse of those modules
in other projects. A typical example is a product line architecture (Bosch 2000;
Jacobson, Griss, and Jönsson 1997), where a common architecture with some
reusable modules or components is explicitly shared (variants of the same product
are an obvious case; see section 5.1.2). To make it more likely that the code will be
suitable in other projects, source code is made available to the other projects, and
modifications to that source code to fit distinctive needs of the other project are nor-
mally allowed. Because it is uncommon to share source code outside an organiza-
tion, reuse normally occurs within one development organization. A notable
exception is contract custom development, where one firm contracts to another firm
the development of modules for specific equirements and maintains ownership in
and source code from that development outcome.

Example A hypothetical example illustrates software reuse. The development
organization of Friendly Bank may need a module that supports the acquisition,
maintenance, and accessing of information relative to one customer. This need is

Software Creation Industry 245

Table 7.4
Methodologies for Building Software on an Existing Code Base

Development Methodology Description

Handcrafting Source code from an earlier stage of the project is
modified and upgraded to repair defects and add new
features.

Software reuse In the course of one project, modules are developed while
anticipating their reuse in future projects. In those future
projects, source code of existing modules from different
projects is modified and integrated.

Component assembly A system is assembled by configuring and integrating
preexisting components. These components are modules
(typically available only in object code) that cannot be
modified except in accordance with built-in configuration
options, often purchased from another firm.

first encountered during a project that is developing and maintaining Friendly’s
checking account application. However, Friendly anticipates future projects to
develop applications to manage a money market account and later a brokerage
account. The requirements of the three applications have much in common with
respect to customer information, so the first project specifically designs the customer
module, trying to meet the needs of all three applications. Later, the source code is
reused in the second and third projects. In the course of those projects, new require-
ments are identified that make it necessary to modify the code to meet specific needs,
so there are now two or three variants of this customer module to maintain.

Reused modules can be used in multiple contexts, even simultaneously. This is
very different from the material world, where reuse carries connotations of recy-
cling, and simultaneous uses of the same entity are generally impossible. The dif-
ference between handcrafted and reusable software is mostly one of likelihood or
adequateness. If a particular module has been developed with a special purpose in
mind, and that purpose is highly specialized or the module is of substantial but
context-specific complexity, then it is unlikely to be reusable in another context.
Providing a broad set of configuration options that anticipates other contexts is a
way to encourage reuse.

The third option in table 7.4 is component assembly (Hopkins 2000; Pour 1998;
Szyperski 1998). In this extreme, during the course of a project there is no need to
implement modules. Rather, the system is developed by taking existing modules
(called components), configuring them, and integrating them. These components
cannot be modified but are used as is; typically, they are acquired from a supplier
rather than from another project within the same organization. To enhance its
applicability to multiple projects without modification, each component will typi-
cally have many built-in configuration options.

Example The needs of Friendly Bank for a customer information module are
hardly unique to Friendly. Thus, a supplier software firm, Banking Components Inc.,
has identified the opportunity to develop a customer information component that
is designed to be general and configurable; in fact, it hopes this component can meet
the needs of any bank. It licenses this component (in object code format) to any
bank wishing to avoid developing this function itself. A licensing bank assembles
this component into any future account applications it may create.

Although the software community has seen many technologies, methodologies,
and processes aimed at increasing productivity and software quality, the consensus
today is that component software is the most promising approach. It creates a supply

246 7.3 Component Software

chain for software, in which one supplier assembles components acquired from
other suppliers into its software products. Competition is shifted from the system
level to the component level, resulting in improved quality and cost options.

It would be rare to find any of these three options used exclusively; most often,
they are combined. One organization may find that available components can partly
meet the needs of a particular project, so it supplements them with handcrafted
modules and modules reused from other projects.

7.3.2 What Is a Component?
Roughly speaking, a software component is a reusable module suitable for compo-
sition into multiple applications. The difference between software reuse and com-
ponent assembly is subtle but important. There is no universal agreement in the
industry or literature as to precisely what the term component means (Brown et al.
1998; Heinemann and Councill 2001). However, the benefits of components are
potentially so great that it is worthwhile to strictly distinguish components from
other modules and to base the definition on the needs of stakeholders (provisioners,
operators, and users) and the workings of the marketplace rather than on the char-
acteristics of the current technology (Szyperski 1998). This leads us to the proper-
ties listed in table 7.5. Although some may still call a module that fails to satisfy
one or more of these properties a component, important benefits would be lost.

One of the important implications of the properties listed in table 7.5 is that com-
ponents are created and licensed to be used as is. All five properties contribute to
this, and indeed encapsulation enforces it. Unlike a monolithic application (which
is also purchased and used as is), a component is not intended to be useful in
isolation; rather its utility depends on its composition with other components (or
possibly other modules that are not components). A component supplier has an
incentive to reduce context dependence in order to increase the size of the market,
balancing that property against the need for the component to add value to the spe-
cific context. An additional implication is that in a system using components (unlike
a noncomponentized system) it should be possible during provisioning to mix and
match components from different vendors so as to move competition from the
system level down to the subsystem (component) level. It should also be possible to
replace or upgrade a single component independently of the remainder of a system,
even during the operation phase, thus reducing lock-in (see chapter 9) and giving
greater flexibility to evolve the system to match changing or expanding require-
ments.8 In theory, the system can be gracefully evolved after deployment by incre-
mentally upgrading, replacing, and adding components.

Software Creation Industry 247

While a given software development organization can and should develop and
use its own components, a rather simplistic but conceptually useful way to distin-
guish the three options in table 7.4 is by industrial context (see table 7.6). This table
distinguishes modules used within a single project (handcrafted), within multiple
projects in the same organization (reusable), and within multiple organizations
(component).

Component assembly should be thought of as hierarchical composition (much
like hierarchical decomposition except moving bottom-up rather than top-down).9

Even though a component as deployed is atomic (encapsulated and displaying no
visible internal structure), it may itself have been assembled from components by
its supplier, those components having been available internally or purchased from
other suppliers.10 During provisioning, a component may be purchased as is, con-
figured for the specific platform and environment (see section 4.4.2), and assembled
and integrated with other components. As part of the systems management func-

248 7.3 Component Software

Table 7.5
Properties That Distinguish a Component

Property Description Rationale

Multiple-use Able to be used in multiple Share development costs over multiple
projects. uses.

Non-context- Designed independently of By removing dependence on system
specific any specific project and context, more likely to be general and

system context. broadly usable.

Composable Able to be composed with High development productivity achieved
other components. through assembly of components.

Encapsulated Only the interfaces are Avoids multiple variations; all uses of a
visible and the implementation component benefit from a common
cannot be modified. maintenance and upgrade effort.

Unit of Can be deployed and Allows customers to perform assembly
independent installed as an independent and to mix and match components even
deployment atomic unit and later during the operational phase, thus
and upgraded independently of moving competition from the system to
versioning the remainder of the systema the component level.

a. Traditionally, deployment and installation have been pretty much the same thing.
However, Sun Microsystem’s EJB (a component platform for enterprise applications) began
distinguishing deployment and installation, and other component technologies are following.
Deployment consists of readying a software subsystem for a particular infrastructure or plat-
form, whereas installation readies a subsystem for a specific set of machines. See Szyperski
(2002a) for more discussion of this subtle but important distinction.

tion during operation, the component may be upgraded or replaced, or new com-
ponents may be added and assembled with existing components to evolve the
system.

A component methodology requires considerably more discipline than reuse. In
fact, it is currently fair to say that not all the properties listed in table 7.5 have been
achieved in practice, at least on the widespread and reproducible basis. Components
are certainly more costly to develop and maintain than handcrafted or reusable
modules. A common rule of thumb states that reusable software requires roughly
several times as much effort as similar handcrafted software, and components much
more. As a corollary, a reusable module needs to be used in a few separate projects
to break even, components even more.

If their use is well executed, the compensatory benefits of components can be sub-
stantial. From an economic perspective, the primary benefit is the discipline of main-
tenance and upgrade of a single component implementation even as it is used in
many projects and organizations. Upgrades of the component to match the expand-
ing needs of one uses can benefit other users as well.11 Multiple use, with the implicit
experience and testing that result, and concentrated maintenance can minimize
defects and improve quality. Components also offer a promising route to more flex-
ible deployed systems that can evolve to match changing or expanding needs.

Economic incentives strongly suggest that purely in economic terms (neglecting
technical and organizational considerations) components are more promising than
reuse as a way to increase software development productivity, and that components

Software Creation Industry 249

Table 7.6
Industrial Contexts for Development Methodologies

Methodology
Type Industrial Context Exceptions

Handcrafted Programmed and maintained in Development and maintenance may
the context of a single project. be outsourced to a contract

development firm.

Reusable Programmed anticipating the A common module may be reused
needs of multiple projects within within different contexts of a
a single organization; typically single project. Development and
several versions are maintained maintenance of reusable modules
within each project. may be outsourced.

Component Purchased and used as is from Components may be developed
an outside software supplier. within an organization and used in

multiple projects.

will more likely be purchased from the outside than developed inside an organiza-
tion. Project managers operate under strict budget and schedule constraints, and
developing either reusable or multiuse modules is likely to compromise those
constraints. Compensatory incentives are very difficult to create within a given
development organization. While organizations have tried various approaches to
requiring or encouraging managers to consider reuse or multiple uses, their effec-
tiveness is the exception rather than the rule.

On the other hand, components are quite consistent with organizational separa-
tion. A separate economic entity looks to maximize its revenue and profits and to
maximize the market potential of software products it develops. It thus has an eco-
nomic incentive to seek the maximum number of uses, and the extra development
cost is expected to be amortized over increased sales. Where reuse allows the forking
of different variations on a reused module to meet the specific needs of future pro-
jects, many of the economies of scale and quality advantages inherent in compo-
nents are lost. It is hardly surprising that software reuse has been disappointing in
practice, while many hold out great hope for component software.

There is some commonality between the ideas of component and infrastructure.
Like components, infrastructure is intended for multiple uses, is typically licensed
from another company, is typically used as is, and is typically encapsulated. Infra-
structure (as seen by the application developer and operator) is large-grain, whereas
components are typically smaller-grain. The primary distinction between the com-
ponents and infrastructure lies in composability. Infrastructure is intended to be
extended by adding applications. This is a weak form of composability, because
it requires that the infrastructure precede the applications, and the applications
are developed specifically to match the capabilities of an existing infrastructure.
Similarly, an application is typically designed for a specific infrastructure context
and thus lacks the non-context-specific property. Components, on the other hand,
embody a strong form of composability in that the goal is to enable the compos-
ability of two (or more) components that are developed completely independently,
neither with prior knowledge of the other. Achieving this is a difficult technical
challenge.

7.3.3 Component Portability
The issue of portability arises with components as well as other software (see figure
7.10). A portable component can be deployed and installed on more than one plat-
form. But it is also possible for distributed components to compose even though
they are executing on different platforms. These are essentially independent prop-

250 7.3 Component Software

erties; a component technology can support one or the other or both of these prop-
erties, often limited to specific platforms and environments. Almost all component
technologies today support distributed components that execute on the same type
of platform.

Insisting on unconditional portability undesirably limits innovation in platforms
(see section 4.4.3) but also desirably increases the market for a portable component
or eliminates the cost of developing variants for different platforms. Cross-platform
distributed component composition offers the advantages of portability (com-
ponents can participate in applications predominately executing on different
platforms) without its limitations (each component can take full advantage of
platform-specific capabilities). Here the trade-off is one of efficiency: performance
suffers when crossing software and hardware platform boundaries. Of course, this
issue also interacts with provisioning and operation (see section 7.3.7).

7.3.4 Component Evolution
There is a fundamental tension in the component methodology relating to the
inherent evolution of user requirements (Lehman and Ramil 2000). Recall the dis-
tinction between specification-driven and satisfaction-driven software (see section
3.2.11). Particularly if a component is to be licensed rather than developed, it is
simpler contractually to view it as specification-driven. It can then be objectively

Software Creation Industry 251

Platform A Platform B

= portable component

= platform-specific components

= composition

Figure 7.10
Components can be portable, or they can compose across platforms, or both.

evaluated by laboratory testing, and the contractual relationship between licensee
and licensor is easier to formulate in terms of objective acceptance criteria. The ten-
sion comes from the reality that applications as a whole are decidedly satisfaction-
driven programs. Can such applications be assembled wholly from specification-
driven components? Likely not. In practice, some components (especially those
destined for applications) may be judged by satisfaction-driven criteria, greatly com-
plicating issues surrounding maintenance, upgrade, and acceptance criteria. Worse,
a successful component is assembled into multiple satisfaction-driven programs,
each with distinct stakeholders and potentially distinct or even incompatible crite-
ria for satisfaction of those stakeholders. This tension may limit the range of applic-
ability of components, or reduce the satisfaction with componentized systems, or
both. It tends to encourage small-grain components, which are less susceptible to
these problems but also incur greater performance overhead. It may also encourage
the development of multiple variants on a component, which undercuts important
advantages.

A related problem is that a project that relies on available components may limit
the available functionality or the opportunity to differentiate from competitors, who
have the same components available. This can be mitigated by the ability to mix
components with handcrafted or reusable modules and by incorporating a broad
set of configuration options into a component.

7.3.5 An Industrial Revolution of Software?
Software components are reminiscent of the Industrial Revolution’s innovation of
standard reusable parts. In this sense, components can yield an industrial revolu-
tion in software, shifting the emphasis from handcrafting to assembly in the devel-
opment of new software, especially applications. This is especially compelling as a
way to reduce the time and cost of developing applications, much needed in light
of the increasing specialization and diversity of applications (see section 3.1). It may
even be feasible to enable end-users to assemble their own applications. This indus-
trial revolution is unlikely to occur precipitously, but fortunately this is not a case
of “all or nothing” because developed or acquired modules can be mixed.

This picture of a software industrial revolution is imperfect. For one thing, the
analogy between a software program and a material product is flawed (Szyperski
2002a). If a program were like a material product or machine, it would consist of
a predefined set of modules (analogous to the parts of a machine) interacting to
achieve a higher purpose (like the interworking of parts in a machine). This was,
in fact, the view implied in our discussion of architecture (see section 4.3), but in

252 7.3 Component Software

practice it is oversimplified. While software is composed from a set of interacting
modules, many aspects of the dynamic configuration of an application’s architec-
ture are determined at the time of execution, not at the time the software is created.
During execution, a large set of modules is created dynamically and opportunisti-
cally based on specific needs that can be identified only at that time.

Example A word processor creates many modules (often literally millions) at exe-
cution time tied to the specific content of the document being processed. For
example, each individual drawing in a document, and indeed each individual
element from which that drawing is composed (lines, circles, labels) is associated
with a software module created specifically to manage that element. The imple-
menters provide the set of available kinds of modules, and also specify a detailed
plan by which modules are created dynamically at execution time12 and interact to
achieve higher purposes.

Implementing a modern software program is analogous not to a static configu-
ration of interacting parts but to creating a plan for a very flexible factory in the
industrial economy. At the time of execution, programs are universal factories that,
by following specific plans, manufacture a wide variety of immaterial artifacts on
demand and then compose them to achieve higher purposes. Therefore, in its
manner of production, a program—the product of development—is not com-
parable to a hardware product but is more like a very flexible factory for hardware
components. The supply of raw materials of such a factory corresponds to the
reusable resources of information technology: instruction cycles, storage capacity,
and communication bandwidth. The units of production in this factory are dynam-
ically assembled modules dynamically derived from modules originally handcrafted
or licensed as components.

There is a widespread belief that software engineering is an immature discipline
that has yet to catch up with more mature engineering disciplines, because there
remains such a deep reliance on handcrafting as a means of production. In light of
the nature of software, this belief is exaggerated. Other engineering disciplines strug-
gle similarly when aiming to systematically create new factories, especially flexible
ones (Upton 1992). Indeed, other engineering disciplines, when faced with the
problem of creating such factories, sometimes look to software engineering for
insights. It is an inherently difficult problem, one unlikely to yield to simple solu-
tions. Nevertheless, progress will be made, and the market for components will
expand.

A second obstacle to achieving an industrial revolution of software is the avail-
ability of a rich and varied set of components for licensing. It was argued earlier

Software Creation Industry 253

that purchasing components in a marketplace is more promising than using inter-
nally developed components because the former offers higher scale and significant
economic benefit to the developer/supplier. Such a component marketplace is begin-
ning to come together.

Example Component technologies are emerging based on Microsoft Windows
(COM+ and CLR) and Sun Microsystems’ Java (JavaBeans and Enterprise
JavaBeans). Several fast-growing markets now exist (Garone and Cusack 1999), and
a number of companies have formed to fill the need for merchant, broker, and triage
roles, including ComponentSource and FlashLine. These firms provide an online
marketplace where buyers and sellers of components can come together.

One recognized benefit of the Industrial Revolution was the containment of com-
plexity. By separating parts suppliers and offering each a larger market, economic
incentives encouraged suppliers to go to great lengths to make their components
easier to use by abstracting interfaces, hiding and encapsulating the complexities.
New components will also tend to use existing standardized interfaces where
feasible rather than creating new ones (so as to maximize the market), reducing the
proliferation of interfaces. Thus, a component marketplace may ultimately be of
considerable help in containing software complexity, as it has for material goods
and services.

Another obstacle to an industrial revolution of software, one that is largely unre-
solved, is trust and risk management. When software is assembled from com-
ponents purchased from external suppliers, warranty and insurance models are
required to mitigate the risk of exposure and liability. Because of the complexity
and characteristics of software, traditional warranty, liability laws, and insurance
require rethinking in the context of the software industry, an issue as important as
the technical challenges.

Another interesting parallel to component software may be biological evolution,
which can be modeled as a set of integrative levels (such as molecules, cells,
organisms, and families) where self-contained entities at each level (except the
bottom) consist mainly of innovative composition of entities from the level below
(Petterersson 1996).13 Like new business relationships in an industrial economy,
nature seems to evolve ever more complex entities in part by this innovative compo-
sition of existing entities, and optimistically components may unleash a similar wave
of innovation in software technology.

It should be emphasized that these parallels to the industrial economy and to
biological evolution depend upon the behavioral nature of software (which distin-

254 7.3 Component Software

guishes it from the passive nature of information), leading directly to the emergence
of new behaviors through module composition.

7.3.6 Component Standards and Technology
Assembling components designed and developed largely independently requires
standardization of ways for components to interact. This addresses interoperabil-
ity, although not necessarily the complementarity also required for the composition
of components (see section 4.3.6). Achieving complementary, which is more context-
specific, is more difficult. Complementarily is addressed at the level of standardiza-
tion through bodies that form domain-specific reference models and, building on
those, reference architectures. Reference architectures devise a standard way to
divide and conquer a particular problem domain, predefining roles that contribut-
ing technologies can play. Components that cover such specified roles are then
naturally complementary.

Example The Object Management Group, an industrial standardization con-
sortium, maintains many task force groups that establish reference models and
architectures for domains such as manufacturing, the health industry, or the natural
sciences.

Reusability or multiple use can focus on two levels of design: architecture and indi-
vidual modules. In software, a multiuse architecture is called a reference architec-
ture, a multiuse architecture cast to use specific technology is called a framework,
and a multiuse module is called a component. In all cases, the target of use is typ-
ically a narrowed range of applications, not all applications. One reason is that, in
practice, both the architecture and the complementarity required for component
composition requires some narrowing of application domain. In contrast, infra-
structure software targets multiple-use opportunities for a wide range of applications.

Example Enterprise resource planning (ERP) is a class of application that targets
standard business processes in large corporations. Vendors of ERP, such as SAP,
Baan, Peoplesoft, and Oracle, use a framework and component methodology to
provide some flexibility to meet varying end-user needs. Organizations can choose
a subset of available components, and mix and match components within an overall
framework defined by the supplier. (In this particular case, the customization process
tends to be so complex that it is commonly outsourced to business consultants.)

The closest analogy to a framework in the physical world is called a platform
(leading to possible confusion, since that term is used differently in software; see
section 4.4.2).

Software Creation Industry 255

Example An automobile platform is a standardized architecture and associated
components and manufacturing processes that can be used as the basis of multiple
products. Those products are designed by customizing elements fitting into the archi-
tecture, like the external sheet metal.

In essence a framework is a preliminary plan for the decomposition of (parts of) an
application, including interface specifications. A framework can be customized by
substituting different functionality in constituent modules and extended by adding
additional modules through defined gateways. As discussed in section 7.3.5, a frame-
work may be highly dynamic, subject to wide variations in configuration at execu-
tion time. The application scope of a framework is necessarily limited: no single
architecture will be suitable for a wide range of applications. Thus, frameworks
typically address either a narrower application domain or a particular vertical
industry.

Component methodologies require discipline and a supporting infrastructure to
be successful. Some earlier software methodologies have touted similar advantages
but have incorporated insufficient discipline.

Example Object-oriented programming is a widely used methodology that empha-
sizes modularity, with supporting languages and tools that enforce and aid modu-
larity (e.g., by enforcing encapsulation). While OOP does result in an increase in
software reuse in development organizations, it has proved largely unable to achieve
component assembly. The discipline as enforced by compilers and runtime envi-
ronment is insufficient, standardization to enable interoperability is inadequate, and
the supporting infrastructure is also inadequate.

From a development perspective, component assembly is quite distinctive. Instead
of viewing source code as a collection of textual artifacts, it is viewed as a collec-
tion of units that separately yield components. Instead of arbitrarily modifying and
evolving an ever-growing source base, components are individually and indepen-
dently evolved (often by outside suppliers) and then composed into a multitude of
software programs. Instead of assuming an environment with many other specific
modules present, a component provides documented connection points that allow
it to be configured for a particular context. Components can retain their separate
identity in a deployed program, allowing that program to be updated and extended
by replacing or adding components. In contrast, other programming methodologies
deploy a collection of executable or dynamically loadable modules whose configu-
ration and context details are hard-wired and cannot be updated without being
replaced as a monolithic whole.

256 7.3 Component Software

Even an ideal component will depend on a platform’s providing an execution
model to build on. The development of a component marketplace depends on the
availability of one or more standard platforms to support component software
development, each such platform providing a largely independent market to support
its component suppliers.

Example There are currently two primary platforms for component software, the
Java universe, including Java 2 Enterprise Edition (J2EE) from Sun Microsystems,
and the Windows .NET universe from Microsoft. Figure 7.11 illustrates the general
architecture of Enterprise JavaBeans (EJB), part of J2EE, based on the client-server
model. The infrastructure foundation is a set of (possibly distributed) servers and
(typically) a much larger set of clients, both of which can be based on heteroge-
neous underlying platforms. EJB then adds a middleware layer to the servers, called
an application server. This layer is actually a mixture of two ideas discussed earlier.
First, it is value-added infrastructure that provides a number of common services
for many applications. These include directory and naming services, database access,
remote component interaction, and messaging services. Second, it provides an envi-
ronment for components, which are called Beans in EJB. One key aspect of this
environment is the component container illustrated in figure 7.12. All interactions

Software Creation Industry 257

Application server

Heterogeneous hosts

Heterogeneous PCs

Web browsers

Client application

Distributed component
platform
(server)

Component
platforms
(clients)

Databases

Componentized application

Figure 7.11
An architecture for client-server applications supporting a component methodology.

with a given component are actually directed at its container, which in turn inter-
acts with the component itself. This allows many additional value-added services to
be transparently provided on behalf of the component, such as supporting multiple
clients sharing a single component, state management, life cycle management, and
security. The deployment descriptors allow components to be highly configurable,
with their characteristics changeable according to the specific context. In addition,
J2EE provides an environment for other Java components in the Web server
(servlets) and client Web browser (applets) based on a Java browser plug-in, as well
as for client-side applications. In the .NET architecture, the role of application
server and EJBs is played by COM+ and the .NET Framework. The role of Web
server and Web service host is played by ASP.NET and the .NET Framework.
Clients are covered by client-side applications, including Web browsers with their
extensions.

Component-based architectures should be modular, particularly with respect to
weak coupling of components, which eases their independent development and com-
posability (see section 4.3.3). Strong cohesion within components is less important
because components can themselves be hierarchically decomposed for purposes of
implementation. Market forces often intervene to influence the granularity of com-
ponents, and in particular sometimes encourage course-grain components with con-
siderable functionality bundled in to reduce the burden on component users and to
help encapsulate implementation details and preserve trade secrets (see chapter 8).

258 7.3 Component Software

Client view

Life cycle view

Bean

Deployment
descriptors

Find or
create;
remove

Invoke
actions

Container

Figure 7.12
A component container in JavaBeans.

In some cases, it is sheer performance objectives that encourage course-grained com-
ponents because there is an unavoidable overhead involved in interacting with other
components through fixed interfaces.

Constructing an application from components by configuring them all against one
another, called a peer-to-peer architecture, does not scale beyond simple configura-
tions because of the combinatorial explosion of created dependencies, all of which
may need to be managed during the application evolution. A framework can be
used to bundle all relevant component connections and partial configurations, hier-
archically creating a coarser-grain module. A component may plug into multiple
places in a component framework, if that component is relevant to multiple aspects
of the system. Figure 7.13 illustrates how a framework can decouple disjoint dimen-
sions.14 This is similar to the argument for layering (see figure 7.6), standards (see
section 7.2), and commercial intermediaries, all of which are in part measures to
prevent a similar combinatorial explosion.

Example An operating system is a framework, accepting device driver modules
that enable progress below (although these are not components because they can’t
compose with one another) and accepting application components to enable
progress above (assuming that applications allow composability). Allowing com-
ponent frameworks to be components themselves creates a component hierarchy.

Software Creation Industry 259

Diversity of
applications

Diversity of processing,
storage, and connectivity

technologies

Common services,
representations and

structures for information

Component frameworks

… …Components

Figure 7.13
Component frameworks to separate dimensions of evolution.

For example, an OS-hosted application can be turned into a framework by accept-
ing add-ins (a synonym for components).

7.3.7 Web Services
The provisioning and operation of an entire application can be outsourced to a
service provider (see section 6.2). Just as an application can be assembled from com-
ponents, so too can an application be assembled from the offerings of not one but
two or more service providers. Another possibility is to allow end-users to assem-
ble applications on a peer-to-peer basis by offering services to one another directly,
perhaps mixed with services provided by third-party providers. This is the idea
behind Web services, in which services from various service providers can be con-
sidered components to be assembled. The only essential technical difference is that
these components interact over the network; among other things, this strongly
enforces the encapsulation property. Of course, each component Web service can
internally be hierarchically decomposed from other software components. Services
do differ from components significantly in operational and business terms in that a
service is backed by a service provider who provisions and operates it (Szyperski
2001), leading to different classes of legal contracts and notions of recompense
(Szyperski 2002b). The idea that components can be opportunistically composed
even after deployment is consistent with the Web service idea.

Distributed component composition was considered from the perspective of
features and functionality (see section 7.3.3). Web services address the same issue
from the perspective of provisioning and operation. They allow component com-
position across heterogeneous platforms, with the additional advantage that deploy-
ment, installation, and operation for specific components can be outsourced to a
service provider. They also offer the component supplier the option of selling com-
ponents as a service rather than licensing the software. Web services shift competi-
tion in the application service provider model from the level of applications to
components.

If the features and capabilities of a specific component are needed in an applica-
tion, there are three options. The component can be deployed and installed on the
same platform (perhaps even the same host) as the application. If the component is
not available for that platform (it is not portable), it can be deployed and installed
on a different host with the appropriate platform. Finally, it can be composed into
the application as a Web service, avoiding the deployment, installation, and
operation entirely but instead taking an ongoing dependence on the Web service
provider.

260 7.3 Component Software

A Web service architecture can be hierarchical, in which one Web service can
utilize services from others. In this case, the “customer” of one service is another
piece of software rather than the user directly. Alternatively, one Web service can
be considered an intermediary between the user and another Web service, adding
value by customization, aggregation, filtering, consolidation, and similar functions.

Example A large digital library could be assembled from a collection of indepen-
dently managed specialized digital libraries using Web services (Gardner 2001). Each
library would provide its own library services, such as searching, authentication and
access control, payments, copy request, and format translations. When a user
accesses its home digital library and requests a document not resident there, the
library could automatically discover other library services and search them, even-
tually requesting a document copy in a prescribed format wherever it is found and
passing it to the user.

An important element of Web services is the dynamic and flexible means of assem-
bling different services without prior arrangement or planning, as illustrated in this
example. Each service can advertise its existence and capabilities so that it can be
automatically discovered and those capabilities invoked. It is not realistic, given the
current state of technology, to discover an entirely new type of service and auto-
matically interact with it in a complex manner. Thus, Web services currently focus
on enabling different implementations of previously known services to be discov-
ered and accessed (Gardner 2001).

Web services could be built on a middleware platform similar to the application
server in figure 7.11, where the platform supports the interoperability of compo-
nents across service providers. However, this adds another level of coordination,
requiring the choice of a common platform or alternatively the interoperability of
different platforms. A different solution is emerging, standards for the representa-
tion of content-rich messages across platforms.

Example XML (see section 7.1.5) is emerging as a common standardized repre-
sentation of business documents on the Web, one in which the meaning of the doc-
ument can be extracted automatically. The interoperability of Web services can be
realized without detailed plumbing standards by basing it on the passage of XML-
represented messages. This high-overhead approach is suitable for interactions
where there are relatively few messages, each containing considerable information.15

It also requires additional standardization for the meaning of messages expressed
in XML within different vertical industry segments. For example, there will be a
standard for expressing invoices and another standard for expressing digital library
search and copy requests.

Software Creation Industry 261

The dynamic discovery and assembling of services are much more valuable if they
are vendor- and technology-neutral. Assembling networked services rather than soft-
ware components is a useful step in this direction, since services implemented on
different platforms can be made to appear identical across the network, assuming
the appropriate standards are in place.

Example Recognizing the value of platform-neutral standards for Web services,
several major vendors hoping to participate in the Web services market (including
Hewlett-Packard, IBM, Microsoft, Oracle, and Sun) work together to choose a
common set of standards. SOAP (simple object access protocol) is an interoper-
ability standard for exchanging XML messages with a Web service, UDDI (univer-
sal description, discovery, and integration) specifies a distributed registry or catalog
of available Web services, and WSDL (Web services description language) can
describe a particular Web service (actions and parameters). Each supplier is devel-
oping a complete Web services environment (interoperable with others because of
common standards) that includes a platform for Web services and a set of devel-
opment tools.16 UDDI and Web services work together as illustrated in figure 7.14,

262 7.3 Component Software

Service
registry

Service
provider

Service
requestor

2. Find: Client
discovers a service it
wants and learns its

features and
capabilities

1. Publish: Web
service publishes its

availability and
specific capabilities

3. Bind: Client
binds to the

service

Figure 7.14
The Web services reference model, now on its way toward adoption as a standard, shows
how UDDI supports service discovery (Gardner 2001).

with three primitive operations: publish, find, and bind. First, each service provider
advertises the availability of its Web services in a common service registry. A service
requestor discovers a needed service in the registry, connects to the service (includ-
ing functions like authentication and arranging for payment), and finally starts
using it.

7.4 Research and Discussion Issues

1. One recurring theme is the indirect network effect of applications and
infrastructure: applications seek widely deployed infrastructure, and infrastructure
seeks a diversity of applications. What are some specific ways in which the mar-
ket can overcome this chicken-and-egg conundrum? Can you give examples of
these? What are their relative merits? Which are most likely to be commercially
viable?

2. Consider in specific terms what properties an infrastructure must have to enable
new applications to arise without the knowledge or participation of the infrastruc-
ture supplier or service provider.

3. Give some additional examples of how the tendency of the market to add to
infrastructure rather than change it leads to later difficulties. Can you identify some
examples and specific methodologies in which infrastructure can be changed rather
than merely expanded?

4. What are the best areas of the software industry for venture-funded companies?
for large established companies? Why?

5. Because of the substantial economies of scale, it is wise to avoid direct undiffer-
entiated competition in the software industry. What are some specific strategies that
suppliers use to differentiate themselves in applications? in infrastructure?

6. A dogmatic view of layering requires that layers be homogeneous and interact
only with the layers directly above and below. What are some advantages and dis-
advantages of relaxing this dogma, as in the example of figure 7.3?

7. What are some differences in the strategic challenges of firms competing in a
stovepipe and in a layered structure in the industry?

8. Consider how the properties of good software modularity (see section 4.3.3)
apply more or less strongly to industrial organization.

9. Discuss in some depth whether an infrastructure service provider should also
bundle applications, and whether it should develop or acquire those applications.

Software Creation Industry 263

10. Discuss in some depth the relation between standardization and industrial orga-
nization, specifically different types of standardization (e.g., de facto vs. an indus-
try standards body).

11. What strategies do software suppliers use to maintain control over an archi-
tecture and in taking advantage of that architectural control?

12. What are the considerations in choosing to offer an API or not?

13. What are all the elements that make up an open standard, and when these ele-
ments are modified or eliminated, when does the standard cease to be open? This
question is best considered in the context of what kind of benefits an open standard
confers, and when those benefits are compromised.

14. Consider the process by which a de facto standard develops in the marketplace.
Is a de facto standard always an open standard? When is encouragement of a de
facto standard in the best interest of a supplier? Do different types of de facto stan-
dards (e.g., interfaces, APIs, data representations) arise in similar ways?

15. Discuss the relation between an agile software development process (see section
4.2.5) and an agile standardization process (one that is flexible and adaptive). Under
what conditions is a standardization process essentially (or at least part of) a col-
lective development process?

16. Composability of modules requires interoperability and complementarity (see
section 4.3.6). What is the proper role of standardization in these two aspects? What
else is required besides standardization?

17. Consider mechanisms and incentives that could be used to encourage software
reuse in a development organization. Do you think this can be effective? What dis-
advantages might there be?

18. For each property of a component listed in table 7.5, discuss the business con-
siderations and possibilities that arise from that property. What are the implications
to component supplier, component customer (e.g., system integrator or system devel-
oper), and end-user?

19. Discuss how component software differs from infrastructure software, since
both concepts emphasize multiple uses. How do the challenges and strategies of
component suppliers differ from those of application and infrastructure suppliers?

20. Reflect further on the challenges of satisfaction-based requirements for a com-
ponent supplier-customer relationship. Also consider the issues of risk and trust,
and how these relate to satisfaction.

264 7.4 Research and Discussion Issues

21. Imagine that you are in the business of producing and selling plans for a flex-
ible factory. What kind of business challenges would you face?

22. Discuss the possible parallels and differences between component assembly as
a model of emergence in software and business relationships as a model of emer-
gence in the industrial economy. What can be learned from these parallels?

23. Repeat the last question, substituting innovative composition of entities as a
model for emergence in biological evolution.

24. How does the philosophy of Web services (assembling applications from com-
ponent services) differ from that of the application service provider (accessing fully
integrated applications over a wide-area network)? What are the differences in terms
of business models, opportunities, and challenges?

25. Discuss the business issues that surround the assembly of applications from two
or more Web services. These include the necessary coordination and issues of trust
and responsibility that arise from outsourcing component services.

7.5 Further Reading

Mowery and Nelson (1999), Mowery and Langlois (1994), and Torrisi (1998)
describe the general structure of the software industry, particularly from a historic
perspective. Ferguson and Morris (1994) give a useful introduction to the computer
industry, with an emphasis on hardware and the importance of architecture. While
there are a number of books on software reuse, the Jacobson, Griss, and Jönsson
(1997) book is one of the best. Szyperski (2002a) has the most comprehensive treat-
ment of software components, including both economics and business issues. The
state-of-the-art collection of edited articles in Heineman and Councill (2001) pro-
vides a wealth of additional information on most related issues.

Software Creation Industry 265

