Lab Exercises

Eclipse Platform Enablement
D/3ECA
IBM Corporation - RTP, NC

The Java Developer’s Guide to Eclipse - Exercises

Exercise 1
Using the Plug-in Development Environmentcooovviiiiiiiiiinec e 1-1

Exercise Template Setup
Import Exercise Templates and SOIULIONSooviiiiii e S-1

Exercise 2
YAV I e e T | =T 1 41 Y 2-1

Exercise 3
Defining a New Project WIizardcoouiiiiiiiiii e e 3-1

Exercise 4
Implementing Preference Pagesc.ovviiiiiiiii e 4-1

Exercise 5
Implementing Property PAgesScco.oviiiiiiiii e e e e e 5-1

Exercise 6
Defining a JFace COMPONENTiiiiiii i e e eans 6-1

Exercise 7
DefiniNg @ VIEW Parlcouiiiiiii e e e e e e e eans 7-1

Exercise 8
Editor DEVEIOPMENTeeii e e e e e e 8-1

Exercise 9
Perspective DeVEIOPMENT ... 9-1

Exercise 10
Working with Resource EXIENSIONScc.iiiiiiiiiii e 10-1

Exercise 11
Developing Action ContribUtioNSccouiiiiiii e 11-1

Exercise 12
Creating New EXtenSion POINTS ..o 12-1

Exercise 13
Feature Development and Deploymentcoouoiiiiiiiiiiiie e 13-1

Exercises © Copyright IBM Corporation 2000, 2003

The Java Developer’s Guide to Eclipse - Exercises
(Optional) Exercise 14
SWT LAY OULS ettt e e et e e e e e 14-1

(Optional) Exercise 15
Extending the Java Development TOOIScovviiiiiiiiiii e 15-1

(Optional) Exercise 16
Using the WOrKDENCN ... 16-1

(Optional) Exercise 17
Using the Java Development TOOIS ..o 17-1

(Optional) Exercise 18
Workbench JFace TexXt EditOr ..o e 18-1

Exercises © Copyright IBM Corporation 2000, 2003

Extending Eclipse — First Plug-in

Exercise 1 Using the
Plug-in Devel opment
Environment

Exercise 1 Using the Plug-in Development ENVIrONMEeNtcovevviiiiiiiiiin e 1-1

S (o ST SIS T (1] o P 1-2

EXEICISE INSIUCTIONS.eeue ettt et e et e e e et e e e et r e e e e ab e e e e e abneeeaannneeeenans 1-3
Section 1: “Hello, World” in Five MINULES OF LESS........uuiiiiiiiieiiii ettt e 1-3
Section 2: “Hello, World” with Detailed Step-By-Step INStructionsccoovveiiiiiiiiiiii e, 1-6
Section 3: Testing with the Run-Time WOorkbench.............cooi i 1-20
Section 4: Debugging with the Run-Time WOrkbench..............cooviiiiiii e 1-22
Section 5: Exploring (and Sometimes Correcting) the Eclipse Platform Code............ccccocvvvviviieennnnnns 1-24
Section 6: Correcting Common ProbIEMSc..iiiiiiii e e e 1-28
EXErCISE ACHVIEY REVIEW. .. .ceeiiit ettt e e e e e e e et e et e e e e et e e e eeennes 1-30

At this point the terms and concepts behind Eclipse plug-in development have been introduced. However,
sometimes the best way to learn is by doing. In this laboratory exercise you will implement a Workbench
action extension to contribute a menu item to the window menu bar that displays the message box, “Hello,
Eclipse world.” While admittedly the final result is anticlimactic, it is definitely worth doing for the
experience. You'll have a chance to see how the different parts of the Plug-in Development Environment
(PDE) work, and will also verify that your environment is correctly set up for your future plug-in
development projects.

At the end of this exercise you should be able to:

Create an XML manifest for a plug-in using the Plug-in Manifest Editor
Write the Java code to be executed for the extension
Test and debug your plug-in in the run-time Workbench

In case you missed something, here’s an ultra mini-review.

A plug-in is an extension of the Eclipse Platform. It is a set of related files that implement
some function and a manifest file, called pl ugi n. xm , which describes the content of the
plug-in and its configuration.

A plug-in can contribute to the Workbench by declaring an extension of an existing
Workbench extension point. The manifest file describes this contribution. A plug-in

can also declare new extension points that other plug-ins may use. That will be

covered when we discuss Creating New Extension Points: How Others Can

Extend Your Plug-in.

Exercises © Copyright IBM Corporation 2000, 2002 1-1

Extending Eclipse — First Plug-in

Exercise Setup

The PDE Target Platform configuration adjustment made in this step ensures that all external plug-ins are
visible. This configuration simplifies the plug-in development and is oriented towards new plug-in
developers. Access the PDE Target Platform preferences using Window > Preferences. Expand Plug-In
Development and select Target Platform. Select Not In Workspace to make all plug-ins visible, as shown
in Figure 3.1. Select OK to close the dialog.

+- Workbench Target Platform
Build Order : : :
When looking for required plug-ins, places other than the workspace
8- Debug can be searched. When compiling against these plug-ins, their libraries
+ External Tools will appear as external JARs in the classpath. Only plug-ins checked in
Help the list below will be used.
:IlnstaIIfUpdate Locate non-workspace plug-ins that are part of:
+- Java
—|- Plug-In Development ™' this application
Editors " another compatible application installed at the following location:
Java Build Path Contro
Source Code Locations |
Target Environment
Target Platform [P org.apache.ant (1.4.1) A Reload
5 Team [Fi=org.apache.lucene (1.2.0)
[Fi=org.apache.xerces (4.0.3) Select All
[“Fi=org.eclipse.ant.core (2.0.0)
[“Fi= org.eclipse.compare (2.0.0) Deselect All

[#Fi= org.eclipse.core.boot (2.0.0)
[“Fi= org.eclipse.core.resources.win32 (2.0.0)
[“Fi=org.eclipse.core.resources (2.0.0)

nrg.ec!?pse.clnlre.runtime (2.0.0) -

Frmom e

Mot In Workspace

57 out of 57 selected.

< 3 Restore Defaults Apply

Import... Export... oK Cancel

Figure 1-1
Making All External Plug-ins Visible

Note: The number of plug-ins that can be selected depends on your version (2.0 or 2.1) and build (Eclipse
vs WebSphere Studio Workbench).

If you forget this step and continue creating a plug-in project using the PDE wizard, you will see the
message shown in Figure 3.2. If you do see this message, it's no problem. Just select OK to accept its
resolution and continue.

Exercises © Copyright IBM Corporation 2000, 2002 1-2

Extending Eclipse — First Plug-in

= New Hello World plug-in project

Flug-ins required to compile Java classes in this plug-in are currently disabled.
The wizard must enable them to avoid compile errors.

oK Cancel

Figure 1-2
Wizard Warning Message

Exercise Instructions
You have a choice of how to complete this exercise.

The first approach uses the PDE’s plug-in project wizard to generate all the necessary
code and the plug-in manifest details for an action extension.

This first approach is presented in Section 1.

The second approach will proceed step-by-step, showing all the dialogs and editors that
you need to use when creating a plug-in with the PDE. This approach offers you the
chance to use the PDE when the example is quite simple, so you can concentrate on using
the tool, not the details of the coding at hand.

If you prefer this second approach, turn to Section 2.
Reminder: Unlike some of the earlier exercises, this exercise has no template or solution

associated with it. Once you have installed Eclipse and configured it as
described above, you can start immediately.

Section 1: “ Hello, World” in Five Minutes or Less

Eclipse should already be installed and open; you should have already completed the steps described in
the “Exercise Setup” section.

1. Begin by creating a plug-in project using the New Plug-in Project wizard. Select File > New >
Project. In the New Project dialog, select Plug-in Development and then Plug-in Project in
the list of wizards, and then select Next. Name the project com i bm | ab. hel | owor | d. Accept
the default workspace location and select Next. The PDE will create a plug-in id based on this
name, so it must be unique in the system (by convention, the project name and the plug-in id
are the same). Accept the default plug-in project structure and select Next. Select the Hello,
World option, as shown in Figure 3.3, and then select Next.

Exercises © Copyright IBM Corporation 2000, 2002 1-3

Extending Eclipse — First Plug-in

New Plug-in Project

Plug-in Code Generators
Select the wizard that will generate the initial plug-in code @

" Create a blank plug-in project

{* Create a plug-in project using a code generation wizard

Available code generation wizards

&% Custom plug-in wizard This wizard creates standard plug-
B> Default Plug-In Structure in directory structure and adds the
e following:
%F’Iug—in with a multi-page editor » Action set, This template
%ng'i” with an editor creates a simple action set that
I Plug-in with a popup menu adds Sample Menu to the menu
B Plug-in with a property page bar and a button to the tool
B Plug-in with a view bar. Both the menu item in the
E® Plug-in with perspective extensions new menu and the button
invoke the same Sample Action,
Iis role is to open a simple
message dialog with a message i

< Back Mext = Cancel

Figure 1-3

Hello, World Plug-in Code Generator

2. The proposed plug-in name and plug-in class name are based on the last word of the plug-in
project, com i bm | ab. hel | owor | d. This example doesn't need any of the plug-in class
convenience methods, so deselect all three options under Plug-in code generation options,
as shown in Figure 3.4, and select Next (not Finish; you've got one more page to go).

Exercises © Copyright IBM Corporation 2000, 2002 1-4

Extending Eclipse — First Plug-in

New Hello World plug-in project
Simple Plug-in Content
Enter the required data to generate initial plug-in files E

Blug-in name |Hellnwnrld Flug-in

Version | 1.0.0

Provider Mame |IE=M

Class Name | com.ibm.lab.helloworld.HelloworldFlugin

¥ Generate code for the class

Plug-in code generation options

[Add default instance access

[Add support for resource bundles
[Add access to the workspace

< Back P Next> i Finish Cancel

Figure 1-4
Hello, World’s Smple Plug-in Content Wizard Page

3. The next page, shown in Figure 3.5, is where you can specify parameters that are unigue to
the “Hello, World” example, such as the message that will be displayed.

Exercises © Copyright IBM Corporation 2000, 2002 1-5

Extending Eclipse — First Plug-in

New Hello World plug-in project

Sample Action Set
This template will generate a sample action set extension with a menu, a E

menu item and a tool bar button.

BGIG W Te ol NGl S com. ibm. lab. helloworld

Action Class Name: | SampleAction

Message Box Text: | Hello, Eclipse world

¥ Add the action set to the resource perspective

< Back Finish Cancel

Figure 1-5

Hello, World Template Page

4. To simplify the resulting code, change the target package name for the action from
comibm | ab. hel | oworl d. acti ons to com i bm | ab. hel | owor | d, the same package as
that of the plug-in class. While you might choose to have a separate package for grouping
related classes in a real-world plug-in, in this case there will only be two classes (the plug-in
class and the action), so let’s put them together in the same package.

5. Select Finish and continue with Section 3, Testing with the Run-Time Workbench.

Section 2: “ Hello, World” with Detailed Step-By-Step Instructions

This approach to creating your first plug-in focuses on how to use the PDE, and thus omits some of the
smaller implementation details. Rest assured, the exercises to follow cover them. That being said, let's go!

Eclipse should already be installed and open; you should have already completed the steps described in
the “Exercise Setup” section.

1. Begin by creating a plug-in project using the New Plug-in Project wizard. Select File > New >
Project. In the New Project dialog, select Plug-in Development and Plug-in Project in the

Exercises © Copyright IBM Corporation 2000, 2002 1-6

Extending Eclipse — First Plug-in

list of wizards, and then select Next. Name the project com i bm | ab. hel | owor | d. Accept the
default workspace location and select Next. The PDE will create a plug-in id based on this
name, so it must be unique in the system (by convention, the project name and the plug-in id
are the same). Accept the proposed plug-in project structure and select Next. Select the
Default Plug-In Structure option, as shown in Figure 3.6, and then select Next.

Hew Plug-in Project

Plug-in Code Generators

" Create a blank plug-in project

Available code generation wizards

Select the wizard that will generate the initial plug-in code @

* Create a plug-in project using a code generation wizard

€N Custom plug-in wizard

B Hello, World

EX Plug-in with a multi-page editor

B Plug-in with an editor

B Plug-in with a popup menu

BX Plug-in with a property page

BX Plug-in with a view

BX Plug-in with perspective extensions

Generates plug-in manifest (plugin.
xml) and plug-in top-level Java class.
When finished, the wizard will open
plug-in manifest editor. The plug-in
will be ready to work, compile and
run, but will contain no extensions.

< Back

Mext = Cancel

Figure 1-6
Default Plug-in Code Generator

2. The proposed plug-in name and plug-in class name are based on the last word of the plug-in
project, com i bm | ab. hel | owor | d. This example doesn’t need any of the plug-in class
convenience methods, so deselect all three options under Plug-in code generation options,
as shown in Figure 3.7, and select Finish.

Exercises © Copyright IBM Corporation 2000, 2002 1-7

Extending Eclipse — First Plug-in

Default Plug-in Project

Simple Plug-in Content
Enter the required data to generate initial plug-in files E

Blug-in name |Hellnwnrld Flug-in

Version | 1.0.0

Provider Mame |IE=M

Class Name | com.ibm.lab.helloworld.HelloworldFlugin

¥ Generate code for the class

Plug-in code generation options

[Add default instance access

[Add support for resource bundles
[Add access to the workspace

< Back : Finish | Cancel

Figure 1-7
Smple Plug-in Content Wizard Page

Note: Although this example doesn’t need a plug-in class, deselecting the
Generate code for the class option without clearing the Class name field
generates a value for the cl ass attribute of the <pl ugi n> tag. In this
case, the plug-in definition would reference a plug-in class that was not
generated, resulting in a run-time error, Pl ug-i n
"comibmlab. hell oworld" activation failed while
| oadi ng class "comibm | ab. hel | owor | d. Sanpl eActi on” in
the Console. For the sake of simplicity, let the wizard generate the plug-in
class.

The pl ugi n. xni file generated should be automatically opened for editing using the

Plug-in Manifest Editor in the PDE perspective after you select Finish, as shown Figure

3.8.

Exercises © Copyright IBM Corporation 2000, 2002

1-8

Extending Eclipse — First Plug-in

Welcome to Helloworld Plug-in

Tips on working with this plug-in project

= For the view of the new plug-in at a glance, go to the [EiQverviev:

* You can test the contributions of this plug-in by launching another instance
of the workbench. On the Run menu, click Run As and choose @Run-time
Workbench from the available choices.

* You can add more functionality to this plug-in by adding extensions using
the New Extension Wizard.

* The plug-in project contains Java code that you can debug. Place
breakpoints in Java classes. On the Run menu, select Debug As and choose
& Run-time Workbench from the available choices.

[Do not show this page the next time

Welcome | Overview | Dependencies | Runtime | Extensions | Extension Points | Source

Figure 1-8
Welcometo Hel | owor | d Plug-in

You won't see the Welcome page if you previously opened this project and selected Do
not show this page the next time. In this case, you would see the Overview page
instead.

3. Select the Source page. Verify that the generated pl ugi n. xml content is as follows.

<?xm version="1.0" encodi ng="UTF- 8" ?>
<pl ugi n
i d="comibm ab. hel | owor| d"
name="Hel | oworl d Pl ug-in"
version="1.0.0"
provi der - nane="| BM'
class="comi bm I ab. hel | owor | d. Hel | owor | dPI ugi n">

<runti ne>
<library nanme="helloworld.jar"/>
</runtime>

<requi res>
<i nport plugin="org.eclipse.core.resources"/>
<inport plugin="org.eclipse. ui"/>

</requires>

</ pl ugi n>

Note that the <r equi r es> section states that the basic user interface and core services
must be present for this plug-in to load successfully.

Exercises © Copyright IBM Corporation 2000, 2002 1-9

Extending Eclipse — First Plug-in

4. Select the Extensions page and select Add... to start the New Extension wizard (see Figure
3.9). Select Generic Wizards and Schema-based Extension. This wizard will lead you
through the creation of an extension based on the extension point’s schema definition, that is,
based on its expected XML child tags and attributes. Select Next.

Extension Wizard Selection
Choose a wizard that will guide you through the new extension creation =Q3=

Generic Wizards ™ C rhama-based Extension
Extension Templates

Adds a new extension based on its schema information. If the extension point ﬂ
schema (definition) can be found, you will be able to create the currect child

elements by choosing New on the pop-up menu while the parent element is

selected. The property sheet will show expected attributes for each element and

will use cell editor appropriate for the attribute type.

-l . . EE T '

Mext = ‘ Cancel ‘

Figure 1-9
New Extension Wizard

5. Selectthe org. ecl i pse. ui . acti onSet s extension point (see Figure 3.10).

Exercises © Copyright IBM Corporation 2000, 2002 1-10

Extending Eclipse — First Plug-in

X|

Extension Point Selection

Select an extension point from those available in the list. B

¥ Show only extension points from the required plug-ins

=l org.eclipse .ui.actionDefinitions = Details
=l org.eclipse .ui.actionSetPartAssociations
mlorg eclipse ui.actionSets
=l org.eclipse.ui.capabilities

=l org.eclipse .ui.commands

=l org.eclipse .ui.decorators

=l org.eclipse .ui.documentProviders

=l org.eclipse.ui.dropActions

=l org.eclipse .ui.editor Actions

=l org.eclipse .ui.editors

=l org.eclipse. .ui.elementFactories

=l org.eclipse .ui.export¥Wizards

=l org.eclipse .ui.fontDefinitions

=l org.eclipse.ui.importWizards 5

Point ID: |

Point Name: I

org.eclipse .ui.actionSets

< Back Mext = Finish Cancel

Figure 1-10
Extension Point Selection

This extension point is used to add menus, menu items, and toolbar buttons to the
common areas in the Workbench window. These contributions are collectively known as
an action set and appear within the Workbench window menu or toolbar. Select Finish
to create the new extension.

6. There are very few extension points that do not require one or more child tags to complete the
definition of the extension. In this particular case, the <act i onSet > child tag must be added.
Right-click on or g. ecl i pse. ui . acti onSet s in the All Extensions list and select New >
actionSet (see Figure 3.11).

Exercises © Copyright IBM Corporation 2000, 2002 1-11

Extending Eclipse — First Plug-in

Extensions

All Extensions

------ 'g.eclipse .ui.actionSets Add...

Delete «— Extension...

& Go Home
= Go Back
= Go Into

Collapse All

Cut

Copy
Paste

Revert
Save

Declaration
Show Description

= Properties
Body Text

Welcome |0verview |Dependencies |Runtime Extensions |[Extension P... |Source

Figure 1-11

Adding an Action Set

7. Open the Properties view on the acti onSet tag and setthe i d, | abel , and vi si bl e property
values as shown in Figure 3.12.

= Properties B v x
Property | Yalue |
description Action set for first plug-in
id "@ com.ibm.lab helloworld.actionSet
label ‘@ Sample Action Set
Tag name ¥ actionSet
visible true
Figure 1-12

acti onSet PropertiesView

Remember to press Enter after changing a property value; otherwise, the value may
revert to its previous value when the Properties view loses the focus.

The i d is a required unique identifier that can be used as a reference to this action set.
The vi si bl e attribute indicates whether the action set should be initially visible in all

Exercises © Copyright IBM Corporation 2000, 2002 1-12

Extending Eclipse — First Plug-in

perspectives. The XML code will create an action set called “Sample Action Set.” If you
turn to the Source page, you will see the XML that you've created.

<ext ensi on
poi nt ="org. ecli pse. ui.acti onSets">
<act i onSet
| abel =" Sanpl e Action Set"
vi si bl e="true"
i d="comibmlab. hell oworld. acti onSet">
</ acti onSet >
</ ext ensi on>

Note that the vi si bl e=t r ue attribute is only honored when the user opens a new
perspective that has not been customized. Selecting Window > Reset Perspective will
show all action sets having the vi si bl e attribute set to t r ue.

8. Now create a top-level menu. Right-click on the action set element and select New > menu
(see Figure 3.13).

Extensions

All Extensions

E-o= org .eclipse.ui.actionSets
@i} sample Action Set (actionSet)

New L4

Delete

Add...

Up

¥ action Down

«= Extension...

& Go Home
4 Go Back
= GO Into

Collapse All

Cut

Copy
Paste

Revert
Save

B Properties

Body Text

Welcome|0\rerview|Dependencie5|Runtime Extensions |Extension P... |Source

Figure 1-13
Creating a New Menu

Open the Properties view on nmenu and set the | abel and i d. The ampersand (&) in the
value for the | abel indicates the next character, M, is a menu accelerator.

Exercises © Copyright IBM Corporation 2000, 2002 1-13

Extending Eclipse — First Plug-in

o v X
Property " Value
id “® sampleMenu
label ‘@ Sample&Menu
path
Tag name ™ menu
Figure 1-14

Updating the New Menu'’ s Attributes

When you turn to the Source page, this value is shown as &np; , since the plug-in
manifest is specified in XML, and that is the proper representation of an ampersand in
XML. If you had entered it directly in the Source page as &, the manifest editor would
detect an XML parsing error. If forced into a plugin.xml file, Eclipse would detect the error
during the XML parsing that ocurrs at startup.

9. Now add a menu separator by right-clicking on the top-level menu and selecting New >
separator (see Figure 3.15).

Extensions

All Extensions

o= org eclipse.ui.actionSets Add...
E@ Sample Action Set (actionSet)

) SampleMenu {menu

S
New it separator » Down
)

Delete groupMarker

HE

«— Extension...

& Go Home
4= Go Back
= Go Into

Collapse All

Cut

Copy
Paste

Revert
Save

= Properties

Body Text

Welcome|0\rerview|Dependencies|Runtime Extensions |Extension P... |Source

Figure 1-15
Adding a Menu Separator

Actions are generally inserted into a menu relative to another item. Follow this convention
by adding a separator that provides a placeholder for your action and other plug-in

Exercises © Copyright IBM Corporation 2000, 2002 1-14

Extending Eclipse — First Plug-in

developers that might want to contribute menu items. Contributors would do so by
specifying the separator’s id in their action’s nenubar Pat h or t ool bar Pat h attribute.

10.Change the separator’s nane attribute to sanpl eG oup in its Properties view. Remember to
press Enter while the Properties view entry has the focus to register the change.

11.Now add a new action. You can do this by selecting act i onSet in the All Extensions list as
shown in Figure 3.16, and then select New > action.

Extensions
All Extensions
== org eclipse.ui.actionSets
E?ﬂ Sample Action Set {ac .
=1 SampleMent LG 4 % menu
- sampleGr i acin i
Delete .
Extension...
& Go Home -
4+ Go Back
= Go Into
Collapse All
Cut
Copy
Paste
Revert
Save
= Properties
Body Text
Velcome |Overview |Dependencies |Runtime Extensions Extension P... |Source

Figure 1-16

Adding a New Action
In the Properties view, set the action’s t ool ti p property value to Hel | o, Ecli pse
worl d,theidtocomibmlab. hel | oworl d. Sanpl eAct i on, and the label to &Sanpl e
Act i on. Then set nenubar Pat h to sanpl eMenu/ sanpl eG oup and t ool bar Pat h to
sanpl eG oup. These attributes are slash-delimited paths that are used to specify the
location of the action in the menu. Also note that while it is more typical to add an action
to either the window menu or the main toolbar, you can add them to both at the same
time in a single <act i on> tag by specifying both the nenubar Pat h and t ool bar Pat h
attributes.

The act i on tag declares an action that will be available from the window menu and the
main toolbar. When the user clicks on the action, the class referenced in the cl ass
attribute will be instantiated and its r un method called.

Exercises © Copyright IBM Corporation 2000, 2002 1-15

Extending Eclipse — First Plug-in

12.Next you'll code a simple action class that will display a message dialog. To create the action
class, select the cl ass attribute in the action’s Property view, then its “more” button (the
button with the ellipsis next to the cl ass attribute) to display the Java Attribute Editor, as
shown in Figure 3.17.

£-Java Attribute Editor X

Java Class Selection
Search for an existing class or generate a new one. @
" Use an existing Java class

Qualified class name: I Browse... |

% Generate a new Java class

Source folder name: |sr'c Browse. ..
Package name: Icom .ibm.lab.helloworld Browse...
Class name: |5ampIeAcﬁon

i Open class in editor when created

Finish Cancel

Figure 1-17
Creating a Sample Action

Select Generate a new Java class, accept the source folder name, and then enter the
com i bm |l ab. hel | owor | d package name (or use the Browse button) and the class
name Sanpl eAct i on.

After these last two steps the following XML will be added to the manifest file, along with
XML for the other entries you just created.

<action
| abel =" &np; Sanpl e Acti on”
class="comi bm I ab. hel | owor | d. Sanpl eActi on"
tooltip="Hello, Eclipse world"
nmenubar Pat h="sanpl eMenu/ sanpl eG oup"
t ool bar Pat h="sanpl eG oup"
i d="com i bm | ab. hel | owor | d. Sanpl eActi on">

Then the class generator opens an editor on the source it created and adds a set of
reminders to the Tasks view to implement your action (see Figure 3.18).

Exercises © Copyright IBM Corporation 2000, 2002 1-16

Extending Eclipse — First Plug-in

=+ *Hellowar ld Plug-in | fi Samp X
public class Samplelction i1mplements IerkbenchWindowActic;l
SEE
R * TODO: Implement the "SamplefAction" constructor.
*
public Samplelction() {
¥

SR

* TODO: Implement “"run".
* Psee [WorkbenchWindowlotionDelegatedrun

*/
public wvoid run{lAction action)
}
S o
R * TODO: Implement "selectionChanged".
* f@see IWorkbenchWindowlAcotionDelegate#selectionChanged
*® 7
public void selectionChanged (IAction action, IZelectior
| ¥
| | 2
v Tasks (Filter matrhed 6 of 6 items) G oW X
| J| . | Description Resource | In Folder
ey ToODO ; Provide description for "Sampleaction”, Sampleact.., com.ibm, lab.pdelong.hel
ey ToODD ; Implement the "Sampleaction” constru,.. Sampleact.., com.ibm, lab.pdelong.hel
'y ToDD ; Implement "run', Samplesct... com.ibm.lab.pdelong.hel
ey ToDD ; Implement "selectionChanged”, Samplesct... com.ibm.lab.pdelong.hel
ey ToDD ; Implement "dispose”, Samplesct... com.ibm.lab.pdelong.hel
ey ToDD ; Implement “init", Samplesct... com.ibm.lab.pdelong.hel
1| | 3
Tasks IEerr Log | Console | Properties

Figure 1-18
Sanpl eAct i on Generated Code and Reminder

13.Verify the plugin.xml in the Source page. It should look like this.

<?xm version="1.0" encodi ng="UTF- 8" ?>
<pl ugi n
i d="comibm ab. hel | owor| d"
name="Hel | oworl d Pl ug-in"
version="1.0.0"
provi der - nane="| BM'
class="comi bm I ab. hel | owor | d. Hel | owor | dPI ugi n">

<runti ne>
<library nanme="helloworld.jar"/>
</runtime>

<requi res>
<i nport plugin="org.eclipse.core.resources"/>
<inport plugin="org.eclipse. ui"/>

</requires>

Exercises © Copyright IBM Corporation 2000, 2002

1-17

Extending Eclipse — First Plug-in

<ext ensi on
poi nt="org. ecli pse. ui.actionSets">
<act i onSet
| abel =" Sanpl e Action Set"
vi si bl e="true"
i d="com i bm | ab. hel | oworl d. acti onSet ">
<menu
| abel =" Sanpl e &anp; Menu”
i d="sanpl eMenu" >
<separ at or
nane="sanpl eG oup" >
</ separ at or >
</ menu>
<action
| abel =" &anp; Sanpl e Acti on"
class="comibm | ab. hel | owor| d. Sanpl eActi on"
tooltip="Hello, Eclipse world"
nmenubar Pat h="sanpl eMenu/ sanpl eG oup"
t ool bar Pat h="sanpl eG oup"
i d="comibmlab. hel |l oworl d. Sanpl eActi on" >
</ action>
</ acti onSet >
</ ext ensi on>

</ pl ugi n>

14.The plug-in manifest is complete. However, to make this result the same as generated by the
PDE'’s “Hello, World” example, you can add the following XML just above the closing
</ pl ugi n> tag.

<ext ensi on
poi nt ="org. ecl i pse. ui . per specti veExt ensi ons" >
<per specti veExt ensi on
target|l D="org. ecli pse. ui.resourcePerspective">
<act i onSet
i d="com i bm | ab. hel | oworl d. acti onSet ">
</ acti onSet >
</ per specti veExt ensi on>
</ ext ensi on>

This isn't strictly required, but it's a good idea. It adds the new action set to an existing
perspective, so users doesn’t have to add it themselves with the Window > Customize
Perspective... menu choice. The action set id above must match the action set id you
specified earlier.

Switch to the Source page and enter the new extension. When you turn back to the
Extensions page, notice that the list is updated to include the modifications you made in
the Source page, specifically, the addition of the

org. eclipse. ui . perspecti veExt ensi ons extension. The Plug-in Manifest Editor
keeps page modifications synchronized, wherever they are entered. This comes in handy
when you want to make a minor change. That is, you can modify an attribute directly in

Exercises © Copyright IBM Corporation 2000, 2002 1-18

Extending Eclipse — First Plug-in

the Source page instead of selecting the associated extension in the Extension page
list and then modifying the attribute with the Properties view.

15.Save the pl ugi n. xm file.

You can now finish the implementation of the action logic in the Sanpl eAct i on class.

16.Before an action’s r un method is invoked, the Workbench first calls its i ni t method, providing
the current Workbench window. Some actions need to know the context in which they are
invoked, so they start by saving a reference to the Workbench window. This requires that we
add an instance variable declaration and logic to save the window reference.

Add this instance variable to the Sanpl eAct i on class:
private |IWrkbenchW ndow wi ndow;

Add this logic to the i ni t method:
this.wi ndow = w ndow,

17.The r un method implements the action function. This action is simle, it will display your “Hello,
Eclipse world” message. Add the code below to the action’s r un method.

public void run(lAction action) {
MessageDi al og. openl nf or mat i on(
wi ndow. get Shel | (),
"Hel l oworld Plug-in",
"Hel l o, Eclipse world");

Notice that the editor indicates that a Quick Fix is available to correct the “undefined”
MessageDi al og class (see Figure 3.19).

Helloworld Plug-in x
SEE ”
#* In=ert the method's description here.
* IVorkbenchWindowActionDelegatefrun
* .
public wvoid runiliction action) { -
w MeszagelDialog . openlnformation
window.getShell(),
"Helloworld Flug—-in",
"Hello, Eclipse world"):
1 w
Figure 1-19

Quick Fix Indicator

Clicking the light bulb will propose several possible solutions. Choose to import the
missing class reference, and then save your modifications to Sanpl eAct i on. j ava.

You have just completed coding your first “Hello, World” plug-in, equivant to the one that you can create
with the PDE’s Plug-in Code Generator. Continue with the next section to test it.

Exercises © Copyright IBM Corporation 2000, 2002 1-19

Extending Eclipse — First Plug-in

Section 3: Testing with the Run-Time Workbench

You should have already completed Section 1, “Hello, World’ in Five Minutes or Less,” or Section 2,
“Hello, World’ with Detailed Step-By-Step Instructions.” Whether you got here by taking the shortcut or the
long way, you're ready to test!

1. Testyour com i bm | ab. hel | owor | d plug-in by selecting the Run > Run As > Run-
time Workbench menu choice (if you don't see this menu choice, verify that you're in
the Plug-in Development perspective and you have a plug-in project, folder, or file
selected).

After a few seconds, a second instance of the Workbench will open. If the Resource
perspective is active, the Sample Menu pull-down should already be shown.
However, in other perspectives, your action set must be explicitly added to the user
interface. In that case, select the Window > Customize Perspective... menu choice.
You should see your Sample Actions in the list under Other. Select your action set to
add it, as shown in Figure 3.20.

£ Customize Perspective 3]

Select the items to be displayed in the current perspective (Resource).

Available Ttems: Details:

+-[Z]Window > Open Perspective | | Sample Action
+[F]Window > Show View

--[-] other
[Jcvs
[]Debug
[#]External Tools
[#]Help
[]3ava Coding
[]3ava Debug
[]3ava Element Creation
[]ava Navigation
[]iava Open Actions
[]iava Search
[JLaunch
[Sample Action Set
[w]Search
[w]Software Updates

0K Cancel

Figure 1-20

Adding an Action Set to the Current Perspective
You should see your addition in the Workbench menu bar. Note that the vi si bl e=tr ue
attribute of the <act i onSet > tag is only honored when the user opens a new perspective
that has not been customized. Selecting Window > Reset Perspective will show all
action sets having the visible attribute set to t r ue.

Exercises © Copyright IBM Corporation 2000, 2002 1-20

Extending Eclipse — First Plug-in

2. Select Sample Menu > Sample Action to display the message box (see Figure 3.21).

" |Resource - Eclipse Platform
File Edit Mavigate Search Project Sample Menu Run Window Help

EREERENDNIRILE

E 5. Navigator - x | |[NERE Xl
’% f e E Eclipse Platform

This page will help familiarize you with the Eclipse Workbench.

| >

&= Helloworld Plug-in

Hello, Ecli Id
@ ello, Eclipse wor hoose Help > Welco

s of views (e.g. Nav

I and editors for working with your resources.

5= Outline x The shartcut bar at the far left of the window allows you to open new perspectives anc
-) between perspectives that are already open. The perspective you are currently workin
An outline is not available. is shown in the title of the window and in the shortcut bar as a pushed-in icon. P

< | *

%7 Tasks (0 items) P B v X
I C.I ! I Description Resource | In Folder I Location

Figure 1-21
Hello, Eclipse World Message Box

Note: If you chose the 5-minute approach, your Ul will have a small round Eclipse image
for the contributed tool bar action (shown in Figure 3.21). If you chose the detailed
approach, you would not have specified an image so the Workbench will use a red
square (default for missing images) to represent your action.

3. Before you close the run-time instance of the Workbench, close the Welcome page.
This will avoid the spurious version 2.0-only message “An error has occurred
whil e restoring the workbench; See error log for nore details.” Be sure
to close the second instance of the Workbench.

Congratulations, you have just created and tested your first plug-in for Eclipse! Now you are ready to try
your hand at debugging a plug-in in the next section. If your plug-in didn’'t work as expected, see the
section “Correcting Common Problems” later in this exercise for help.

Exercises © Copyright IBM Corporation 2000, 2002 1-21

Extending Eclipse — First Plug-in

Section 4: Debugging with the Run-Time Workbench

This section explores the tools the PDE has to help debug your plug-ins. You already have coded and
tested your “Hello, Eclipse world” example, so how about intentionally introducing some bugs to see how
they manifest themselves? The short debug session that follows is an example of how to find plug-in specific
errors. Begin by verifying that you've closed the run-time Workbench from the prior section, and then
return to the Plug-in Development perspective of your Eclipse development environment. Next, open your
plug-in's manifest file.

1. Turn to the Source page and introduce an error in the cl ass attribute of the <acti on>
tag.

<action
| abel =" &anp; Sanpl e Acti on”
class="comibm | ab. hel | 0. Sanpl eAction" <!-- error, was "helloworld" -->

tooltip="Hello, Eclipse world"

nmenubar Pat h="sanpl eMenu/ sanpl eG oup"

t ool bar Pat h="sanpl eG oup"

i d="com i bm | ab. hel | owor | d. Sanpl eActi on">
</ action>

When you launch the run-time Workbench and select Sample Action, a dialog is
displayed that indicates that the chosen operation is not currently available, and a
message is displayed in the Console of your development Workbench, as shown in
Figure 3.22.

[E] console . | g x

Could not create action.
Reaszon:
Flug—in com.ibm.lab helloworld was unable to load class com.ibm. lab hello Sanpleiction.

Console | Tasks

Figure 1-22
Console Error Message

That is, messages in the run-time instance to Syst em out and System err are
redirected to the Console in the development Workbench. Before closing the run-time
instance, open the Plug-in Registry view (Window > Show View > Other... > PDE
Runtime > Plug-in Registry) and scroll down to your plug-in, as shown in Figure 3.23.

Exercises © Copyright IBM Corporation 2000, 2002 1-22

Extending Eclipse — First Plug-in

“IE Plug-in Registry 5 | B3 & x
+-== External Tools ld
=8 g Helloworld Plug-in
4l Extension Points
--%. Extensions
-l-4= org.eclipse.ui.actionSets
- T¥] actionSet
™ action
=-T] menu
f] separator
+-4= grg.eclipse.ui.perspectiveExtensions
- % Prerequisites
== org.eclipse.core.resources
== org.eclipse.ui
—-[@f, Run-time Libraries
W helloworld.jar
+-== Help System Core
+-== Help Systemn UI w

Figure 1-23

Plug-in Registry
From here you can see precisely what was parsed from your pl ugi n. xni file, similar to
the Outline view of the plug-in manifest, but available at runtime. Close the run-time
Workbench.

2. Correct the error from the prior step (e.g., by selecting pl ugi n. xni , and then Replace
With > Previous From Local History). Now let’s introduce a more serious error.
Comment out the code below from Sanpl eAct i on.

public void init(lWrkbenchW ndow wi ndow) {
/1 this.wi ndow = w ndow,

}

This change will provoke a null pointer exception in the r un method. Save the change
and relaunch the run-time Workbench, this time using the Run > Debug As > Run-time
Workbench menu choice. Notice that the perspective automatically changes to the
Debug perspective.

3. Again select the Sample Action menu choice. Nothing appears to happen. No
message from the run-time instance, so look in the Console of the development
Workbench. As expected, the message Unhandl ed excepti on caught in event
| oop. Reason: java.lang. Nul | Poi nt er Excepti on is displayed. To get more
details, go back to the run-time instance of the Workbench and open the plug-in Error
Log (Window > Show View > Other... PDE Runtime > Error Log). Indeed, there
are two new entries. Double-click the j ava. | ang. Nul | Poi nt er Except i on message
and select Status Details, as shown in Figure 3.24.

Exercises © Copyright IBM Corporation 2000, 2002 1-23

Extending Eclipse — First Plug-in

£ Properties for. Error ®
Log Session Status Details
Status Details
Date: Mar 29, 2003 22:13:07.506

Severity: @ Error
Message: java.lang.MullPointerException
Exception:

java.lang.NullPointerException

at com.ibm.lab.helloworld.SampleAction.run(SampleAction.java:28)

at org.eclipse.ui.internal.PluginAction.runWithEvent(PluginAction.java:210)

at org.eclipse.ui.internal. WWinPluginAction.runWithEvent(WWinPluginAction.java: 175)

at org.eclipse.jface.action.ActionContributionItem.handleWidgetSelection(ActionContributionTtem. java:407)
at org.eclipse.jface.action.ActionContributionItem.handleWidgetEvent(ActionContributionTtem. java:361)

at org.eclipse.jface.action.ActionContributionItem.access$0(ActionContributionItem. java:352)

at org.eclipse.jface.action.ActionContributiontem$ActionListener.handleEvent{ActionContributionTtem. java:47)
at org.eclipse.swt.widgets.EventTable.sendEvent{EventTable.java: 77)

at org.eclipse.swt.widgets.Widget.sendEvent(Widget.java:827)

at org.eclipse.swt.widgets.Display.runDeferredEvents(Display.java:1529)

at org.eclipse.swt.widgets.Display.readAndDispatch(Display.java:1291)

at org.eclipse.ui.internal.Workbench.runEventLoop(Workbench.java: 1177)

at org.eclipse.ui.internal.Workbench.run{Workbench.java:1160)

at org.eclipse.core.internal.boot.InternalBootLoader.run(InternalBootLoader. java: 775)

at org.eclipse.core.boot.BootLoader.run{BootLoader.java:432)

at EclipseRuntimeLauncher.main(EclipseRuntimeLauncher.java:24)

0K | Cancel

Figure 1-24
Error Satus Details

At this point in a real debug session you might consider setting an exception breakpoint
for Nul | Poi nt er Except i on from the J! button on the Breakpoints page to further
diagnose the problem. Don't set such an exception breakpoint before launching the
Workbench; it will stop in a lot of places that have nothing to do with your problem.
Instead, set and then disable the exception you want to debug before starting the
Workbench, then enable it when you’re ready to reproduce the problem.

4. Close the run-time instance before continuing.

This short debug session gives you a flavor of debugging plug-ins. As you create your own plug-ins,
you'll find more difficult problems that this one. When that happens, refer to the section “Correcting
Common Problems” later in this exercise.

Section 5: Exploring (and Sometimes Correcting) the Eclipse Platform
Code

One of the benefits of an open source project is the fact that the source is yours to study, and if
necessary, correct. Let's see how the PDE helps you to learn and modify Eclipse code.

You have already been introduced to the notion of “external” versus “workspace” plug-ins; the Target
Platform preference page, shown back in Figure 3.1, allows you to add external plug-ins to the list of those
available in the test environment and your plug-in's build path. But what if you want to modify the code
found in an external plug-in to help you debug or to correct a bug in the Eclipse code? The PDE includes
options in the Plug-in view that makes it easy, as shown in Figure 3.25.

Exercises © Copyright IBM Corporation 2000, 2002 1-24

Extending Eclipse — First Plug-in

& Plug-ins &9 vox
----- 1= com.ibm.lab.helloworld {1.0.0) =
=-3= org.apache.ant {(1.5.2)

== org.apache.lucene (1.2.1)

73 org.apache xerces (4.0.7)

03 org.eclipse.ant.core (2.1.0)

74 org.eclipse.compare (2.1.0)

74 org.eclipse.core boot (2.1.0)

B 010 ccligae core recources 0.1 0)

=% org.ecli Open Dependencies 0)
-3 org.ecli

. g . References
=-#= org.ecli

-3 org.eclim As Binary Project

%3 org.ecll As Source Project
=% org.ecli Add to Java Search

=2 org.ecli Copy

w3 orgecli gaject b

=3 org.ecli

=% org.ecli & GO Home
=3 org.ecli + Go Back

=4 org.ecli = Go Into
i

74 org.eclipse.jdt.debug.ui (2.1.0)

Ly 1: P Ao e £ 40N hd

Package Explorer |Hierarch3r Plug-ins

Figure 1-25
Import External Plug-in As Source Project
To get a better idea of how this works, let's import one of the Eclipse plug-ins and add some debug code.

1. If you haven'’t closed the run-time instance of Eclipse, do so now. Then turn to the Plug-
ins view as shown in Figure 3.25, select the or g. ecl i pse. cor e. r esour ces plug-in,
and then select Import > As Source Project. This will copy the plug-in from the
pl ugi ns directory to your workspace, including its source, and recompile it. After
recompiling, you'll notice quite a few errors in the Tasks view, such as “The project
was not built since it is involved in a cycle or has classpath problems” and “Missing
required Java project.” This is because the original Eclipse plug-ins were built in a
single workspace, while yours has some plug-ins in your workspace and others in the
pl ugi ns subdirectory. Turn to the Package Explorer view, select the project, select
Update Classpath... from its pop-up menu, and then select Finish in the dialog. This
will recalculate the project’s build (class) path based on your configuration and
recompile, correcting the above errors.

2. Repeat the procedures in step 1 for the or g. ecl i pse. core. runti me plug-in, but this
time select Import > As Binary Project instead. After updating the classpath, look at
both projects in the Package Explorer view. Notice that the source importation results
in Java source files available in the sr c-r esour ces folder on the left, and Java class
filesin the runti ne. j ar file on the right, as shown in Figure 3.26.

Exercises © Copyright IBM Corporation 2000, 2002 1-25

Extending Eclipse — First Plug-in

a ¥ e | o
SR org.eclipse.core.resources o o org.eclipse.core.resources -
-2 src-resources - org.eclipse.core.runtime
+ -3 org.eclipse.core.internal.dtree =B runtime.jar
+-f3 org.eclipse.core.internal.events + % org.eclipse.core.internal.plugins
+-# org.eclipse.core.internal.indexing +- @3 org.eclipse.core.internal.runtime
+-f3 org.eclipse.core.internal.localstore -I-## org.eclipse.core.runtime
+-f3 org.eclipse.core.internal.properties + CoreException.class
+-f3 org.eclipse.core.internal.resources + IAdaptable.class
+ -3 org.eclipse.core.internal.utils + IAdapterFactory.class
+-f3 org.eclipse.core.internal.watson + IadapterManager.class
-3 org.eclipse.core.resources + IConfigurationElement.class
+-[J] ICommand.java + IExecutableExtension.class
+ m IContainer.java + IExtension.class
EMNlIFile. javal +- [# IExtensionPoint.class
+-[J] IFileModificationValidator.java b ILibrary.class
+-[J] IFileState.java + ILog.class
+-[J] IFolder.java £ ILoglistener.class
+-[f] Marker.java + IPath.class
+-[J] IMarkerDelta.java + IPluginDescriptor.class
+-[f] IncrementalProjectBuilder.java + IPluginPrerequisite.class
+-[J] IProject.java +-[#1 IPluginReaistrv.class A
+1-[J1 TProiectDescrintion. iava bt < ?
Package Explorer | Hierarchy | Plug-ins Package Explorer |Hierarchy | Plug-ins
Figure 1-26

Import External Plug-in Results

Both projects are now in your workspace, and therefore are included in all workspace

searches, but the or g. ecl i pse. cor e. r esour ces plug-in can be modified as well. If

you

turn back to the Plug-ins view, note that the project icon has changed from an external

plug-in (3'1'13) to a folder, indicating that it is now in your workspace.

3. To see an example of how you might use this to help your debugging, let's assume that

you want to know more about what resources (projects, files, and folders) are created
and when. Begin by opening the class the represents them, Resour ce, in the package
org. eclipse.core.internal.resources by selecting Navigate > Open Type... or
pressing Ctrl+Shift+T (more than one matching package is shown in the Open Type
dialog; choose the one located at / or g. ecl i pse. core. resour ces/ src-resour ces).
Add a debug Syst em out . pri nt | n statement in the constructor, as shown below.

protected Resource(l Path path, Wrkspace workspace) {
this.path = path.renoveTrailingSeparator();
t hi s. wor kspace = wor kspace;

/1 Debug code.
Systemout.println
("Created resource " + path + " in workspace

+ wor kspace) ;

This will generate output to the Console whenever a new resource is created.

Exercises © Copyright IBM Corporation 2000, 2002

1-26

Extending Eclipse — First Plug-in

4. Launch the run-time Workbench. You should see the warning shown in Figure 3.27,
since the two plug-ins that you imported are in the workspace and are also specified in
the Plug-in Development > Target Platform preference page as external plug-ins.

= Run-time Workbench Launcher

The list of plug-ins to run contains duplicates. Plug-ins from the workspace will
be used. To fix the problem, uncheck the offending external plug-ins in the

Preferences or Launch Configurations

Figure 1-27
Duplicate Plug-ins Warning
If you want to avoid this warning, go back to this preference page and select Not in
Workspace. That will automatically deselect the two plug-ins that you imported. Verify
that your debug code shows its output in the Console by creating a new project, folder,
and file.
This short example demonstrates how you can add debug code, and how you could also apply your own

fixes to Eclipse Platform code, should the need present itself.

Exercises © Copyright IBM Corporation 2000, 2002 1-27

Extending Eclipse — First Plug-in

Section 6: Correcting Common Problems

Table 3.1 lists some of the more common errors you might encounter when writing your first few plug-ins,
their symptoms, and possible resolutions. If you don't find the problem you're seeing in this table, follow the
“Hints and Tips” link from the r eadrre. ht m on the CD-ROM included with this book, which has more
suggestions. If you are still stuck, consider posting a message to the eclipse.org newsgroups.

Table 1.1 Common Errors and Possible Resolutions

Symptom Source Possible Resolution

“Plug-ins required to compile Java classesin Warning message Accept the suggested action. Thisis equivalent to

this plug-in are currently disabled. The wizard dialog when creating | selecting Not in Workspace in Preferences >

must enable them to avoid compile errors.” new project Plug-In Development > Target Platform.

“The project was not built since it is Tasks view Verify manifest is not missing required plug-ins in the

involved in a cycle or has classpath
problems,” or one of several errors similar
to “Missing required Java project:
org.eclipse.xxx.”

<i npor t > statements of the <r unt i me> tag. Verify
that required plug-ins are either imported into
workspace or available from the Preferences >
Plug-In Development > Target Platform list. Then
select Update Classpath... for the affected project.

For Eclipse version 2.0 only: This suggested
correction might not work if the project was created
before setting the external plug-ins on the Target
Platform page. An easy, albeit dramatic, workaround
is to start with a fresh workspace, remembering to
set the external plug-ins first.

“This compilation unit indirectly references
the missing type java.lang.Object (typically
some required class file is referencing a
type outside the classpath)” or “This
plug-in contains unresolved and/or cyclical
references to other plug-ins.”

Tasks view and
Overview page of
Plug-in Manifest
Editor

Project build path is incorrect. The PDE will
automatically update the build path of plug-ins when
the <r equi r es> tag is modified, unless the
Preferences > Plug-In Development > Java
Build Path Control options are deselected. Verify
and try Update Classpath... for the affected project.
If this doesn’t correct the errors, manually add the
required plug-ins from the project’s Properties >
Java Build Path > Library > Add Variable dialog.
Select ECLI PSE_HOME and add the required plug-in
JAR files by selecting the Extend... button.

“The list of plug-ins to run contains
duplicates. Plug-ins from the workspace
will be used. To fix the problem, uncheck
the offending external plug-ins in the
Preferences or Launch Configurations.”

Warning message
dialog when
attempting to start
run-time
Workbench

There are one or more plug-ins that are present in
the workspace and in the Preferences > Plug-In
Development > Target Platform list or the Plug-in
and Fragments page of the launch configuration
(Run... or Debug...). This often occurs after:

= Importing a plug-in into the workspace with
Import > External Plug-ins and Fragment or
one of the Plug-ins view’'s Import menu choices

= Copying a plug-in that exists in the workspace to
the pl ugi ns directory

= Orinstalling a feature that references plug-ins
that exist in the workspace

Either close the project of the duplicate plug-in in the
workspace so it will be ignored, or deselect the
appropriate external plug-in in the list, as the
message suggests.

Exercises

© Copyright IBM Corporation 2000, 2002

1-28

Extending Eclipse — First Plug-in

“Exception launching the Eclipse Platform”
followed by a long exception trace.

Error Log or
Console

Check if the run-time Workbench is already running.
If this is the case, you will see this message at the
bottom of the exception trace, “The platform
metadata area is already in use by another platform
instance, or there was a failure in deleting the old
lock file. If no other platform instances are running,
delete the lock file and try starting the platform again.”
This can occur after the Workbench abnormally
terminates. Verify that the run-time Workbench is
closed, or if it is already terminated, manually delete
the . I ock file.

Contributed action is not present.

Run-time
Workbench

Verify the i d attributes of your actions—there may be
a duplicate. The actions are stored in a keyed table,
so duplicate entries are lost.

Contributed pull-down menu is disabled or
contributed action is not present.

Console

Verify the menubar Pat h attribute. Look in the Console
for the message “Invalid Menu Extension (Path is
invalid).” Check the spelling, especially if the word
“separator” is in the menu path. Many programmers
misspell this word. Consider using “groupXXX.”

“The chosen operation is not currently
available.” is displayed after selecting a
contributed action.

Run-time
Workbench

There are several possibilities.

= Check the Console. If it contains the error
message, “Could not create action. Reason:
Plug-in xxx was unable to load class yyy,” where
“xxx” is your plug-in and “yyy” is your action
class, verify that your specification of the
action’s cl ass attribute is correct, the code
compiled correctly, and there are no build path
errors associated with your plug-in.

= Check the enablement specification of your
action; it may be inconsistent with the
enablement logic of your action’s
sel ecti onChanged method. For example, your
action’s XML specifies the action is available
only if the selection is an | Fi | e with extension
. j ava, but the action’s sel ect i onChanged
method checks for an | Fi | e with the extension
. ¢l ass. The static enablement logic of your
action and its dynamic logic must be consistent.

“An error has occurred while restoring the
workbench; See error log for more
details.” is displayed and “Unable to
restore editor - createElement returned
null for input element factory:
org.eclipse.ui.internal.dialogs.WelcomeEdi
torlnputFactory” is shown in Console.

Error message
dialog when
launching run-time
Workbench

A harmless message in the version 2.0 Workbench
that you can safely ignore (it has since been
corrected). Closing the Welcome page of the run-
time Workbench will avoid the message.

Don't be intimidated by the number of entries in this table. It includes problems that are not very likely for
your “Hello, World” exercise, but they may prove helpful should you decide to experiment beyond the

instructions in this exercise.

Exercises

© Copyright IBM Corporation 2000, 2002

1-29

Extending Eclipse — First Plug-in

Exercise Activity Review

In this exercise you used the PDE to create, test, and debug a plug-in. You now have the basics of writing,
testing, and debugging a plug-in. Return to Part Il where you left off— it will lead you further in your study
of the Eclipse extension points and frameworks that you can employ to enhance the Workbench'’s

capabilities.

Exercises © Copyright IBM Corporation 2000, 2002 1-30

Importing Exercise Templates and Solutions

EXxercise Setup:
lmport Exercise
Templates and
Solutions

Exercise Setup: Import Exercise Templates and SOIUtiONS............ccovevviviiiii i, S-1
11 (o Lo (U (o] o PP S-1
EXEICISE INSIUCHIONS ...t e e e et e e e et e e e aaa s S-2

Part 1: Initialize the Plug-in DeVEIOPMENT........co.ui i e S-2

Part 2: Importing PIUg-iN PrOJECESiiiiiicii e S-3

Part 3: Update Project Classpathc..ovviiiiiin e e e S-5
Introduction

The lab materials are provided in the Lab_| nport _Mast er. zi p file. This zip file contains
templates and solutions to the exercises. This procedure setting up your workspace for plug-in
development and the import of project templates into the workspace.

The process involves:
1. Initializing the Plug-in Development Environment (required once per workspace)
2. Importing plug-in projects from the file system to a workbench workspace

3. Re-calculating the project classpath

EX_Project_Import.doc a Copyright IBM Corporation 2000, 2002 S-1

Importing Exercise Templates and Solutions

Exercise Instructions

Part 1: Initialize the Plug-in Development
1. Open a Plug-in Development perspective, using Window > Open Per spective > Other...

= Select Perspective §|

2 CY'S Repository Explaring
%¥Debug

@pInstall Update

WJava

ngava Browsing

Ted1ava Type Hierarchy

FigureS1
Open PDE Perspective

2. Open the Plug-In Development > Target Platform preference page. Select Not In
Workspaceto make all plug-ins visible.

This PDE Target Platform configuration adjustment ensures that all external plug-ins
are visible. This configuration simplifies plug-in development and is oriented towards
new workbench users.

EX_Project_Import.doc a Copyright IBM Corporation 2000, 2002

Importing Exercise Templates and Solutions

£ Preferences E|
+\workbench Target Platform

Build Order) : ’ -)

-y ‘When looking for required plug-ins, places other than the workspace can be searched. When compiling against
. these plug-ins, their libraries will appear as external JARs in the classpath. Only plug-ins checked in the list below
+ Enternal Tools

will be used.
Help
Locate non-workspace plug-ing that are part of:

InstallUpdate pace plug P
. lava " this application
= Plug-In Development " another compatible application installed at the following location:

Editors

Jawa Build Path Confro ‘

Source Code Locations

Target Ervironment [#Fi=arg.apache.ant (1.4.1) *, Reload
Target Flatform [#Fi-0ra.apache. lucene (1.2.0)

Readme Example [“Fi=org.apachs xerces (4.0.3) Select 4ll
4 Team [FF-crg.eclipse.ant.core (2.0.0)

[Forg.eclipse.compare (2.0.0) Deselect All
[#Fiorg.eclipse.core.boot (2.0.0) —
[# 1= org.eclipse.core.resources, win32 (2.0.0) -
Mot I work:
[#Fi=org.eclipse.coreresources (2.0.0) St in workspare)
A . —
[#Fi-crg.eclipse.coreruntime (2.0.0)
[P Pz org erlipse.debug.core (2.0.0)
[#Fi org.eclipse.debug.ui (2.0.0)
PP org.eclipse help examples.ex (2.0.0)
[FFe=org.eclipse.help.ui.win3z (2.0.0)
[#F-crg.eclipse.help.ui (2.0.0)
Fﬁbnrq.eclipse.help.wehapp (2.0.0% 4
71 out of 71 selected.
¢ 5 Restore Defaults | Apply |
Import... | Export... | oK | Cancel |
Figure S-2

Configure Target Run-times plug-ins

Part 2; Importing Plug-in Projects
The plug-in import wizard is used to create a plug-in project from plug-in sources in the file
system. You should already have extracted the contents of the Lab_| nport _Mast er. zi p file to

directory location on your file system. For example, if you unzipped the file to C:\ you will have
these directories:

C \Lab_Inport_Master
\ JavaProj ects
\ Pl ugi nLabTenpl at esCor e
\ Pl ugi nLabTenpl at esQpt i onal
\ Sol ut i onsToPI ugi nLabs

To do the labs used during the course you need to import the projects found in the
\ Pl ugi nLabTenpl at esCor e directory. You can import the optional lab templates if desired,
and the solutions.

1. Start the plug-in import wizard with workbench menu File>I mport. Select External Plug-ins
and Fragmentsand press Next.

EX_Project_Import.doc a Copyright IBM Corporation 2000, 2002 S-3

Importing Exercise Templates and Solutions

Select

N
Create projects from plug-ins and fragments in the file system. || I

Select an import source:

F Existing Project into Workspace
ternal Plug-ins and Fragments
C3,File system
%‘Team Froject Set
Ezip file

| Mext = | Cancel

Figure S-3
Import Dialog

2. Onthelmport External Plug-ins and Fragments page of the plugin import wizard:
Deselect Choose from plug-ins in the run-time workbench.
Select Extract source archives and create source folders in projects.

In the location field, browse to the directory location where the plug-in zip was extracted.
Once done, select Next.

Import Plug-ins and Fragments

Import External Plug-ins

Create projects from external plug-ins and fragments. ﬁ

[[] choose from plug-ins in the run-time workbench (as setin the Preferences)

Plug-in Location: e | [Erowse...]

Extract source archives and create source folders in projects

The following target environment will be used for resolving library paths (you can change the
settings in the Preferences):

Operating System {os): win32
Windowing System {ws): win32
Locale {nl - from JRE): en_US
Architecture (arch): xB6

Figure S-4
Plug-ins and Fragments

EX_Project_Import.doc a Copyright IBM Corporation 2000, 2002 S-4

Importing Exercise Templates and Solutions

3. On the Selection page of the plug-in import wizard, Select All and press Finish.

Import Plug-ins and Fragments

Selection

Select plug-ins and fragments to import.

Plug-ins and Fragrents Found:

®

[= com. ibm. lab.dialogs (2.0.0)

PR com. b, lab.editor (2.0.0)
mm.\hm‘lab.extensionpoint (.00
[FRipcom.ibm, lab. interop (2.0.0)
[FF-cor. b, ok, jdt (2.0.0%
[FF-corr. e, lab, layouts (2.0.0)
[#Ri=corm. e, lab resources (20,0

[# = com. ibm, lab.service (2.0.0)

[com. ibm. lah.soln, contributions (2.0.0%
mm.\hm‘lab.suln‘dialogs (2.0.0%
[FRi=com.ibm, lab.soln editor (2.0.0)
[FFcom. b, lab.s0ln, extensianpoint test (2,0,0)
[FFicom. b, lab.son.extensionpaint (2.0.0)
[corm. b, lab.soln firstplugin (2.0,0)

[# = com. ibm, lab.soln interop (2.0.00

[com. ibm. lab.saln jdt ¢2.0.0%
com.\bm‘lab.soln‘\ayouts (2.0.0%
mm.\hm‘lab.suln‘perspective (2.0.0)

Loy R T T R o o a0

24 ouf of 24 selected.

=< Back

Einish

Deselect All
Invert Selection

Existing Projects
Existing Binary Prajects

Add Required Flug-ins

Cancel

Figure S5
Plug-in selection

The import procedure completes with an automatic build. The build may result in
errors such as those listed in the Tasks view shown in Figure S-6.

=+,
¥ B3P v x

Description

| Resource

| In Falder

| Location 15

AO00000000Q

The project was not built since it is involve...
Missing required Java project: org.eclipse....
Missing required Java project: org.eclipse....
Missing required Java project: org.eclipse....
Missing required Java project: org.eclipse....
The project was not built since it is involve...
Missing required Java project: org.eclipse....
Missing required Java project: org.eclipse....
Missing required Java project: org.eclipse....

com.ibm.lab.dialogs
com.ibm.lab.dialogs
com.ibm.lab.dialogs
com.ibm.lab.dialogs
com.ibm.lab.dialogs
com.ibrm.lab.editor
com.ibrm.lab.editor
com.ibrm.lab.editor
com.ibrm.lab.editor

Build path
Build path
Build path
Build path

Build path
Build path
Build path

Tasks |Error Log | Console

Figure S-6
Task List

Note: When using Eclipse 2.1 the list of errors may not be the same as those shown.

The next part of the import process will resolve these errors. These steps should be performed
even if you do not have the same errors as those listed in Figure S-6.

Part 3: Update Project Classpath

1. The classpath must be updated for each project. Select any plug-in project and then choose the

EX_Project_Import.doc

Update Classpath... pop-up menu.

a Copyright IBM Corporation 2000, 2002 S-5

Importing Exercise Templates and Solutions

Q\@\SOVX

MNew 3
Go Into

+ @ com.ibm.|z

+ @ com.ibm. |z
J brole

+-f@ com.bmlE open in New Window

+-f@ com.ibrm. |3
+-f@ com.ibrm. |3
+-f@ com.ibrm. |3
+-f@ com.brm.ls Copy

¥ &‘Jcom.ibm.la Faste
@ combm.lE pajete

Refactor 4

Cpen Type Hierarchy

Impart...
Export...

Refresh

Cornpare With 4

Restore From Local Histary...

Properties

Figure S-7
Project context menu

2. On the Update Java class path dialog, choose Select All and then Finish.

Java Classpath

Update Java class path
Selected plug-ins and fragments will have their class path recomputed. @

Plug-ins and Fragments Found:

[P carm. ibm. lab.dialogs (2.0.0)
[P = carm. b lab. editar (2.0.0)
[P carm. b lab. extensionpoint (2.0.0) Deselect All
[P carm. ibm. ab interop (2.0.0)

[P carn, i, ab, jdt (2,0.0)

[P carm. ibm. ab, layouts (2.0.0)

[P carm. ibim. b resources (2,007

[P carm. ibm. lab.service (2.0.0)

[P = carm. b, lab, swt (2,00

[P = carmn. i lab. view (20,00

10 out of 10 selected.

Einish Cancel

Figure S-8
Update Classpath Dialog

Note: After updating the project classpath on all of the projects, some errors may remain on
certain packages. These errors will be worked out as the lesson are completed

EX_Project_Import.doc a Copyright IBM Corporation 2000, 2002

SWT

Exercise 2.
SWNT Programming

EXErcise 2: SWT PrOgramMingoceuueeeeeeiiesee e e eeae e et s e e et e e et e e et s e eaaeeaa e eetnaeeanaeeanseeanneeannaees 2-1
1o o (U T o] o NSO SPPPPR 2-1
Y T = o] o] =T | AT = P 2-1
S (o TSI T (1] o PR 2-1
EXEICISE INSIIUCTIONS ... eeeeti ettt ettt et e e ettt ettt e e et et r e e e et r e e e e tb e e e e et neeeaban e eeeeanns 2-2
Part 1: Use buttons to invoke the FileDialog and the MessageDialog............cccovvvviiiiiiiiciiiiiiiineees 2-2
e L A AV [0 IS Y[= P 2-5
e LA Vo [0 = B L S PSPPI 2-8
Part 4. Thread Synchronization (OPtIONAL)c..veeeniiiii e e e e e 2-9
EXErCISE ACHVIEY REVIEW. .. .ceeiiie et e e e e e e e e e et e et e e e e et e e eeennes 2-10
Introduction

This exercise will show you how to use some of the SWT controls.

Skill Development Goals
At the end of this lab, you should have a general understanding of how to create a user interface with
SWT and understand their event handling.

Exer cise Setup

Setup tasks must be complete before you begin the exercise.

A PDE project has been set-up for you named com i bm | ab. swt . We will use aview as a container
for our SWT widgets. You may not be familiar with programming views yet, so a plug-in containing an
empty view and view class has been defined for you.

Load the project com i bm | ab. swt into your workspace.

Note: You can use code snippets from the SWTView.jpage file included in the exercise template to save
you from having to retype them.

a Copyright IBM Corporation 2000, 2002 2-1

SWT

Exercise Instructions

Part 1. Use buttonsto invoke the FileDialog and the M essageDialog

1. Addthe Sel ecti onLi st ener interface to the class as defined below

public class SWVi ew extends ViewPart inplenents Sel ectionListener{
[/l ...code ...

}

To clear up any compile problems use the editor context menu called Source > Organize Imports or
Add Import (Ctrl+Shift+M). You will need to use this feature frequently in the lab.

Select the class in the outline view and from the context menu, select Source >
Override/Implement Methods... to generate the required methods of the interface. See Figure
2-1. You should add all the methods that the | Sel ect i onLi st ener interface defines, athough
for the moment we are only interested in the wi dget Sel ect ed method.

£ Override Methods

Select methods to override:

—[7]® selectionListener
[¥le widgetDefaultSelected (SelectionEvent)
[¥le widgetSelected(SelectionEvent)

+ [0 viewPart

+ [1@* workbenchPart

+[1® object

Select All Deselect All |

i 2 methods selected.

Figure 2-1
Method override selection dialog [swt_01.tif]

Note: The added method stubs are added but not compiled. Y ou must save the file
SWTView.javato compile them.

a Copyright IBM Corporation 2000, 2002 2-2

SWT

2. Add the following field to the class:

private Shell workbenchShell;

3. Thecreat ePart Cont r ol method will accept the creation of widgets. Add the following
statement:

wor kbenchShel | =
Pl at f or mUJl . get Wor kbench() . get Act i veWor kbenchW ndow() . get Shel | () ;

We will need access the workbench shell as a parameter in the Fi | eDi al og class later in the
exercise. The static method get Wor kbench inthe Pl at f or mJl class provides alink to the
shell. Thecr eat ePar t Cont r ol method passes a Conposi t e object (representing our view
container). This Conposi t e object isthe parent to al the widgets that we will be creating.

Create a method with the following signature:

voi d open(Conposite parent) {}

The Conposi t e object comesfrom cr eat ePart Cont r ol and is our reference to the view
container.

Add the following satements to the open method in order to provide a layout manager for our
controls. This defines a single column grid layout.

par ent . set Layout (new org. ecli pse.swt. |l ayout. G idLayout());
par ent . set Layout Dat a(new Gi dDat a(G'i dDat a. GRAB_VERTI CAL)) ;

4. Invoke this method at the end of the cr eat ePart Cont r ol method:

open(parent);

5. Create amethod voi d creat eButt ons(Conposite parent). Inthis method, create a
group to hold the pushbuttons. Make sure that you have set the layout information for your
group, otherwise your buttons will not be visible. Add two push buttons to the group. The first
button should have the text, “ Show Messagebox”. The second button should have the text,
“Show File Didog”.

a Copyright IBM Corporation 2000, 2002

2-3

SWT

G oup group = new G oup(parent, SW.NONE);
group. set Layout (new Gi dLayout ());
group. set Text ("Buttons");
group. set Layout Dat a
(new GidData(Gi dDat a. GRAB_HORI ZONTAL | Gi dDat a. HORI ZONTAL_ALI GN_FI LL));
Button bl = new Button(group, SW.PUSH);
bl. set Text (" Show Messagebox");
bl. set Focus();
Button b2 = new Button(group, SW.PUSH);
b2. set Text ("Show File D al 0og");

6. Inthe open method, cdl cr eat eBut t ons. Add these statements to the end of the open
method.

new Label (parent, SW.NONE); //vertical spacer
creat eButtons(parent);

7. Since we want the SWI'Vi ew class to be notified when the button has been pressed, we need to
add thisclassasa Sel ect i onLi st ener for the button. Use the addSel ecti onLi st ener
method and passint hi s as the parameter. Add the following line of code (bold) to the
cr eat eBut t ons method after bl. set Focus.

Button bl = new Button(group, SW.PUSH);
bl. set Text (" Show Messagebox");

bl. set Focus();

bl. addSel ecti onLi stener(this);

8. Thislistener interface requires you to implement two methods:

voi d wi dget Sel ect ed(Sel ecti onEvent e)
voi d wi dget Def aul t Sel ect ed(Sel ecti onEvent e)

These methods were generated earlier. You just have to fill in the body of the method. When the button
is selected, a message didog will be displayed. We must add the following code to the

wi dget Sel ect ed method. The other method is ignored since we don't care about a default selection
on a button. The first parameter we are passing isanul | instance of a Shel | object, which is
unnecessary in this instance.

MessageDi al og. openl nf or mat i on(
nul |,
"SWIVi ew',
"Hello World! ");

a Copyright IBM Corporation 2000, 2002 2-4

SWT

9. When button b2 is selected, we will display aFi | eDi al og with the style set to SWI. OPEN.
Print the filename selected to the console. Just for variety, use an anonymous inner classto
implement thewi dget Sel ect ed method. Modify the cr eat eBut t ons method by adding
the code below after b2. set Text (" Show Fil e Di al og"). Notethat Fi | eDi al og does
require a Shel | object as the first parameter.

b2. addSel ecti onLi st ener (new Sel ecti onAdapter() {
public void wi dget Sel ect ed(Sel ecti onEvent e) {
Fi | eDi al og di al og = new Fi |l eDi al og(wor kbenchShel |, SW. OPEN) ;
di al og. setFil ter Extensi ons(new String[] { "*.jar;*.zip" });
String selectedFile = dial og. open();
Systemout.println("The file you chose is " + selectedFile);
}
1)

10.Test your application by starting up your test workbench from this PDE project. Open view
Lab: SWT > Lab: SWT Lab (use Window > Show View > Other...). You can double
click on the view title bar so that the view is the only visible frame (double clicking again
returns to multi-frame mode). It should look like Figure 2-2.

m Lab: SWT Lab b

Buttons

Show Messagebos
Show File Dialog

Figure 2-2
SWT Lab Panel [swt_02.tif]

Press the Show Messagebox button to see a message pop-up. Press the Show File Dialog
button and select afile. Look at the Console view in the development workbench instance to see
the file selected.

Part 2: Add StyledText

1. Styl edText isclassthat supports many attributes of what is commonly known as “rich text”. For

instance, you can set color and font of aSt yl edText fidd.

Add aprivate field in the SWI'Vi ew class of type St yl edText .

a Copyright IBM Corporation 2000, 2002

2-5

SWT

private Styl edText nyText;

2. Create amethod called cr eat eSt yl edText (Conposi t e par ent) and put the text control
in its own group box. Set the initia text to “abcdefg”.

public void createStyl edText (Conposite parent) {
new Label (parent, SW.NONE); //vertical spacer
Group group2 = new G oup(parent, SW.NULL);
group?2. set Layout (new Gri dLayout ());
group2. set Text ("Styled Text");
group?2. set Layout Dat a(

new Qi dDat a(G i dDat a. GRAB_HORI ZONTAL | Gri dDat a. HORI ZONTAL_ALI GN FILL));

new Label (parent, SW. NONE);
nyText = new Styl edText (group2, SW. S| NGLE| SWI. BORDER) ;
nyText . set Text (" abcdef g");

3. Inthe open method, add the call to cr eat eSt yl edText . Insert it at the end of the method.

new Label (parent, SW.NONE); //vertical spacer
creat eStyl edText (parent);

4. Add the code to change the text when the button, b1, is pressed. Modify the
wi dget Sel ect ed(Sel ecti onEvent) method to set the text to “Hello World” after the
message dialog is displayed. The line of code to add at the end of the method is:

myText.set Text ("Hell o World");

5. To learn about another listener interface, add a Modi f yLi st ener to the end of the
creat eSt yl edText method. The method you need to implement for thisinterfaceis voi d
modi f yText (Modi f yEvent e). To see when this event is being generated, print a message
“Got new text” to the console when you receive the event. Set the size and redraw the text
when you get this event.

nyText . addModi f yLi st ener (new Modi fyLi stener() {
public void nodi fyText (MdifyEvent e) {
nyText . set Si ze(90, 25);
Systemout.println("Got new text");

}
1)

a Copyright IBM Corporation 2000, 2002

2-6

SWT

6. Let's observe another listener. Also add a Cont r ol Li st ener tothe codein
createStyl edText. Implement thevoi d control Resi zed(Control Event e)
method. Print out a message stating that the control has been resized.

myText . addCont r ol Li st ener (new Control Li stener () {
public void control Resi zed(Control Event e) {
Systemout. println("Control Resized");

}
public void control Mved(Control Event e) {}

1),

7. Beforewe finish let’s assign afont to this St yl edText widget to illustrate widget disposal. A
Font object must be disposed since it does not directly belong to the widget hierarchy of the
view (the parent Conposi t e object in this case).

a Add the font to the class:

private Font font;

Update the cr eat eSt yl edText method to assign a bold, Courier font to the myText field.

font = new Font (nyText.getDi splay(), new FontData("Courier", 14, SW.BCOLD));
nyText . set Font (font);

Lastly, we want to dispose of the font. We will override the dispose method of the view so that when it
gets disposed, the font does, too. Select the class in the outline view and select Override Methods in
its context menu. In the dialog, select the class Wor kbenchPar t then di spose. The method will be
added to your code. Add this line of code to the dispose method.

font. di spose();

Set a breakpoint on thisline. The class Font Regi st ry is something you might want to investigate if
you are using many fonts. It handles disposal for you.

8. Test your application using the debugger. Y ou should see a view like Figure 2-3. Click on the
buttons and look at the Console view in the development Workbench instance to see the results
of your code. Close the view. Did you stop at your breakpoint? Reopen the view and then close
your test instance of the workbench. Did you stop at your breakpoint again?

a Copyright IBM Corporation 2000, 2002 2-7

SWT

m Lab: SWT Lab I X

Buttons

Show Messagebos
Show File Dialog

Styled Text

abcdef

Figure 2-3
SWT lab panel [swt_03.tif]

Part 3: Add aList

1. Go to the class definition and add a static array of strings. The following code should be added to the

class definition.

static String[] ListDatal =
{"Sherry", "Scott", "Dan", "Jinf, "Pat", "John", "The Longest String"};

2. Createthecr eat eLi st method.

public void createList(Conposite parent) {}

3. Inthecreat eLi st method, create aLi st and use the styles to specify that you want to be
able to scroll and have multiple selections.

Li st nmyList =

new Li st (parent, SW.V_SCROLL | SWI.H SCROLL | SWI. MULTI | SW. BORDER) ;

nyLi st. set Layout Dat a(new GridData());

4, Usethe static array, Li st Dat al, toinitialize the contents of the list. Add the following code to
the end of the cr eat eLi st method.

nyLi st.setltens (ListDatal);

a Copyright IBM Corporation 2000, 2002

2-8

SWT

5. Use Sel ect i onLi st ener to be notified when an element in the list is selected. Add this to
the end of cr eat eLi st .

nyLi st. addSel ecti onLi st ener (
new Sel ectionLi stener () {
public void wi dget Sel ect ed(Sel ecti onEvent e) {
Systemout.println("List itemselected");
}
public void wi dget Def aul t Sel ect ed(Sel ecti onEvent e) {
Systemout.printlin("List itemdefault selected");

}

}
K

6. Update the open method to invoke the cr eat eLi st method.

new Label (parent, SW.NONE); //vertical spacer
createlLi st(parent);

Test your application. Natice that you only receive one event on a multiple select. Y ou should
see awindow like Figure 2-4:

m Lab: SWT Lab x

Buttons

Show Messagebosx
Show File Dialog

Styled Text

abcdef

The Longest String

Figure 2-4
SWT lab panel [swt_04.tif]

Part 4: Thread Synchronization (optional)

You will run the solution com i bm | ab. sol n. swt . Make sure it is available and openin
your workspace. The solution has one more function that demonstrates synchronization
between the Workbench running in the SWT Ul thread and another thread.

1. Sdlect the project and start a test instance of Eclipse using menu Run > Run As > Run-time
Workbench.

a Copyright IBM Corporation 2000, 2002

2-9

SWT

2. From the test instance of Eclipse, open the Soln: SWT Lab view. Openit usngWindow > Show
View > Other... > Soln: SWT > Soln: SWT Lab. Expand the view and press the Fill Progress
Bar button. The Di spl ay. asyncExec method updates the progress bar from the user thread. The
Di spl ay. syncExec method displays the dialog half way through the process. The codeisin
SWIVi ew. cr eat ePr ogr essBar method. Information is written to the Console view of the Eclipse
host instance during this operation.

Exercise Activity Review

What you did in this exercise:

Used SWT controls to create a simple user interface
Experimented with SWT event handling

a Copyright IBM Corporation 2000, 2002 2-10

New Project Wizard

Exercise 3
Defining a New Project
Wizard

Exercise 3 Defining @ NeW ProjeCt WiIzZard..............uuuuuuuuuieiiiiiiiiiiiiiiiiiiiiiiiieiseeeeeeeeeseseeeeeeeeseeeeeeeeeeeee 3-1
Lo T T340 o 3-1
EXEICISE CONCEPLS ... 3-2

SKill DEVEIOPMENT GOAUS ... 3-2
EXEICISE SBIUPD oo 3-2
Primary EXercise INSIIUCHIONScooiiiiiiii e 3-2
Part 1: Implement A SIMPIEe WIZArd........cooooiiiieeeeeee e 3-2
Step 1. Define New Wizard EXTENSIONciii i e e e et s e e e e e e eeatan e e e e e e eaennnnns 3-2
StEP 2. GENEIALE WIZAIT. ... uutiiiiiiiiiiiiiittebebbbbbeb bbb bbb bbb bbb bbb bbb bbb e beebeeenees 3-3
Step 3. Define a Wizard Page and Add it to the Wizarduvvvviiiiiiiiiiiiiiiiiiiiiiiiiiiieieen. 3-4
Step 4. Open the Wizard from an ACHONcooveiiiiii e e e e e e e e 3-7
Part 2: Revise the Wizard so that it Adds a New Project to the Workspace............cccooeeveeiiiieenenn, 3-7
Step 1. Add the Reusable New Project Wizard Page to your Wizard................eeevevvvvvivinnninnnnnns 3-7
Step 2. Implement Create New Project Wizard FiniSh LOQIC............uvvviiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiinnns 3-9
Step 3. Implement Create Folder and Files Wizard Finish LOQIC.............ceeviiiiiiieiiiiiniineeneeeens 3-12
Optional EXErCiSe INSIIUCHIONSuuiieeieieeiiitei e s e e e ettt s s e e e e e et e s s e e e et e eatte s e e e e aeeeeasen s e eeeeeeensennnns 3-13
Optional Part 1. Adjust the Project Customization Process to Limit Resource Events 3-13
Step 1. Trace the Resource Change Events Triggered by the Wizardccccuvvvvvvviiiiiinnns 3-14
Step 2. Wrap Wizard Resource Creation in @ RUNNADIEcovieeiiiiiiiiiiiiiie e eeeeees 3-16
Optional Part 2: Run the WorkspaceModifyOperation with a Monitorcccccccc, 3-18
Step 1. Provide a Monitor to the WorkspaceModifyOperation InStance.................eevvvvveeeennnnnns 3-18
Optional Part 3: Make the Customize Project Page and Processing Optional................cccccoee.. 3-22
Step 1. Create a Customized Version of the New Project Pageuvvvevvvviiiiiiiiiiiiiiiiinininns 3-22
Step 2. Add the Customized Project Page ONn REQUESLuuvuiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiieeeeneeenes 3-23
Step 3. Adjust Page Processing to Reflect the Need for the Customization Page 3-25
EXErCiSe ACHIVILY REVIEWccooiiiiiiiiii 3-26

This exercise takes you through the process of defining a simple wizard to understand the basics, and
then converting the wizard so it creates a project with customized content.

Introduction

Wizards are useful user interface components in the Eclipse workbench. Your tool may just choose to
define wizards that are associated to one of the wizard extension points defined by the platform or also
use wizards in other places in your tool.

Exercises © Copyright IBM Corporation 2000, 2003 3-1

New Project Wizard

Exercise Concepts

The exercise begins with a plug-in project as generated by the PDE, with the addition of one action
extension, which will be used to show how you can open a wizard directly.

You will begin by building a simple wizard, test it, and then use the action provided to open it directly.
test this existing code, then build a JFace component that includes a viewer, content provider, and label
provider. This implementation will expose a portion of the viewer API so that the JFace component can
accept an input, add selection change listeners, use a predefined table in the viewer, and allow alternate
content provider and label provider implementations to be identified.

Skill Development Goals
This exercise looks at the definition and use of Wizards so that you can understand:

* How wizards and wizards pages are defined

* How you can open a wizard directly

* Where wizards exist when defined as part of a platform extension point

* How you can build on the existing wizard and wizard page framework in Eclipse

Exer cise Setup

Before you can begin this exercise, you must have access to the com i bm | ab. newW zar d template
plug-in project. This project should already have been imported into your workspace. If not, import the
plug-in from the exercise templates location on your workstation.

Primary Exercise Instructions

The goal is to implement a wizard that creates a new project. At this point the project will not have any
special attributes (such as a project nature), but it will be created such that it does have a predefined
folder which contains two files. One file created with dynamic content and one created based on the
content of a file in the plug-in’s runtime/install directory. The process of getting there will include the
definition of a simple wizard and opening the wizard directly in a menu action.

Part 1: Implement A Simple Wizard

The first task is to define and create a simple wizard. First, you add the extension definition, and then
you create a wizard class by letting it be generated by the PDE.

Step 1. Define New Wizard Extension
Edit the plugin.xml and add the view extension, this includes a category for the view (how it will be found
in the Show View dialog) and the view itself.

Exercises © Copyright IBM Corporation 2000, 2003 3-2

New Project Wizard

1. Editthe pl ugi n. xnl file in the com i bm | ab. newW zar d project you imported earlier.
Select the Extensions tab. You will now specify the information needed for the View
extension.

2. Define the wizard extension.

Select the Add... button. Select Generic Wizards > Schema-based Extensions.
Press Next. Scroll down the list, select the extension point for new wizards,
org.eclipse.ui.newWizards, and Press Finish.

3. Specify the category for this new wizard.

Select the org.eclipse.ui.newWizards entry in the extensions list and press Finish.
Choose the New > Category context menu. Using the Properties view, modify the
id for the category to be com.ibm.lab.newWizard.category and the name for the
category to be Edu: Wizards. The parent category will be blank.

4. Define the new wizard

Select the org.eclipse.ui.newWizards entry in the extensions list and choose the
New > Wizard context menu.

Using the Properties View, specify the following:

e category: comibm | ab. newW zar d. cat egory
e icon: i cons\ Cust omNat ure. gi f

e id: comibm | ab. newW zard. w zard

* name: Edu: Cust om Proj ect

* project: true

Ignore the class property for now; you will specify a value later.

5. Save the pl ugi n. xnl file. The XML for the new wizard should look like this in the Source
page:

<ext ensi on
poi nt ="org. ecl i pse. ui . newW zar ds" >
<cat egory
nanme="Edu: W zards"
i d="com i bm I ab. newW zar d. cat egory" >
</ cat egory>
<wi zard
nane="Edu: Custom Project"
i con="i cons\ CustomNat ure. gi f"
category="com i bm | ab. newW zar d. cat egory"
class="com i bm | ab. newW zar d. NewW zar d1"
project="true"
i d="comibm I ab. newN zard. wi zard" >
</ wi zar d>
</ ext ensi on>

Step 2. Generate Wizard
The PDE can generate classes for many extension types. You will now use the PDE to generate a class
for your wizard.

Exercises © Copyright IBM Corporation 2000, 2003 3-3

New Project Wizard

1. Return to the extensions page of the pl ugi n. xni file to generate the wizard class using
the PDE and select the Edu: Custom Project (wizard) entry in the list.

2. Inthe Properties View, generate the class by selecting the continuation entry (...) in the
class field.

In the Java Attribute Editor, specify that you want to generate a new Java class.
The class name is Cust onPr oj ect W zar d and you want to let the wizard (see, you
can use them anywhere) open an editor on the class after it is created. Leave the
source folder and package name at their default settings.

3. Select Finish to generate the class.

When complete, the Java Attribute Editor (which is also a wizard) will open an
editor open on the Cust onPr oj ect W zar d class. The required i ni t () and
per f or nFi ni sh() methods were generated by the Java Attribute Editor wizard.

4. Save the pl ugi n. xm file.

Step 3. Define a Wizard Page and Add it to the Wizard
The wizard is a controller for the wizard pages it will display. You need at least one wizard page before
you have a user interface for the wizard.

1. Use the new class wizard to create a new class in the existing package. When creating the
class you should:

 Name it Cust onPr oj ect Fi | ePage

» Extendorg. eclipse.jface.w zard. W zar dPage
» Select “Constructors from the superclass”

» Select “Inherited abstract methods”

Select Finish to generate the class.

When complete the wizard will open an editor open on the
Cust onPr o ect Fi | ePage class. The wizard generated the required
creat eCont rol () method and two constructors.

Exercises © Copyright IBM Corporation 2000, 2003 3-4

New Project Wizard

2. Define the user interface for the wizard page by adding these two fields to the class and
making these changes to the creat eCont rol () method:

public Button | oggingFile;
public Button readneFil e;

public void createControl (Conposite parent) {
/1 Build page ui
Conposi te pageui = new Conposite(parent, SW.NONE);
Fill Layout fillLayout = new Fill Layout();
fillLayout.type = SWI. VERTI CAL;
pageui . set Layout (fill Layout);
set Cont r ol (pageui) ;

/1 popul ate pageui with required controls

Conposite buttonui = new Conposite(pageui, SW.NONE);
RowLayout rowLayout = new RowLayout ();

rowLayout . type = SWI. VERTI CAL;

but t onui . set Layout (r owLayout) ;

| oggi ngFi l e = new Button(buttonui, SW.CHECK);
| oggi ngFi |l e. set Text ("Create change log file");
| oggi ngFi | e. set Sel ecti on(true);

readneFil e = new Button(buttonui, SW.CHECK);
readmeFil e. set Text ("Create readne file");
readmeFi | e. set Sel ecti on(true);

Note: Copy the method above from the JPages\ Part 1_W zar d. j page file.

Use the Source > Organize Imports option (Ctrl+Shift+O) to add the required
import statement(s), be sure to choose the or g. ecl i pse. swt . wi dgets. Butt on
import.

3. Add the wizard page to the wizard by adding a field and the addPages() method to the
Cust onPr oj ect W zar d class. This field and method logic should be added:

private CustonProjectFilePage fil ePage;

public void addPages() {
fil ePage =
new CustonProj ect Fil ePage("fil ePage", "Generated Project Files", null);
fil ePage. set Description("Select the files to be added to the project.");
addPage(fil ePage);

Note: Copy the logic above from the JPages\ Part 1_W zar d. j page file.

4. Customize the per f or nFi ni sh() method in the Cust onPr oj ect W zar d class so that it
returns t r ue and allows the wizard to close after the Finish button is pressed. The method
logic should also indicate what options were chosen on the wizard page.

Make the per f or nFi ni sh() method look like this:

Exercises © Copyright IBM Corporation 2000, 2003

New Project Wizard

publ i ¢ bool ean perfornFinish() {
/1 l1dentify choices made on the fil ePage
bool ean I og = fil ePage. | oggi ngFi |l e. get Sel ection();
bool ean readne = fil ePage. readneFi | e. get Sel ection();

/1 Show choices fromfil ePage
MessageDi al og. openl nf or mat i on(

nul |,

"File Selections Made",

"Logging fileis " +1log + "\n Readne file is
return true;

+ readne);

}

Note: Copy the method above from the JPages\ Part 1_W zar d. j page file.

Use the Source > Organize Imports option (Ctrl+Shift+O) to add the required
import statement(s) and then save the Java source.

5. Launch the runtime workbench to test the wizard user interface.

Open the New dialog: File > New > Project...and then select Edu: Wizards >
Edu: Custom Project. Then click Next to enter the wizard.

You should see a wizard page that looks like this:

Generated Project Files

Select the files to be added to the project.

¥ Create change log file
¥ Create readme file

« Back Mext » Finish Cancel

Figure 3-1
CustomProjectFilePage Displayed in CustomProject

You now have a working wizard. If you select one or both toggles and then click on
Finish you will be told what was selected and the wizard will close.

Close the runtime workbench after testing is complete.

Exercises © Copyright IBM Corporation 2000, 2003

3-6

New Project Wizard

Step 4. Open the Wizard from an Action

You defined a wizard by extension, but if your wizard class just extended W zar d and implemented the
| W zar d interface, you could use your wizard anywhere. An action contribution extension and the
associated class have been defined for you in the template project. You can customize this action to
open the wizard you just defined.

1. Modify the run() method in the OQpenW zar dAct i on class so that the action will open the
wizard you just defined. Modify the run() logic to look like this:

public void run(lAction action) {
Shel |l shell =
Pl at f or MUl . get Wor kbench() . get Acti veWsr kbenchW ndow() . get Shel | () ;

/1 Create the w zard
Cust onProj ect Wzard w zard = new Cust onProj ect Wzard();

/] Create the dialog to wap the w zard
W zardDi al og di al og = new W zardDi al og(shell, w zard);

di al og. open();

Note: Copy the method above from the JPages\ Part 1_W zar d. j page file.

Use the Source > Organize Imports option (Ctrl+Shift+O) to add the required
import statement(s) and then save the Java source.

2. Launch the runtime workbench to test the wizard user interface.

Open the wizard using the Edu: Actions > Open Wizard menu option. If this option
is not visible, reset the perspective (Window > Reset Perspective).

You should see a wizard page that looks just like the one shown earlier.

You have now defined a working wizard, and seen how the workbench will find an open a wizard defined
as an extension. You have also learned how you can open your own wizards from anywhere you might
need one in your tool.

Part 2: Revisethe Wizard so that it Adds a New Project to the Workspace

The current wizard just shows one wizard page and reports selection status. The goal is to create a
wizard that will create a new project and customize the project with files in a predefined folder.

You will begin by modifying the existing wizard so that it incorporates the existing new project wizard
function provided by the platform and customizing it to include the wizard page already defined with
control logic that actually adds files to the project once it has been created.

Step 1. Add the Reusable New Project Wizard Page to your Wizard

The platform provides reusable wizard pages. You will add the reusable wizard page that supports the
creation of a basic project to your wizard. This same page is seen when you use the existing function
found in the user interface (New > Project... > Simple > Project).

Exercises © Copyright IBM Corporation 2000, 2003 3-7

New Project Wizard

1. Start by adjusting the addPages() method in the Cust onPr oj ect W zar d class. It must add
the pr oj ect Page before the fi | ePage, and to ensure that the fi | ePage is visited, its page
complete state must be set to false.

Add the field shown and modify the addPages() method so that it looks like this:

private W zardNewProj ect Creati onPage proj ect Page;
public void addPages() {

proj ect Page = new W zar dNewPr oj ect Cr eat i onPage(" pr oj ect Page") ;
proj ect Page.setTitle("Create a New Project");
proj ect Page. set Descri pti on(

"Enter nane and optional customlocation for a project");
addPage(pr oj ect Page) ;

fil ePage =

new CustonProj ect Fil ePage("fil ePage", "Generated Project Files", null);
fil ePage. setDescription("Select the files to be added to the project.");
fil ePage. set PageConpl et e(f al se);
addPage(fil ePage);

Note: Copy the logic above from the JPages\ Part 2_W zar d. j page file.

2. Once the fi | ePage has been visited, the page complete state needs set to true so the
wizard can be finished. Override the inherited set Vi si bl e() method by adding this
method to the Cust onPr oj ect Fi | ePage class:

public void setVisibl e(bool ean visible) {
super . set Vi si bl e(vi si bl e);
set PageConpl et e(true);

}

Note: Copy the method above from the JPages\ Part 2_W zar d. j page file.

3. Launch the runtime workbench to test the wizard user interface.

Open the New dialog: File > New > Project...and then select the Edu: Wizards in
the left column and then Edu: Custom Project in the right. Then click Next to enter
the wizard.

The new first page of the wizard looks like this:

Exercises © Copyright IBM Corporation 2000, 2003 3-8

New Project Wizard

tom Project il

Project

Create a new project resource. ﬁ

Project name: Ia .custom.project|

Project contents
v Use default

Directory: |E :\Eclipse-2.1.1\wswb\runtime\code Solutions\a.¢ Browse...

« Back | Mext » | Finish Cancel

Figure 3-2

Custom New Project Wizard
You now have a working multi-page wizard. The Finish button will not be enabled
until you visit the last page (fi | ePage). When you do press Finish, a message

dialog will be shown, but that is all. The logic to create and then customize the
project has not been integrated.

Close the runtime workbench after testing is complete.

Step 2. Implement Create New Project Wizard Finish Logic
The wizard first needs to create a project using the values defined on the pr oj ect Page.

1. Inthe Cust onProj ect W zar d class, select these statements in the per f or nFi ni sh()
method:

/1 Show choices fromfil ePage
MessageDi al og. openl nf or mat i on(
nul |,
"File Sel ections Made",
"Logging fileis " +1log + "\n Readne file is " + readne);

Once the statements have been selected use the Refactor > Extract method...
context menu option to create a new method. Name the new method
custom zeProject ().

Exercises © Copyright IBM Corporation 2000, 2003 3-9

New Project Wizard

The extracted method should look like this:

private void custonizeProject(bool ean | og, bool ean readne) {
/1 Show choices fromfil ePage
MessageDi al og. openl nf or mat i on(
nul |,
"File Selections Made",
"Logging fileis " +1log + "\n Readne file is " + readne);

2. Adjust the perf or nFi ni sh() method so that it first obtains the project and project location
reference from the projectPage and then invokes a new method, cr eat ePr oj ect (), with
these values passed as parameters to actually create the project. The cr eat ePr oj ect ()
method does not exist yet, so ignore the associated compile error. The
cust omi zePr oj ect () method (created in the previous task) is invoked if the project exists.

The modified per f or nFi ni sh() method should look like this:

publ i ¢ bool ean perfornFinish() {

/1 Get project from projectPage
| Proj ect newProject = projectPage. get ProjectHandl e();

/1l Get project location as required
| Pat h projectLoc = null;
i f (!projectPage. useDefaul ts())
proj ect Loc = projectPage. get Locati onPat h();

/1 Create project using customlocation if provided
creat eProj ect (newProj ect, projectlLoc);

/1 ldentify choices nade on the fil ePage
bool ean I og = fil ePage. | oggi ngFi |l e. get Sel ection();
bool ean readne = fil ePage. readneFi | e. get Sel ection();

/1 1f project exists, customize it
if (newProject.exists())
custom zeProj ect (1 og, readne);

/1 If project exists, return true, if not return false
if (newProject.exists())

return true;
el se

return false;

Note: Copy the method above from the JPages\ Part 2_W zar d. j page file.

Use the Source > Organize Imports option (Ctrl+Shift+O) to add the required
import statement(s).

Exercises © Copyright IBM Corporation 2000, 2003 3-10

New Project Wizard

3. Use the quick fix support (Ctrl+1 while the cursor is on the cr eat ePr oj ect () error marker)

to create a method named cr eat ePr oj ect () . Once done, you need to customize the
method so it creates a project.

This requires that you first create a project description. The description defines the
project location using either the default file system location (project folder is in the

workspace directory) or using the location value that was defined on the

proj ect Page. The project is then created using the description and then opened.

The completed cr eat ePr oj ect () method should look like this:

private void createProject(lProject newProject, |Path projectLoc) {

/1 Create project description
| Proj ect Description projectDesc =
NewW zar dPl ugi n. get Wr kspace() . newPr oj ect Descri pti on(newProj ect. get Narme()) ;

proj ect Desc. set Locati on(proj ectLoc);

/1 Create project

try {
newPr oj ect. creat e(projectDesc, null);
newPr oj ect . open(nul |');

} catch (CoreException e) {
/1 Auto-generated catch bl ock
e.printStackTrace();

}
}
Note: Copy the method above from the JPages\ Part 2_W zar d. j page file.
Use the Source > Organize Imports option (Ctrl+Shift+O) to add the required
import statement(s) and then save the Java source.
4. Launch the runtime workbench to test the wizard logic.

Open the New dialog: File > New > Project...and then select the Edu: Wizards in
the left column and then Edu: Custom Project in the right. Then click Next to enter
the first wizard page, the pr oj ect Page (the field hame in the addPages() method).

Enter a project name, optionally a location other than the default, click Next to enter
the fi | ePage, and then Finish. The logic added to the method will add a new
project to the workspace.

Close the runtime workbench after testing is complete.

Exercises © Copyright IBM Corporation 2000, 2003 3-11

New Project Wizard

Step 3. Implement Create Folder and Files Wizard Finish Logic

The wizard now creates a project, but you still need to have it react to the choices made on the
fi | ePage and create the required folder and requested files. The folder will always be created while file
creation will depend on the selections made on the fi | ePage.

1.

Customize the signature and logic for the existing cust oni zePr oj ect () method so that it
looks like this:

private void custoni zeProject(lProject project, boolean |og, boolean readne) {

/1 Create Fol der
| Fol der readneFol der = Proj ect Customni zer. creat eFol der (proj ect, "readne");

/1 Create Logging File (if required)

if (log)
Proj ect Cust om zer. cr eat eChangelLogFi | e(proj ect, "Change log.txt");

/!l Create Readne File fromtenplate (if required)

if (readnme) {
| Path tenplate = new Path("readne_tenplate/readne file tenplate.readne");
String fileNanme = project.getNanme() + ".readnme";
Proj ect Cust om zer. copyTenpl at e(readneFol der, fileNanme, tenplate);

}

2.

Note: Copy the method above from the JPages\ Part 3_W zar d. j page file.

Use the Source > Organize Imports option (Ctrl+Shift+O) to add the required
import statement(s). When prompted, select the or g. ecl pi se. core. runti ne. Pat h
option. You will correct the compile error in the next task.

The Proj ect Cust oni zer class was provided in the template project. Review the
methods in this class to see how the project reference and passed parameters are
used to create the required resources. A folder, two files, and a bookmark marker
are created if you select both options.

Note: One of the files that are created comes from a file in the plug-in's source
directory. Can you tell which one?

Adjust the invocation of the cust oni zePr oj ect () method in the per f or nFi ni sh() method
to add the newPr oj ect parameter which was added to the method signature.

Launch the runtime workbench to test the modified wizard finish logic.

Enter a project name, and then go to the end and select Finish. The project should
be created and customized based on the selected options on the fi | ePage. The
new project should look something like this in the Navigator view:

Exercises © Copyright IBM Corporation 2000, 2003 3-12

New Project Wizard

0g.txt - Eclipse Platform
Navigate Search Project Edu Soln: Actions Test

File Edit

Run Window Help

o (=4

IFvEaagllov]ev|[alx~|s|ad@]ce e ~|a
ﬁ Mavigator Package Explorer ElChange_log.txt X l
[& Navigator v x ||l Change log.txt -l
& ‘ e =§=|7E# R good place to describe your code changes.
£ a.customized. project Change Date Description
Bz readme 0l e
.~ a.customized.pro ject.readme ALiaust 8, 2003 Created Project f
: 4 L3
B .project
Change_log. txt #a.customized. project.readme X
o /7(7{1{**7\'1{1{**7(****7{**7{7\'*1{*7(7\'1{/ ﬂ
/* Readme Logging File /
/j?***1’1’***1’1‘**1‘1’***1’1‘**1‘1’*/ _Id
4 12
-1l Bookmarks 8 D v x
| Description Resource |In Folder

4

| a.customized.project: Change Log File Change_log. txt

a.customized

13

a.customized.project/Change_log. txt

Figure 3-3
Structure of Customized Project

Close the runtime workbench after testing is complete.

You are done with the basics. If you have time, or want to return here later, you can

do the optional portion of this exercise.

Optional Exercise Instructions

The optional portion of this exercise allows you to learn more about how to manage resource events (So you
have awell performing plug-in), provide task feedback using the wizard monitor, and may the flow of the

wizard dynamic.

Optional Part 1: Adjust the Project Customization Process to Limit Resour ce Events

The wizard you defined creates a project and customizes it as required. It works,

and this is not bad, but it can be better.

How? Put your performance hat on. Remember the discussion about resource

change events? Each resource creation or modification action in the

creat eProj ect () and cust onmi zePr oj ect () methods triggers a resource change
event. Let’s start by looking at this in a bit more detail.

Exercises

© Copyright IBM Corporation 2000, 2003

3-13

New Project Wizard

Step 1. Trace the Resour ce Change Events Triggered by the Wizard
A resource change listener has been provided as part of the project template. By enabling this listener, it
will report changes that have occurred as messages in the console log.

1. Change the NewW zar dPI ugi n class so that the provided resource change listener is
added when the plug-in starts. Modify the st art up() method; uncomment the addRCL()
method invocation:

public void startup() throws CoreException {
/1 Let super do the normal startup work
super.startup();
/1 The resource change listener will be added if/when this nmethod is invoked
addRCL() ;

2. Test the new code by starting the runtime workbench and creating a new custom project.

The resource change listener that was provided will print information about each
resource event that occurs to the Console view. The following would be listed for
the creation of the customized project:

->
->
->
->
->

->
->
->
->
->

->
->
->
->
->

->
->
->
->
->

->
->
->
->
->
->
->
->

CIOICIVICIUIVICTIOTA RN DNARNDNWWWWWWNNNNNNRRRRR R

Exercises

Event triggered...
Resour ce has been changed.
Resource / has changed.
Resource /custom proj ect was added.
Resource /custom project/.project was added.

Event triggered...

Resour ce has been changed.
Resource / has changed.
Resour ce /custom proj ect has changed.
Resour ceDel ta Ki nd: Opened

Event triggered...

Resour ce has been changed.
Resource / has changed.
Resour ce /custom proj ect has changed.
Resource /custom proj ect/readnme was added.

Event triggered...
Resour ce has been changed.
Resource / has changed.
Resour ce /custom project has changed.
Resour ce /custom proj ect/ Change_| og.txt was added.

Event triggered...
Resour ce has been changed.
Resource / has changed.
Resour ce /custom proj ect has changed.
Resour ce /custom proj ect/ Change_| og.txt has changed.
Resour ceDel ta Ki nd: Marker Change
Mar ker delta kind: Added
Mar ker type: org.eclipse.core.resources. bookmark

© Copyright IBM Corporation 2000, 2003 3-14

New Project Wizard

RCE: 6

RCE: 6 -> Event triggered...

RCE: 6 -> Resource has been changed.

RCE: 6 -> Resource / has changed.

RCE: 6 -> Resource /custom proj ect has changed.

RCE: 6 -> Resour ce /custom proj ect/ Change_| og.txt has changed.
RCE: 6 -> Resour ceDel ta Ki nd: Marker Change

RCE: 6 -> Mar ker delta kind: Changed

RCE: 6 -> Mar ker type: org.eclipse.core.resources. bookmark
RCE: 6 -> Mar ker content: [1]

RCE: 7

RCE: 7 -> Event triggered...

RCE: 7 -> Resource has been changed.

RCE: 7 -> Resource / has changed.

RCE: 7 -> Resour ce /custom proj ect has changed.

RCE: 7 -> Resour ce /custom proj ect/ Change_| og.txt has changed.
RCE: 7 -> Resour ceDel ta Ki nd: Marker Change

RCE: 7 -> Mar ker delta kind: Changed

RCE: 7 -> Mar ker type: org.eclipse.core.resources. bookmark
RCE: 7 -> Mar ker content: [1, 10]

RCE: 8

RCE: 8 -> Event triggered...

RCE: 8 -> Resource has been changed.

RCE: 8 -> Resource / has changed.

RCE: 8 -> Resour ce /custom proj ect has changed.

RCE: 8 -> Resour ce /custom proj ect/ Change_| og.txt has changed.
RCE: 8 -> Resour ceDel ta Ki nd: Marker Change

RCE: 8 -> Mar ker delta kind: Changed

RCE: 8 -> Mar ker type: org.eclipse.core.resources. bookmark
RCE: 8 -> Mar ker content: [11, 10, 1]

RCE: 9

RCE: 9 -> Event triggered...

RCE: 9 -> Resource has been changed.

RCE: 9 -> Resource / has changed.

RCE: 9 -> Resour ce /custom proj ect has changed.

RCE: 9 -> Resour ce /custom proj ect/ Change_| og.txt has changed.
RCE: 9 -> Resour ceDel ta Ki nd: Marker Change

RCE: 9 -> Mar ker delta kind: Changed

RCE: 9 -> Mar ker type: org.eclipse.core.resources. bookmark
RCE: 9 -> Mar ker content: [custom project: Change Log File, 11, 1, 10]

RCE: 10 -> Event triggered...

RCE: 10 -> Resource has been changed.

RCE: 10 -> Resource / has changed.

RCE: 10 -> Resour ce /custom proj ect has changed.

RCE: 10 -> Resour ce /custom proj ect/readnme has changed.

RCE: 10 -> Resour ce /custom proj ect/readnme/ custom proj ect.readne was added.

The first two events (RCE: 1- 2), are the creation and opening of the project. All the
rest are the creation of the folder (RCE: 3), Change_log.txt file(RCE: 4),
Change_log.txt file marker(RCE: 5), marker attributes(RCE: 6- 9), and the .readme
file(RCE: 10). The interesting thing is that the cust om pr oj ect project resource and
associated . pr oj ect file were created as part of one event. The rest of the project
customization should also take place as part of that same event if you want a better
performing tool. There is no reason to fire ten events when one will do.

Exercises © Copyright IBM Corporation 2000, 2003 3-15

New Project Wizard

Step 2. Wrap Wizard Resour ce Creation in a Runnable

There are several options for how to wrap a set of workspace operations to limit the number of resource
change events. The workspace can process an object that implements the | Wr kspaceRunnabl e
interface using the wor kspace. run() method.

When performing workspace updates from a user interface you may also want to consider the use of the
Wr kspaceModi f yQOper at i on class. This class allows you to construct a runnable that has access to a
progress monitor. A progress monitor can be obtained from the wizard container.

1. Create a Wor kspaceModi f yQper at i on structure that can be used to wrap the resource
creation and modification logic in a runnable. The goal is an inner class with an execut e()
method that performs project creation and customization. You could just copy this from the
JPage file, but for fun why not let the Eclipse JDT do most of the work.

Make these edits to the per f or nFi ni sh() method:

» Add a few empty lines before the invocation of the cr eat ePr oj ect () method.

» Enter this text, Wor kspacem and then press Ctrl+Space to trigger code completion.
Choose the option Wor kspaceMbdi f yOper ati on

 Enterop = new on the same line and then press Ctrl+Space and again choose the
Vor kspaceModi f yQper at i on option.

» Enter a left parenthesis (the JDT will generate the match) and then press Ctrl+Space
again. The JDT will open a dialog to help you complete the
Wor kspacehMbdi f yQper at i on inner class definition.

» The default selection (execut e() method) is fine so just select OK.

» Enter a semi-colon () to complete the generated statement, the cursor should already
be in the correct location.

That should be all you need. The completed statement should now look like this:

Wor kspaceModi f yOper ati on op = new Wor kspaceModi fyOperation() {
protected voi d execute(lProgresshnitor nonitor)
t hrows CoreException, InvocationTarget Exception, |nterruptedException {
/1 TODO Aut o- generated nethod stub

This can now be used to create and customize the project.

2. Cusomize the Wor kspaceMdi f yOper at i on structure so that it creates and customized the
project.

Move most of the first part of the existing per f or nFi ni sh() logic to the execut e()
method (the newPr oj ect variable stays outside). The Wor kspacehbdi f yOper ati on
structure should now look like this:

Exercises © Copyright IBM Corporation 2000, 2003 3-16

New Project Wizard

Wor kspaceModi f yOperati on op = new Wor kspaceMdi fyOperation() {
protected voi d execute(lProgresshnitor nonitor)
t hrows Cor eException, InvocationTarget Exception, |nterruptedException {

/1 Get project location as required
| Pat h projectLoc = null;
i f (!projectPage. useDefaults())
proj ect Loc = projectPage. get Locati onPat h();

/1 1dentify choices made on the fil ePage
bool ean I og = fil ePage. | oggi ngFi |l e. get Sel ection();
bool ean readne = fil ePage. readneFi | e. get Sel ection();

/1 Create project using customlocation if provided
creat eProj ect (newProj ect, projectlLoc);

/1 1f project exists, customize it
i f (newProject.exists())
cust om zeProj ect (newProj ect, |og, readne);

3. Correct the error related to the newPr oj ect variable. Use the Quick Fix function (put cursor
on field reference and press Ctrl+1 or click on the light-bulb icon) to change the
newPr oj ect variable definition to fi nal .

Other errors will still exist, which is fine for now.

4. Add logic to the per f or nFi ni sh() method to actually run the
Wor kspaceModi f yQper at i on. This logic should go after the Wor kspacehMbdi f yOper ati on
structure but before the lasti f statement:

try {
op.run(nul l');

} catch (InvocationTarget Exception e) {
e.printStackTrace();

} catch (InterruptedException e) {
e.printStackTrace();

}

Note: Copy the logic above from the JPages\ Xtra_Part 1_W zar d. j page file.

The run() method takes the operation and passes it on to the workspace for
processing.

5. Launch the runtime workbench to test the modified wizard finish logic.

Enter a project name, and then go to the end and select Finish. The project should
be created and customized based on the selected options on the fi | ePage. If you
were to peek at the resource change events that were triggered you would see a
different scenario:

Exercises © Copyright IBM Corporation 2000, 2003 3-17

New Project Wizard

RCE: 1 -> Event triggered...

RCE: 1 -> Resource has been changed.

RCE: 1 -> Resource / has changed.

RCE: 1 -> Resource /custom proj ect was added.

RCE: 1 -> ResourceDel ta Ki nd: Opened

RCE: 1 -> Resource /custom proj ect/. project was added.

RCE: 1 -> Resource /custom proj ect/ Change_| og.txt was added.

RCE: 1 -> ResourceDel ta Ki nd: Marker Change

RCE: 1 -> Mar ker delta kind: Added

RCE. 1 -> Mar ker type: org.eclipse.core.resources. booknark

RCE: 1 -> Mar ker content: [custom project: Change Log File, 11, 1, 10]
RCE: 1 -> Resource /custom proj ect/readne was added.

RCE: 1 -> Resource /custom proj ect/readne/ cust om proj ect.readnme was added.

This is much better, the creation and customization of the project is now just one
complex event.

Optional Part 2: Run the WorkspaceM odifyOperation with a Monitor

When you directly run the operation you passed a null monitor in the r un() method. It might be nice to
have a monitor so that you could show progress through the operation and possibly support a cancel
request if this was truly a long-running activity. You will add support for a monitor, but we will not worry
about a cancel request.

Step 1. Provide a Monitor to the Wor kspaceM odifyOper ation | nstance
You can use the wizard framework to run this operation and reuse the monitor available in the wizard.

1. Customize the invocation of the operation to let the wizard (actually, the container for the
wizard) invoke the runnable.

In the per f or nFi ni sh() method, replace this statement:
op.run(nul l');

With this statement:
get Contai ner().run(fal se, false, op);

The operation will be invoked, but now it will have access to a monitor (as opposed
to a null) in the operation’s run() method because you are now using the wizard
dialog to run the operation.

The W zard get Cont ai ner (). run() method allows you to choose if the operation
should be run on a new thread (where Ul widgets would not be visible) and if it can
be canceled. Ultimately, the operation is passed on to the workspace for
processing.

Note: If you changed the run() method so that the code wrapped in a

Wor kspaceModi f yQper at i on was not running on the Ul thread (run(true, fal se,
op)) there would be no direct access to the SWT widgets. You would have to move
this logic out of the execut e() method logic for the operation and make the
variables fi nal .

You can now customize the logic used to create and customize the project to
actually accept and use the monitor during the required processing steps.

Exercises © Copyright IBM Corporation 2000, 2003 3-18

New Project Wizard

2. Modify the Cust onProj ect W zard init () method so that it contains this logic:

public void init(lWrkbench workbench, |StructuredSel ection selection) {
set NeedsProgresshbnitor(true);
}

This is required to tell the wizard container that you want to see (and use) the
progress monitor as part of the wizard dialog.

3. Modify the Wor kspaceMdi f yOper at i on defined in the per f or nFi ni sh() method to
initialize the task being monitored and pass the monitor instance to the cr eat ePr oj ect ()
and cust omi zePr oj ect () methods. The revised execut e() method logic should look like
this:

protected voi d execute(lProgresshnitor nonitor)
t hrows Cor eException, InvocationTarget Exception, |nterruptedException {

noni t or. begi nTask("Create Custoni zed Project:", 3000);
noni t or. subTask(" prepare");

/1l Get project location as required
| Pat h projectLoc = null;
i f (!projectPage. useDefaul ts())
proj ect Loc = projectPage. getLocati onPat h();

/1 l1dentify choices made on the fil ePage
bool ean I og = fil ePage. | oggi ngFi |l e. get Sel ection();
bool ean readne = fil ePage. readneFi | e. get Sel ection();

noni t or. wor ked(1000) ;
Pr oj ect Cust om zer. pause(1000) ;

/1 Create project using customlocation if provided
creat eProj ect (newProj ect, projectlLoc,
new SubPr ogresshoni tor (nonitor, 1000));

/1 1f project exists, customize it
if (newProject.exists()) {
noni t or. subTask(" cust omi ze");
Proj ect Cust om zer. pause(1000) ;
cust om zePr oj ect (newPr oj ect, |og, readne,
new SubPr ogresshnitor(nonitor, 1000));
}

noni t or. done();

Note: Copy the method above from the JPages\ Xt ra_Part 2_W zar d. j page file.

The use of the Pr oj ect Cust oni zer . pause() method slows down the processing
S0 you can actually see the progress bar in the wizard react to the monitor logic
during testing.

Exercises © Copyright IBM Corporation 2000, 2003 3-19

New Project Wizard

4. Modify the creat ePr oj ect (..) method signature to accept the monitor and the logic to use
it during project creation. The modified method should look like this:

private void createProject(lProject newProject,

| ProgresshMonitor nonitor) {

noni t or. begi nTask("", 500);

noni t or. subTask("create project description");

/1 Create project description
| Proj ect Description projectDesc =

| Pat h projectLoc,

NewW zar dPl ugi n. get Wr kspace() . newPr oj ect Descri pti on(newProj ect. get Narme()) ;

proj ect Desc. set Locati on(proj ectLoc);

noni t or. wor ked(100) ;
Pr oj ect Cust om zer. pause(1000) ;

/1 Create project

try {
noni t or. subTask("create project");

newPr oj ect . creat e(proj ect Desc, nonitor);

noni t or. wor ked(100) ;
Proj ect Cust om zer. pause(1000) ;

noni t or. subTask(" open the new project");

newPr oj ect . open(noni tor);
noni t or. wor ked(100) ;
Pr oj ect Cust om zer. pause(1000);

noni t or. done();
} catch (CoreException e) {

/1 Auto-generated catch bl ock
e.printStackTrace();

Note: Copy the method above from the JPages\ Xt ra_Part 2_W zar d. j page file.

Exercises © Copyright IBM Corporation 2000, 2003

3-20

New Project Wizard

5. Modify the cust oni zePr oj ect (..) method signature to accept the monitor and the logic to

use it during project creation. The modified method should look like this:

private void custoni zeProject(lProject project, boolean |og, bool ean readne,

| ProgresshMonitor nonitor) {
noni t or. begi nTask("", 3000);

/1 Create Fol der
noni tor. subTask("add fol der");

| Fol der readneFol der = Proj ect Customni zer. creat eFol der (proj ect, "readne");

noni t or. wor ked(1000) ;
Pr oj ect Cust om zer. pause(1000) ;

/1l Create Logging File (if required)
noni t or. subTask("add log file");

if (log)
Proj ect Cust om zer. cr eat eChangelLogFi | e(proj ect, "Change |log.txt");

noni t or. wor ked(1000) ;
Pr oj ect Cust om zer. pause(1000);

/!l Create Readnme File fromtenplate (if required)
noni t or. subTask("add readnme file");
if (readnme) {

| Path tenplate = new Path("readne_tenplate/readne file tenplate.readne");

String fileNanme = project.getNanme() + ".readnme";
Proj ect Cust om zer. copyTenpl at e(readneFol der, fileNane, tenplate);

}

noni t or. wor ked(1000) ;
Pr oj ect Cust om zer. pause(1000) ;

noni t or. done();

Note: Copy the method above from the JPages\ Xtra_Part 2_W zar d. j page file.

6. Launch the runtime workbench to test the modified wizard finish logic.

Enter a project name, and then go to the end and select Finish. The project should
be created and customized based on the selected options on the fi | ePage. The f

you were to peek at the resource change events that were triggered you would see
a much better scenario:

Exercises © Copyright IBM Corporation 2000, 2003

3-21

New Project Wizard

Generated Project Files

Select the files to be added to the project.

¥ Create change log file
¥ Create readme file

Create Customized Project: add folder

¢ Back | Mext » | Einish Cancel

Figure 3-4
Wizard with Progress Monitor Bar

Close the runtime workbench after testing is complete.

Optional Part 3: Make the Customize Project Page and Processing Optional

The wizard you defined creates a project and customizes it as requested. If you want to make visiting the
customization page optional, including the act of customization itself, then you need to change the wizard
structure and add support for a dynamically defined page. This requires that you add a user interface
control to the new project page to allow the user to determine if they want a customized project and adds
the required page to the wizard flow if it was requested.

Step 1. Create a Customized Version of the New Project Page

The first step is to create a new project page that lets the user determine if they want to customize the
project at the same time. Wizard pages such as the new project page, are both reusable and
customizable.

1. Create a new class, Cust omW zar dNewPr oj ect Cr eat i onPage, that extends the existing
page. When you create this new class:
Extend W zar dNewPr oj ect Cr eat i onPage

Select the “Constructors from superclass” option

2. Override the creat eCont r ol () method to add another widget to the user interface. If you
begin typing in the class and enter cr eat ec and then press Ctrl+Space, you will have the
option of generating the method stub.

To add a toggle to the existing new project page by adding a field and customizing
the method. The new code should look like this:

Exercises © Copyright IBM Corporation 2000, 2003 3-22

New Project Wizard

public Button needFil ePage;

[.Z).l:lb| ic void createControl (Conposite parent) ({

/1 Allow superclass to create user interface
super. createControl (parent);

/1 Additional U controls added to control defined by super
Conposite pageui = (Conposite) getControl ();

/1 Add required controls to existing control
Conposite buttonui = new Conposite(pageui, SW.NONE);
RowLayout rowLayout = new RowLayout ();

rowLayout . type = SWI. VERTI CAL;

but t onui . set Layout (r owLayout) ;

needFi | ePage = new Button(buttonui, SW.CHECK);
needFi | ePage. set Text (" Cust onmi ze Project");
needFi | ePage. set Sel ecti on(true);

}
Note: Copy the logic above from the JPages\ Xtra_Part 3_W zar d. j page file.
Use the Source > Organize Imports option (Ctrl+Shift+O) to add the required
import statement(s). Make sure you choose the SWT options when presented.

3. Adjust the wizard to reference the new customized new project page. This requires

changes to the pr oj ect Page field and addPages() logic. Change

W zar dNewPr oj ect Cr eat i onPage references to Cust omA zar dNewPr oj ect Cr eat i onPage.
Use the Source > Organize Imports option (Ctrl+Shift+O) to adjust the required import
statement(s).

Step 2. Add the Customized Project Page On Request
Instead of adding the customizing page automatically in the wizard addPages() method you need to
have a user control that determines when it should be added and logic that supports the request.

1.

2.

The wizard needs changed to allow access to the fi | ePage field. Generate a getter
method for this filed by selecting the field in the Outline view and using the Source >
Generate Getter and Setter... context menu option. Add only the getter method.

Add logic to the toggle button in the new project page user interface so it can determine if
the customization page must be shown as part of the wizard.

The following logic should be added to the cr eat eCont r ol () method, after the
needFi | ePage. set Sel ecti on(true); statement, in the
Cust om zar dNewPr 0j ect Cr eat i onPage class:

Exercises © Copyright IBM Corporation 2000, 2003 3-23

New Project Wizard

needFi | ePage. addSel ecti onLi st ener (new Sel ecti onAdapter () {
public void widget Sel ect ed(Sel ecti onEvent event) {
Cust onProj ect Wzard w zard = (CustonProject Wzard) getWzard();

i f (needFil ePage. get Sel ection())

wi zard. get Fi | ePage() . set PageConpl et e(f al se);
el se

wi zard. get Fi | ePage() . set PageConpl et e(true);

get Cont ai ner (). updat eButtons();

}
1),

This logic sets the fi | ePage completion status based on the needFi | ePage
selection. The fi | ePage status was initialized to false as the needFi | ePage toggle
was initialized to true. The wizard is then told to update the Next and Finish buttons
so they reflect the need for a second page.

If you tested the wizard now you would be able to deselect the Customize Project
option and then click Finish on the first wizard page. The project would still be
customized at creation as the per f or nfi ni sh() method doesn’t yet care about this
selection.

3. Adijust the perfor nFi ni sh() logic in the Cust onPr oj ect W zar d so that project
customization is only performed when requested. The modified logic references the
selection state before invoking the cust oni zePr oj ect () method:

/1 1f project exists, customize it
i f (newProject.exists() &% projectPage. needFi |l ePage. get Sel ection()) {
noni t or. subTask(" cust omi ze");
Pr oj ect Cust om zer. pause(1000);
cust om zeProj ect (newProj ect, |og, readne,
new SubPr ogressMnitor(nonitor, 1000));

4. Launch the runtime workbench to test the modified wizard finish logic.

The new project page now has a toggle which determines if the second wizard
page must be visited (page complete state) and if the project should be customized:

Exercises © Copyright IBM Corporation 2000, 2003 3-24

New Project Wizard

x|
Create a New Project

Enter hame and optional custom location for a project

Project name: Ianofher.projecf

Project contents
V¥ Use default

Directory: IE: \Eclipse-2. 1. 1\wswb\runtime\code Solutionsant Browse. . . |

< Back | Mext > | Finish Cancel

Figure 3-5
Wizard with Customization Toggle

Close the runtime workbench after testing is complete.

Step 3. Adjust Page Processing to Reflect the Need for the Customization Page

If the customizing page is optional, then it should not be part of the wizard. The page is added to the
wizard in the addPages() method, but this does not mean it must exist in the flow of wizard processing.
Since it has already been added, you will now just ignore it when appropriate by providing a customized
get Next Page() method in the custom new project page.

1. Override the get Next Page() method in the Cust omW zar dNewPr oj ect Cr eat i onPage
class. The completed method should look like this:

public | WzardPage get Next Page() {
i f (needFil ePage. get Sel ection())
return super. get Next Page();
el se
return null;

The typical get Next Page() method just asks the wizard for the next page (see the
implementation in the W zar dPage class. This logic only allows this to occur if the
next page is required.

2. Launch the runtime workbench to test the modified wizard finish logic.

Now when you deselect the new project page toggle the Next button is disabled as
there is no next page (a nul I was returned by get Next Page()):

Exercises © Copyright IBM Corporation 2000, 2003 3-25

New Project Wizard

x|
Create a New Project

Enter name and optional custom location for a project

Project name: Iano'rher'.pr'ojec'r

Project contents
W' Use default

Directory: IE:\EcIipse-z. 1. 1\wswb\runtime\code Solutions™ant Browse... |

< Back | Mext > | Finish Cancel

Figure 3-6
Wizard with Customization Toggle and Page Control Logic

Close the runtime workbench after testing is complete.

Exercise Activity Review

What you did in this exercise:

» Learned how to define a new wizard extension and generate a wizard class

* Implemented a wizard page with a customized user interface

» Extended a platform wizard, the new project wizard, to include your wizard page

» Extended the wizard finish logic to include the project customization processing

* Worapped the project customization logic in a Wr kspaceModi f yOper at i on to manage
the number of resource change events that are generated.

* Integrated the monitor provided by the wizard container with the
Wor kspaceModi f yOper ati on

* Modified the reusable new project wizard page to customize the user interface

» Created a dynamic wizard by controlling wizard page progression based on user
interaction.

Exercises © Copyright IBM Corporation 2000, 2003 3-26

Implementing Preference Pages

Exercise 4.
| mplementing
Preference Pages

Exercise 4: Implementing Preference PAgESvvvuiiiiiiiii e e e e e e e e 4-1
1o o (U T o] o NSO SPPPPR 4-1
S o ST O] o =T) P 4-1
Y TV = o] o] =T | AT = P 4-2
S (o TSI T (1] o PR 4-2
EXEICISE INSIIUCTIONS ... ceeeete ettt et ettt e et e e ettt e e e et e e e e et e e e e e et e e e e aban e e eeennns 4-2
Part 1: Preference page definitioncooouiiiiiii e e e e e e 4-2
Step 1: Add preference page EXIENSIONSoviue i iiei et e e e e eaes 4-2
Step 2: Define @ preferenCe PAgE. vvvi i 4-3
Step 3: Adding value management life-CYCle SUPPOIt...........vvvriiiiiiiiii e e 4-5
Part 2: Using a plug-in to manage and Store VaAlUES...........c..vviuiiiiieii e eee e ee e e e e e 4-6
Step 1: FINd the CUMTENt PIUG-iN ... e e e e e e e e e eaes 4-6
Step 2: Update code to use the Dialog PIUg-iN ClaSS........cccuiiiiiiiiiiiciie e 4-7
Part 3: USiNg @ PreferenCe STOIE.........ovveiii it e e e e n e et e e e e eaaees 4-8
Step 1: Create a PreferenNCe STOME cvvvi i e eeaes 4-8
Step 2: Add preference store value management l0giCco.ovvvuiiiiiiiiiin e 4-9
Part 4. Implementing a field editor preference page..........coovvveiiiii i 4-11
Step 1: Add preference page EXIENSIONSoivu i iiii e e e e e 4-11
Step 2: Implement a FieldEditorPreferencePage...........oovvvviiiiiiii e 4-11
Step 3: Add Field Editors to the preference Page.......c..vvvevieii i e e 4-12
Step 4: Testing the field editor preference Page.........couvvieii i 4-14
EXErCISE ACHVIEY REVIEW. .. .eeeiiie ettt e e e e e e e e e et e e e e e e et e e e eeennes 4-15
Introduction
This exercise guides you through the process of using the dialog support in the Workbench
to create value management pages for Preference values.
Exer cise Concepts
During this exercise, you will implement one or more of the following:
Plug-in definitions that support preference page extensions to the workbench.
Persistence of data values using a preference store.
EX_Pref.doc a Copyright IBM Corporation 2000, 2002 4-1

Implementing Preference Pages

Skill Development Goals

At the end of this exercise, you should be able to:

Add preference page extensions to a plug-in
Define and implement a plug-in class
Create a preference page that can save values

Exer cise Setup

These setup tasks are required before you can begin this exercise:

Setup the Workbench so that al external plugins are visible to support plugin development and
testing.
Import the com.ibm.lab.dialogs project to your workspace.

Note: You may have aready performed these setup activities.

The dialogs lab template provides you with a starter plug-in (EDU Didogs) and a base set
of code, but the implementation of some code components is incomplete. Y ou get to add
new methods and references to other methods not yet invoked by the base code.

The com.ibm.lab.dialogs project contains the following files:

Pl ugi n. xm —adtarter file to help you create the desired pl ug- i n.

getstart _b. gi f —agraphic file that will be referenced by the plug-in manifest file.

A set of Java scrapbook pages, organized by class, which contain code fragments referenced in this
lab. Y ou can use these to minimize the need to retype code defined in this document.

Partially coded classes that will be completed during the lab.

EDU pl ugi n. xm - plug-in definitions that you can reuse during the lab.

Other files, such as . cl asspat h and . cvsi gnor e, which are not used in this exercise.

Exercise Instructions

Part 1. Preference page definition

A preference page dialog is started using the Window > Prefer ences menu option available
on the Workbench window. A plug-in can define any number of preference pages. The
pages can be organized as a related set such that they share a navigation tree in the
common preferences dialog window.

Step 1. Add preference page extensions

Y ou will define an extension for a preference page that can be used to implement saved
value support. This shows how the tool user can use the preference page to define tool
specific values. These values can be used to control the logic you implement in your tool.

1. Add the following preference page plug-in extensions to the pl ugi n. xmi file.
Note: You can copy these statements from the EDU_pl ugi n. xnl page:

EX_Pref.doc a Copyright IBM Corporation 2000, 2002 4-2

Implementing Preference Pages

<l-- Preferences Pagel Extension -->
<ext ensi on
poi nt ="org. ecl i pse. ui . pref erencePages" >
<page
i d="comibm | ab. di al ogs. pref pagel”
nane="EDU. Basi c Preference Page"
cl ass="comi bm I ab. di al ogs. MyBasi cPr ef er encePage" >
</ page>

</ ext ensi on>
<l -- VV -->

This extension adds one page to the common preferences dialog available in the workbench.
2. Savethe plugin.xml file to store the preference page definition.
Step 2: Define a preference page
Y ou will now implement the preference page defined in the plug-in extension.

The MyBasi cPr ef er encePage class will inherit the preference page processing
implemented in Pr ef er encePage as part of the dialog framework.

The Pr ef er encePage superclass provides a default implementation of using a
preference store to manage stored values. The controls you add to the property page can be
initialized with default values and then use customized values obtained from the preference
store.

Use of this dialog framework processing requires that you add logic to your preference page
implementation class.

Note: You can use the PDE Extension page editor to generate the MyBasi cPr ef er encePage class if
you trigger the wizard using the drop down in the properties page for the class attribute. This is the process
you followed in the Fi r st Pl ugi n lab to generate the action class. If you use this approach you can skip
to step 2.

1. Create aMyBasi cPref er encePage classinthecom i bm | ab. di al ogs package. This new
class must extend the class.

org. eclipse.jface. preference. PreferencePage

and implement the interface:

| Wor kbenchPr ef er encePage

Select “Inherited abstract methods” (but do not copy the constructors). This will add methods,
such asthe cr eat eCont ent s() method, which will be used to customize the user interface
for the preference page.

Note: If your class does not have the required methods one or more errors will be generated. If
you forget to inherit the methods of the superclass you can add them using a context menu
action available in the Outline view. To quickly add the missing methods select the class in the
Outline View and use the context menu option Override M ethods to open adialog. This dialog

EX_Pref.doc a Copyright IBM Corporation 2000, 2002 4-3

Implementing Preference Pages

will have already selected the required methods that are missing from your class so you can just
click OK.

2. Add aText field to the MyBasi cPr ef er encePage class. Thisfield will be referenced in
methods that will be defined later: Any errors will be corrected when you add import statements
in the next step.

private org.eclipse.swt.w dgets. Text textlnfo;

3. Customizethecr eat eCont ent s() method so that you have added at |east one widget to
the preference page. Add thesei nport statements to your class:

i mport org.eclipse.sw.?*;
i mport org.eclipse.swt.|layout.*;
i mport org.eclipse.swt.wdgets.*;

Replace the generated method with the one below to add a text widget:

protected Control
createContents(org. eclipse. swt.w dgets. Conposite parent) {
textlnfo = new
Text (parent, SW. SINGLE | SW. BORDER) ;
textlnfo.setText("Text String Val ue");
GidData data = new
GidData(GidData. FI LL_HOR ZONTAL) ;
t ext I nf o. set Layout Dat a(dat a) ;
return textlnfo;

4, Consider adding Syst em out . pri ntl n(); statementsto selected methods in your
preference page class to trace data values or method invocation. For example, you could add
these two statements such as:

System out. println("MPrefPage: ------ > PrefPage init");

System out. println("MPrefPage: ------ > Pref Page createContents");

tothei nit () andthecr eat eCont ent s() methods respectively.

5. Test your preference page class. Start the workbench (if required)

Use the Workbench Window > Prefer ences menu option to start the preferences dialog. Select
the entry for your preference page (L ab: Basic Preference Page). Y ou should see the
following:

EX_Pref.doc a Copyright IBM Corporation 2000, 2002 4-4

Implementing Preference Pages

£ Preferences @

+] Warkbench Lab: Basic Preference Page
Build Crder

+ Debug myTextDefaultalue

+ External Tools
Help
Install\Jpdate

+ Java
ﬁ Lab: Basic Preference
+ Plug-In Developrment
Readme Example
+ Team

¢ 3 Restore Defaults | Apply |

Irnport... | Export... | K | Cancel |

Figure4-1
Basic Preference Panel [dialog_06.tif]

Thisis a custom preference page, but the value shown is hard coded (see your
cr eat eCont ent s() method).

Note: The Restore Defaults, Apply, OK, and Cancel buttons are added automatically, but
they will not do anything as you have not yet implemented any support for the value
management life cycle in your property page class.

Step 3: Adding value management life-cycle support

The diaog framework for both property pages and preference pages provides hook
methods that support the life cycle processing for the values that will be shown and saved.
The hook methods process the following user interactions:

Obtain the current values

Show default values

Apply (save) the values

Leave the page with either an OK or Cancel request.

By implementing the life cycle hook methods you will have a place to add the customized
logic required to link the controls you created and the preference store that will be used to
save values.

In this step you will add the hook methods to your preference page class.

EX_Pref.doc a Copyright IBM Corporation 2000, 2002

4-5

Implementing Preference Pages

1. Copy these methods to the MyBasi cPr ef er encePage class from the helper file
EDU_MyBasi cPr ef er encePage. j page:

set Vi si bl e()

per f or mDef aul t s()
per f or mk()
perfor mAppl y()
per f or mCancel ()

Each copied method looks similar to:

public bool ean perfornCancel () {
Systemout.println("PropCycle: " +
"> in perfornCancel ");
return super. perfornmCancel ();

Thiswill alow usto follow the user interaction life cycle by reviewing the messagesin the
console. Note that the set Vi si bl e() method is triggered as the page opens and when the
page selected in the preference didog changes.

2. Start the test workbench, open the Preferences dialog, and select your preference page. Follow
this process to trigger the life-cycle methods:

Select the Lab: Basic Preference Page (if required)

Select the Restor e Defaults and Apply push buttons

Change current properties page (go to the Info page) and return (this forces the setVisible() method)
Select either the OK or Cancel push button

Review the development workbench console window to see the processing life cycle as depicted
by any System out . pri ntl n() statementsyou copied or added to the life cycle methods.
Y ou may want to watch the console as you interact with the preferences dialog.

Part 2: Using a plug-in to manage and store values

The best way to add saved value support to the preference page is to ask for help from a
plugrin class. This requires that you have the right type of plug-in, one that extends the user
interface support provided by the Abst r act Ul Pl ugi n.

If you do not implement areal plug-in class, by subclassing Abst r act Ul Pl ugi n, the
workbench platform creates a Default plug-in for your tool. But what you want is a plug-in
implementation that will provide access to the preference store services provided by the
Abst ract Ul Pl ugi n superclass.

Step 1: Find the current plug-in

To understand how plug-in processing is provided by the workbench platform, even if you
do not define your own implementation, you will identify the active plug-in available to the

property page.
1. Add the import statement to the MyBasi cPr ef er encePage class and highlighted logic
shown below to the per f or mDef aul t s() method:

EX_Pref.doc a Copyright IBM Corporation 2000, 2002 4-6

Implementing Preference Pages

i mport org.eclipse.core.runtinmne.*;

protected void performDefaul ts() {
super . perfornmDefaul ts();
Systemout. println("PropCycle: "
+ "> in perfornDefaults");
/1 get active plug-in (default or defined)
Pl ugin nyPlugin =
Pl at f orm get Pl ugi n("com i bm | ab. di al ogs");
Systemout. println("MPrefPage: Current Plug-in: \n\t"
+ nmyPl ugi n. getd ass());

You can use your plug-in id to ask the platform for a handle to the active plug-in. The Pl ugi n
class will accept any plug-in type (defined or default). Before you use a plug-in you need to
know what type it is so you know what methods you can use.

2. Inthe runtime instance of the Workbench, open the preference dialog, select your preference
page, and then click the Restore Defaults push button. Y ou should see this in the console:

MBPr ef Page: Current Plug-in:
class comibm | ab. Di al ogsPl ugi n

This is because when your PDE project was created a plug-in class was generated for you. If a
plugrin class was not included in your plug-in definition you would have seen the following:

MBPrefPage: Current Plug-in:
class org.eclipse.core.internal.plugin.DefaultPlugin

Step 2: Update code to use the Dialog Plug-in class

The platform plug-in class used in step 1 will not support preference processing. Y ou need
to have a handle to the DialogsPlugin class to support access to the stored preference
processing methods provided when the plug-in class was generated using the PDE.

1. Modify the per f or nDef aul t s() method in your preference page class so that you use your
Di al ogsPl ugi n class.

Replace this:

Pl ugin nyPlugin = Platform getPl ugi n("comibm]l ab. di al ogs");
With this:

Di al ogsPl ugi n nmyPl ugi n = Di al ogsPl ugi n. get Defaul t();

2. Restart the test workbench to verify that your plug-in class is being used. Open the preference
diaog, select your preference page, and then click the Restor e Defaults push button. Y ou
should see now see this in the console:

MBPr ef Page: Current Plug-in:
class comibm | ab. di al ogs. D al ogsPl ugi n

EX_Pref.doc a Copyright IBM Corporation 2000, 2002 4-7

Implementing Preference Pages

Part 3. Using a Preference Store

In this exercise you will add logic to store the value shown on the preference page created
previoudly. This includes creating a PreferenceStore and then using it to manage default
values and saved values for a key. These values will be shown on the preference page user
interface.

Note: At this point you could skip ahead and try Part 4: Implementing a field editor
preference page exercise that will let you use the preference store provided by the plug-in
class you just defined and try the preference page implementation that uses

Fi el dEdi t or s to automate the implementation of saved values. Y ou can always return
here later.

Step 1: Create a Preference Store

Implement the hook method doGet Pr ef er enceSt or e() to support creation of a
preference store for this preference page dialog. The Di al og framework processing calls
this method when you ask for the Pr ef er enceSt or e using the

get Pref er enceSt or e() method.

Your doGet Pr ef er enceSt or e() implementation will ask the plug-in for a
Pr ef er enceSt or e. This Pr ef er enceSt or e will then become active for the
preferences dialog.

1. Add the following import statementsto MyBasi cPr ef er encesPage:

i mport org.eclipse.jface. preference. *;
i mport org.eclipse.ui.plugin.*;

Add the highlighted logic to the init() method (shown below) in your
MyBasi cPr ef er encePage class.

public void init(IWrkbench workbench) ({
Di al ogsPl ugi n nmyPl ugi n = Di al ogsPl ugi n. get Defaul t();
set Pref erenceSt ore(nyPl ugi n. get PreferenceStore());

}

2. Add the lines of code highlighted below to the set Vi si bl e() method to request a
Pref erenceStore:

public void setVisibl e(bool ean visible) {

super. set Vi si bl e(vi si bl e);
System out. println(
"PropCycle: " + "> in setVisible(" + visible + ")");

/1 get prefStore reference
| PreferenceStore nyPS = this.getPreferenceStore();
System out. println(
"PropCycl e:
+ "My PrefStore in setVisible:
+ nyPS.toString());

EX_Pref.doc a Copyright IBM Corporation 2000, 2002 4-8

Implementing Preference Pages

The class instance data written as part of the Syst em out . pri ntl n() for the nyPS
variable will help you determine if you are using the same instance of a preference store when
restarting the preference page.

3. Test the property page logic and check the console to see that you have created a preference
store.

Note: You have not actually saved the preference value yet. Thisis done in the next step.

Y ou should be able to see, in the console, that the same preference store handle is returned
when you change the focus between your preference page and another preference page.

Y ou can step through the doGet Pr ef er enceSt or e() method to see how preference store
is created the first time and then retrieved as the current store from the dialog (this logic is driven

by theget Pr ef er enceSt ore() methodinthe Pr ef er encePage super class).

Each time you start the dialog, the same preference store is used, this is implemented
through the use of the plug-in class (a subclass of AbstractUIPlugin) to access to the
preference store. The plug-in class creates the object when required, and keeps a handle to
the object until the platform is shut down.

Step 2: Add preference store value management logic

The preference store is used to store and retrieve values by key. You aso have the ability
to define default values by key for use when no value has been defined (returned when the
preference store keyed vaue is null).

This preference store value management logic will be added to the preference page life
cyclemethods set Vi si bl e() and per f or mOk() and the plug-in method
initializeDefaultPreferences().

1. Begin by using the preference store to define a default vaue for the key that will be stored. Add
this method to the Di al ogsPI ugi n class:

protected void initializeDefaultPreferences(

org.eclipse.jface.preference. | PreferenceStore store) {
store.setDefault("text _field key", "nyTextDefaultValue");
Systemout.println("set preference defaults");

}

2. Theset Vi si bl e() method is run when the preference page is about to be shown. Add the
highlighted code below to the MyBasi cPr ef er encePage set Vi si bl e() method.

public void setVisibl e(bool ean visible) {

super. set Vi si bl e(visible);
System out . printl n(
"PropCycle: " + "> in setVisible(" + visible + ")");

/1l get prefStore reference
| PreferenceStore nyPS = this.getPreferenceStore();
System out . printl n(

"PropCycle: "

EX_Pref.doc a Copyright IBM Corporation 2000, 2002

4-9

Implementing Preference Pages

+">in setVisible: "
+ myPS.toString());

if (visible) {
t ext I nfo. set Text (
get PreferenceStore().getString("text field key"));

}

This will set the text field in the user interface to the value saved in the preference store (or the
default if no value was defined).

3. To save the user interface data as a keyed value in the preferences store add the highlighted
statements to the per f or moOk () method:

publ i c bool ean perfornmk() {
Systemout.println("PropCycle: " + "> in perfornmX");

get PreferenceStore(). set Val ue(
"text _field key", textlnfo.getText());

return super. performck();
}

4. To restore the default value add the highlighted statements to the per f or nDef aul t s()
method:

protected void performDefaul ts() {
super . perfornmDefaul ts();

System out . printl n(
"PropCycle: " + "> in perfornmDefaul ts");

/1 get active plug-in (default or defined)
Pl ugin nyPlugin =
Pl at f orm get Pl ugi n("com i bm | ab. di al ogs");
Systemout.printin("Current Plug-in: \n\t" +
myPl ugi n. get d ass());

t ext I nfo. set Text (
get PreferenceStore().getDefaul tString("text field key"));

5. Test the preference page logic and check the console to see that you have interacted with the
preference store.

The user interface text entry value will contain the default value at first (returned when the
keyed vaue is null).

Enter avalue and change pages. If you modify the text entry content, but do not use the Apply
push button, the originally saved (or default) value returns after a page focus change. Thisis

EX_Pref.doc a Copyright IBM Corporation 2000, 2002

4-10

Implementing Preference Pages

because the set Vi si bl e() method loads the value from the preference store each time the
page is shown.

Enter a value and then use the Apply push button. Y ou should see the new value return after
you change the focus between your preference page and the Info property page. The Defaults
push button will reset the visible value to the assigned default. Y ou still have to use Apply to
have these default values saved.

Exit the preferences dialog when testing is complete.

Part 4: Implementing a field editor preference page

A field editor preference page automates the process of linking the values obtained from
visua controls with a keyed value in a preference store.

Step 1. Add preference page extensions

The first task is adding another preference page extension.
1. Add the following preference page plug-in extensions to the plugin.xml file.

Note: You can copy these statements from scrapbook page EDU_plugin.xml:

<! - - VWWWWWWWWWWWWWWWWWWWWWWWWWW . - - >
<!-- Preferences Page2 Extension Field Editor -->
<I-- -->
<ext ensi on
poi nt ="or g. ecl i pse. ui . pref erencePages” >
<page
i d="com i bm I ab. di al ogs. fi el dPref page"
name="EDU: Basic Preferences SubPage"
class="com i bm | ab. di al ogs. M/Fi el dEdi t or Pr ef Page"
cat egory="com i bm | ab. di al ogs. pr ef pagel" >
</ page>
</ ext ensi on>
<l -- VVV - - >

This extension adds a sub page to the preferences page you defined earlier.

2. Save the plugin.xml file to store the new preference page definition.
Step 2: Implement a FieldEditor PreferencePage

Y ou will now implement afield editor preference page to map to the plug-in extension.

The MyFieldEditorPrefPage class will inherit the field editor preference page processing
implemented as part of the dialog framework.

1. Create a MyFieldEditorPrefPage class in the com.ibm.lab.dialogs package. This new class must
extend org.eclipse.jface.preference.Fiel dEditorPreferencePage and implement the
IWorkbenchPreferencePage interface.

Let the wizard generate the “Inherited abstract methods’ but NOT the “ Constructors from the
superclass’ (you will supply your own). This will add methods, such as the

EX_Pref.doc a Copyright IBM Corporation 2000, 2002 4-11

Implementing Preference Pages

cr eat eCont ent s() method, which will be used to customize the user interface for the
preference page.

Note: A compilation error will exist until you create the constructor in the next step.

2. Add the following import statement and constructor to the MyFieldEditorPref Page class:

i mport org.eclipse.jface. preference. *;

public MyFi el dEdi t or Pref Page() {

super (GRID);

set Description("My Field Editor Preference Page \n");
}

You can test the page now but it will not have anything but atitle.

3. Assign the preference store to the class by adding the highlighted logic to the constructor:

public M/Fi el dEdi t or Pref Page() {
super (GRID);
set Description("My Field Editor Preference Page \n");
| PreferenceStore store =
Di al ogsPl ugi n. get Defaul t (). get PreferenceStore();
set PreferenceStore(store);

}

Note: This requires that you have implemented the plug-in class as described in Part 2. Using a

plug-in to manage and store values.

Step 3: Add Field Editorsto the preference page

The cr eat eFi el dEdi t or s() method in the MyFi el dEdi t or Pr ef Page classis caled
to populate the user interface with the controls you want on your preference page. You
must customize this method to add the fields. Each field has a type and a key to be used in
the preference store assigned to the preference page.

1. Review the available field editors by opening up the common super class

(org.eclipse.jface.preference.FieldEditor). As you can see, there are many types of field editors:

EX_Pref.doc a Copyright IBM Corporation 2000, 2002

4-12

Implementing Preference Pages

|8 Hierarchy : FieldE v x

ERdh LR
=@ Ohject
SR F e Editor
© BooleanFieldeditor
® cColorFisldeditor
+-@ FontFisldeditor
= @* ListEditor
©® PathEditor
® RadioGroupFieldeditor
=@ stringFieldEditor
© IntegerFieldeditor
= @* stringButtonFisldEditor
® DirectoryFieldeditor
® FileFisldeditor

Figure 4-2
Field Editor Hierarchy [dialog_07.tif]

2. Customizethecr eat eFi el dEdi t or s() method to add field editors to your preference
page.

protected void createFiel dEditors() {

/1 Note: The first String value is the key used in
/1 the preference store and the second String val ue
/1 is the |label displayed in front of the editor.

Col orFiel dEditor colorField =
new Col or Fi el dEdi t or (
"COLOR_KEY", "COLOR_KEY_Label ",
get Fi el dEdi torParent ());

Bool eanFi el dEdi t or choiceField =
new Bool eanFi el dEdi t or (
"BOCOLEAN_KEY", "BOOLEAN_KEY_Label ",
org. eclipse. swt . SW. NONE,
get Fi el dEdi torParent ());

FileFieldEditor fileField =
new Fi |l eFi el dEdi t or (
"FI LE_KEY", "FILE_KEY_Label",
true,
get Fi el dEdi torParent ());
fileField.setFileExtensions(
new String[] { "*.jar", "*.txt", "*.zip" });

addFi el d(col orFi el d);
addFi el d(choi ceFi el d);
addFi el d(fil eField);

EX_Pref.doc a Copyright IBM Corporation 2000, 2002 4-13

Implementing Preference Pages

Step 4: Testing the field editor preference page
1. Start the runtime workbench, open a preference dialog, and select your preference page. It
should look like this:

£ Preferences Pz|
[+ Warkbench Lab: Basic Preferences SubPage
Build Ord
L Lreer My Field Editor Preference Page
+ Debug
¥ External Tools COLOR_KEY_Label |
Help
[BOOLEAN_KEY_Labal
Install\Jpdate LASTLE0D

+ Java FILE_KEY_Label | Browse...

-4 Lab: Basic Preference
to@ ob: Basic Preferer

+ Plug-In Developrment
Readme Example

+ Team

F > Restore Defaults | Apply |

Irnport... | Export... | oK | Cancel |

Figure 4-3
Customized Field Editor Preference Page [dialog_08.tif]

2. Manipulate the user interface to trigger the life-cycle methods. Y ou can follow this process if
you want:

Select the Lab: Basic Preferences Sub page

Manipulate the controls shown to set values

Select the OK push button

Shutdown the Workbench

Find the pref_store.ini filein this directory:
.\eclipse\

runti me-wor kspace\
. met adat a\ . pl ugi ns\comi bm | ab. di al ogs

Y ou should be able to see your field editor values in the file used to store preferences for your
plugin.

EX_Pref.doc a Copyright IBM Corporation 2000, 2002 4-14

Implementing Preference Pages

Exercise Activity Review

The dialog framework for preference page implementation was the focus area for this
exercise.

Y ou have worked with the basic functions of the dialog framework for preference pages by
creating extension definitions for preference pages and defining Java implementations of
preference pages and implementation of value storage using a preference store.

During this exercise you have learned how to:

Add preference page extensionsto apl ugi n. xm manifest file

Create a preference page that could restore values to the user interface from a preference store
Implement complete management of a preference store by adding support methods to the

Di al ogsPl ugi n class.

EX_Pref.doc a Copyright IBM Corporation 2000, 2002

4-15

Implementing Preference Pages

EX_Pref.doc a Copyright IBM Corporation 2000, 2002 4-16

Implementing Property Pages

Exercise 5:
|mplementing Property
Pages

Exercise 5: Implementing Property PAgEScouuuiiiiiiiiii e e e e e e e e e e e e e aneees

1o o (U T o] o NSO SPPPPR

S o ST O] o =T) P

Y TV = o] o] =T | AT = P

S (o TSI T (1] o PR

EXEICISE INSIIUCTIONS ... ceeeete ettt et ettt e et e e ettt e e e et e e e e et e e e e e et e e e e aban e e eeennns

Part 1: Property page definitionooeuiiiiiiis e e e e e e e e e e e

Step 1: Add property Page EXIENSIONS.iiuu e ee e e e e e e e e e e e e e et e e e e en e e et e eeanaeenns

Step 2: DEfiNg @ PrOPEIMY PAGE . ..uuieeeeiei ettt et e e e e e e e e e e e e e aaa

Part 2: Storing property ValUES DY FESOUICE iiee i eeeeeeeeeee e e e e e e e e e e e e et e e a e e s e eeaeeaaaees

Step 1: Add property value management l0giC StrUCTUIE.............coevuuieiiuieeii e e e e

Step 2: Add reSOUICE AP IOGIC . ..uuiiiii e e e e e e e e e e e e ea e eaes

EXEICISE ACHVIEY REVIEW. .. .ceeiiii ittt e e e e e e e e et e e e e et e e e e e e tn s e e aneeannaees
Introduction

This exercise guides you through the process of using the dialog support for property pages
in the Workbench to create value management pages for resource property values.
Exer cise Concepts

During this exercise, you will implement one or more of the following:

Plug-in definitions that support property page extensions to the workbench.
Persistence of data values using the resource APl for properties.

Skill Development Goals

At the end of this exercise, you should be able to:

Add property page extensions to a plug-in
Create a property page that can save values

EX_Prop.doc a Copyright IBM Corporation 2000, 2002

5-1

Implementing Property Pages

Exer cise Setup

These setup tasks must be complete before you begin the exercise:

Setup the Workbench so that all external plugins are visible to support plugin development and
testing.

Import the com.ibm.lab.dialogs project to your workspace.

Choose the perspective you like to work with during tool development. Both the Java and
Plug-in Development perspectives are useful for tool building.

Note: You may have aready performed these setup activities if you worked through the
wizard lab exercise.

The dialogs lab template provides you with a starter plug-in (EDU Diaogs) and a base set
of code, but the implementation of some code components is incomplete. Y ou get to add
new methods and references to other methods not yet invoked by the base code.

The com.ibm.lab.dialogs project contains the following files:

aPl ugi n. xm —astarter file to help you create the desired pl ug-i n.

getstart _b. gi f —agraphic file that will be referenced by the plug-in manifest file.

A set of Java scrapbook pages, organized by class, which contain code fragments referenced in this
lab. Y ou can use these to minimize the need to retype code defined in this document.

Partially coded classes that will be completed during the lab.

EDU pl ugi n. xm —ascrapbook of plug-in definitions that you can reuse during the lab.

O her files, such as .classpath and .cvsignore, which are not used in this
exercise.

Exercise Instructions

Part 1: Property page definition

A property page dialog is started using the Properties option on the context menu for the
file resource.

Step 1. Add property page extensions

Y ou will define extensions for a properties page that can be used to implement saved value
support for properties on resources found in the navigator.

1. Add the following properties plug-in extensions to the plugin.xml file.
Note: You can copy these statements from scrapbook page EDU_plugin.xml:

EX_Prop.doc a Copyright IBM Corporation 2000, 2002 5-2

Implementing Property Pages

< - - WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWAWVMAVVVVVY - - >

<l-- Properties Page Extension -->
<l-- -->
<ext ensi on poi nt="org. eclipse. ui.propertyPages">
<page

i d="comibm | ab. di al ogs. proppagel”
nane="EDU Fi |l e Properties"
obj ect O ass="org. ecli pse.core.resources.|File"
cl ass="comibm | ab. di al ogs. MyPr opert yPage"
nameFi |l ter="*. edu">
</ page>
</ ext ensi on>
<l -- VVV - - >

This defines a properties page associated to file resources with a name matching the * .edu pattern.
2. Save the plugin.xml file to store the property page definition.

Step 2: Define a property page

Y ou will now implement one of the pages defined in the plug-in extension.

The MyPr oper t yPage class will inherit the property page processing implemented as part
of the dialog framework and be available as a property page for files with the *.edu naming
pattern.

Note: You can use the PDE Extension page editor to generate the MyPr oper t yPage class
if you trigger the wizard using the drop down in the properties page for the class attribute.
This is the process you followed in the FirstPlugin Iab to generate the action class. If you
use this approach you can skip to step 2.

1. Create aMyPr opertyPage classinthecom i bm | ab. di al ogs package. This new class
must extend the class or g. ecl i pse. ui . di al ogs. Pr oper t yPage and implement the
interface
| Wor kbenchPr opert yPage.

L et the class wizard generate the “ Constructors from the superclass’ and “ Inherited abstract
methods’.

By default, the PropertyPage super class provides an implementation for using a preference
store to manage stored values. The controls you add to the property page can be initialized with
default values and then used to store customized values in a preference store.

Use of this dialog framework processing requires that you add logic to your property page
implementation class.

2. Add afield to the MyPropertyPage class so you can interact with it in methods that will be
defined later. Any errors will be corrected when you add import statements in the next step.

private org.eclipse.sw.w dgets. Text textlnfo;

3. Customize the createContents() method so that you have added at least one widget to the
property page. If you add these import statements to your class.

EX_Prop.doc a Copyright IBM Corporation 2000, 2002 5-3

Implementing Property Pages

i mport org.eclipse.swt.*;
i mport org.eclipse.swt.|layout.*;
i mport org.eclipse.swt.w dgets.*;

Y ou can replace the generated method with this one to add a text widget like this:

protected org. eclipse. swt.w dgets. Control createContents(
org.eclipse.sw.w dgets. Conposite parent) {
textl nfo = new Text (parent, SW.SINGLE | SW. BORDER);
text | nfo.set Text ("Text String Val ue");
GidData data = new GidData(GidbData. Fl LL_HORI ZONTAL) ;
t ext | nf o. set Layout Dat a(dat a) ;
return textlnfo;

Note: Remember, just as with other dialog type pages, the cr eat eCont ent s() method must
return a widget that is the parent of any other widgets that you add to the page.

4. Consider adding Syst em out . pri ntl n(); statementsto selected methods in your Property
Page class to trace data values or method invocation. For example, statements such as:

System out. println("PropPage: ------ > Constructor");
System out. println("PropPage: ------ > createContents");

could be added to the constructor and the cr eat eCont ent s() method.

5. Start your runtime workbench to test your property page definition and implementation.

6. Use the Workbench new file wizard to create a file named myfile.edu in a project or folder. If
you have not yet created a project, use the menu option File > New > Project to create a
project and then create a file named something like myfile.edu.

Select the new file in the navigator and use the Properties context menu option to see the
category you created. When you select the category you should see the following:

EX_Prop.doc a Copyright IBM Corporation 2000, 2002 5-4

Implementing Property Pages

X

= Properties for, myfile.edu

Info Lab: File Properties

Lab: File Properties

Text String Value

Restore Defaults | Apply |
Ok | Cancel |

Figure5-1

Basic Property Page [dialog_09.tif]
Thisis a custom property page, but there are only hard coded values shown. Note that the
Defaults, Apply, OK, and Cancel buttons are added automatically, but you have not yet
implemented any support for the value management life cycle in your property page class.

Part 2: Storing property values by resource

When you define a property page you have two options for storing values:

PreferenceStore — good for when the value is not specific to the resource but to the resource type
PersistentProperty — good for when the value is specific to the selected resource instance

To use a PreferenceStore you would follow the process outlined for a preference page (see
Part 3: Using a Preference Sore in the Implementing Preference Pages Exercise).

The processing required to save a value as a persistent property for aresource is similar to
that used for preference pages (you use the same life-cycle methods), but the saved value is
associated to the selected resource using the resource API defined as part of the workbench
platform.

Step 1. Add property value management logic structure

In this step, you will add the hook methods to your property page class.
1. Copy these methods to the MyPropertyPage class from the scrapbook page:

set Vi si bl e()
per f or mDef aul t s()
per f or mok()

per f or mppl y()
per f or mCancel ()

EX_Prop.doc a Copyright IBM Corporation 2000, 2002

5-5

Implementing Property Pages

2. If you wish, you can test the integration of these value management methods. Use the same
process described in the Implementing Preference Pages Exercise, Sep 3: Adding value
management life-cycle support.

Step 2: Add resource API logic
The persistent property resource API is used to store and retrieve values by key.

This preference store value management logic will be added to the property page life cycle
methods setVisible() and performOk().

1. Add the field and import statements shown below to prepare for using the resource API to store
a persistent property:

i mport org.eclipse.core.resources. *;
i mport org.eclipse.core.runtinmne.*;

private static QualifiedNanme PROP_NAVE KEY =
new Qual i fi edNane("comibm |l ab. di al ogs", "M/_Prop_Nane");

2. The setVisible() method is run when the properties page is about to be shown. By adding the
highlighted code below, the setVisible() method will set the text field in the user interface to the
value saved as a persistent property (or avalue that indicates that no value was found).

public void setVisibl e(bool ean visible) {
super. set Vi si bl e(vi sible);

Systemout.println("PropCycle: " +
"> in setVisible(" + visible + ")");

| Resource resource = (| Resource) getEl enent();

try {
String propVal ue =

resour ce. get Per si st ent Propert y(PROP_NAMVE KEY) ;
if (propValue !'= null)
t ext I nf 0. set Text (propVal ue);
el se
textlnfo.setText("No prop val ue found");
} catch (CoreException e) {
System out . printl n(

"PropPage: ----- > Trouble in get persistentProp");
System out . printl n(
"PropPage: ----- >" + e);

3. Save the user interface data as a keyed value associated with the selected resource by adding the
highlighted statements to the per f or mok () method:

EX_Prop.doc a Copyright IBM Corporation 2000, 2002

5-6

Implementing Property Pages

publ i ¢ bool ean perfornk() {

Systemout.println("PropCycle: " + "> in perfornmX");
| Resource resource = (I Resource) getEl enent();

try {
resour ce. set Per si st ent Propert y(PROP_NAME KEY, textlnfo.getText());

} catch (CoreException e) {
System out . printl n(
"PropPage: ----- > Trouble in get persistentProp");
Systemout. println("PropPage: ----- > " + e);

}

return super. performck();

4. Test the property page logic and check the console to review any messages that were posted.
The user interface text entry value will contain a hard-coded value at first (returned when the
keyed vaue is null).

Enter avalue and change pages. If you modify the text entry content, but do not use the Apply
push button, the originally saved (or default) value returns after a page focus change. Thisis
because the setVisible() method loads the value from the persistent property each time the page
is shown.

Enter a value and then use the Apply push button. Y ou should see the new value return after
you change the focus between your property page and the Info property page. The Defaults
push button could be used to reset the visible value to an assigned hard-coded default (not
implemented yet).

Exit the properties dialog when testing is complete.

Can you find where the property value saved has been stored by the Workbench platform? What does
this choice of physical location mean?

Exercise Activity Review
The didog framework for property page implementation was the focus area for this
exercise.

The didog framework for property pages was the focus area for this exercise.

Y ou have worked with the basic functions of the dialog framework for property pages by
creating extension definitions for property pages and defining Java implementations of a
property page.

Tasks completed include:
Added property page extensions to a plugin.xml manifest file

Created a property page that could save and restore values using the property page user interface
and the resource API for property values.

EX_Prop.doc a Copyright IBM Corporation 2000, 2002 5-7

EX_Prop.doc

Implementing Property Pages

a Copyright IBM Corporation 2000, 2002

5-8

JFace Programming

Exercise 6 Defining a
JFace Component

Exercise 6 Defining @ JFACE COMPONEINTuuuuuutuuittiiriititieeieeieeeeeeaeeeeee bbb beeberereeererenes 6-1
INEFOAUCTION ... 6-1
EXEICISE CONCEPLS ... 6-2

SKill DEVEIOPMENT GOAUS ... 6-2
EXEICISE SBIUPD oottt 6-2
EXEICISE INSIIUCHIONS ... 6-2
Part 1: Test Current Dialog opened by Popup Menu Contribution.............oooeeeiiin 6-2
Step 1. Review the Action Contribution Implementationuuvviiiiiiiiiiiiiiiiiii. 6-2
Step 2. Review the Dialog IMplementationuuueuiiiiiiiiiiiiiiiiiiiiiiiieririeeeeeeeeeeeeeeeeeeeee 6-3
Step 3. Test the EXIStING FUNCHONuuuiiiiiiiiiiiiiiiiiiiiiiiiiiiebeibebbiebeebbebeeeeeeeeeeeeebeeeeeeeeeeeeeeeeeeeenee 6-3
Part 2: Implement JFACe COMPONENT.......cooii i 6-3
Step 1. Define Base JFACE COMPONEINT.......uuuuuuiriuiiiiititiitirtitteeerebeeeeeeeeeeeee bbb 6-4
Step 2: Add Viewer Access and Delegate Methods to the JFace Componentevvveeeenns 6-4
Step 3: Add Viewer Creation and Configuration Support to the JFace Component 6-5
Part 3: Use JFace Component to Display Content in @ Dialog..........coooveeeeiiiiiieee 6-6
Step 1. Add JFace Component t0 Dialog COMPOSILEuuuuvrvuriiiiiiiiiiiiiiiiiiiieireiieeeeeeeereeeeeeeeee 6-6
Step 2. Customize the Content Provider for the Type of Input Object.............evvvvviiiiiiiiiiiiiniinnns 6-7
Step 3. Customize the Label Provider for the Object Elements..............uuvvviiiiiiiiiiiiiiiiiiiiiiiiininns 6-9
Step 4. Add a Listener to the Content Provider to Synchronize the Viewer with Model Changes...6-
10
Step 5. Add Viewer Selection Processing to the Dialoguuvviviiiiiiiiiiiiiiiiiiiiiiiiiiiiieieineeens 6-12
EXErCiSe ACHIVILY REVIEWccooiiiiiiiiiie 6-13

This exercise takes you through the process of defining and using a JFace component in a user
interface. In this exercise, the user interface component will be a simple dialog opened using a context
menu action on any | Fol der resource named readme in the Navigator or Package Explorer views.

The JFace component includes a viewer, content provider, and label provider which work together to
render information about a defined input object. The input object for the viewer will be identified by the
user interface part that uses the JFace component, a dialog in this exercise.

As you will see later, the JFace component defined will be reusable in other user interface parts.

Introduction

JFace is a fundamental building block for user interfaces when programming in Eclipse. You can use
SWT, JFace viewers, or a mix of both to define the user interface for a dialog of any kind, a view, or an
editor.

JFace viewers are adapters on SWT widgets that provide a specific framework for how widget content
(data to be shown) is obtained from an input identified to the viewer and known to the content provider.
The widget behind the viewer will be populated with objects that the content provider finds in the input
domain. The label provider will provide text and image values that are shown for each element instance
returned by the content provider.

Exercises © Copyright IBM Corporation 2000, 2003 6-1

JFace Programming

Exercise Concepts

The exercise begins with a working action and dialog, but the dialog shows nothing but the name of the
folder defined as input to the dialog by the action.

You will test this existing code, then build a JFace component that includes a viewer, content provider,
and label provider. This implementation will expose a portion of the viewer API so that the JFace
component can accept an input, add selection change listeners, use a predefined table in the viewer, and
allow alternate content provider and label provider implementations to be identified.

Skill Development Goals
This exercise looks at the definition and use of JFace-based user interface so that you can understand:

e The role of a viewer.

» The role of a content provider.

* The role of a label provider.

* How a viewer reports selection of an object being displayed.

The steps defined in each section are continuous. That is, they must be done in sequence; you cannot
jump straight to Section 2 or 3.

Exer cise Setup

Before you can begin this exercise, you must have access to the com i bm | ab. JFace template plug-in
project. This project should already have been imported into your workspace. If not, import the plug-in
from the exercise templates location on your workstation.

Exercise Instructions

Note: Each part must be performed in sequence. The definitions in Part 1 are used in Part 2; the result of
Part 2 sets up the system for Part 3.

Part 1: Test Current Dialog opened by Popup Menu Contribution
In Part 1 you will simply validate the function of the code given to you at the start of this exercise:

» An Action Contribution targeted at folders named readme
» A Dialog that is created with a reference to the selected folder and opened by
the Action Contribution

Step 1. Review the Action Contribution | mplementation
1. The plugin.xml defines a popup menu contribution.

How is the contribution defined such that it only exists for folders named readme?

2. Review the Java implementation of the action contribution.

How is it saving a reference to the selected folder?

Exercises © Copyright IBM Corporation 2000, 2003 6-2

JFace Programming

Step 2. Review the Dialog | mplementation
1. Review the structure of the Menber sDi al og class.

Where is the user interface defined?
How is the folder known to the action passed to the dialog?
2. ldentify where the folder reference is used in the Menber sDi al og class.

Step 3. Test the Existing Function
1. Start the runtime workbench.

2. If required, create a folder named readne and add some content to this folder. You can
use the example file creation wizard to create a few . r eadne files if you wish. The Readme
File creation wizard can be found in the Examples > Example Creation Wizards category
when you have the Eclipse examples installed. If not, create several . r eadne files using
the standard New File wizard.

3. Select the readme folder and then select the context menu:
Edu: JFace > Edu: Open JFace Dialog.

The result should be a dialog that looks like this:
£ JFace Component x|

|F.f a.test.tool/readme

(8]'4 Cancel

Figure 6-1
Template JFace Dialog

Close the runtime workbench after testing is complete.

Part 2: Implement JFace Component

The next task is to build a JFace component that uses a viewer, content provider, and label provider to
create the user interface content for a given input. You will build this as a reusable component to both
learn how to configure a JFace viewer, but also help reinforce the idea that JFace viewers can be used
anywhere you need a user interface. Anywhere Eclipse gives you a composite widget

(createControl (), createPartControl (), createbDi al ogArea()), you can create a viewer.

This JFace component will be used again in the View Programming exercise. Some elements of the
JFace component API you will define will not be used until then.

Exercises © Copyright IBM Corporation 2000, 2003 6-3

JFace Programming

Step 1. Define Base JFace Component

A standalone class will be used to create the JFace viewer as well as implement the associated content
provider and label provider. This class will wrap a JFace viewer and expose some of the viewer’s
framework methods so we can use this class as a full function viewer with the internally implemented
content provider and label provider.

The easiest way to do this is let the PDE do most of the work and change the generated code to suit our
needs.

1. Create a new plug-in project with a view that contains table content, without any of the
optional view features, as generated by the PDE.

Do the following to create this plug-in project with the correct view code:

* Open the New Wizard selection page (Ctrl+N), choose the Plug-in Development
category and Plug-in Project option, and then select the Next > button.

» Enter any value you want for the Project name and then select the Next > button twice
to get to the Plug-in Code Generators page.

» Select the Plug-in with a view entry in the list and then select the Next > button three
times to get to the View Features page.

» Deselect all the toggle options on the View Features page and then select the
Finish button.

This generates a Sanpl eVi ew class that will be moved to the JFace project and
simplified to become the JFace component.

2. Select the Sanpl eVi ew class and drag it to the package in the com i bm | ab. j f ace project.
The Move dialog will be opened, just choose OK.

Once done delete the plug-in project you created to get the view code generated.

3. Open the Sanpl eVi ew class in the Java editor and delete the following methods:

e createPart Control (Conposite parent)
» showiessage(String nessage)
 setFocus()

If you want you can move the Sanpl eVi ew() constructor to the top of the file.

4. Modify the class definition to remove the superclass reference; the class should not extend
anything. Use the Source > Organize Imports option (Ctrl+Shift+O) to clean things up
and then save the Sanpl eVi ew class source.

5. Use the Refactor > Rename context menu in the Package Explorer view to rename the
Sanpl eVi ew class to JFaceConponent .

You now have a class that can be reworked to be a reusable JFace component.
Step 2: Add Viewer Access and Delegate M ethods to the JFace Component
The vi ewer field in the JFaceConponent class needs to be accessible by the user interface part that

wants to reuse this class. A get method and delegate methods for the vi ewer will be added to the
JFaceConmponent API.

1. Generate a get method for the vi ewer field.

Exercises © Copyright IBM Corporation 2000, 2003 6-4

JFace Programming

Select the vi ewer field in the Outline view and choose the context menu Source >
Generate Getter and Setter... context menu. Generate a get method only.

2. Generate several delegate methods for the vi ewer field.

Select the vi ewer field in the Outline view and choose the context menu Source >
Generate Delegate Methods... context menu. Generate delegates for the following
methods:

* addSel ecti onChangedLi st ener (1 Sel ecti onChangedLi st ener)
 refresh()

« refresh(Object)

* set ContentProvider (I ContentProvi der)
 setlnput(Object)

* setLabel Provider (I Label Provi der)

e update(oject, String[])

e update(Cbject[], String[])

These methods will allow the user interface parts to communicate with the
associated viewer control when they use the JFaceConponent class.

Step 3: Add Viewer Creation and Configuration Support to the JFace Component
When the viewer inside the JFaceComponent is created it must be given a parent composite or table
reference. Constructors will be used to pass in on of these references for this purpose.

Methods that support the configuration of the viewer with either a default or custom content provider and
label provider will also be added.

1. Add the following constructors to the JFaceConponent class:

/**

* @aram conposite

*/
/1 Parent conposite used to create viewer
publ i c JFaceConponent (Conposite conposite) {

this.viewer = new Tabl eVi ewer (conposite);

}

/**

* @aram conposite, table

*/

/1 Table used to create viewer - table has a parent conposite

publ i c JFaceConponent (Tabl e table) {
this.viewer = new Tabl eVi ewer (tabl e);

}

2. Use the Source > Organize Imports option (Ctrl+Shift+O) to add the required import
statements. Select the SWT composite and JFace table if prompted. You are prompted if
the Java editor finds duplicate classes so you have to choose between those offered.

Exercises © Copyright IBM Corporation 2000, 2003 6-5

JFace Programming

3. Add the following confi gur eVi ewer () methods to the JFaceConponent class:

/**
* Viewer gets a default content provider and | abel provider
*/
public void configureViewer() {
set Cont ent Pr ovi der (new Vi ewCont ent Provi der());
set Label Provi der (new Vi ewLabel Provider());

}
/**
* Viewer gets a customcontent provider and |abel provider
*/
public void configureViewer (I ContentProvider cp, |BaselLabel Provider |Ip) {
set Cont ent Provi der (cp) ;
set Label Provi der (I p);

}

The JFaceConponent class is ready to be used by a user interface part. The viewer currently displays
only static data (see the get El emrent s() method in the content provider), but this will still validate that
it is functional when used in the user interface.

Part 3. Use JFace Component to Display Content in a Dialog

The current dialog just shows the name of the folder passed as input by the action. It is time use the
JFace component to customize the dialog user interface.

The JFace component will be added first, so it can be tested, then the default content provider will be
customized to obtain content from the input identified to the viewer.

Step 1. Add JFace Component to Dialog Composite
Begin by adding the viewer to the existing user interface in the dialog.

1. Add the following code to the addJFaceVi ewer () method:

JFaceComponent jconp = new JFaceConponent (Vvi ewer Area) ;
j conp. confi gureViewer();
j conp. set | nput (f ocusFol der);

This method is called by the cr eat eDi al ogAr ea() method in the Menber sDi al og
class. The JFace component constructor will create the viewer using the passed
composite as the parent, the configure process defines the default content provider
and label provider, and the input known to the dialog is passed to the viewer.

That's all it takes! You will customize this method later to add selection processing.

2. Launch the runtime workbench to test the new dialog user interface. Select the readme
folder and then select the context menu Edu: JFace > Edu: Open JFace Dialog. The
dialog shown should look like this:

Exercises © Copyright IBM Corporation 2000, 2003 6-6

JFace Programming

= JFace Componeht F x|
F/a.test.tool/readme

One
Two
Three

oK Cancel

Figure 6-2
JFace Component Viewer in the Dialog User Interface

The dialog displays input known to the dialog and the static data defined in the
get El enent s() method of the content provider.

Close the runtime workbench after testing is complete.

Step 2. Customize the Content Provider for the Type of I nput Object

The current dialog just shows the name of the folder passed as input by the action. This value has been
passed to the viewer using the set | nput () method, but the content provider has not used the input to
find content.

It is time to customize the default content provider in the JFace component to find content based on the
defined input. When the input is defined to the viewer, it in turn tells the current content provider using
the i nput Changed() method. The viewer then asks for content using the get El enment s() method.
These methods need some customization.

1. Modify the i nput Changed() method in the content provider (the inner class in the
JFaceConponent class).

Add the i nput field and modify the method to match the logic shown below:

private | Resource input;

public void input Changed(Vi ewer v, Cbject oldl nput, Object new nput) {
System out. printl n(
"Vi ewer-> Content Provi der. i nput Changed() - Input: " + newl nput);
this.input = (I Resource) new nput;

}

Use the Source > Organize Imports option (Ctrl+Shift+O) to add the required
import statement(s).

Exercises © Copyright IBM Corporation 2000, 2003 6-7

JFace Programming

2. Modify the get El enent s() method in the content provider. Modify the method to match the
logic shown below:

public Object[] getEl ements(Object parent) {
System out. printl n(
"Vi ewer-> ContentProvider.getEl ements() - for parent: " + parent);
if (input instanceof |Container) ({
| Cont ai ner inputContainer = (IContainer) input;
| Resource[] menbers = null;
try {
nmenbers = i nput Cont ai ner. menbers();
} catch (CoreException e) {
/1 Auto-generated catch bl ock
e.printStackTrace();

}

if (menbers.length !'=0) {
return (Qoject[]) nenbers;

1

}

return new String[] { "no nenbers to display" };

}

The input known to the dialog is a folder in the resource tree (I Cont ai ner), but the
logic shown above is prepared for any kind of resource (project/folder/file).

Use the Source > Organize Imports option (Ctrl+Shift+O) to add the required
import statement(s).

3. Launch the runtime workbench to test the modified dialog user interface. Select the
readme folder and then select the context menu Edu: JFace > Edu: Open JFace Dialog.
The dialog shown should look like this:

£ JFace Component Dialeg x|

F/a.test.tool/readme

L/a.test.tool/readme/samplel.readme
L/a.test.tool/readme/sample2. readme

oK Cancel

Figure 6-3
JFace Component Viewer with Customized Element Content

The viewer in the dialog displays the data returned by the get El enent s() method
of the content provider. The values shown are the result of t oSt ri ng() on the
objects. This is the default label provider processing.

Close the runtime workbench after testing is complete.

Exercises © Copyright IBM Corporation 2000, 2003 6-8

JFace Programming

Step 3. Customize the L abel Provider for the Object Elements
The default label provider processing needs to be customized. As with the content provider, the label
provider also needs to know about the type of object shown in the viewer.

1. Modify the get Col umText () method to the label provider (the inner class in the
JFaceConponent class). Add the method logic shown below:

public String get Col umText (Cbject obj, int index) {
if (obj instanceof |Resource) {
| Resource res = (| Resource) obj;
return res. get Name();

}
return get Text (obj);

}

If the current element object is not an | Resour ce, the default value (t oString()) is
returned by the superclass implementation of get Text () .

2. Modify the get | mage() method in the label provider to customize the type of image
returned. The method should match the logic shown below:

public I mage getl mge(Object obj) {
if (obj instanceof |Resource) {
| Resource res = (| Resource) obj;
switch (res.getType()) {
case | Resource. PROJECT :
return Pl atformJ .get Wrkbench().get Shar edl mages() . get | mage(
| Shar edl nages. | MG_OBJ_PRQIJECT) ;
case | Resource. FOLDER :
return Pl atformJ .get Wrkbench(). get Shar edl mages(). get | mage(
| Shar edl nages. | MG_OBJ_FCOLDER) ;
case | Resource. FILE :
return Pl atformJ .get Wrkbench(). get Shar edl mages() . get | mage(
| Shar edl mages. | MG_OBJ_FI LE) ;

}

return null;

Exercises © Copyright IBM Corporation 2000, 2003

6-9

JFace Programming

3. Launch the runtime workbench to test the modified dialog user interface. Select the
readme folder and then select the context menu Edu: JFace > Edu: Open JFace Dialog.
The dialog shown should look like this:

£ JFace Component x|

F/a.test.tool/readme

samplel.readme
sample2.readme

(®] 4 Cancel

Figure 6-4
JFace Component Viewer with Customized Display Content

The data displayed in the viewer is the result of the modified get Col utmText ()
and get | mage() methods in the label provider.

Close the runtime workbench after testing is complete.

Step 4. Add a Listener to the Content Provider to Synchronize the Viewer with Model Changes

The content provider is responsible for listening to the model and telling the viewer
when changes have occurred. The model could be the input object passed to the
content provider in the i nput Changed() method, or be the domain in which the
input is a participating object.

If the input represents the model instance itself, a listener would be added to the
new input, and removed from the old input, each time the i nput Changed() method
was called.

For this content provider the input is an object in the workspace model, so all we
need is a single listener, but we also need to remove the listener when the content
provider is disposed.

Exercises © Copyright IBM Corporation 2000, 2003 6-10

JFace Programming

1. Modify the content provider i nput Changed() method to define the content provider as a
workspace resource change listener:

public void input Changed(Vi ewer v, Cbject oldl nput, Object new nput) {
System out. printl n(
"Vi ewer-> Cont ent Provi der. i nput Changed() - Input: " + new nput);

/1 1f this is the first tine we have been given an input
if (oldlnput == null) {
| Resource resource = (I Resource) new nput;
/1 Content Provider hook to nodel changes
Resour cesPl ugi n. get Wr kspace() . addResour ceChangeli stener (thi s);

}

this.input = (I Resource) new nput;

You will also need to add i npl enent s | Resour ceChangelLi st ener to the
Vi ewCont ent Pr ovi der inner class definition. The compiler will warn you about a
missing method (r esour ceChanged()), but you will add that shortly.

Use the Source > Organize Imports option (Ctrl+Shift+O) to add the required
import statement(s).

2. Modify the content provider dispose() method to remove the resource change listener:

public void dispose() {
/1 Renove |istener when content provider is disposed
Resour cesPl ugi n. get Wr kspace() . renoveResour ceChangeli st ener (t hi s);

}

3. Tell the viewer that the model has changed after a resource change event:

public void resourceChanged(| Resour ceChangeEvent event) {
System out. println("resourceChanged");
final | ResourceDelta delta = event.getDelta();

/1 Content Provider tells viewer about nodel change
Control ctrl = viewer.getControl ();
if (ctrl '=null && 'ctrl.isDisposed()) {
/1 Do a sync exec, not an async exec, since the resource delta
/1 nust be traversed in this nethod. It is destroyed
/1 when this nethod returns.
ctrl.getD splay().syncExec(new Runnabl e() {
public void run() {
viewer.refresh();
}
1)
}
}

The resource change event is sent on a non-Ul thread so we have to get on the Ul
thread before telling the viewer to refresh. The ref resh() method tells the viewer
to rebuild the content. The ref resh(el enent) or the available updat e() methods

Exercises © Copyright IBM Corporation 2000, 2003 6-11

JFace Programming

would provide a more granular notification of change and allow the viewer to be
more efficient. You should consider these alternatives in your JFace viewer
programming.

This logic cannot be tested yet as the dialog blocks user changes to the workspace.
When the JFace component is used in a view the role of this logic will be more
apparent.

Step 5. Add Viewer Selection Processing to the Dialog
One last customization to dialog that makes use of the viewer capabilities. A viewer can report element
selection to an interested party.

1. Add this logic to the end of the addJFaceVi ewer () method in the Menber sDi al og class.
This code should go after the viewer input has been defined:

j conp. addSel ecti onChangedLi st ener (new | Sel ecti onChangedLi stener () {
public void sel ecti onChanged(Sel ecti onChangedEvent event) {
/1 Send selection to |abel
Systemout.println(">D al og hears sel ection" + event.getSelection());

| StructuredSel ection ssel = (IStructuredSel ection) event.getSel ection();
sel ected. set Text("");
if ((ssel !'=null) && (ssel.getFirstEl enent() instanceof |Resource)) {

| Resource res = (I Resource) ssel.getFirstEl enent();
sel ect ed. set Text (res. get Nare()) ;
}
}
1)

Use the Organize Imports option to correct any missing import statements.

2. Launch the runtime workbench to test the modified dialog user interface. Select the
readme folder and then select the context menu Edu: JFace > Edu: Open JFace Dialog.
In the dialog select an entry in the viewer.

The dialog shown should look like this:
£ JFace Component l’ x|

F/a.test.tool/readme

sample2.readme

samplel.readme

B sample2.readme

(®] 4 Cancel |

Figure 6-5
JFace Component Viewer with Viewer Selection Processing

Exercises © Copyright IBM Corporation 2000, 2003 6-12

JFace Programming

The data displayed in the viewer is the result of the modified get Col utmText ()
and get | mage() methods in the label provider.

Close the runtime workbench after testing is complete.

Exercise Activity Review

What you did in this exercise:

» Learned how to use a viewer in a user interface.
» Customized a content provider to get data from the input source and a label provider to

work with the objects shown in the viewer.
» Added viewer selection processing to demonstrate how you can find and react

to the selection known to the viewer.

Exercises © Copyright IBM Corporation 2000, 2003 6-13

JFace Programming

Exercises © Copyright IBM Corporation 2000, 2003 6-14

View Part Programming

Exercise 7
Defining a View Part

EXErciSe 7 DEfiNiNg @ VIEW Part.........uuuuuuuiiuiiiiiiiiiiiiiiitiiiiitieieeeieesbeeaeeeeeeeeeeeeseeeeeeessbeeeseeessesseesbeebeeeerenes 7-1
Lo T T340 o 7-1
EXEICISE CONCEPLS ... 7-2

SKill DEVEIOPMENT GOAUS ... 7-2
EXEICISE SBIUPD oottt 7-2
Primary EXercise INSIIUCHIONSoooiiiiiiii e 7-2
Part 1: IMPlement VIEW Partcoooo oo 7-2
Step 1. Define VIEW EXTENSIONcciiiiiiiiiei e ee et e et e s e e e e e e et s e e e e e e e et a e e e e e eeeenennnns 7-2
Step 2. GENEIAte VIBW Parlt.......ciii i e e e e e e e e e et e e e e e e e eanennnns 7-3
Part 2: Add the JFace Component to the View Partccoooiv i 7-5
Step 1. Add JFace Component to View User INterfacecccoviveeviieiiiiiii e 7-5
Step 2. Customize the View to React to Viewer Selection Changes..............uuvvvviviiiiviiviieiiiinnnn. 7-7
Part 3: Add Workbench Selection Processing to the View Part: Listen and Share 7-8
Step 1. Share Viewer Selection with Other Workbench Partscccccceeviiiiiiiieicii e, 7-8
Step 2. Listen to Selection in Another Workbench Part — the Navigator Viewccccvvvvennns 7-9
Optional EXErCiSEe INSIIUCHIONSuuiieeeiieeeiites e e ettt s e e e e e et e s e e e e e e e et s e e e e e e e eeasen e e e eeaeeeeennnnnn 7-10
Optional Part 1: Add Menu and Task Bar Action to View and VIeWercccoovvevvvveiiiiiiineennennns 7-10
Step 1. Create Actions for View Part Menu, Task Bar Items, and Context Menu..................... 7-11
Step 2. Get and Populate the View Menu and Tool Bar..........cccovvvviviiiiiiiiiiiin e 7-12
Step 3. Create and Populate the Viewer ContexXt MENUuceviieeiiieiiiiiniieeeeeeeeiiiineneeeeaeenns 7-13
Step 4. Share Context Menu with the WOrkbench............coovvuiiiiiii e 7-14
Optional Part 2: Add Sorter and Filter Support to the VIeWer..........cccccoiiiii 7-15
Step 1. Define a Sorter Class and Use it in the VIEWETccoiiiiiiiiiiiiiii e 7-15
Step 2. Add Category SUppPOrt t0 the VIEWET..........uuuiiiii e e e e e e 7-16
Step 3. Define and Integrate a Viewer Filteruiiii i e e 7-17
Optional Part 3: Modify Viewer to Use Multi-Column Tablecccooovieiiiiiiiiiiiieeeeeeeeciee e e 7-19
Step 1. Create Table with Columns and Pass to JFace Component for Viewer Creation......... 7-19
Step 2. Create a Label Provider that Supports Multiple COlUMNS..............evvuviiiiiiiiiiiiiiiiiiiiiens 7-20
EXErCiSe ACHIVILY REVIEWccooiiiiiiiiii 7-21

This exercise takes you through the process of defining and using a View part in the workbench. In this
exercise, the user interface component will be based on the JFace component you created earlier.
Additional function, as appropriate for a view part, will be added to the component.

Note: If you did not complete the JFace component exercise, you can use the com i bm sol n. j f ace
project instead. You may need to import this project from the plug-in development solutions folder.

Introduction

View parts are the fundamental user interface building block in the Eclipse workbench. You will probably
define more views than editors as part of your tool.

Views typically include JFace viewers, as a viewer is prepared to be integrated into the workbench and
can be configured so they communicate with other workbench parts. Views can also have their own task
and menu bars that supplement the context menu that can be added to a viewer.

Exercises © Copyright IBM Corporation 2000, 2003 7-1

View Part Programming

Some of the code you will write in this exercise applies only to a view part, but other code, such as
context menu creation applies to a viewer as it may be used in any type of user interface (view part,
dialog, editor).

Exercise Concepts

The exercise begins with a working action and dialog, but the dialog shows nothing but the name of the
folder defined as input to the dialog by the action.

You will test this existing code, then build a JFace component that includes a viewer, content provider,
and label provider. This implementation will expose a portion of the viewer API so that the JFace
component can accept an input, add selection change listeners, use a predefined table in the viewer, and
allow alternate content provider and label provider implementations to be identified.

Skill Development Goals
This exercise looks at the definition and use of JFace-based user interface so that you can understand:

e The role of a viewer.

» The role of a content provider.

* The role of a label provider.

* How a viewer reports selection of an object being displayed.

The steps defined in each section are continuous. That is, they must be done in sequence; you cannot
jump straight to Section 2 or 3.

Exer cise Setup

Before you can begin this exercise, you must have access to the com i bm | ab. r esour cevi ew
template plug-in project. This project should already have been imported into your workspace. If not,
import the plug-in from the exercise templates location on your workstation.

Primary Exercise Instructions

Note: Each part must be performed in sequence. The definitions in Part 1 are used in Part 2; the result of
Part 2 sets up the system for Part 3.

Part 1: Implement View Part

The first task is to define and create the view part. First, you add the extension definition, then you create
a class by letting it be generated by the PDE.

Step 1. Define View Extension
Edit the plugin.xml and add the view extension, this includes a category for the view (how it will be found
in the Show View dialog) and the view itself.

Exercises © Copyright IBM Corporation 2000, 2003 7-2

View Part Programming

1. Editthe pl ugi n. xni file in the com i bm | ab. r esour cevi ew project you imported earlier.
Select the Extensions tab. You will now specify the information needed for the View
extension.

2. Define the view extension.

Select the Add... button. Select Generic Wizards > Schema-based Extensions.
Press Next. Scroll down the list and select the extension point for views,
org.eclipse.ui.views and Press Finish.

3. Define a view category.

Select the org.eclipse.ui.views entry in the extensions list and choose the New >
Category context menu. Using the Properties view, modify the id for the category
to be com.ibm.lab.view.category and the name for the category to be Edu: Views.
The parent category will be blank.

4. Define the view

Select the org.eclipse.ui.views entry in the extensions list and choose the New >
View context menu.

Using the Property View, specify the following:

e category of comi bm | ab. vi ew. cat egory
* icon of i cons\sanple.gif

e idofcomibmlab.viewresourcevi ew

« name of Resource View

Ignore the class property for now, you will specify a value later.

5. Save the pl ugi n. xnl file. The XML for the new view should look like this in the Source
page:

<ext ensi on
poi nt ="org. ecli pse. ui.vi ews">
<cat egory
name="EDU. Vi ews"
i d="comibm I ab. vi ew. cat egory" >
</ cat egory>
<vi ew
name="Resource Vi ew'
category="com i bm | ab. vi ew. cat egory"
class="comibm | ab. resourcevi ew. Vi ewPart 1"
i d="comibmlab.view resourcevi ew'>
</ vi ew>
</ ext ensi on>

Step 2. Generate View Part
The PDE can generate classes for many extension types. You will now use the PDE to generate a class
for your view part.

1. Return to the extensions page of the plugin.xml file and select the Resource View (view)
entry. Generate the View class using the PDE.

Exercises © Copyright IBM Corporation 2000, 2003 7-3

View Part Programming

In the Property View, generate the class by selecting the continuation entry (...) in
the class field. In the Java Attribute Editor, specify that you want to generate a new
Java class. The class name is Resour ceVi ew and you want to let the wizard open
an editor on the class after it is created. Leave the source folder and package name
at their default settings.

Select Finish to generate the class.

When complete the wizard will open an editor open on the Resour ceVi ew class.
The wizard generated the required cr eat ePart Cont rol () method and a
setFocus() method.

2. Add an SWT control to the View's user interface in the cr eat ePart Cont r ol () method.
Your choice of SWT control content. For fun try using the SWT Layouts example view to
generate a bit of SWT code you can paste into the method. You will have to modify the
SWT Layout view generated code to use the composite passed to the
creat ePart Cont r ol () method instead of the shel | referenced included in the generated
code.

Use the Source > Organize Imports option (Ctrl+Shift+O) to add the required
import statement(s).

Your cr eat ePart Cont r ol () method should now look something like this (created
using the FillLayout page in the SWT Layout view):

public void createPart Control (Conposite parent) {
RowlLayout rowLayout = new RowLayout ();
Fill Layout fillLayout = new Fill Layout ();
parent. set Layout (fillLayout);
List list0O = new List (parent, SW.BORDER);
listO.setltens (new String [] {"Item 1", "ltem2", "ltem 3"});

Tree treel = new Tree (parent, SW.BORDER);
Treeltemtreelteml = new Treeltem (treel, SW. NONE);
treelteml. set Text ("lteml");

Treeltemtreelten? = new Treeltem (treel, SW. NONE);
treelten?. set Text ("ltem");

Tabl e tabl e2 = new Tabl e (parent, SW.BCRDER);

tabl e2. setLinesVisible (true);

Tableltemtableltenl = new Tabl eltem (tabl e2, SW. NONE);
tabl el tenl. set Text ("Itenl");

Tableltemtablelten? = new Tabl eltem (tabl e2, SW. NONE);
tabl el tenR. set Text ("ItenR");

Note: Copy the code above from the JPages\ Part 1_Vi ewPart . j page file.

3. Launch the runtime workbench to test the view user interface.

Exercises © Copyright IBM Corporation 2000, 2003 7-4

View Part Programming

Open the view: Window > Show View > Other...and then select the Resource
View in the Edu Views category. The view shown will look like this if you used the
code shown above:

{7 Resource View

- Iteml Iteml
- Ttem2 Ttem2

Figure7-1
Resource View with SWT-based User Interface

You now have a class that can be reworked to be a functional View part.

The SWT controls will be replaced by a viewer created from the reusable JFace
component defined in a previous exercise (or you can use the JFace component
solution provided).

Close the runtime workbench after testing is complete.

Part 2: Add the JFace Component to the View Part

The current view just shows the SWT controls you added to test the view. It is time use the JFace
component to customize the view user interface.

The JFace component will be added first with a default input value so it can be tested, then the view will
be customized to obtain the input from a source outside the view.

Note: If you did not complete the JFace component exercise you will need to load the solution and use
that code during this exercise. Use the same technique outlined in Exercise 4. Lab Imports but import
only the project com.ibm.soln.jface from the \PluginSolutions directory.

Step 1. Add JFace Component to View User Interface

Begin by adding the viewer in when the view's user interface is created. This must begin with a
modification to the plugin.xml to add the JFace component project to the list of required projects, only
then can we get compile time and runtime visibility to the classes in that project.

1. Modify the pl ugi n. xml dependencies by adding the com i bm | ab. j f ace or
com i bm | ab. sol n. jface project to the list of required projects. The
comibm | ab. resourcevi ew pl ugi n. xnl requires element should look like this when you
are done:

<requi res>
<i nport plugi n="org.eclipse.core.resources"/>
<i nport plugin="org.eclipse.ui"/>
<i mport plugin="comibmlab.jface"/>
</requires>

2. Modify the pl ugi n. xm runtime definition for the com i bm | ab. j f ace project to share the
runtime code with other plug-ins. Select the jar file hame on the runtime page and then

Exercises © Copyright IBM Corporation 2000, 2003 7-5

View Part Programming

select the Export the entire library option. If you are using the com i bm | ab. sol n. j f ace
project this has already been done.

The comibmlab.jface plugin.xnl runtime element should look like this when
you are done:

<runti ne>
<library nanme="jfaceConponent.jar">
<export name="*"/>
</library>
</runtime>

3. Add this field to the Resour ceVi ew class definition:

/1 JFaceConponent reference for listeners to be defined |ater
JFaceConponent j conp;

4. Modify the creat ePart Control () method so that it contains only the following code:

j comp = new JFaceConponent (parent);
j conp. confi gureViewer();
j conp. set | nput (Vi ewPl ugi n. get Wr kspace(). get Root());

The JFace component constructor will create the viewer using the passed
composite as the parent, the configure process defines the default content provider
and label provider, and the workspace root is defined as the input to the viewer.

Use the Source > Organize Imports option (Ctrl+Shift+0O) to revise the import
statements to match the code.

That's all it takes! You will customize this method later to add selection processing.

5. Launch the runtime workbench to test the new view user interface. The view shown should
look like this:

£ Resource Vi =

Fa.b.c

Fa.custom. project

#Fqa.test.tool
r-L"q.r'.s

Figure7-2
Resource View with JFace Component Viewer in the User Interface

The view displays content based on the identified input, the full workspace root.

Since the content provider in the JFace component was constructed with a resource
change listener, the content in the Resource View will change if you add a new
project to the workspace.

Exercises © Copyright IBM Corporation 2000, 2003 7-6

View Part Programming

Close the runtime workbench after testing is complete.

Step 2. Customize the View to React to Viewer Selection Changes
You did this in the JFace component exercise, but this time you will do something a bit more interesting.
The view part has access to the workbench site, and from there can contribute content to the status bar.

1. Modify the creat ePart Cont rol () method in the view part by adding the logic shown
below after the viewer input has been defined:

j conp. addSel ecti onChangedLi st ener (new | Sel ecti onChangedLi stener () {
public void sel ecti onChanged(Sel ecti onChangedEvent event) {
Systemout.println(">View hears sel ection" + event.getSelection());
| StructuredSel ection ssel = (IStructuredSel ection) event.getSel ection();

/1 Get conmon Wbr kbench status bar
| St at usLi neManager status =
get ViewSi te(). get Acti onBars(). get St at usLi neManager () ;

/1 Push I Resource |ocation to status bar

if ((ssel !'=null) && (ssel.getFirstEl enent() instanceof |Resource)) {
| Resource res = (I Resource) ssel.getFirstEl enent();
stat us. set Message(res. getLocation().toString());

} else {
st at us. set Message(nul) ;

st at us. updat e(f al se);

});

Note: Copy the code above from the JPage\ Part 2_JFace_Conp. j page file.

Use the Source > Organize Imports option (Ctrl+Shift+O) to revise the import
statements to match the code.

2. If you wish to simplify the cr eat ePar t Cont r ol () method logic you can refactor the code.
Extract a method from the addSel ecti onChangedLi st ener () logic just added. Name the
new method pr ocessVi ewer Sel ecti on() . This method will be invoked as part of the
creat ePart Cont r ol () method.

3. Launch the runtime workbench to test the modified view user interface. Open the Resource
View if required (it may be open from before). The workbench shown should look like this
when an element in the view is selected:

Exercises © Copyright IBM Corporation 2000, 2003 7-7

View Part Programming

£ Plug-in bevelopment - Resourd w Plug-irn - Eclipse Platform - o] x|
File Edit MNavigate Search Project EDU Soln Plug-ins Run Window Help
[Svbee |espov|Ov] v iR [d v~ o~
ﬁ € Resource View =
-

Fa.b.c.e

Za.custom. project

Fa.test.tool

& com.ibm. lab.resourceview

Bq.r.s

E:/Eclipse-2.1. 1/wswb/runtime/code_Solutions/a.b.c

Figure 7-3
Status Bar Content from Viewer Sdlectionin View

The workbench status bar displays information based on the selected element in
the JFace viewer in the view. Close the runtime workbench after testing is
complete.

Part 3: Add Workbench Selection Processing to the View Part: Listen and Share

The current view reacts to the element selected in the viewer contained in the view part. The JFace
architecture allows workbench parts that want to participate, the ability to both listen to selections outside
their own part and share the current selection of their viewer with other workbench parts.

This level of communication is what allows new views to react to the selection in existing views, and how
common Outline and Properties views determine what they will show in their content area.

You will now modify your Resource View to both share its own selection with any workbench part that
cares to listen and then listen and react to the selection in the Navigator view.

Step 1. Share Viewer Selection with Other Workbench Parts
Lets make one last customization to view that makes use of the viewer capabilities. A viewer can report
element selection to an interested party.

1. Modify the creat ePart Cont rol () method in the view part by adding the logic shown
below at the end of the method:

/1 Share Viewer Selection with other workbench parts
getViewSi te(). set Sel ecti onProvi der (j conp. getViewer());

This will allow other views, such as the properties view, to react to the current
selection if that selection can contribute properties view content. If you review the
content provider in the JFaceConponent , you will see that the get El enent s()
method returns an | Resour ce array when members are found in the input.

2. Launch the runtime workbench to test the modified Resource View.

Open the Properties view and arrange the views so you can see both the Resource
view and Properties view. Select an entry in the Resource view and inspect the
contents of the Properties view. You should see something like this:

Exercises © Copyright IBM Corporation 2000, 2003 7-8

View Part Programming

£ Resource - Eclipse Platform . ;IEI il
File Edit MNavigate Search Project EDU Soln Plug-ins Run Window Help
[Svprs)ov]evea~ s [AAACcvo-
E & Properties [62 B v x x
|| Property |Va|ue
,% =l Info Fa.b.c.e

derived false & a.custom.project

editable true Fa.test.tool

lost modified 7/29/03 11:56 PM & com. ibm. lab. resourceview

linked false

location E:\Eclipse-2.1. 1\wswb\runtime\code_Solutionsiq.r.s

name q.r.s

path /q.r.s

E:/Eclipse-2.1. 1/wswb/runtime/code_Solutions/q.r.s

Figure 7-4
Properties View Reacting to Sdection Shared by View Part

How does it work? The | Resour ce object implements the | Adapt abl e interface,
this allows the Pr opert ySheet to ask if the object has an | Propert ySour ce
adapter. The resource responds with the Resour cePr oper t ySour ce class, which
provides the content in the Properties view.

If you were to return your own object array in the content provider, your object
would have to either implement the | Pr opert ySour ce interface or have an adapter
that does.

Step 2. Listen to Selection in Another Workbench Part —the Navigator View

The current viewer input is defined as the workspace root. The Resource View can change the input
dynamically; it just needs to have an alternative. You will modify the Resource View so that it listens to
the selection in the Navigator view and uses this as input to the viewer.

1. Modify the creat ePart Cont rol () method in the view part by adding the logic shown
below at the end of the method:

/1 React to selection in other workbench parts
get Site().get Page().addSel ecti onLi st ener(
"org. eclipse.ui.views.ResourceNavigator", this);

The view part can get to the workbench page and add a listener. The listener added
above is only for selections in the Navigator view.

A compile error will be generated. This requires that the Resour ceVi ew class
definition implement the required interface.

2. Modify the Resour ceVi ew class definition so that the | Sel ecti onLi st ener interface is
implemented:

public class ResourceView extends ViewPart inplenents |SelectionListener {

Exercises © Copyright IBM Corporation 2000, 2003 7-9

View Part Programming

3. Save the class so that the compile adds the error about the missing abstract method. Use
the quick fix support (Ctrl+1) to generate the missing sel ecti onChanged() method.

4. Customize the sel ect i onChanged() method by adding the logic shown below:

public void sel ecti onChanged(!WrkbenchPart part, |Selection selection) {
Systemout.println("View heard outside selection " + selection);

/1 Set viewer input based on current Navigator view selection
| StructuredSel ection ssel = (IStructuredSel ection) selection;
if (ssel.getFirstEl enent() instanceof | Container)
jconmp.setlnput ((lContainer) ssel.getFirstEl enent());
el se
j conp. set | nput (Vi ewPl ugi n. get Wr kspace(). get Root());

Note: Copy the code above from the JPage\ Part 3_Sel ecti on. j page file.

If the selected resource is an | Cont ai ner it is defined as the input to the viewer. If
not, the workspace root is defined as the viewer input. The sel ecti onChanged()
logic above is simplified by the fact that only one workbench part can be sending
selection input. If the listener was added for the selection of any workbench part,
the associated logic might have to reflect the possibility of a non-resource selection
or even selection in the Resour ceVi ewitself.

Launch the runtime workbench to test the modified Resource View.

Open the Package Explorer view and arrange it so it can be seen at the same time as the
Navigator and Resource views. If you have not created a Java project in the workspace, do
SO Now.

7. Select a project or folder in the Navigator view; you should see the content of the Resource
View change to reflect the new selection. Trace messages will also be written to the
console identifying the selected object.

Select a project in the Package Explorer view, the Resource View should not
change. If you deselect the Navigator view selection or select a file, the Resource
view input will change back to the workspace root.

Close the runtime workbench after testing is complete.

Optional Exercise Instructions

Note: Each exercise part in this section can be done independently. You may be able to pick one to do
now, or only be able to do these outside of the class timeframe, depending on how long you spent on the
primary exercise activity.

Optional Part 1: Add Menu and Task Bar Action to View and Viewer

The current view reacts to the viewer selection contained in its user interface. The JFace architecture
allows workbench parts that want to participate in the selection framework the ability to both listen to
selections outside their own part and share their current selection with other workbench parts.

Exercises © Copyright IBM Corporation 2000, 2003 7-10

View Part Programming

Step 1. Create Actionsfor View Part Menu, Task Bar Items, and Context Menu
The creation of skeleton actions is straightforward. You will copy code to build these

1. Add these fields to the Resour ceVi ewclass. They can be copied from the JPage file.

private Action actionl;
private Action action2;
private Action doubl e ickAction;

Use the Organize Imports option to correct any missing import statements. When
prompted, choose the or g. ecl i pse. j face. acti on. Acti on option.

2. Add this method to the Resour ceVi ewclass. It should be copied from the JPage file.

private void nakeActions(final StructuredViewer viewer) {

actionl = new Action() {
public void run() {
showMessage(vi ewer, "Action 1 executed");
}
b _
actionl.set Text("Action 1");
actionl.set Tool Ti pText ("Action 1 tooltip");
actionl. setl mageDescri ptor(
Pl at f or MUl . get Wor kbench() . get Shar edl nages() . get | mageDescri pt or (
| Shar edl mages. | MG_OBJS_| NFO _TSK)) ;

action2 = new Action("Action 2", |Action. AS_RADI O BUTTON) ({
public void run() {
if (this.isChecked())
showMessage(vi ewer, "Action 2 executed - now checked");
el se
showMessage(vi ewer, "Action 2 executed - now unchecked");

} }
action2.setTool Ti pText ("Action 2 tooltip");
action2. set Checked(fal se);
action2. setl mageDescri ptor(
Pl at f or MUl . get Wor kbench() . get Shar edl nages() . get | mageDescri pt or (
| Shar edl mages. | MG_OBJS_TASK TSK)) ;

doubl ed i ckAction = new Action() {
public void run() {
| Sel ection selection = viewer.getSelection();
nject obj = ((IStructuredSel ection) selection).getFirstEl enent();
showvessage(vi ewer, "Doubl e-click detected on " + obj.toString());
}
i
}

Note: Copy the code above from the JPage\ Xtra_Part 1_Acti ons. j page file.

Use the Organize Imports option to correct any missing import statements. The
compile errors will be corrected in the next step.

Exercises © Copyright IBM Corporation 2000, 2003

7-11

View Part Programming

3. Add the showmvessage() method, it is referenced by the actions created in the previous
step.

private void showMessage(StructuredViewer viewer, String nessage) {
MessageDi al og. openl nf or mat i on(
vi ewer. get Control ().getShell (),
"Sanpl e View',
nessage) ;

Note: Copy the code above from the JPage\ Xtra_Part 1_Acti ons. j page file.
Use the Organize Imports option to correct any missing import statements.

4. Modify the creat ePart Control () method in the view part by adding the logic shown
below at the end of the method:

// Create actions for use in menus and the tool bar
makeAct i ons(j conp. get Vi ewer ());

The view part can get to the workbench page and add a listener. The listener added
above is only for selections in the Navigator view. If the selected resource is an

| Cont ai ner itis defined as the input to the viewer. If not, the workspace root is
defined as the viewer input.

You cannot test this code yet; the actions need to be added to the view and viewer
first.

Step 2. Get and Populate the View Menu and Tool Bar

1. Add this method to the Resour ceVi ew class:

private void contributeToActionBars() {
| ActionBars bars = getViewSite().getActionBars();

| MenuManager nanager1l = bars. get MenuManager () ;
nmanager 1. add(acti onl);

manager 1. add(new Separator());

nmanager 1. add(acti on2);

| Tool Bar Manager nanager = bars. get Tool Bar Manager () ;
manager . add(acti onl);
manager . add(acti on2);

Note: Copy the code above from the JPage\ Xtra_Part 1_Acti ons. j page file.

Use the Organize Imports option to correct any missing import statements. When
prompted, choose the or g. ecl i pse. j f ace. acti on. Separ at or option.

2. Modify the creat ePart Cont r ol () method in the view part by adding the logic shown
below at the end of the method:

Exercises © Copyright IBM Corporation 2000, 2003

7-12

View Part Programming

// Add actions to the view nenu and the tool bar
contri but eToActionBars();

3. You can test the view now if you want (open it if it was not already open). There will be a
menu pull down and two tool bar icons you can select. They map to the same actions
(actionl, action2), and do nothing beyond showing a dialog to say they are here (using
the showvessage() method).

Step 3. Create and Populate the Viewer Context Menu

1. Add this method to the Resour ceVi ew class:

private void hookCont ext Menu(StructuredVi enwer viewer) {
MenuManager nenuMgr = new MenuManager (" #PopupMenu") ;
menuMyr . set RenoveAl | WhenShown(true);

menuMyr . addMenulLi st ener (new | MenuLi stener () {
public voi d nenuAbout ToShow | MenuManager manager) {
nmanager . add(acti onl);
nmanager . add(acti on2);

/1 Other plug-ins can contribute there actions here ("additions")
nmanager . add(new Separ at or (1 Wr kbenchAct i onConst ants. MB_ADDI TI ONS)) ;

}
1),

Menu menu = nenuMyr. cr eat eCont ext Menu(vi ewer . get Control ());
vi ewer . get Control (). set Menu(menu);

Note: Copy the code above from the JPage\ Xtra_Part 1_Acti ons. j page file.

Use the Organize Imports option to correct any missing import statements. When
prompted, choose the or g. ecl i pse. swt . wi dget s. Menu option.

Note that in the nenuAbout ToShow() method you could be reacting to the current
viewer selection to determine what context menu actions to add.

2. Modify the creat ePart Cont r ol () method in the view part by adding the logic shown
below at the end of the method:

// Add actions to the view nenu and the tool bar
hookCont ext Menu(j conp. get Vi ewer ());

You can test the view now if you want. It now has a context menu for entries in the
viewer with two actions you can select:

Exercises © Copyright IBM Corporation 2000, 2003 7-13

View Part Programming

Fa.b.c
X 1 dction 1

Za.te s Action 2

Figure 7-5
Context Menu for Viewer

These actions map to the same actions used in the menu and tool bar.

Close the runtime workbench after testing is complete.

Step 4. Share Context Menu with the Workbench

1. Modify the hookCont ext Menu() method in the view part by adding the logic shown below
at the end of the method:

/1 Register viewer nmenu with workbench
get Site().registerContext Menu(nenuMgr, viewer);

2. Test the view now. The context menu has entries for actions from your view part and from
other plug-ins who'’s contributions map to the type of object being shown in the viewer:

{5 Resource ¥ i v %

Fa.b.c

Zq.custon crion

Bq test t % Action 2

= com.ibm Team »

Fq.r.s .
Compare With 4
Replace With g
Restore from Local History...

Figure 7-6

Context Menu for Viewer

Note: The actions shown on the context menu will depend on what plug-ins you
have configured at test time. Some of the class solutions also contribute to the
object shown in the viewer.

Do you remember what type of object this is? Hint: Go see the get El enent s()
method in the content provider.

If the content provider returned an object that was not known to others, then even if
the viewer menu was registered with the workbench, object contributions would not
find an object match and therefore not be shown. Contributions that targeted the
view by id would still be shown (discussed further in the contributions topic).

Exercises © Copyright IBM Corporation 2000, 2003 7-14

View Part Programming
Close the runtime workbench after testing is complete.

Optional Part 2: Add Sorter and Filter Support to the Viewer
Viewers can have an active sorter and any number of filters defined to control how the elements returned
by the content provider are displayed by the viewer.

You will now define and add a sorter and a filter to the viewer you have created. This can be done
without having completed Optional Part 1, but you will not be able to do all of the last step where you link
the use of the filter to the toggle action.

Step 1. Definea Sorter Class and Useit in the Viewer

1. Before you begin, you might want to test the current code so that you can compare the
current sort order of entries in the view with what will be displayed after you define the
sorter. Here is an example of a project with several folders and files displayed in the default

order:

£ Resource

.project
ABC.txt
QRS . txt
= abe
apple. txt
Eqrs

Figure 7-7

Default Sort Order for a Table Viewer
The default order is as the objects were returned by the content provider. If there is
a defined order, it is determined by the nenber s() method that was used in the
content provider to get the viewer elements.

Close the runtime workbench after testing is complete.

2. Add an inner class hamed Resour ceSor t er to the Resour ceVi ew. This inner class should
extend Vi ewer Sort er . No fields or methods are required at this point so this is all that is

required:

/1 Sorter for Viewer
public class ResourceSorter extends ViewerSorter {

}

Use the Organize Imports option to correct any missing import statements.

3. Add the sorter to the viewer by adding the logic shown below to the end of the
creat ePart Cont r ol () method:

/1 Add sorter to viewer
j conp. get Viewer().setSorter(new ResourceSorter());

4. Test the view now. The viewer content should now be sorted:

Exercises © Copyright IBM Corporation 2000, 2003 7-15

View Part Programming

£ Resource i v x

=abe
Eqrs
.project
ABC.txt
apple. txt
QRS txt

Figure 7-8
Table Viewer with Sorted Content

The sort order is defined just by adding the sorter. As you can see the sort order is
not based on the resource name. By default the sorter uses the value returned by
the content provider's get Text () method.

The default get Text () method returns the t oSt ri ng() value for the resource. For
the list above this would be:

F/ a. sorted. proj ect/ abc

F/a.sorted. project/qgrs

L/ a. sorted. proj ect/. project

L/ a. sorted. proj ect/ ABC. t xt

L/ a. sorted. proj ect/ appl e. txt

L/ a. sorted. proj ect/ QRS. t xt

So the sorted order is based on the t oSt ri ng() value which just so happens to put
folders first.

Close the runtime workbench after testing is complete.
Step 2. Add Category Support to the Viewer

The sorter can refine the sort process by assigning categories to each element. The default is that all
elements are in the same category. You will now adjust the sorter to define three categories.

1. Add the following fields to the Resour ceSort er class in the Resour ceVi ew.

int dotted cat = O;
int container cat = 1;
int file_cat 2;

2. Add this cat egory() method to the Resour ceSort er class in the Resour ceVi ew.

public int category(Cbject elenment) {
/1 Category defined by type (Container/File/File starting with a .)
if (elenent instanceof | Container)
return container_cat;
el se {
IFile file = (IFile) elenent;
if (file.getNanme().startsWth("."))
return dotted cat;
el se
return file_cat;

Exercises © Copyright IBM Corporation 2000, 2003 7-16

View Part Programming

Note: Copy the code above from the JPage\ Xtra_Part2_Sorter_Filter.j page
file.

Use the Organize Imports option to correct any missing import statements.

3. Test the view now. The viewer content should now be sorted within categories:

&
4
x

£ Resource Vi i

.project
= abe

= qre

ABC. txt
apple. txt
QRS . txt

Figure 7-9
Table Viewer with Content Sorted by Category

The sort order is defined just by adding the sorter. As you can see the sort order is
not based on the resource name. By default the sorter uses the value returned by
the

Close the runtime workbench after testing is complete.

Review the Vi ewer Sor t er superclass for more information on how you can further
control sorting. Methods of interest include:

* isSorterProperty() — called as part of the vi ewer . updat e() logic to determine if a
change to viewer content should trigger a re-sort.

e conpare() — called to determine sort order between two elements. You can
override this method to implement customized sort processing.

Step 3. Define and Integrate a Viewer Filter
A filter can be used to determine which elements are actually displayed in the viewer. In this step you will
define a filter and add it to the viewer.

1. Add the following field to the Resour ceVi ew.

/1 field to reference filter in action |ogic
private ResourceFilter filter = new ResourceFilter();

The compile error will be resolved in the next task.

2. Add an inner class named Resour ceFi | t er to the Resour ceVi ew. This inner class should
extend Vi ewer Fi | t er and implement the required sel ect () method:

/1 Filter for Viewer
public class ResourceFilter extends ViewerFilter {
public bool ean sel ect (Vi ewer viewer, bject parentEl enment, Cbject elenment) {
/1 Return true for all but dotted files (starts with a .)
if (elenent instanceof IFile) {
IFile file = (IFile) elenent;

Exercises © Copyright IBM Corporation 2000, 2003 7-17

View Part Programming

if (file.getNanme().startsWth("."))
return fal se;
el se
return true;
} else
return true;

Note: Copy the code above from the JPage\ Xtra_Part2_Sorter_Filter.jpage
file.

Use the Organize Imports option to correct any missing import statements.

3. Add the filter to the viewer using one of these techniques:

» Hardcode the filter by adding the logic shown below to the end of the
creat ePart Cont r ol () method:

/1 Add filter to viewer
jconmp.getViewer().addFilter(filter);

» Add the filter as part of the toggle action (act i on2) created during Optional Part 1.
Adjust the act i on2 definition in the makeAct i ons() method to look like this:

action2 = new Action("Action 2", |Action. AS_RADI O BUTTON) {
public void run() {

if (this.isChecked())
/1 Add filter to viewer
viewer.addFilter(filter);

el se
/1 Renove filter to viewer
viewer.renoveFilter(filter);

Note: Copy the code above from the JPage\ Xtra_Part2_Sorter_Filter.jpage
file.

4. Test the view now. When the filter is active the viewer content will not include dotted files:

il@r » X

= abe

= qrs
ABC.txt
apple. txt
QRS. txt

Figure 7-10
Table Viewer without Dotted File Content

Exercises © Copyright IBM Corporation 2000, 2003 7-18

View Part Programming

Optional Part 3: Modify Viewer to Use Multi-Column Table

The JFace component used in the view part creates a default table viewer. This viewer has one column
in the table. You can implement a multi-column viewer but you have to create the table first and use it
when creating the viewer. In this part you will do that, and adjust the content provider and label provider

logic to support multiple columns.

Step 1. Create Table with Columns and Pass to JFace Component for Viewer Creation

1. Modify the creat ePart Cont rol () method to pass a table to the JFaceConponent when
creating the viewer. Replace this logic (j conp = new JFaceConponent (par ent) ;) with:

Tabl e table = createTabl eControl (parent);
j comp = new JFaceConponent (tabl e);

Use the Organize Imports option to correct any missing import statements.

2. Implement the following cr eat eTabl eCont r ol () method:

private Tabl e createTabl eControl (Conposite parent) {
Tabl e tabl e = new Tabl e(parent,

SWI. H_ SCROLL | SWF.V_SCROLL | SWI. MULTI | SWI. FULL_SELECTION);

t abl e. set Li nesVi si bl e(true);

Tabl eLayout | ayout = new Tabl eLayout ();
t abl e. set Layout (| ayout) ;

t abl e. set Header Vi si bl e(true);
String[] STD HEADINGS = { "Resource Nane", "Resource Data" };

| ayout . addCol utmDat a(new Col ummWéi ght Dat a(5, 40, true));
Tabl eCol um tcO0 = new Tabl eCol uim(t abl e, SWI. NONE) ;

t c0. set Text (STD_HEADI NGS[0]) ;

tcO. set Al i gnment (SWI. LEFT) ;

t c0. set Resi zabl e(true);

| ayout . addCol utmbDat a(new Col utmWAeéi ght Dat a(10, true));
Tabl eCol um tcl = new Tabl eCol um(tabl e, SWI. NONE) ;
tcl. set Text (STD_HEADI NGS[1]) ;

tcl. set Ali gnment (SWI. LEFT) ;

tcl. set Resi zabl e(true);

return table;

Note: Copy the code above from the JPage\ Xt ra_Part 3_Tabl e_Col unns. j page

file.

This logic adds two columns with columns headers to the table. The columns are

given appropriate information to size appropriately in the table layout
(Col uimWéi ght Dat a).

Use the Organize Imports option to correct any missing import statements. When

prompted, choose the option that begins with or g. ecl i pse.

Exercises © Copyright IBM Corporation 2000, 2003

7-19

View Part Programming

3. Test the view now. The custom table the view now has two columns:

£ Resource i & v x
Resource Name |Resour'ce Data

.project .project

= abe = abe

[E'qrs = qrs

ABC.txt ABC.txt

 apple. txt apple. txt

5 QRS. txt QRS txt

Figure 7-11

Table Viewer with Two Columns

Both columns have the same content, this is because you have not customized the
label provider to return values based on the current column index.

Step 2. Create a L abel Provider that Supports Multiple Columns

1. Modify the get Col unmText () method in the Label Provi der to return an alternate value for
the second column:

public String get Col umText (Cbject obj, int index) {
/1 1f an | Resource then process for nane
if (obj instanceof |Resource) {
| Resource res = (| Resource) obj;
if (index == 0)
return res. get Name();
el se
return res.toString();
}
return get Text (obj);

}

2. Modify the get Col uiml mage() method in the Label Provi der to return a null value for the
second column:

public I mage get Col uml nage(Obj ect obj, int index) {
if (index == 0)
return getl mage(obj);
el se
return null;

Exercises © Copyright IBM Corporation 2000, 2003 7-20

View Part Programming

3. Test the view now. The custom table the view now has two columns with custom content:

£ Resource i v~ x
Resource N... | Resource Data |
.project L/a.sorted.project/.project

= abe F/a.sorted. project/abe

= qrs F/a.sorted.project/qrs

ABC. txt L/a.sorted.project/ ABC. txt
apple.txt L/a.sorted.project/apple. txt

QRS txt L/a.sorted.project/ QRS . txt

Figure 7-12
Customized Content in the Table Viewer Columns

Both columns now have customized content.

Exercise Activity Review

What you did in this exercise:

» Learned how to define a view part with a simple SWT user interface

» Customized a view part with a viewer-based user interface

» Added workbench part communication to a view part

» Dynamically modified the input to a viewer based on external selection
» Defined menu and task actions for a view part

* Added a context menu to a viewer

» Implemented sort and filter support for a viewer

* Implemented a multicolumn table user interface in a viewer

Exercises © Copyright IBM Corporation 2000, 2003

7-21

Editor Development

Exercise 8 Editor
Devel opment

EXErcise 8 EditOr DEVEIOPMIENLuuu it e e e e e e e e et e e e et e e e e eate s eeeeatnnaeeaarnaaaaees 8-1
[1igoTo [N ot i o] o TN PO TTTRTRR T PSPPPPPPTIN 8-1
G (o R 0 (o= o KT 8-1
SKill DEVEIOPMENT GOAUSceeevieeeeii ettt e et e e e et e e e et e e e et e e e et neeeanan s 8-3
G (o YIRS T (1 o P 8-3
EXEICISE INSIIUCTHIONS ...ttt e e e e e e e ee bbb s e e e e e e ees bbb e e e e aeeeennes 8-3
Part 1: Implement an EditOr Part..............uiiiiiiiiiiii e e e et e e e e eeane e e eanens 8-4
Step 1. Declare the EdIitor EXIENSION.........oiiiiiiiieeiis e e e e e et e eeeaa e eens 8-4
Step 2. Generate the EAIEOr ClasS........cvuueiiiiii e e et e e e eat e eeees 8-4
Step 3. Complete and Test the Bare-Bones Implementation of a Basic Editorcccevees 8-5
Part 2: Create a Customized USer INtEIACE.uuuuuiiie it 8-6
Step 1. Customize the Editor User INterface............uoviiiiiiiiiiiiii e 8-7
Part 3: Model Instantiation and Modification Management..............coeuuiiiiriiiinieeeii e 8-8
Step 1. Identify when the Editor Makes Modifications to the INput............cccooeeviiiiiiiiii e 8-8
Step 2. Instantiate the Model Using the Editor INPUL............cooeiiiiiiiiiiii e 8-9
Step 3. Implement Support for Reacting to Model Modifications.............cceevieiiiiiiiiiiii e 8-9
Step 4. Implement Support for Reacting to Direct Modification of the Resource......................... 8-10
Part 4: Connect the Model with the User Interface VIEWETccoooiiiiiiiiiiiiiiieeii e 8-10
Step 1. Creating Content and Label PrOVIAEIS...........uviiiiiiiiieiiiee e 8-10
Step 2. Associating the Viewer with the Model ..., 8-10
Part 5: Saving the EditOr INPUL...........iii e e e e e e et s e e e e et s e e e eaan e eeaees 8-11
StEP 1. AU SAVE PrOCESSING ... ceiitiieeiiiie ettt e e et et e e e e et e e e e et e e e e et e e e e era s 8-11
Step 2. Add SAVE AS... PrOCESSING. .. ciiiteieeiiiie et e et e e e e e e e e e et e e e e et a e e et s 8-11
(= Te A AN (o 1 gTo I o 1 (o g A Yox 110] £ 1= F USRI 8-12
Step 1. Define the ACtion CONtIIDULONcoiiiii e 8-12
Step 2. Add Additional Actions t0 the EditOr...............iiiiiiiiiieiii e 8-13
EXEICISE ACHVILY REVIEW.....uu ittt sttt e e et e e e et e e e ettt e e e aat s e e e eatnnaeeestnnaaeees 8-14

This exercise takes you through the process of defining and implementing a new editor. The editor will have
a custom user interface created using a JFace table viewer and be able to open, display, and modify the
contents of an appropriate resource in a workspace project.

I ntroduction

This exercise will lead you through the process of developing a basic editor (as opposed to a JFace Text
editor, which is designed to edit source code).

Exer cise Concepts

Eclipse makes building editors easier by providing an editor framework. You concentrate on building the
unique behavior for your editor and the framework handles the common behavior.

Exercises © Copyright IBM Corporation 2000, 2003 8-1

Editor Development

This exercise starts with the basics of creating an editor. Many of the implementation steps are the same as
those described in the Views discussion and exercise. While the roles that views and editors fulfill for the
user are quite different, you will find that from an implementation viewpoint, they are very similar. Let us

summarize the classes that will be involved:

ClassName

Description

#comibmlab. nsseditor. core

I M ni Spreadsheet Li st ener

Notification interface between MiniSpreadsheet and
their

interested parties.

M ni Spr eadsheet

Simple model for a "mini-spreadsheet" containing
text/integer cell values.

M ni Spr eadsheet Row

Represents a single row of a mini-spreadsheet.

#comibmlab. nsseditor. ui

M ni Spr eadsheet Cont ent Provi der

Mediate between the table viewer's requests for data
and the underlying mini-spreadsheet model.

M ni Spr eadsheet Edi t or

Editor Class

M ni Spr eadsheet | mages

Convenience class for the Ul plug-in's image
descriptors.

M ni Spr eadsheet Label Provi der

Map between a mini-spreadsheet and its displayable
label.

M ni Spr eadsheet Ul Pl ugi n

The main Plugin class

#comibmlab. nsseditor. ui.actions

AppendRowAct i on

Action to append a new row to the mini-spreadsheet.

ChangeAl i gnnent Acti on

Action to change the column alignment of the mini-
spreadsheet editor.

ClearAll Acti on

Action to clear all rows in the mini-spreadsheet.

M ni Spr eadsheet Edi t or Acti on

Common superclass for all mini-spreadsheet editor
actions.

M ni Spr eadsheet Edi t or Acti onBar Cont ri but or

Coordinate the addition of actions on behalf the mini-
spreadsheet editor.

M ni Spr eadsheet RowAct i onFi | t er

Action filters allows an action delegate to be
hidden/disabled without having to create an instance
of its target action. This comes in particularly handy
when a plug-in extension isn't yet loaded, but its
contributed actions must reflect current state.

M ni Spr eadsheet RowActi onFi | t er Fact ory

Adapter factory to support basic Ul operations for
MiniSpreadsheetRow.

RenoveRowAct i on

Action to remove the selected row(s) from the mini-
spreadsheet.

ShowTot al Acti on

Action to display the sum of all integer cells of the
mini-spreadsheet.

Note: Not all these classes can be found in the template project source folder. Some of the classes in the
comibml ab. msseditor. ui.actions package will be copied into the package during the exercise.

Exercises © Copyright IBM Corporation 2000, 2003 8-2

Editor Development

Skill Development Goals
At the end of this lab, you should have an understanding of how to create an editor for use in Eclipse.

Exer cise Setup

Before you can begin this exercise, you must have access to the com i bm | ab. MSSEdi t or template
plug-in project. This project should already have been imported into your workspace. If not, import the plug-
in from the exercise templates location on your workstation.

Exercise Instructions

You will develop a “mini-spreadsheet editor. You will declare an editor extension and define a toolbar button
and pull-down menu actions to perform calculations. When finished, the mini-spreadsheet editor will look
like this:

£~ Resource - Echipse Platform
File Edit WNavigate Search Project Run Calculations Window Help

B2 | &~ E==EBx
—
=S Navigator L4l || B ~dessertOrd X
By||E 1= example | A B c
[dessertorder.mss 1 Dan 1 Chocolate-Chocolate Chip
2 Jim 2 Rocky Road
3 John 4 Lemon Gelato
4 Pat 3 Chocolate
5 Scott 3 Fudge Walnut
s | shen | 4 |Decadent Chocolate Dream
22 Outline X
An outline is not available.
¥ Tasks (0 items) % E 4
| C.‘ - | Description Resource In Folder Location

Figure 8-1
Completed Mini-Spreadsheet Editor

These are the steps to be followed in this exercise to implement an editor:

Implement an editor part (extension and class).

Create a customized user interface.

Instantiate the model and manage user modifications of the editor input.
Connect the model with the user interface.

Save the input to the editor.

2 T S o

Add editor actions.

Exercises © Copyright IBM Corporation 2000, 2003 8-3

Editor Development

Part 1. Implement an Editor Part

In addition to the normal attributes of i d, nane, and cl ass, an editor extension also defines an

ext ensi ons attribute. This attribute is a comma separated list of file extensions, these identify the types of
files this editor accepts as input. The nane attribute will be shown in the Open With menu choices
presented when the context menu for a resource. When the user selects a file with an *.mss extension, the
open choice Mini-Spreadsheet will correspond to the M ni Spr eadSheet Edi t or implementation of an
editor.

Step 1. Declare the Editor Extension

1. Editthe pl ugi n. xm file inthe com i bm | ab. MSSEdi t or project you imported earlier. Select
the Extensions tab. You will now specify the information needed for the editor extension.

2. Define the editor extension.

Select the Add... button. Select Generic Wizards > Schema-based Extensions.
Press Next. Scroll down the list, select the extension point for new wizards,
org.eclipse.ui.editors, and Press Finish.

3. Select the new entry and use the New > Editor option to add an edi t or entry. This entry
identifies the new editor you will create.

In the Properties view, enter these values for the attributes ext ensi ons, i con, i d, and

nane:
Property | Value [
extensions mss
filenames
icon @ icons/spreadsheet. gif
id "® com.ibm. lab. minispreadsheeteditor
launcher ® i
name ® Mini-Spreadsheet _|;I
4| r

Note: The editor extension can also be defined by copying the extension from the
code snippet in P1_I npl enent _Edi t or. j page.

Step 2. Generatethe Editor Class
The PDE can generate classes for many extension types. You will now use the PDE to generate a class for
your editor. This class will extend Edi t or Part and implement the basic editor structure.

1. Return to the extensions page of the pl ugi n. xni file to generate the wizard class using the
PDE and select the Mini-Spreadsheet (editor) entry in the list.

2. Inthe Properties View, generate the class by selecting the continuation entry (...) in the class
field.

In the Java Attribute Editor, specify that you want to generate a new Java class. Use
a class name of M ni Spr eadsheet Edi t or and com i bm | ab. nssedi tor. ui as the
package name (you can use the Browse button to select the package). Let the wizard

Exercises © Copyright IBM Corporation 2000, 2003 8-4

Editor Development

open an editor on the class after it is created. Leave the source folder and package
name at their default settings.

3. Select Finish to generate the class.

When complete, the Java Attribute Editor will open an editor on the
M ni Spr eadsheet Edi t or class. A set of methods will have been generated by the
Java Attribute Editor wizard.

4. Save the pl ugi n. xni file.

Step 3. Complete and Test the Bare-Bones | mplementation of a Basic Editor

1. Add an SWT control to the Editor’'s user interface in the cr eat ePart Cont r ol () method.
Choose any SWT control content you want. For fun, try using the SWT Layouts example view
to generate a bhit of SWT code you can paste into the method. You will have to modify the
SWT Layout view generated code to use the composite passed to the cr eat ePart Control ()
method instead of the shel | referenced included in the generated code.

Use the Source > Organize Imports option (Ctrl+Shift+O) to add the required import
statement(s). Be sure to select the SWT table when you have a choice.

Your cr eat ePart Cont r ol () method should now look something like this (created
using the FillLayout page in the SWT Layout view):

public void createPartControl (Conposite parent) ({
RowLayout rowLayout = new RowLayout ();
FillLayout fillLayout = new Fill Layout ();
parent. set Layout (fillLayout);
List list0O = new List (parent, SW.BORDER);
listO.setltems (new String [] {"Item1", "Item?2", "ltem 3"});

Tree treel = new Tree (parent, SW.BORDER);
Treeltemtreelteml = new Treeltem (treel, SW.NONE);
treelteml. set Text ("Iteml");

Treeltemtreelten? = new Treeltem (treel, SW.NONE);
treelten®. set Text ("Itenm2");

Tabl e tabl e2 = new Tabl e (parent, SW.BORDER);

tabl e2. setLinesVisible (true);

Tableltemtablelteml = new Tabl eltem (tabl e2, SW. NONE);
tablelteml. set Text ("Iteml");

Tableltemtablelten?2 = new Tabl eltem (tabl e2, SW. NONE);
tabl el tenR. set Text ("Itenm");

Exercises © Copyright IBM Corporation 2000, 2003 8-5

Editor Development

Note: You can copy the code above from the P1_I npl ement _Edi t or. j page file.

2. Complete the required setup in the i ni t () method.

An editor must define the site and input as these values are used by the framework.
Add this logic to the i ni t () method:

public void init(lEditorSite site, |Editorlnput input)
throws Partl nitException {
setSite(site);
set | nput (i nput);

3. Launch the runtime workbench to test the view user interface.

If required, create a new project and then copy the t est . mss file from the
com i bm | ab. MSSEdi t or source project to the project in the runtime instance of the
workbench.

Double click on the file to open the Mini-Spreadsheet editor. The editor that opens will
look like this if you used the code shown above:

= ini x

Item 1 - Iteml Iteml
Item 2 - Ttem2 Item2
Item 3

Figure 8-2

Mini-Spreadsheet Editor with Placeholder User Interface

You now have a class that can be reworked to be a functional Editor part.

The placeholder SWT controls will be replaced by a user interface composed of a
table viewer and associated logic than can read the input resource and map it to the
user interface. Additional editor functions, such as the Save and Save as... menu
options will also be implemented later.

Close the runtime workbench after testing is complete.

Part 2;: Create a Customized User Interface

As you have seen, the cr eat ePart Cont r ol method is used to create your editor’s user interface. This
can be done with SWT widgets, JFace viewers, or a mix of these elements. This editor needs a user
interface that can display tabular data. It will be constructed from a JFace table viewer and other parts as
provided in the template project.

Exercises © Copyright IBM Corporation 2000, 2003 8-6

Editor Development

Step 1. Customize the Editor User Interface
In this step, you will create a custom user interface which at its core has a table viewer which will display
the contents of the input resource.

1. Add fields to M ni Spr eadSheet Edi t or that will represent the user interface viewers and
widgets, support user interface display and control, and represent the model contained in the
input resource. These fields can be copied from the P2_I npl enent _User _| nterf ace. j page
file provided in the template project.

Use the context menu: Source > Organize Imports to fix the missing class
references.

2. Add the helper methods provided in the P2_I npl enent _User _| nt erf ace. j page file to the
M ni Spr eadSheet Edi t or . These methods are used to help create the table viewer that will
be used in the user interface.

Copy the code snippet from the provided JPage file to add these methods:

initializeTabl eLayout ()
initializeCell Editors()
creat eTabl e()

creat eCol ums()

set Al i gnment ()

get Def aul t Al i gnment ()

Use the context menu: Source > Organize Imports to fix the missing class
references. Be sure to choose the JFace and SWT packages when prompted about
duplicate classes.

3. Revise the creat ePart Cont rol () method so that it creates the table, the table viewer, and
other control elements of the editor’'s user interface. The revised cr eat ePart Cont rol ()
method logic will reference the helper methods that you just added to the class.

Replace the existing method with the code snippet from the provided JPage file and
use the context menu: Source > Organize Imports to fix the missing class
references.

The user interface has been defined using a JFace viewer. This includes a Table and
Cell editor viewers. This extends the concepts covered in Exercise 6, Defining a
JFace Component.

Update the set Focus method so that when the editor opens it puts focus on the table
in the user interface. Add this code to the method:
table.setFocus();

The editor can now be tested, but it will only display an empty user interface which
allows you to click on the column headers. The editor has not yet used the input to
load the model that will be used by the editor.

4. Save the M ni Spr eadSheet Edi t or and test it if you wish.

Exercises © Copyright IBM Corporation 2000, 2003 8-7

Editor Development

Part 3: Model Instantiation and Modification Management

Like views, editor parts often display content from a model. For an editor the model is typically based on the
contents of an input file. Eclipse creates an instance of your editor class, and calls its i ni t () method to
pass it the input.

Your editor must be prepared to react to changes that might occur to both the model and the input behind
the model. To be aware of when changes occur, your editor must listen for modifications made to the model
and the resource used as input to create the model. When a change is detected the editor content must
either be marked as modified (so it can be saved later) or somehow adjust to a change that occurred
directly to the input resource (outside the editor’s control).

The model used by the editor should also be capable of reporting changes that may have occurred. The
model provided to you as part of the template project has this support; you will add model listener logic to
the editor.

Eclipse includes a means of detecting changes to workspace resources, called resource change listeners.
This notification strategy is inherent to the nature of the Eclipse user interface, since it allows—and even
encourages—multiple views of the same resource. Your editor, if it is based on a resource, must react to
the possibility that your model’s underlying resource could be modified or deleted by means outside your
editor’s control, bypassing your model's change events. A robust editor implementation must address these
possibilities. You will add resource change listener support to the editor and logic that deals with any direct
resource modification that may occur.

Step 1. Identify when the Editor Makes Modifications to the Input

When model changes occur, the editor must know that this has happened so that saving the changes in the
resource is possible. The generated editor structure includes an isDirty() method. When this method
returns true, the option to save the file is enabled. If a save is requested, the editor's doSave() method will
be called.

1. Add logic to the editor to return the current value of the i sDirty field inthe i sDirty()
method:

public boolean isDrty() {
return isDirty;

}

TheisDi rty field was added earlier to support the determination of when editor
modifications have been made.

2. Addthe setlsDirty() methodto setthei sDi rty field to true so that this method can be
called when a modification has been made.

protected void setlsDirty(boolean isDirty) {
this.isDirty = isDirty;
firePropertyChange(PROP_DI RTY);

}

Exercises © Copyright IBM Corporation 2000, 2003 8-8

Editor Development

This method can be copied from the P3_Manage Model.jpage file.

Step 2. Instantiate the M odel Using the Editor Input

The editor must inspect the input provided in the i ni t () method and either use the input to populate the
user interface or reject the input if it is not the type of input that is expected. If the input is unacceptable,
the editor must throw a Par t | ni t Except i on exception.

You will now add logic to your editor to support the creation of a model from the input and then add logic to
inspect and use the input (the tasks are ordered this way to avoid unnecessary compile errors).

1.

Add the set Cont ent s() method to the editor. This method can be copied from the
P3_Manage_Model . j page file.

The set Cont ent s() method takes the input and both initialized the i sDi rt y field and
creates a M ni Spr eadsheet model instance. The statements commented out in the
set Cont ent s() method will be added later.

Update the i ni t () method and add its helper method (i ni t () with a different signature) to
the editor. These methods can be copied from the P3_Manage_Model . j page file. The
statement commented out in the additional i ni t () method will be added later. Use Source >
Organize Imports to fix the missing class references. Choose j ava. i o when prompted.

By checking the type of the input, the i ni t () method defends against what would
probably be a programming error, that is, someone reusing your editor for unexpected
input. The editor could also reject the input if an I/O error occurs, or it finds that the
input is corrupt or invalid.

When the input is rejected, all processing stops. The workbench then informs the user
with an error dialog showing the message associated with the Part | ni t Except i on
exception that was thrown.

Step 3. Implement Support for Reacting to Model M odifications
To react to changes that could occur to the model, the editor must be listening for these changes. When
changes are detected, the editor must be told.

1.

Adjust the M ni Spr eadSheet Edi t or definition so that it implements the
I M ni Spr eadsheet Li st ener interface. Use Source > Organize Imports to fix the missing
class reference.

Add the methods that are required to support the | M ni Spr eadsheet Li st ener interface to
the M ni Spr eadSheet Edi t or class. The r owsChanged() and val ueChanged() tell the
editor by changing the i sDi rty setting.

These methods can be copied from the P3_Manage_Mdel . j page file.

Return to the set Cont ent s() method and remove the comment markers from the lines that
remove and add the editor as a | M ni Spr eadsheet Li st ener listener.

This will remove any existing listener and add a new listener to the model as the model
is created.

Exercises © Copyright IBM Corporation 2000, 2003 8-9

Editor Development

Step 4. Implement Support for Reacting to Direct Modification of the Resource
As changes can occur directly to the resource the editor must be listening to the workspace and react
accordingly.

1. Adjustthe M ni SpreadSheet Edi t or so that it implements the | Resour ceChangeli st ener
interface.

2. Add the r esour ceChanged() method, which is required to support the
| Resour ceChangeli st ener interface, to the M ni Spr eadSheet Edi t or class. This method
can be copied from the P3_Manage Model . j page file. Use Source > Organize Imports to fix
the missing class references.

The implementation of the r esour ceChanged() method includes the logic that
controls how the editor will react to specific events.

3. Returntotheinit(lEditorSite site, |StorageEditorlnput editorlnput) method
and remove the comment markers from the Resour cesPl ugi n. addChangelLi st ener (..)
statement. This will add the editor as a resource change listener when it is initialized.

Part 4: Connect the Modd with the User Interface Viewer

You have made numerous changes to the editor, but it would still look the same if you tested it. This is
because the viewer used for the user interface is not yet communicating with the model.

Step 1. Creating Content and Label Providers
The purpose of the content provider is to be the mediator between the viewer and model. A content provider
reacts to a new input reference and then:

Aligns itself with the new input (adds a listener)
Removes references to the old input (removes any existing listener)

The Label provider for the viewer is responsible for showing a St r i ng and icon representation in the
viewer's control and therefore must at least implement these methods:

get Text (el enment)
get I mage(el enent)

The actual implementation for the content and label providers required by the M ni Spr eadSheet Edi t or
has been provided. See the M ni Spr eadsheet Cont ent Provi der and
M ni Spr eadsheet Label Provi der classes.

1. Connect the M ni Spr eadsheet Cont ent Provi der and M ni Spr eadsheet Label Provi der
classes to the viewer by adding this logic to the end of the cr eat ePart Cont rol () method:

t abl eVi ewer. set Cont ent Pr ovi der (new M ni Spr eadsheet Cont ent Provi der());
t abl eVi ewer . set Label Provi der (new M ni Spr eadsheet Label Provi der());

Step 2. Associating the Viewer with the M odel

The set | nput (obj ect) method is used to identify the input that should be used for a viewer. The input
links your model to the viewer as obj ect is a reference to your model. The set | nput () method triggers
a call to the content provider’s, i nput Changed() method so that the content provider knows what to use
when returning elements to the viewer.

Exercises © Copyright IBM Corporation 2000, 2003 8-10

Editor Development

1. Add this line of code to the end of the the cr eat ePart Cont r ol () method to identify the input

for the viewer:
t abl eVi ewer . set | nput (m ni Spreadsheet);

2. Test the current M ni Spr eadsheet Edi t or implementation. Start the run-time workbench
instance and using the file copied to a project earlier, open the editor. You should see
something like this:

EE fe x

| |« [s | ¢ [o |
1 Dan 1 Chocolate -Chocolate Chip E
2 Jim 2 Rocky Road

3 John 4 Leman &elato

4 Pat 3 Chocolate

5 Scott 3 Fudge Walnut

6 Sherry 4 Decadent Chocolate Dream
Figure 8-3

Mini-Spreadsheet Editor with Customized User Interface and Input

Notice we have not implemented the Save and Save as... functions. The framework
will call the doSave() method, but the logic to actually save the content is not there
yet. You will get to that part next part of the exercise.

Part 5. Saving the Editor Input

It is your resource so you perform the Save request when required. You can also decide if you want your
editor to support Save as... processing.

Step 1. Add Save Processing
Save processing is called when required (the i sDi rt y() method returns t r ue) and is implemented in the
doSave() method.

1. Addthe saveCont ent s() method to the M ni Spr eadsheet Edi t or editor (after the doSave()
method is a good place). Use the code snippet found in the P5_Save.jpage file.

2. Replace the doSave() method in the M ni Spr eadsheet Edi t or editor using the code snippet
found in P5_Save.jpage. Organize imports to add the required import statements and ignore
the message about the doSaveAs() method. This error will be corrected in the next step.

Step 2. Add Save As... Processing
If you want to support Save as... processing you need to override the i sSaveAsAl | owed() method to
return true, and then implement the doSaveAs() method.

In the doSaveAs() method, your editor presents a Save As dialog, followed by the same processing as
your doSave() method.

If the Save as... is successful, and the desired result is that your editor changes its input to the last saved
location, your editor should create a new editor input referencing the new location and call

set Edi t or I nput (), followed by fi r ePr opert yChange(PROP_I NPUT) . If appropriate, you should
also update your editor’'s tab text with set Ti t | e() .

Exercises © Copyright IBM Corporation 2000, 2003 8-11

Editor Development

1. Addthe creat eNewFi | e() method to the M ni Spr eadsheet Edi t or editor (after the
doSaveAs() method is a good place). Use the code snippet found in the P5_Save.jpage file.
Organize imports to add the required import statements.

2. Addthe doSaveAs(String nessage) method to the M ni Spr eadsheet Edi t or editor (after
the doSaveAs() method is a good place). Use the code snippet found in the P5_Save.jpage
file. Organize imports to add the required import statements.

3. Update the doSaveAs() method in the M ni Spr eadsheet Edi t or to add this line of code:
doSaveAs(nul 1) ;

4. Adjustthe i sSaveasAl | owed() method so it returns t r ue.

5. Test the revised M ni Spr eadsheet Edi t or implementation. Start the run-time workbench
instance and using the file copied to a project earlier, open the editor. The file should now
support saving modifications to the file system and Save as... processing.

Part 6: Adding Editor Actions

To simplify the management of a common toolbar and menu, editors include an editor action contributor as
part of their definition. This class is specified in the cont ri but or d ass attribute of the <edi t or > tag.
The class identified must implement thet | Edi t or Act i onBar Cont ri but or interface.

As you might expect, the action contributor is responsible for contributing the editor’s actions to the toolbar
and main menu bar. Eclipse informs the action contributor to add its actions by calling its i ni t () method.
The standard implementation of the | Edi t or Act i onBar Cont ri but or interface,
Edi t or Act i onBar Cont ri but or, implements an i ni t () method that calls convenience methods your
subclass may override, cont ri but eToTool bar () and cont ri but eToMenu() .

A single instance of the action contributor class is created when an editor of a given type is first opened,
and it will remain until the last one is closed. That is, it will be shared among all editor instances having the
same id. The set Acti veEdi t or () method is fired with a parameter that represents the active editor
instance. This allows the action contributor class to know what editor to interact with when actions are
invoked.

Note: The viewers used in an Editor can have their own pop up menus, just as viewers in a view. The steps
to create and register them are the same.

Step 1. Define the Action Contributor
The MiniSpreadsheetEditorActionBarContributor class is provided in the lab template. Take a moment and
review that class now.

1. Copy the predefined action contributor and context menu actions that have been provided for
you from the add_t o_ui . acti ons_| at er folder to the target package
(comibm | ab. msseditor. ui.actions).

These classes were hidden to avoid the display of compile errors while you finished
the editor code to this point.

2. Editthe pl ugi n. xni file to add the cont ri but or d ass attribute to editor extension. This will
identify that the M ni Spr eadsheet Edi t or Acti onBar Cont ri but or class is the action
contributor.

Exercises © Copyright IBM Corporation 2000, 2003 8-12

Editor Development

The modified editor entry in the extension should now look like this:

<edi t or
nanme="M ni - Spr eadsheet "
i con="i cons/spreadsheet.gif"
ext ensi ons="nss"
class="comibm]l ab. msseditor.ui.Mni Spreadsheet Edi tor"
contributorCl ass="comibmlab. nsseditor.ui.actions. M ni Spreadsheet Edi t or Acti onBar Cont ri butor"
id="comibmlab. nm ni spreadsheeteditor">
</ edi t or>

3. Add the get M ni Spr eadsheet () method to the M ni Spr eadsheet Edi t or class. Use the
code snippet found in the P6_EditorActions.jpage file.

Step 2. Add Additional Actionsto the Editor

1. Update the M ni Spr eadsheet Edi t or class by adding the cr eat eCont ext Menu() and
fill Context Menu() methods. Use the code snippet found in the P6_EditorActions.jpage file.

These, as named, will create and fill the context menu for the viewer. Organize imports
to reflect required references (choosing SWT when prompted).

2. Add a call to the cr eat eCont ext Menu() method at the bottom of the cr eat ePart Control ()
method. This invokes the two methods you just added.

3. Time to Test!!! There should now be a set of global menu and task actions visible in the
Workbench along with an active and functional context menu for the editor:

& P gzourca - test mes - Eclipse Platferm =0
File Edit Movigate Search Peoject Test Ren :
SviRc|ov[ev s iR G
T | % Hlavigator . w u m ®
il xR, e | A | B | ‘ | b
E curtom.praject 1 ban 1 Ehocolate-chae. .
% & recdme z Tim 2 Rncky Reod
0 prajest 3 John A Lemon Seloto
* Ehange_log. tt 4 T
] mew_test mss E
T test.msg &
- Outline %
An catlise s ot ovallck)
< Tagks {0 i) E
| 4] *| meseription Rissres | Is Faldsr L

Figure 8-4
Completed Mini-Spreadsheet Editor with Action Contributions and a Context Menu

Exercises © Copyright IBM Corporation 2000, 2003 8-13

Editor Development

Exercise Activity Review

Building a customized editor can be a time-consuming task. The Eclipse user interface frameworks make it
easier by providing the common editor behavior. During this exercise you:

Implemented and Editor extension to Eclipse and used JFace controls to create the user
interface for an editor.

Learned how to instantiate the model using the editor input.

Handled user modifications of the editor input and saved the modified resource as

required.
Added an action contribution class and viewer associated actions to an editor.

Exercises © Copyright IBM Corporation 2000, 2003 8-14

Perspective Development

Exercise 9 Perspective
Devel opment

Exercise 9 Perspective DEVEIOPMENL...........ii i e e e e et e e e et e e e eat e e eaatnnaaaee 9-1
[1igoTo [N ot i o] o TN PO TTTRTRR T PSPPPPPPTIN 9-1
T (o R @0 (o= o] £ PSP 9-1

SKill DEVEIOPMENT GOAUSceeevieeeeii ettt e et e e e et e e e et e e e et e e e et neeeanan s 9-1
G (o YIRS T (1 o P 9-2
EXEICISE INSIIUCTHIONS ...ttt e e e e e e e ee bbb s e e e e e e ees bbb e e e e aeeeennes 9-2
Part 1: Define and Test a Perspective EXIENSIONoovvuuiiiiiiiieeei e e e e eaaens 9-2
Step 1. Define the PerspectiveEXIENSIONoviiiiiiiiei e e e e e 9-2
Step 2. Test the PersectiveExtension Implementation................ovieiiiiiiiiiiiiieeee e 9-3
Part 2: Implement @ CUSIOM PeISPECHVE.uuuiieiiiieeeei et e et e e e e et e e et e e ease e eeanans 9-4
Step 1. DefiNe @ NEW PEISPECHVE.civuviieeeiii et e e e e e et e e e eat e e e eataaaeeen 9-4
Step 2. Generate PerspeCtive ClIaSS........uuiiiiiiiiieiiiiii ettt e et e e e et e e e eat e e e eatnaeeen 9-4
Step 3: Customize the Perspective ClassS...........vviviuiiiiiiiii e e e eeai e e 9-5
EXEICISE ACHVILY REVIEW.....uuiiiiiii ettt e et e e et r e e e et e e e e et s e e eatan s eeesnens 9-7

This exercise takes you through the process of defining a perspective extension and a new perspective.
Each has their place, this way you know how to use both.

I ntroduction

Perspectives are the organizing unit of the user interface. The define what views are visible, where they are
with respect to an editing area, and what global actions, and shortcuts for wizards, views, and other
perspectives should exist.

As you add tools to an existing workbench platform you have to decide if your components should join an
existing perspective or be defined as part of a new perspective. There are extensions points that allow you
to customize and existing perspective or create a new one, depending on your needs.

Exercise Concepts

The exercise allows you to do one or both parts. You can add some of the code you have developed to an
existing perspective or create a new perspective; or both if you have the time.

Skill Development Goals
This exercise looks at the definition and use of perspectives in the workbench.

Exercises © Copyright IBM Corporation 2000, 2003 9-1

Perspective Development

Exer cise Setup

Before you can begin this exercise, you must have access to the com i bm | ab. per specti ve template
plug-in project. This project should already have been imported into your workspace. If not, import the plug-
in from the exercise templates location on your workstation.

Exercise Instructions

Each part can be done by itself, you can do one or both.

Part 1. Define and Test a Per spective Extension

In Part 1 you will define a perspective extension, which takes only XML to exist. The perspective extension
will adjust the Resource Perspective to add these items:

First plug-in action (already done)

Custom project wizard shortcut

Resource view shortcut

Resource view location placeholder (for when opened)

The instructions that follow are light, you should understand work required for each task by now.

Step 1. Define the Per spectiveExtension
1. Editthe pl ugi n. xn and add a new extension, the per spect i veExt ensi on.

Use the Add... button to open the New Extension wizard to do this.

2. Select the new entry and add a per spect i veExt ensi on entry. Yes, the same thing twice it
seems. The first is the extension, the second is the entry to identify the perspective you want
to extend.

In the Properties view, enter a targetlD of or g. ecl i pse. ui . resour cePer specti ve.

3. Add an acti onSet entry under the new per spect i veExt ensi on entry. This type of entry is
used to define a global action set that should be part of the extension.

In the Properties view, enter com i bm | ab. pl ugi ns. firstplugin. acti onSet as
the id. This adds the associated actions to the default menu tree for the resource
perspective.

Note: This action set was defined with an attribute of vi si bl e="t rue", which forces
the action set into all perspectives. To actually have the per specti veExt ensi on
reference work you would have to adjust the action set definition in the f i r st pl ugi n
to be vi si bl e="fal se”.

4. Add a per specti veShortcut entry under the new per specti veExt ensi on entry. This
allows you to add entries to the Window > Open Perspective shortcut menu.

In the Properties view, enter com i bm | ab. per specti ve. eduPer specti ve as the id.
This would add this perspective to the Window > Open Perspective shortcut menu

Exercises © Copyright IBM Corporation 2000, 2003 9-2

Perspective Development

in the resource perspective, if it existed. It will exist if you do the next part of this
exercise.

Add a newW zar dShor t cut entry under the new per spect i veExt ensi on entry. This allows
you to add entries to the File > New shortcut menu.

In the Properties view, enter com i bm | ab. newW zar d. cust onPr oj ect as the id.
This adds the custom project wizard to the File > New shortcut menu in the resource
perspective.

Add a vi ewshort cut entry under the new per spect i veExt ensi on entry. This allows you to
add entries to the Window > Show View shortcut menu.

In the Properties view, enter com i bm | ab. r esour cevi ew. r esour cevi ewas the id.
This adds the resource view to the Window > Show View shortcut menu for the
resource perspective.

Add a vi ewentry under the new per spect i veExt ensi on entry. This allows you identify a
location for where a view should be in the perspective. You can then either force the display of
the view when the perspective is opened or just let the user open the view but have it be
shown in the location you have identified.

In the Properties view, enter these values for the attributes:

Property | Value |
id “@ com.ibm. lab.soln. resounceview. resourceview
ratio
relationship "® stack
relative "@ org.eclipse. ui.views. TaskList
Tag name W view
visible false

This stacks the view on the existing Tasks view and leaves it out of the perspective for
now. When opened, the view will stack on the Tasks view.

Step 2. Test the PersectiveExtension | mplementation

1.
2.

N o o M w

Launch the runtime workbench.

If required, open the Resource perspective. Reset the perspective (Window > Reset
Perspective) so that it reflects your design and not any customization that may have been
done earlier.

Check to see if the first plug-in action set is part of the menu (from your very first exercise).
Check to see if the wizard shortcut is on the File > New menu.

Check to see if the view shortcut is on the Window > Show View menu.

Open the Edu: Resource View. Does it join the perspective where you expected?

Try adjusting the vi ew settings in the per spect i veExt ensi on entry. See if you can change
the location of the view. Try ratio values of . 50 or . 25 when something other than st ack has
been selected as the r el ati onshi p value.

Close the runtime workbench after testing is complete.

Exercises © Copyright IBM Corporation 2000, 2003 9-3

Perspective Development

Part 2: Implement a Custom Per spective

If required, you can build a new perspective to integrate the components defined in your tool. This should
be done when you need an arrangement that is significantly different from an existing perspective or the
type of activity in your tool does not fit anywhere else.

Step 1. Define a New Per spective
A new perspective takes more than XML, it takes XML and Java code. Define a perspective extension and

generate the Java class.

1. Editthe pl ugi n. xmi file in the com i bm | ab. per specti ve project you imported earlier.
Select the Extensions tab. You will now specify the information needed for the perspective
extension.

2. Define the perspective extension.

Select the Add... button. Select Generic Wizards > Schema-based Extensions.
Press Next. Scroll down the list, select the extension point for new wizards,
org.eclipse.ui.perspectives, and Press Finish.

3. Select the new entry and add a per spect i ve entry. Yes, the same thing twice it seems. The
first is the extension, the second is the entry to identify the new perspective you will create.

In the Properties view, enter these values for the attributes:

Property Value -
icon }EJ icons/sample. gif
id jiEj com.ibm.laob.perspective. eduPerspective
hame "@ Edu: Perspective
Tag name Ti_?l perspective =

Step 2. Generate Per spective Class
The PDE can generate classes for many extension types. You will now use the PDE to generate a class for
your perspective.

4. Return to the extensions page of the pl ugi n. xni file to generate the wizard class using the
PDE and select the Edu: Perspective (perspective) entry in the list.

5. In the Properties View, generate the class by selecting the continuation entry (...) in the class
field.

In the Java Attribute Editor, specify that you want to generate a new Java class. The
class name is Cust onPer spect i ve and you want to let the wizard open an editor on
the class after it is created. Leave the source folder and package name at their default
settings.

6. Select Finish to generate the class.

When complete, the Java Attribute Editor will open the Cust onPer specti ve class in
an editor. The createl ni ti al Layout () method was generated by the Java Attribute
Editor wizard.

7. Save the pl ugi n. xni file.

Exercises © Copyright IBM Corporation 2000, 2003 9-4

Perspective Development

Step 3: Customize the Per spective Class

The creat el ni ti al Layout () method needs to be customized to define the perspective. As you can see
from a portion of the code assist list, the layout passed to the method has many methods available that
support customization of the perspective:

pdaddActionSet(String actionSetId) void - IPagelLayout
2 addFastView(String id) void - IPagelLayout

© addFastView(String id, float ratio) veid - IPagelayout

9 addNewWizardShortcut(String id) void - IPagelayout

9 addPerspectiveShortcut(String id) void - IPagelayout

2 addPlaceholder(String viewlId, int relationship, float ratio, String refId) void - IPagel
@ addShowInPart(String id) wvoid - TPagelayout

@ addShowViewShortcut(String id) void - TPagelayout

© addView(String viewId, int relationship, float ratie, String refId) void - IPagelayout

i setEditor AreaVisible(boolean showEditorArea) void - IPagelLayout

i? setEditorReuseThreshold(int openEditors) void - IPageLayout

1. Add these fields to the CustomPerspective class.

public static final String | D _FI RSTACTION =
“comibmlab. plugins.firstplugin.actionSet";

public static final String | D RESOURCEVI EW =
"com i bm | ab. resourcevi ew resourcevi ew';

public static final String | D PROOECTW ZARD =
"“comibm | ab. newW zar d. cust onPr oj ect ";

public static final String | D EDU JAVA PERSPECTI VE =
"org.eclipse.jdt.ui.JavaH erarchyPerspective";

These fields represent the IDs of the tool components that will be referenced in this
perspective. It makes it easier to define them up front.

2. Create an editor area reference and make the editor area invisible. Many of the layout
decisions are based on the editor area. Add this code to create a variable for the editor area
as known to this layout and hide the editor area as well:

/1l CGet the editor area
String editorArea = | ayout. getEditorArea();
| ayout . set Edi t or AreaVi si bl e(fal se);

3. Add wizard, view menu, and perspective shortcuts to the layout by adding this code next:

/1 Add shortcuts

| ayout . addNewW zar dShort cut (| D PRQIECTW ZARD) ;

| ayout . addShowvi ewShort cut (| PageLayout .1 D TASK LI ST);
| ayout . addPer specti veShort cut (1 D_JAVA PERSPECTI VE) ;

Exercises © Copyright IBM Corporation 2000, 2003 9-5

Perspective Development

4. Create a folder for the top left side of the layout with two views stacked in the folder by adding
this code:

/1 Top left: Resource Navigator and Bookmarks vi ew
| Fol der Layout topLeft =
| ayout . creat eFol der ("t opLeft", |PagelLayout.LEFT, 0.3f, editorArea);
topLeft. addVi ew(| PageLayout .| D RES NAV);
topLeft. addVi ew(| PageLayout . | D BOOKMARKS) ;

Organize imports to add the missing | Fol der Layout reference.

5. Add the Outline view to the bottom left side of the layout by adding this code:

/] Bottomleft: Qutline view
| ayout . addVi ew(| PageLayout . | D OQUTLI NE, | PagelLayout.BOITOM 0.6f, "topLeft");

6. Add the Resource view under the editor area by adding this code:

/1 Right: Edu: Resource View
| ayout . addVi ew(| D RESOURCEVI EW | PagelLayout . BOTTOM 0. 4f, editorArea);
| ayout . addVi ew
| PageLayout . | D PROP_SHEET, | PagelLayout.BOITOM 0. 4f, | D RESOURCEVI EW;

Note that the Properties view is added with a reference to the Resource view.

7. Add the Properties view and a placeholder for the Tasks view under the Resource view on the
right side of the layout by adding this code:

/1 Right bottom Property Sheet view and Tasks vi ew pl acehol der
| Fol der Layout bottonRi ght = | ayout. creat eFol der (

"bottonRi ght", |PagelLayout.BOITOM O0.4f, | D RESOURCEVI EW;
bot t onR ght . addVi ew(| PageLayout . | D_PROP_SHEET) ;
bot t onR ght . addPl acehol der (| PageLayout .| D TASK LI ST);

Exercises © Copyright IBM Corporation 2000, 2003 9-6

Perspective Development

8. Launch the runtime workbench to test the new perspective. If you did the first part of the lab,
there will be a shortcut to open the new perspective. Otherwise, find Edu: Perspective in the
full list and open it. The initial display, given an existing project, should looks something like
this after the Tasks view has been opened manually:

—du: Perspactive - Eclipse Platfarm . o (=1 . {
File Edit Movigate Seorch FProject Edu: Actions Run Test ‘Window Help
[P 2 Or|®x/ o= #l|% ==~
I"_' Maovigator Bookmerks | 5 BEdu-Sol: Resounce Vi i B e

el |l Mavigator S
* e ([=
= 15 custom._pra ject j
H - peadme = Change_log_txt L/custom.praject/Change_log. txt
1 .project
-l Change_log . tat
Properties | Tosks
[Properties B o
Property | Value
I Info
o= o w
& Dm-l_I!E - - derived fake
An outline is net availoble. editeble e
lazt madified B/31/03 10041 MM
limked false
lacation E\Eclipse-2. 1. L'wewh runtime\code Solu. ..
narme readme
path foustom. project frendme

E:/Eclipse-2. 1. 1/wawh/ runtime/code_Solutions/custom. pro ject/readme

Figure 9-1
Custom Edu: Perspective

The wizard, perspective, and view short cuts should all be there as well. The Resource
view is below the invisible editor area. If an editor was launched it would push the right
side views down.

Note: The Resource View solution was used to capture the image above.

Close the runtime workbench after testing is complete.

Exercise Activity Review
What you did in this exercise:
Learned how to extend an existing perspective so that your tool components and shortcuts

are known.
Learned who to define a new perspective.

Exercises © Copyright IBM Corporation 2000, 2003 9-7

Exercises

Perspective Development

© Copyright IBM Corporation 2000, 2003

9-8

Resource Extensions

Exercise 10
Working with Resource
Extensions

Exercise 10 Working with ReSoUrce EXIENSIONS..........ccovuiiiiiii e e e e 10-1
1100 (U T 1] o PP 10-1
S o ST O] o =T | 10-1

SKill DEVEIOPMENT GOAISeeveeieiee ettt e et e e e e et e e e e e et e et e e et e e et e e e eean s 10-2
ST (o TSI Y= (] o 10-2
Working with Natures and BUIIAEIS.ooeuiii e e e e e e e eees 10-2
Part 1: RUNNING the SOIULIONceei e e e e e e e e e e et e eaneeeens 10-2
Step 1. Create a Project with the CUSIOMNALUIE.............oviiiiiiiiee e e e 10-2
Step 2. Configure the Builder so that it Builds another Simple Project............ccoccoevvviiiiiincennns 10-3
Part 2: Roadmap 10 the SOIULION........... i e e e e e e e eeas 10-4
RTAT T o TR 7L Y = 14 =] £ 10-5
Part 1: RUNNING the SOIULIONceei e e e e e e e e e e et e e eaneeeens 10-5
Step 1. Review Recent Edits Marker SUPPOM.cvuueieeieie e eee e e e e e e e e e s e e eneees 10-6
Step 2. Create Recent EditS MarkerS........couu it e e e e e e eaeees 10-7
Part 2: Roadmap t0 the SOIULION...........iie e e e e e e e e eens 10-8
EXErCISE ACHVIEY REVIEW. .. .ceeiiie et e e e e e e e e e e e e et s e e e e e e et e e eeennes 10-9

This exercise walks through a resource extension solution. This solution includes a Nature, Builder, and
Marker.

I ntroduction

Resource extensions allow you to define new Natures, Builders, and Markers. You can use these
extensions to customize a project, extend existing marker function, or implement new kinds of makers that
are specific to your tool.

Exercise Concepts

The exercise begins with a plug-in project solution that you should have imported into your workspace. The
function and usage scenarios for each type of extension is discussed. The solution is demonstrated and the
code that implements the solution reviewed.

Exercises © Copyright IBM Corporation 2000, 2003 10-1

Resource Extensions

Skill Development Goals

This exercise looks at the definition and use of resource extensions so that you can understand:

How Natures are defined and associated with a project

How builders are defined and associated with a project

How builders react to resource changes

How markers are defined and how they can build on exiting marker function.

Exer cise Setup

Before you can begin this exercise, you must have access to the com i bm | ab. sol n. resour ces
solution plug-in project. This project should already have been imported into your workspace. If not, import
the plug-in from the exercise templates location on your workstation.

Working with Natures and Builders

The implementation of a nature and builder requires that you define them as extensions in your plug-in,
provide an implementation of these extensions, and then either create projects that include the nature or
add the nature to existing projects. The pl ugi n. xnm defines the extensions and the code is provided in
the com i bm | ab. sol n. resour ces. nat ure_bui | der package.

This example focuses on the use of the Cust onNat ur e and ReadneBui | der .

Part 1: Running the Solution

The Natures and Builders solution demonstrates the function and techniques available when defining
natures and using them to customize the behavior of a project by adding builders.

To run the solution launch the run-time instance of Eclipse (Run > Run As > Run-time Workbench).

Step 1. Create a Project with the CustomNature
1. Create a project that includes the CustomNature by either:

Using the provided new project wizard to create a new project which will include the
nature.

Open the wizard using File > New > Project, selecting Soln: Resource Wizards and then
New Project (w/CustomNature). Enter a project name. Select Finish to create the project.
Message dialogs will confirm that the ReadmeBuilder and CustomNature have been added
to the project.

Using the provided Add Custom Nature project pop-up menu choice to add the nature to
an existing project.

If you already have a project, you can add the CustomNature to that project by selection
the project in the Navigator view and using the Soln: Resource Tools > Soln: Add
CustomNature pop-up menu option.

Exercises © Copyright IBM Corporation 2000, 2003 10-2

Resource Extensions

In either case, when the CustomNature is added to the project, its configure method is
invoked to give it the opportunity to prepare the project. In this example, the configure
method adds the ReadmeBuilder to the project.

You can check if the nature and associated builder have been added to a project by
opening the .project file or using one of the contributed project actions.

Once the nature has been added to the project, and it has configured the builder, the
builder will be invoked during build processing when changes have been made to
resources in the project..

Add a readme folder to the project.

The ReadmeBuilder will process only the anyname.readme files it finds in a readme
folder.

Note: The project structure action can be used to create the readme folder.

Add an anyname.readme file to the readme folder. If the Perform build automatically on
resource modification Workbench preference is selected, a build will be triggered.

The ReadmeBuilder build method is triggered when a build occurs. The build method
determines what kind of build is being processed: full or incremental.

A full build uses the processFull method to find out if a readme folder exists and processes
any files with a .readme file type.

An incremental build uses the processDelta method to determine of the IResourceDelta
contains any changes in a readme folder. If yes, this subset of the IResourceDelta is
passed to the the ReadmeVisitor whose visit method then processes the IResourceDelta
to find any files with a .readme file type.

The end result will be a corresponding file with a file type of .html created for each
modified .readme file, where the content of the .readme file is wrapped in simple
HTML.

Step 2. Configure the Builder so that it Builds another Simple Project

1.

3.

Create a new simple project (simple.project), one that does not include the CustomNature or
ReadmeBuilder, and then use the project structure action can to add a readme folder to this
new project.

Implement support for .readme file type processing for the simple.project by teaching the
existing ReadmeBuilder associated with the first project you created to reach out and process
this new project. The ReadmeBuilder includes support for processing referenced projects, that
is, those that are referenced by the project that includes the builder.

So, to do this, open the Properties dialog for the first project and on the Project
References page select the simple.project entry.

Add an anyname.readme file to the readme folder in the simple.project. Modify and save this
file.

The ReadmeBuilder for the first project will be invoked as it has resource deltas that it
can process. Not for the project the builder is defined for, but for the projects it has

Exercises © Copyright IBM Corporation 2000, 2003 10-3

Resource Extensions

registered interest in processing. The ReadmeBuilder will detect the anyname.readme
file modification and create a matching .htmil file.

Part 2: Roadmap to the Solution

This solution includes a nature and builder extension, a hew project wizard, and several pop-up action
contributions that demonstrate how natures and builders can be used to customize projects and process
resources. the use of the workspace API. The extension definitions can be found in the plugin.xml. The
classes that implement these extensions are shown below.

Extension Implementation
Nature: The nature is implemented by the Cust ormmNat ur e class.
Custom Nature
Builder:

Readme Builder The builder is implemented by the ReadneBui | der class.

New project wizard:

New Project (w/CustomNature) The wizard is implemented by the NewPr oj ect W zard class.

When the nature is configured as part of a project it adds the builder. The builder implements a simple
resource transformation by reacting to new or modified .readme files and creating associated .html files.
This processing is implemented by the ReadmeVisitor class.

Thecom i bm | ab. sol n. resour ces. nat ure_bui | der package includes several contributed actions
in the Navigator view that allow you to interact with the projects and their defined natures and builders:

8 Soln: Add Custom MNature
8 Soln: Remove Custom Mature

& Soln: Add Builder
8 Soln:List Builders
& Soln: Remove Builder

Figure 10-1

Nature and Builder Context Menu

Not all of these actions were referenced in the example instructions above. These actions provide the
following function:

Exercises © Copyright IBM Corporation 2000, 2003 10-4

Resource Extensions

|Pop—up Action |Description / Implementation

Adds the Cust onNat ur e to the selected project.

Soln: Add Custom Act i onAddCust onmNat ur e implements this function.

Nature) .

Responds with the success or failure of the request.

Removes the Cust ormNat ur e from the selected project. This action is only shown if
Soln: Remove the selected project has the customer nature.
Custom Nature Act i onRenoveCust omNat ur e implements this function.

Responds with the success or failure of the request.

Can be used to add the ReadneBui | der directly to a project. This action will only
add the builder if the Cust onNat ur e exists as part of the project (and the builder
Soln: Add Builder was previously removed).

Act i onAddBui | der ToPr oj ect implements this function.

Responds with the success or failure of the request.

Lists the builders associated with the selected project.
Soln: List Builders |Acti onLi st Bui | der s implements this function.
Responds with the success or failure of the request.

Can be used to remove the ReadneBui | der from the selected project. This action
Soln: Remove can remove a builder added by the Cust onmNat ur e.

Builder Act i onRenoveBui | der Fr onPr oj ect implements this function.

Responds with the success or failure of the request.

Working with Markers

You can choose to reuse the markers defined as part of Eclipse or define your own. New marker types can
do one of two things:

Build on existing maker definitions and behavior
Be implemented as specialized markers where all behavior is implemented as part
of your tool logic.

This marker example defines a new marker type (com i bm | ab. sol n. r esour ce. recent Edi t s) that
builds on both the existing Eclipse bookmark and problem marker types. This means that this kind of marker
will automatically be visible in the Bookmarks and Tasks views. The r ecent Edi t markers are created for
resources that have been recently modified.

The plug-in also extends the or g. ecl i pse. ui . st art up extension point so that it may add the resource
change listener used to create recent edit markers.

The pl ugi n. xm defines the marker extensions and the code is provided in the
com i bm |l ab. sol n. resour ces. mar ker s package.

Part 1. Running the Solution

The Markers solution demonstrates the function and techniques available when defining new markers and
how they can be associated with resources. The built in behavior that exists when you define a new maker
that extends an existing marker is also demonstrated.

To run the solution launch the run-time instance of Eclipse (Run > Run As > Run-time Workbench).

Exercises © Copyright IBM Corporation 2000, 2003 10-5

Resource Extensions

Step 1. Review Recent Edits Marker Support

1.

The r ecent Edi t s marker logic has default processing rules, but if the
com i bm | ab. sol n. di al ogs project is available, these rules can be modified. If you have the
com i bm | ab. sol n. di al ogs plug-in active in the test instance of the Workbench, you can

open the Soln: Basic Preference Page and view or modify the setting that determines how
many r ecent Edi t s markers to keep active and if these r ecent Edi t s markers should be

saved in the workspace (custom logic will use the | Mar ker . TRANSI ENT attribute to override
the <persi st ent > val ue="true" /> setting in the marker extension):

[+ Workbench Soln: Basic Preference Page
- Ant
----- Build Order —Recent Edits Setting
[+- Debug
[+- Help
4 Install/Update 8 : Select the number of files to keep in the
Recent Edits marker list
[+-Java 12
¥ Plug-In Development I : Select to save markers in the workspace at shut down
Eaf Soln: Basic Preference
t-Team Changes are registered the next time the workbench is started.
Enter a text value you want saved
in a preference key:
I myTextbefaultValue
a| | _,I Restore Defaults Apply
Figure 10-2

Recent Edits Marker Preference Page

If the com i bm | ab. sol n. di al ogs plug-in is not available in the Workbench instance
being tested, a hardcoded value of four is used as the r ecent Edi t s marker limit and
the marker extension definition is used to determine if the marker is persistent.

Exercises

© Copyright IBM Corporation 2000, 2003

10-6

Resource Extensions

2. The comibm | ab. sol n. resour ces plug-in includes an or g. ecl i pse. ui . startup
extension, this means the plug-in starts when Eclipse starts. Because of this you may already
have r ecent Edi t s markers showing in the Bookmarks and Tasks views:

% e x

e | aRE: a_readme.file (on a_readme.file in acustom/readme)
% Tasks (2 items) TR x

| CI ! | Description | Resource | In Folder | Loca
i akE: a_new.readme a_new.read.. afustemProject/readme
i akE: a_readme.file a_readme.fi. acustom/readme
1| | b

Figure 10-3

Bookmarks and Tasks Views with Recent Edits Markers

Note: If the display of the r ecent Edi t s markers in the Tasks view is bothersome, you
have two choices:

Sort the list in the Tasks view so that these information items are at the bottom

Modify the plugin.xml and remove this part of the marker extension definition:
<super type="org.eclipse.core.resources. probl enmarker"> </ super >

This change will remove the r ecent Edi t markers from the Tasks view. They will only
be shown in the Bookmarks view.
Step 2. Create Recent Edits Markers

1. If you do not have any r ecent Edi t s markers showing, then open a file in your workspace and
then edit/save the file. If you open/save enough files, you will reach the maximum number of
recent Edi t s markers that can be saved. The oldest marker is deleted to make room for a
new marker.

A resource change listener (RecentEditsRCL) is used to detect file modifications and
the RecentEdits class manages the recentEdits markers.

Exercises © Copyright IBM Corporation 2000, 2003 10-7

Resource Extensions

2. Therecent Edi t marker support can also be disabled for individual files. If you have the
com i bm | ab. sol n. di al ogs project loaded, you can open the properties page Soln: File
Properties, and view or modify the setting that determines if a r ecent Edi t s marker will be
created for the file:

& rroperties for a_readme.file i Ed

~Info Soln: File Properties

g----Decoquor Demo File
‘- Soln: File Properties

Recent Edits Sefting
Select to disable Recent Edits list support:

Mote: Recent Edits support is provided by the
com.ibm.lab.solnresources plug-in,

Enter value to be saved with the resource:

|N0 prop value found

< | o Restore Defaults Apply

oK Cancel

Figure 10-4

Resource Property Page with Recent Edits Control Options
When selected, the exclude setting will cause the recent edits listener to ignore this file
during add marker processing.

Part 2: Roadmap to the Solution

This solution includes a marker extension and several pop-up action contributions that demonstrate how
natures and builders can be used to customize projects and process resources. the use of the workspace
API. The extension definition can be found in the plugin.xml. The classes that use this extension are shown
below.

| Extension / Object | Implementation

Marker extension:
recentEdits

\Resource Change Listener \The resource change listener is implemented by the Recent Edi t SRCL class.

A marker is defined; there is no implementation class.

‘Recent Edits Manager ‘The recent edits manager is implemented by the Recent Edi t s class.

When the nature is configured as part of a project, it adds the builder. The builder implements a simple
resource transformation by reacting to new or modified .readme files and creating associated .html files.
This processing is implemented by the ReadneVi si t or class.

Exercises © Copyright IBM Corporation 2000, 2003 10-8

Resource Extensions

Exercise Activity Review

What you did in this exercise:

Learned how natures are added to a project
Learned how builders are added to a project and how they react to resource changes
Learned how markers can extend existing marker function

Exercises © Copyright IBM Corporation 2000, 2003 10-9

Resource Extensions

Exercises © Copyright IBM Corporation 2000, 2003 10-10

Action Contributions Programming

Exercise 11 Developing
Action Contributions

Exercise 11 Developing Action CONrBULIONScovviiiieiiie e 11-1
[l goTo [N ot i o] o FANN TR PP TP 11-1
G (W R 0 o= o £SO 11-1

SKill DEVEIOPMENT GOAUSeevvieeeeii ettt e et e et e e et e e e et r e e e et r e e e aaa e e e eaean s eeeennns 11-2
N (o YIRS T (1] o PPN 11-2
Part 1: Define the Toolbar Action in your Plug-in ManifeSt...........c.ccoviiiiiiiiiiiici e 11-2
Part 2: Implement the Word Counting Action and TeSE it..........ccuuuiiiiiiiiieiiiii e 11-3
Part 3: Test EClipse Lazy LOAAINGooiiiiiiieiii et e e e e e e et e eeeaan e eaees 11-5
Part 4: Create a CONteXt MENU ACHON.ttt ettt ettt e e e e e et e eeaeeeennes 11-5
EXEICISE ACHVITY REVIEW.....uu ittt e e e e e ettt e e e ea e e e e eata s e e e eata e eeeestnaaeeees 11-6

This exercise takes you through the process of contributing an action to the Eclipse text editor. The action
will be in two forms, as a toolbar action and as a context menu. The action is quite simple. It counts the
words in the text selected by the user and displays the count in a simple dialog.

I ntroduction

The first step in creating a contribution is to specify in the plug-in manifest where the action will be
shown in the Eclipse user interface, and specify its label, icon, and enablement conditions. This allows
Eclipse to show the action as a menu item, toolbar button, or a context menu item without having to load
your code. In other words, Eclipse creates an initial action that “stands in” for your action. Your action is
referred to as an action delegate and it provides the code that performs the real action if the user chooses
it.

The next step is to define your action delegate class using some form of the interface
| Act i onDel egat e. This action will be loaded, if required, and run when the user selects the
corresponding choice. Once your action delegate has been loaded, it takes responsibility for the future
appearance, enablement state, and visibility of the action.

Exercise Concepts

This exercise will illustrate how to define actions in your plug-in manifest using two different extension
points. You will implement the word counting action as an action delegate and discover a bit more about the
lazy loading of plug-ins. When completed, you will have an action on the toolbar and as an editor context
menu that produces results that look something like this.

Exercises © Copyright IBM Corporation 2000, 2003 11-1

Action Contributions Programming

S-BRal v %- ©O)
i 5. Mavigator v X Wigw Plug-in WigwPlugin, java SampleView. java
By
& -l sample -

&> =

cla

.pra

e

Epn buil

4% pluderme

-1 Samplal ”

Figurel

Example of an Editor Contribution to the Workbench Toolbar

Skill Development Goals

Learn now to use two action contribution extension points:
org.eclipse.ui.editorActions andorg.eclipse.ui.popMnus
Create an action delegate class

Observe lazy loading of plug-ins

Exer cise Setup

Before you can begin this exercise, you must have access to the com i bm | ab. contri buti ons
template plug-in project. This project should already have been imported into your workspace. If not, import
the plug-in from the exercise templates location on your workstation.

There are four parts to this exercise. You should try to finish the first two parts. The last two parts are quite
short, so you probably can finish the entire exercise. The steps defined in each section are continuous.
That is, they must be done in sequence. You should not jump ahead or skip steps.

To assist you in the lab you can copy code and XML snippets from file cont ri but i ons. j page in the
comibm 1l ab. contributions project template. You will have to provide the necessary import
statements. By now you should be familiar with all the JDT tricks to help you.

Part 1. Definethe Toolbar Action in your Plug-in Manifest

1. Define your action using the extension point or g. ecl i pse. ui . edi t or Act i ons by
adding this XML to your plug-in manifest after the </ r equi r es> tag.

Exercises © Copyright IBM Corporation 2000, 2003 11-2

Action Contributions Programming

<ext ensi on poi nt="org. eclipse.ui.editorActions">
<editorContribution
targetl D="org. ecli pse. ui . Defaul t Text Edi tor"
i d="comibmlab. ec. Defaul t Text Edi t or" >
<action
| abel ="Wbrd Count™
i con="icons/sanple.gif"
tool ti p="Show word count of selected text"
class="comibm| ab. contributions. Text Edi t or Wr dCount Acti on"
t ool bar Pat h="Nor nal / addi ti ons"
enabl esFor =" +"
i d="comibm ab. ec. Text Edi t or Wr dCount " >
<sel ection
cl ass="org. eclipse.jface.text.| Text Sel ecti on">
</ sel ecti on>
</ action>
</ editorContribution>
</ ext ensi on>

What does this mean? In the t ar get | D tag we specified that our action applies to the platform text editor.
Our action will not appear in other editors. We have given the normal identification using | abel , i con,
and t ool ti p. The action will appear in the toolbar using the standard path and insertion point of

nor mal / addi ti ons. The action will be enabled if one or more characters are selected

(enabl esFor =" +") and the selection is a text selection. We insure that the action only works on a text
selection by using the selection tag and specify the | Text Sel ect i on class to filter our action to a range
of characters (alternatively, you could have created a trivial action expression using the enabl enent and
obj ect O ass tags to achieve the same result but this is too simple to bother with that approach). The
action delegate class that does the work is Text Edi t or Wor dCount Act i on. We will work on that in the
next step.

At this point you could test your plug-in. The action would appear in the toolbar because your extension is

sufficient to display your action and determine its enablement conditions. Since there is not code to back it
up proceed to Part 2.

Part 2: Implement the Word Counting Action and Test it

1. Inthe package com i bm | ab. contri buti ons create a class named
Text Edi t or Wor dCount Act i on. It should implement | Edi t or Act i onDel egat e which is the
action delegate interface appropriate to our editor extension. It includes a set Acti veEdi t or
method in addition to the normal r un and sel ect i onChanged methods.

2. Add the following fields to this new class. One will be used to store our text editor. The
WORD_DELI M TERS field will help us parse the text into words using the standard Java string
tokenizer.

static final String
WORD DELIMTERS = " . ,"\"/?2<>; . []{}\\
Text Edi tor textEditor;

T~ @& () - _+=\n\r "

3. The class Text Edi t or Wr dCount Act i on implements | Edi t or Act i onDel egat e. Editor
actions are shared by other instances of the same type of editor. If, for example, three default

Exercises © Copyright IBM Corporation 2000, 2003 11-3

Action Contributions Programming

text editors are open, they are all using the same editor action instances on the toolbar. This
sharing simplifies the Workbench code, since it doesn’'t have to worry about duplicate entries.
When the user activates (or reactivates) an editor, the Workbench invokes the

| Edi t or Acti onDel egat e.set Acti veEdi t or method to tell the action which open editor the
user is working in. The action saves this editor as a Text Edi t or so it can refer back to it in its
r un method if the user selects the action. To set the active editor in our action, add this line to
the set Acti veEdi t or method which has passed us the current editor in the parameter

| Edi torPart target Editor.

textEditor = (TextEditor) targetEditor;

4. Without going into the details of editors, it is possible to determine what the text selection was
directly from the editor. So we don’t have to get it using the sel ecti onChanged method. We
will have some fun with that method later. Let's go straight to the r un method and get this
action cooking.

5. Add the following code to the r un method. Again, without going into the details of text editors,
this code will provide us with the document our editor is working on as an | Docunent object
using the Text Edi t or we saved in the set Acti veEdi t or method. Additionally, we retrieve
the selected text as an | Text Sel ect i on object. We now have everything we need to
complete our action.

| Docunent docunent =
t ext Edi t or . get Docunent Pr ovi der () . get Docunent (t ext Edi t or. get Edi t or I nput ());
| Text Sel ection ts =
(1 Text Sel ection) textEditor. getSel ectionProvider().getSelection();

6. Let’s wrap this up by adding the following code to the end of the run method to count the
words in the selected text and display the result. As you can see we have an easy way to get
the selected text as a string labeled t ext . We run the text through the St ri ngTokeni zer
class and display the final count using a simple message dialog. We are now ready to test it.

i nt tokenCount;
try {
String text = docunent.get(ts.getOfset(), ts.getLength());
t okenCount =
new StringTokeni zer (text, WORD DELI M TERS). count Tokens();
} catch (BadLocati onException e) {
t okenCount = O;
}
MessageDi al og. openl nf or mat i on(
nul |,
"Word Count",
"Nurmber of words: " + tokenCount);

7. Test your action by selecting your plug-in project and menu item Run > Run As > Run-time
Workbench (or use the Run toolbar pulldown). In the test instance of Eclipse create a project
and a file with an extension of . t xt to force the default text editor to open. Your action should

Exercises © Copyright IBM Corporation 2000, 2003 11-4

Action Contributions Programming

appear. It will be grayed out. When you select some text it will enable. Selecting the action
should display results similar to (figure ref) above.

Part 3: Test Eclipse Lazy Loading

1. We stated earlier that we would come back to the sel ect i onChanged method. You will add
the following code to explore the various states of the user selection. As you can see it
retrieves the selected text which is passed as an | Sel ect i on object. If your | Sel ecti on
object is not null and is an instance of | Text Sel ecti on you retrieve it into field t s. The rest
of the code tests the selection and reports its status as well as sets the enablement state of
the action. It is important to note that once your action class is active you can change or
override the action’s state and definitional characteristics that were initially defined in your
plug-in manifest.

if (selection !'= null &&

sel ection instanceof |TextSelection) {

| Text Sel ection ts = (I Text Sel ection) sel ection;

if (ts.getLength() == 0) {
System out. println("Text Edi t or Wr dCount Acti on di sabl ed");
action. set Enabl ed(f al se);

} else {
System out. println("Text Edi t or Wr dCount Acti on enabl ed");
action. set Enabl ed(true);

} else {
System out. println("Text Edi t or Wr dCount Acti on di sabl ed");
action. set Enabl ed(f al se);

}

2. Restart the run-time Workbench again and test your plug-in by opening a file using the default
text editor. Select some text. You should not see anything written to the development
Workbench console by the sel ect i onChanged method. Why is that? Your plug-in is not
loaded! Eclipse has exposed your contribution based entirely on the XML in your plug-in
manifest. Select some text again and invoke the Word Count action; the console should light
up with enablement status messages, now that your action delegate is instantiated. Watch the
busy host console and your action’s toolbar icon as you select and deselect text!

Another way to know if you plug-in is loaded or not is by inspecting the Plug-in Registry view
in the test instance of Eclipse. Loaded plug-ins display a “running man” decorator in the plug-
in icon.

Part 4: Create a Context Menu Action

1. Thisis an anticlimactic conclusion of the lab. You will simply redefine your action as context
menu action in your editor using the or g. ecl i pse. ui . popupMenus extension point and
reuse your action delegate class. Add the following extension to your plug-in manifest.
Observe that by specifying menubar Pat h = “addi ti ons” we are adding the action to the

Exercises © Copyright IBM Corporation 2000, 2003 11-5

Action Contributions Programming

menu location reserved by the editor for contributions (also known as the insertion point). Also
note that is important to keep | D values unique between the two action definitions. We used
ec and pmas name qualifiers in the two different extensions.

<ext ensi on
poi nt="org. ecl i pse. ui . popupMenus" >
<vi ewer Contri bution
t arget | D="#Text Edi t or Cont ext "
i d="comibmlab. pmcontributions. Text Edi t or Cont ext ">
<action
| abel ="Wbrd Count™
class="comibm | ab. contributions. Text Edi t or Wr dCount Acti on"
nmenubar Pat h="addi ti ons"
enabl esFor =" +"
i d="comibm |l ab. pm Text Edi t or Wor dCount " >
<sel ection
class="org. eclipse.jface.text.| Text Sel ecti on">
</ sel ecti on>
</ action>
</ vi ewer Contri buti on>
</ ext ensi on>

2. Test your new action in the test instance of Eclipse. Open a text file using the text editor and
click your right-mouse button. You should see the Word Count action listed. It will be disabled
until a text selection is made. It should work identically to the toolbar action.

Exercise Activity Review

What you did in this exercise:
Learn now to use two action contribution extension points to create a toolbar and context
menu action in an editor

Created an action delegate class that could be used by both extension points
Observed lazy loading of plug-ins

Note that the solution com i bm | ab. sol n. contri buti ons offers examples of the use of additional
action contribution extension points.

Exercises © Copyright IBM Corporation 2000, 2003 11-6

Creating New Extension Points

Exercise 12
Creating New Extension
Points

Exercise 12 Creating New EXtension POINTS.........coooeiiiiiiiii e 12-1
110 o (U T 1] o USRI 12-1
S o YT O] o =T o 12-1
S [TV = o o) 1 =T | AT = 12-2
ST (o TSI T (1] o 12-2
EXEICISE INSIMUCTIONS ... eeeeti ettt et e et e e e et e e e et s e e e eeba e e e eabeneeeeaba s eeeentnneeeees 12-2
Part 1: Create a New EXIENSION POINTiiiiii e e et e eeei e eees 12-2
Declaring an extenSIioN POINTuiiiuieiie e e e e e e e e et e e e e e e e et e e eean s 12-2
Why define @ SChEMAT? e e e e 12-4
Declaring the extension POINE'S COUEuiiiiuiiiii e e e e e e e e e een s 12-8
Processing EXIENSION TAQGS .. vvuureeiretuieeiieettieteteeeteeet e eaneean e eetn e eeanaeetneeennaeenaeetnaarenaerennns 12-8
Create an Interface that Extenders Must IMplement.............cooveiiiiiicii e 12-10
Finish the EXteNSIONPrOCESSOr CIASScuuuiiiiiiiiiiieiii e eeeaens 12-11
Connect the ExtensionProcessor class to ToolActionsPulldownDelegate.............ccccccevevinnennnnn. 12-12
Part 2: Use the EXIENSION POINT..........iiiiiii et e e e 12-14
Test the NeW EXIENSION POINE..........iii e e e 12-14
Using the extension point from a different plug-in...........ccooooviii i, 12-18
EXErCISE ACHVIEY REVIBW. .. .cee ittt e e e e e e e e e et s e e e e e e e et e e enneeeens 12-24

Introduction

The Workbench is composed of extensible plug-ins. These plug-ins are built using plug-in
extension points. In fact, menu items and toolbar items are just plug-in extension of the
Workbench Ul. Plug-in authors can also implement extension points of their plug-in
functions.

Exer cise Concepts

This exercise is a case study in creating an extensible plug-in. The god of this exercise isto
first show you how to write an extensible plug-in that offers the possibility for other plug-
ins to extend. The second part of the exercise demonstrates how one extends the plug-in
created in the first part.

Exercises © Copyright IBM Corporation 2000, 2002 12-1

Creating New Extension Points

Skill Development Goals

At the completion of this exercise, you should be able to:

Declare an Extension Point and then to use it with an extension.

You will learn the declaration of a new Extension point in the markup and the
implementation in the markup and in Java.

Process the markup data

You will learn to read the markup from the new Extension Point and handle it.
Extend the new extension point from plug-in in a different project.

You will learn how to specify classes for the markup and how to delegate tag
processing to them.

Exer cise Setup

Common exercise setup tasks should have been performed so that the
com i bm | ab. ext ensi onpoi nt project is available for this exercise.

Exercise Instructions

Part 1: Create a new Extension Point

Let'simagine that we are an ISV, developing a couple of different tools as plug-ins for the
Workbench. We want to provide a common pulldown item on the application toolbar
where al of our tool commands may execute. We decide that this requires a smple
framework that can be easily implemented using an extension point. So, we want to create
a plugrin with an extension point at the base of this framework. As we build additional tool
plug-ins, we use the extension point mechanism to add tool command menu items.

To save you time, the following is already supplied to you:

A template for pl ugi n. xm i n project comibml ab. extensi onpoint.
This template offers the body of the pl ugi n. xm .
The class com i bm | ab. ext ensi onpoi nt. Tool Acti onsPul | downDel egat e.

This class is our entrypoint for new commands that we want to customize with the new
extension point.

A utility class com i bm | ab. ext ensi onpoi nt. Tool Acti onPar anet er s.

This class encapsulates the parameters specified on our extension point tag.

Declaring an extension point

Exercises © Copyright IBM Corporation 2000, 2002 12-2

Creating New Extension Points

1. First have a look at the ext ensi on- poi nt DTD™:

<! ELEMENT ext ensi on- poi nt EMPTY>
<! ATTLI ST ext ensi on- poi nt

nane CDATA #REQUI RED
id CDATA #REQUI RED
schema CDATA #| MPLI ED

>

The ext ensi on- poi nt tag has no child tags. The attribute nane is just a descriptive
name for the ext ensi on- poi nt which is displayed by the various Plug-in Development
Environment (PDE) dialogs. The i d attribute is important because it is the key part of the
extension point identifier. Extenders use this key to declare the points their plug-ins will
extend. It must be unique inside the pl ugi n. xml and be a simple token (characters a-z,
A-Z, 0-9). The attribute schena is not used in workbench runtime but by the PDE; we'll
discuss this in more detail later.

2. Declare the new extension point.

Open the plug-in manifest editor by double-clicking pl ugi n. xm , then turn to the
Extension Points page. Define a new extension point by selecting Add... and filling out
the dialog:

Newr Extension Point

Extension Point Properties

Specify properties of the new extension point. =q

Extension Point Id |t30IActi0n

Extension Point Mame |TDD| Actions

Extension Point Schema |Schema{m0IAction.exsd

W Edit extension point schema when done

Einish | Cancel |

Figure 12-1
New Extension Point Wizard [extpt_01.tif]

! See the Platform Plug-in Developer Guide, under Reference > Plug-in Manifest for the complete DTD.

Exercises © Copyright IBM Corporation 2000, 2002 12-3

Creating New Extension Points

Choose the extension point name carefully, since it will be displayed by PDE dialogs that
reference your extension point. Notice that a schema for your new extension is
automatically created and stored in the schena subdirectory of the project.

Why define a Schema?

Extensions cannot be arbitrarily created. They are declared using a clear specification
defined by an extension point, but until now we haven’t discussed how to create a
specification that can validate that extensions will conform to the extension point’s
expectations.

Whether specified programmatically via a schema or implicitly via reference
documentation, each extension point defines attributes and expected values that must be
declared by an extension. In the most rudimentary form, an extension point declaration is
very simple. It defines the i d and nane of the extension point.

Reference documentation is useful, but it does not enable any programmatic help for
validating the specification of an extension. For this reason, PDE introduces an extension
point schema that describes extension points in a format fit for automated processing,
plus a specialized editor.

By convention, new schemas have the same name as the extension point id with a . exsd
file extension®. They are placed in schena directory in your plug-in directory tree. When a
new extension point is created in the PDE, the initial schema file will also be created and
the schema editor will be opened for editing. The PDE schema editor is based on the
same concepts as the plug-in manifest editor. It has two form pages and one source
page. Since XML schema is verbose and can be hard to read in its source form, we will
use the form pages for most of the editing. The source page is useful for reading the
resulting source XML.

3. Add extension point schema information

Since Edit extension point schema when done was checked when the extension point
was created, the editor below is displayed:

2 Extension point schema file extensions were changed to *.exsd in version 2.0 to avoid conflicts with XML
Schema Definitions.

Exercises © Copyright IBM Corporation 2000, 2002 12-4

Creating New Extension Points

*Lab: Extension-Paint Plugin Bi toolacti X

Tool Actions
General Information Element Grammar
Extension Point Elements Yiew or modify the content

The following XML elements and attributes are T S| i e | TS
allowed in this extension point:

=@ extension Mewy Element
°@ point
o [ew et
-+
@ name
DTD approximation:
Description

Add short description of elerments and attributes for documentation purposes, Use
HTML tags where appropriate,

=0
===

Definition | Docurmentation | Source

Figure 12-2
Extension Point schema editor [extpt_02.tif]

Here the extension point elements are shown on the left, and their relationship to one
another on the right. The top-level ext ensi on element is shown by default; add the new
t ool element by selecting “New Element” and entering its name in the Properties view.
Then define the t ool ’ s attributes acti on and | abel by selecting t ool and then the
New Attribute pushbutton. Specify in the Properties view that the former accepts only
those classes that implement the com i bm | ab. ext ensi on. | Tool Acti on interface by
changing the Ki nd to j ava and entering the interface name as the basedn value of the
act i on attribute (it is not a problem that we have not yet defined this interface); change
the Use to r equi r ed. The PDE will use this information to ensure that only compatible
classes or interfaces can be entered for this attribute when defining an extension of the
t ool extension point. Specify in the Properties view that the | abel attribute will accept

any string, and the attribute is required.

Turn to the Source page to see what the PDE schema editor has generated. Below is a

partial extract:

<?xm version='"1.0" encoding=' UTF-8' ?>
<!-- Schemn file witten by PDE -->
<schemn t ar get Namespace="com i bm | ab. ext ensi onpoi nt ">
<annot ati on>
<appl nf o>
<met a. schema plugi n="com i bm | ab. ext ensi onpoi nt"
</ appl nf 0>
<docunent ati on>
[Enter description of this extension point]
</ docunent ati on>
</ annot ati on>

<el ement nanme="ext ensi on">
<conpl exType>
<sequence>
</ sequence>

i d="t ool Acti on"

Exercises © Copyright IBM Corporation 2000, 2002

name="Tool s actions"/>

12-5

Creating New Extension Points

<attribute name="point" type="string"
<annot ati on>
<docunent ati on>

use="required">

</ document ati on>
</ annot ati on>
</attribute>
<attribute name="id" type="string">
<annot at i on>
<docunent ati on>

</ document ati on>
</ annot ati on>
</attribute>
<attribute name="name" type="string">
<annot ati on>
<docunent ati on>

</ document ati on>
</ annot ati on>
</attribute>
</ conpl exType>
</ el enent >
not shown ...

</ schema>

Whew! Some plug-in developers might enter source directly into the PDE manifest editor,
but here it is clear that the schema editor is saving you a lot of typing!

We've finished defining the elements ext ensi on (which was provided by default) and its
child tag, t ool .

4. Finish defining the relationship between ext ensi on and t ool .

The ext ensi on element already has a sequence compositor defined; let’s use it to finish
defining the relationship between ext ensi on and nenul t em

Select the extension element grammar entry, select the Sequence pop-up menu, then
New > Reference > tool:

Element Grammar

Yiew or modify the content
madel of the selected
element

ompositor »

OTD ap
EMPTY|

focument

] Properties

Figure 12-3
Sequence Context Menu [extpt_03.tif]

Exercises © Copyright IBM Corporation 2000, 2002 12-6

Creating New Extension Points

Then update the cardinality in the t ool property view within the element grammar:

BB MR
Property | Walue |
maxoCours 1|
minCcours 1
Figure 12-4

Grammar Properties View [extpt_04.tif]

This will update the Element grammar display for the ext ensi on element as shown
below:

Element Grammar

Yiew or modify the content
madel of the selected element

=97 Sequence
= tool (0- %)

DTD approximation:
(tool*y
Figure 12-5
Element Grammar Display [extpt_05.tif]

When a PDE developer creates an extension of this extension point, the PDE manifest
editor will only allow the definition of t ool subtags and will prompt for those
classes/interface that fulfill the | Tool Acti on interface for the act i on attribute.

You can also add in general documentation for the extension point by switching to the
Documentation page. Information for individual elements/attributes is entered in the
Description text area on the Definition page.

Once we have finished with the documentation, you can take a look at the reference
documentation, t ool Acti on. ht ni , in the project’s "doc" folder. It is built by a PDE
builder registered to react to changes in extension point schema files.

Helpful Hint: You can easily reopen the schema editor by double-clicking the .exsd file
in your project’'s schema directory or selecting “Go to File” from the extension point's
Properties view:

Exercises © Copyright IBM Corporation 2000, 2002 12-7

Creating New Extension Points

3w X
Property Yalue
id “@ toolAction
name Toal Actions
BN s chematoolaction. sxsd

Figure 12-6
Context Menu to display Schema Editor [extpt 06.tif]

Declaring the extension point's code

5. To define our JAR file, which includes the Java code we’ll write later on, go back to the
Runtime page of the Manifest Editor, select Add and enter ext ensi onpoi nt. j ar. The export
statement to the parent library tag (see bold text below) will make it visible (public) to
extenders; this corresponds to the “Export the entire library” choice in the PDE manifest editor:

JLab: Extension X

Run-time Information

Run-time libraries Library exporting

Define libraries that need to be included Define the portions of the selected

in the class path of your plug-in. library that should be visible to plug-ins.
i, extensionpaint. jar Add O Do not expart

@ Export the entire library
l:l Q Export using content filkers

Cwverview | Dependencies |Runtime |Extensions |Extension Points | Source

Figure 12-7
Run-time Editor pane [extpt_07.tif]

And here’s the corresponding XML that will be generated:

<runti ne>
<library name = "extensionpoint.jar">
<export name="*"/>
</library>
</runtime>

Now is a good time to save the plug-in file.

Processing Extension Tags

After declaring the new extension point, we need to process the data tags coming from
the extension. When the Workbench is started, all markup tag data is stored in key/value

Exercises © Copyright IBM Corporation 2000, 2002 12-8

Creating New Extension Points

pairs in the Workbench Plug-in Registry (Pl at f or m get Pl ugi nRegi stry()). So we
must access this data and process it.

6. Open the class called Ext ensi onPr ocessor . Note the following constants:

private static final String PLUG N ID = "comibm | ab. ext ensi onpoi nt";
private static final String EXTENSION PO NT _ID = "t ool Action";
private static final String EXTENSI ON TAG = "tool ";

private static final String EXTENSI ON TAG ACTI ON ATTRIB = "action";
private static final String EXTENSI ON TAG LABEL ATTRIB = "Il abel ";

These define the IDs and attributes that will be specified in the plugin.xml.

Note: The reason why we use constants (pri vate static final)isthatyou can
easily reuse the Ext ensi onPr ocessor class as a template in your own code by simply
changing the values of the constants.

To start processing of the extensions, update the code that gets the plug-in registry (the
run-time composite of the plugin.xml files that were parsed during Workbench startup)
and retrieves the t ool s extensions (if any) and save them in instance variables (in bold):

private |PluginRegistry pluginRegistry = Platform getPl ugi nRegi stry();
private | ExtensionPoint point =
pl ugi nRegi stry. get Ext ensi onPoi nt (PLUG N_I D, EXTENSI ON_PO NT_I D) ;

Refer back to the generated HTML documentation of our extension point schema:

<! ELEMENT t ool >

<! ATTLI ST
action CDATA #REQUI RED
| abel CDATA #REQUI RED
>

We have a tag called “tool” and this tag has two attributes: act i on and | abel . The
action will hold a fully-qualified name to a class we want to execute when the menu item
is chosen. The attribute “label” is just the label of the menu item.

7. Add the following logic to the | oad method that loops through the markup data in the Plug-in
Registry, picking up our tags:

| Ext ensi on[] extensions = point.get Ext ensi ons();

for (int i =0; i < extensions.length; i++) {

Exercises © Copyright IBM Corporation 2000, 2002 12-9

}

Creating New Extension Points

| Ext ensi on current Extensi on = extensions[i];

| ConfigurationEl ement[] tags =
cur rent Ext ensi on. get Confi gurati onEl enent s() ;

for (int j =0; j <tags.length; j++) {
| ConfigurationEl ement currentTag = tags[j];

/1 just load the tag we want, all others are ignored
i f (currentTag. get Nane(). equal s(EXTENSI ON_TAG))
addMenul t em(current Tag) ;
}
}

You can add more logic to this method, limit the number of tags for each plug-in, exclude
plug-ins, add detailed error handling, etc., it's up to you.

Create an Interface that Extenders Must | mplement

8. Open the interface, | Tool Act i on, that defines the behavior which the extenders must

implement. Finish the interface by adding the method definition for run() :

public interface | Tool Acti on extends | Execut abl eExt ensi on

{
}

public void run();

The interface | Tool Act i on extends | Execut abl eExt ensi on because we need to
handle data initialization. We will discuss this in more detail shortly.

You could also add methods to pass variables from the menu pulldown,

Tool Acti onsPul | downDel egat e, to the classes that handle the actual menu item action
(implementors of | Tool Acti on) . Tool Acti onsPul | downDel egat e implements the

I Wor kbenchW ndowPul | downDel egat e interface, and therefore has access to variables
such as | Wor kbenchW ndow, | Sel ecti on or | Acti on. It depends on the extent of the
framework that you are building. In this example, we just need a plain r un() method.

Design Note: If we wanted to create a more involved example, we would likely extend
| Tool Act i on with different interface subclasses and default implementations. For
example, let's imagine the example extension markup below:

<ext ensi on poi nt="com i bm | ab. ext ensi onpoi nt. t ool Acti on">

Exercises © Copyright IBM Corporation 2000, 2002 12-10

Creating New Extension Points

<t ool
type="external" defaul t="internal"
execut abl e=" not epad. exe" execut abl e
cwd="proj ect" pr oj ect | wor kspace| "ot her"
par anet er s="{sel ect edResource}"/ > keywords as desired

</ ext ensi on>

In our fictitious example, the "type" dictates the 'action processor.' We have already
defined the interface of such a processor for internal commands, namely | Act i onTool .
We would define another interface and implementation, | Ext er nal Acti onTool and

Ext er nal Acti onTool , which allows the plug-in developer to define an external
command, define its starting directory (cwd attribute above), parameters, etc. The default
implementation would likely need additional parameters in its run(..) method that would
be passed to it by Tool Acti onsPul | downDel egat e.

We won't implement this particular enhancement, but it does give you a better idea of
possibilities that extension points offer.

Finish the ExtensionProcessor Class

9. Complete the addMenul t emmethod of the ExtensionProcessor class. Start by retrieving the
tag's attributes inside the commented t r y..cat ch statement as shown below (in bold):

| Tool Action tool Action =
(1 Tool Action) confi gEl enent. creat eExecut abl eExt ensi on
(EXTENSI ON_TAG_ACTI ON_ATTRI B) ;
String | abel = configEl ement. get Attri bute(EXTENSI ON TAG LABEL ATTRI B) ;

An interesting point here is the cr eat eExecut abl eExt ensi on() method. It looks for the
specified tag attribute, the value being a fully-qualified class, and creates an instance of
that class. If the class implements | Execut abl eExt ensi on, its
setlnitializationData(.) method is called, passing the | Conf i gur at i onEl enment
tag that resulted in the new class instance creation. This gives the receiving class the
opportunity to process attributes or child tags itself. You can use this approach to simplify
and distribute extension tag processing, that is, move the processing out of a central
class as we have done in this exercise and into a class specified in an attribute of the tag
(acti on, in our case; other Eclipse extension points often call it cl ass).

You can add more logic, tags (e.g. better error handling, unknown attributes, etc). For
now we will keep it simple and press on.

Exercises © Copyright IBM Corporation 2000, 2002 12-11

Creating New Extension Points

Connect the ExtensionProcessor classto ToolActionsPulldownDelegate

Now we are able to select the right tags and load the attribute parameters into the
t ool Acti onsPar anet er s list of the Ext ensi onPr ocessor class.

10.Go to the Tool Act i onsPul | downDel egat e class and add this field:

private ExtensionProcessor extensionProcessor =

new Ext ensi onProcessor();

11.Go to the i nit method and call the | oad() method of the ext ensi onPr ocessor instance
(bold text):

public void init(lIWrkbenchWndow wi ndow)
{

ext ensi onProcessor. | oad();

}

The i ni t method is called when the Tool Act i onsPul | downDel egat e action delegate is
created. This occurs when the user first selects the pulldown menu; prior to that moment,
an action proxy handles the initialization and enablement of the menu based on the
<action ..»tag and its child tags (e.g., <sel ection ..>tag).

12.Take a look at the get Menu() method. There we iterate over the Ext ensi onPr ocessor's tool
actions list to fill in the menu items. Add the following code to the get Menu() method to insert
a menu choice for each action:

for (int i = 0;
i < extensionProcessor. get Tool Acti onsParaneters().size(); i++) {

Tool Acti onPar anet ers ext ensi onParns =
(Tool Acti onPar anet er s)
ext ensi onProcessor. get Tool Acti onsParaneters().get(i);

Menul t em menui t em = new Menul t en{ nmenu, SWI. NONE) ;
nmenui t em set Text (ext ensi onPar ns. get Acti onLabel ());

/1 save the action in the menu itemreference for handling selection
nmenui t em set Dat a(ext ensi onPar ns. get Action());

// set and create selection listener with inner class

nmenui t em addSel ecti onLi st ener (new Sel ecti onAdapter () {
public void wi dget Sel ect ed(Sel ecti onEvent e) {

Exercises © Copyright IBM Corporation 2000, 2002 12-12

Creating New Extension Points

| Tool Action action = (1Tool Action) e.w dget.getData();
action.run();
}
1)
}

13.Start the run-time workbench. Go to the Perspective menu and choose Customize. Expand the
Other menu item and activate our Toolbar Actions action set.

£ Customize Perspective

Select the items to be displayed in the current perspective (Resource),
Available Iems: Details:

+-[F]window = Show Yiew #| | ®Lab: Tools
=-[F]other
Ccvs
[Jpetug
[#]External Tools
[#]Help
[¥]3ava Coding
[ava Debug

[17ava Element Creation
[ava Navigation
[¥]3ava Open actions
Java Search
Lab: Tool Ag
[Launch
[¥]ReadMe Actions

[¥]5earch
[¥]Software Updates

[

oK | Cancel

Figure 12-8
Customize Perspective Panel [extpt_08.tif]

14.Find the new Button with a small arrow on the right side. Click on the arrow, no menu items are
displayed because no plug-in loaded in the workbench is contributing to our extension point.

£ Resource - Eclipse Platform
File Edit Mavigate Search Project Run ‘Window Help

H-EEE& || ®- || %~
ﬁEw v x
Blle 2 &

@

Console [CPrograrm Fi..

LA

iction Configuration Start#
* Ho configuration found!
hction Configuration End

Tasks | Console |Error Log

Exercises © Copyright IBM Corporation 2000, 2002 12-13

Creating New Extension Points

Figure 12-9
Run-time Menu Option and Console Output [extpt_09.tif]

Note: The menu is displayed in the run-time instance and its Syst em out messages
appear back in the console of the development Workbench.

15.Close the test instance of the Workbench.

Part 2: Use the Extension Point

Now we want to use our new extension point. This procedure is similar to other exercises.
Can you still remember Fi r st Pl ugi n extending actionSets?

Test the new Extension Point

Let's have a short look at the extension tag DTD>:

<! ELEMENT ext ensi on ANY>

<! ATTLI ST extensi on
poi nt CDATA #REQUI RED
id CDATA #1 MPLI ED
name CDATA #1 MPLI ED

According to the above definition, this tag can hold any child tags - it doesn’t matter what
they are named as long as they are well-formed XML. However, you'll see that by using a
extension point schema definition, the PDE manifest editor only permits valid tags and
attributes.

The poi nt attribute is important because it defines which extension point we are going to
use. The key or identifier is built out of the extension point id and the accompanying plug-
inid.

So our extension point identifier looks like this:

% See the Platform Plug-in Developer Guide, under Reference > Plug-in Manifest for the complete DTD.

Exercises © Copyright IBM Corporation 2000, 2002 12-14

Creating New Extension Points

com i bm | ab. ext ensi onpoi nt. tool Action

The first part is the plug-in id and the last part is the extension point id, separated by a
period.

The i d attribute of the extension tag is optional and used to make a extension unique. It
isn't used very often, but you might find it necessary if your extension point processing
code needed to identify a specific tag. If omitted, the workbench provides generic ids.
The nane attribute of the extension tag is optional again and used to give the current
extension a user-readable name.

Now to specify our tool action extension point - here’s where we see the benefit of an
extension point schema.

1. Go back to the plug-in manifest editor, and begin by selecting Add from the Extensions page to
create an extension. Selecting our schema-based extension, t ool Act i on, will guide the rest
of our choices.

Extension Wizard Selection

Choose a wizard that will guide you through the new extension creation =D3=

Generic \Wizards
Extension Termplates

Adds a new extension based on its schema information, If the extension point e’
schema (definition) can be found, you will be able to create the currect child
elements by choosing New on the pop-up menu while the parent element is
selected, The property sheet will show expected attributes for each elerment and
will use cell editor appropriate for the atribute type.

| MNext = | Cancel

Figure 12-10
New Extension Wizard [extpt_10.tif]

Exercises © Copyright IBM Corporation 2000, 2002 12-15

Creating New Extension Points

The t ool Acti on extension point is shown by its ID,
“com.ibm.lab.extensionpoint.toolAction” in the Extension Wizard. The id and name of the
extension can be left blank in this case.

Extension Point Selection
Select an extension point from those available in the list, =03=

b oL b, | noint. too
={ org.eclipse.ant.core.antTasks
={ org.eclipse.ant.core.antTypes
={ org.eclipse.ant.core.extraClasspathEntries

={ org.eclipse.compare.contentivergeyiewers

={ org.eclipse.compare.contentyiewers

={ org.eclipse.compare.structureCreatars

={ org.eclipse.compare. structureMergeViewers

={ org.eclipse.core.resources.builders

={ org.eclipse.core.resources. fileModification'/alidator

={ org.eclipse.core.resources. markers

={ org.eclipse.core.resources. moveDeleteHook

={ org.eclipse.core.resources.natures

={ org.eclipse.core.runtime.applications

={ org.eclipse.core.runtime.urHandlers

={ org.eclipse.debug.core.breakpoints

={ org.eclipse.debug.core. launchConfigurationComparators
={ org.eclipse.debug.core. launchConfigurationTypes

il e e limen Anbnn meen 1o

|«

FointlD |

Foint Name |

com.ibrm.lab.extensionpoint. toolAction

< Back | | Einish | Cancel

Figure 12-11
Extension Point Selection Pane [extpt_11.tif]

Rather than seeing the generic menu choices when creating subtags, we only see those
that apply:

X
. -
Extensions -
All Extensions Extension Element Children
Show full extension hierarchy I:I
== Action Sets Add...
+- T Lab: Tool Actions I:I
o= Up
Delete o= Extensian... — l:l
fa B
a @ [Reset] o
Cwerview D¢ o Extensions |Extension Points | Source
Figure 12-12

Extension Context Menu [extpt_12.tif]

Exercises © Copyright IBM Corporation 2000, 2002 12-16

Creating New Extension Points

Moreover, the attributes of properties can be selected from prompt dialogs, such as the
act i on attribute of the t ool element, rather then being entered manually. Since in this
case we specified an interface rather than a superclass for the baseOn value of the

t ool ’'s act i on attribute, we need to create the target class implementing this interface so
it will be accepted:

Java Class

Create a new Java class.

Source Faolder: | com.ibrm,lab.extensionpoint/src Browse...

Package: | com.ibm.lab.extensionpoint Browse...

[t e

[Enclosing type: |

MName: | TestToolaction
Madifiers: " public O default .
™ ahstract [final r
Superclass: |java.lang.0bject Browse...
Interfaces: @ com.ibm. lab.extensionpoint. ToolAction

e

Which method stubs would you like to create?
I public static void main{String[] args)
I Constructors from superclass
W Inherited abstract methods

Einish Cancel

Figure 12-13
New Java Class Wizard [extpt_13.tif]

Checking “Inherited abstract methods” will generate templates for the run() and
setlnitializationData(l ConfigurationEl enent, String, Object) methods.

Now select the newly created class for the act i on attribute of the extension. After
entering “My First Command” as the descriptive label, selecting Save, and turning to the
Source page, you should see something like this:

<ext ensi on poi nt="comibm | ab. ext ensi onpoi nt. t ool Acti on">
<t ool
action="comibm | ab. ext ensi onpoi nt. Test Tool Acti on"

| abel ="MWy First Command"/>

Exercises © Copyright IBM Corporation 2000, 2002 12-17

Creating New Extension Points

</ ext ensi on>

2. Go back to the PDE and finish the implementation of the class we defined above:

public class TestTool Action inplenents |Tool Action

{
public void run(){}
public void setlnitializationData(
| ConfigurationEl ement confi g,
String propertyNane,
hj ect data)
throws org. eclipse.core.runtine. CoreException
{}
}

You should get these two methods above automatically. First we will work with the r un()
method and later on with the set I niti al i zati onDat a() method.

3. Inthe run() method, add the following code (bold text):

public void run()

{
MessageDi al og. openl nf ormati on(nul |,
"Run Exanpl e",
"Test successful!");
}

Run the Workbench and open our pulldown menu on the toolbar. You should see a menu
item called “My Fi rst Conmmand”. When you choose it, the message dialog in the run()
method is displayed.

4. Close the run-time instance of the Workbench.

Using the extension point from a different plug-in

5. Create a new project, com i bm | ab. ext ensi onpoi nt . test.

Use the File>New>Project wizard, select “Plug-In Development” and then choose
“Plug-In Project”. Press Next.

Exercises © Copyright IBM Corporation 2000, 2002 12-18

Creating New Extension Points

Enter com i bm | ab. ext ensi onpoi nt . t est for the name and press Next and then

Next again. Check the “Create a plug-in project using a code generation wizard” and

choose the “Default Plug-In Structure” and press Next.

Enter “Extension Point Test” for the Plug-in name and uncheck “Generate code for the

class.” Also remember to blank out the "Class name" field. Press Finish.

Remember that the Workbench reads all the plug-in manifests during start-up. It isn’'t until
the user actually invokes a given plug-in’s functionality that its code is read into memory.
Thus the manifest must define the necessary run-time environment, such as prerequisite

plug-ins, just as Java source code must list prerequisite packages in its i npor t

statements.

6. Define the new project’s prerequisites by pressing the Add... button and checking the

appropriate plug-ins on the Dependencies page of the new class’s plugin.xml file in the PDE

manifest editor:

New Required Plug-in

Available Plug-ins
Select plug-ins from the provided list that should be added to the @

dependency list.

Available

those already on the list are not shown)

=
[F= com.ibm.lab.dialogs (2.0.0)
com.ibm.lab.extensionpoint (2.0.0)
[P com.ibm.lab.interop (2.0.0)
[com.ibm.lab.jot ¢2.0.0)
[Fe com.ibm.lab.layouts (2.0.0)
[F= com.ibm.lab.resources (2.0.0)
[Fe= com.ibm.lab.service (2.0.0)
[Fe= com.ibm.lab.swt (2.0.0)
[F= com.ibm.lab.view (2.0.0)
- [External Plug-ins
EF';I?- org.eclipse.ant.core (2.0.0)
[P org.apache.ant (1.4.1)
EF';I?- org.apache. lucene {1.2.0) v

Einish | Cancel

Figure 12-14
Plug-1n Dependencies Page [extpt_15.tif]

Adding "com.ibm.lab.extensionpoint” as a required plug-in to the Dependencies page of

the PDE manifest editor will generate the statements below on the Source page:

<requi res>
<i mport plugin="org.eclipse.ui"/>

Exercises © Copyright IBM Corporation 2000, 2002

12-19

Creating New Extension Points

<i mport plugin="org.eclipse.core.runtine"/>
<i mport plugi n="comibml ab. ext ensi onpoi nt"/>
</requires>

The corresponding code dependency is documented in the Java source with i nmport
statements. Maodifying and then saving the plugin.xml file will automatically update the
project's classpath, assuming the option is set in the PDE preferences:

& Preferences g|
+-Wwiarkbench Java Build Path Control
Build Order)) .))
23-Debug Specify areas in which PDE should automatically update project

build path.

+-External Tools)) .

Help W Whan creating a new plug-in project

InstallUpdate ¥ WWhen creating a new fragment project
+- Java ¥ \while modifying dependencies in plug-in manifest editor
-I-Plug-In Developrment W During Jawa to POE project corwarsion

Editors

Source Code Locations
Target Environment
Target Platform
Readme Example
+-Team

¢ 3 Restore Defaults | Apply |

Irnport... | Export... | K | Cancel |

Figure 12-15
Java Build Path Preference Pane [extpt_16.tif]

7. Createacom i bm | ab. ext ensi onpoi nt. t est package and copy the Test Tool Acti on
class to it. Its package statement will automatically be updated; and add the import statement
below:

i mport comibm | ab. ext ensi onpoi nt. | Tool Acti on;

8. Create an extension with the help of the schema-based generator as before, this time adding
two tool actions with labels “New Conmand 1" and “New Conmand 2" . In the action field, click
the browse button and choose Test Tool Act i on from the
com i bm | ab. ext ensi onpoi nt.test group.

Exercises © Copyright IBM Corporation 2000, 2002 12-20

Creating New Extension Points

MLab: Test To X

Extensions

All Extensions Extension Element Children
Show full extension hierarchy
sRedcom. b, lab.extensionpoint.,

) tool
® o [o]

Body Text

8 AU

< >

Figure 12-16
Extension Page [extpt_17.tif]

After saving, the Source view should show something like this (bold text):

<?xm version="1.0"?>

<pl ugi n
nane = "Ext ensi on- Poi nt Test"
id = "comibm | ab. ext ensi onpoint . test"
version ="1.0.0"
vendor-nane = "| BM >

<requi res>
<i nport plugin="org.eclipse. ui"/>
<i nport plugin="org.eclipse.core.runtine"/>
<i nport plugin="org.eclipse.core.resources"/>
<inport plugin="comibm] ab. extensionpoint"/>
</requires>

<runti ne>
<library nanme = "test.jar"/>
</runti me>

<ext ensi on poi nt="com i bm | ab. ext ensi onpoi nt.t ool Acti on">
<t ool
action="comibml ab. ext ensi onpoi nt.test. Test Tool Acti on"
| abel =" New Command 1"/ >
<t ool
action="comibml ab. ext ensi onpoi nt.test. Test Tool Acti on"
| abel =" New Command 2"/ >
</ ext ensi on>
</ pl ugi n>

Don't forget to import the com i bm | ab. ext ensi onpoi nt package! Otherwise you get
an error that your class could not be loaded. Remember from Part 1: We added an
<export name="*"> child tag to the <l i br ar y> tag to make the pulldown menu
package with our extension point visible [public] for extenders. This mechanism, to export
first and to import later could be called a “handshake”. If one of these parts is missing, it
will not work.

Exercises © Copyright IBM Corporation 2000, 2002 12-21

Creating New Extension Points

Not e: To keep it simple we are just using the same Java class for both menu
commands.

We are not finished yet!

9. Modify the Test Tool Act i on class in the com i bm | ab. ext ensi onpoi nt . t est package.
Add the following fields (bold text):

public class TestTool Action inplenents |Tool Action

{
private oject stringData;

private | ConfigurationEl enent tag;

}

10.Gotothesetlnitializati onDat a method and add the following (see bold text):

public void setlnitializationData(
org. eclipse.core.runtine.|ConfigurationEl ement config,
java.lang. String propertyNane,
j ava. |l ang. Qbj ect data)
throws org. eclipse.core.runtine. CoreException

stringData = dat a;
tag = config;

Now we can receive data from this method and are able to store it so we can reference it
later. Let's look a little more closely into how set I niti al i zati onDat a(..) is called.

When the | Conf i gur ati onEl enent . cr eat eExecut abl eExt ensi on() is called from
Ext ensi onProcessor‘ S addMenul t en(| Confi gur ati onEl enent) method, the
Eclipse Platform is looking for the set I ni ti al i zati onDat a() method in the target
class. IfthesetlnitializationData() method is defined, it is called using the
following objects as initializing data: the | Confi gur ati onEl enent confi g, the Obj ect
data and the Stri ng propertyNane. The confi g parameter is the current tag in the
XML data, in our case the tag t ool . The dat a parameter is actually a String (more about
it in a moment). The pr oper t yNane parameter is the name of the attribute that is passed
to the cr eat eExecut abl eExt ensi on() method, in our case “action”.

First let's start with the Cbj ect stri ngDat a.

Exercises © Copyright IBM Corporation 2000, 2002 12-22

Creating New Extension Points

11.Go to the run() method and change the content to the following (bold text):

public void run()

{
MessageDi al og. openl nformati on(nul |,
"Run Exanpl e",
“"Paraneters hard coded into the xm, " +
"on the class attribute and after the colon: " +
stringData);
}

You'll see how this format is handled by the cr eat eExecut abl eExt ensi on method. Of
course, we could have created another subtag to pass this parameter; we chose
cr eat eExecut abl eExt ensi on’ s “.” technique since it was only a simple string.

12.Go to the plugin.xml and make the following changes (bold text, should be one line):

<ext ensi on poi nt="comibm | ab. extensi onpoi nt.tool Action">
<t ool
action="comibm]l ab. ext ensi onpoi nt.test. Test Tool Acti on: G eeti ngs
from New Command 1"
I abel =" New Conmmand 1"/ >
<t ool
action="comibm]l ab.textensionpoint.test. Test Tool Acti on: G eeti ngs
from New Canmmand 2"
I abel =" New Conmmand 2"/ >
</ ext ensi on>

The text after the semicolon in the class attribute is our Cbj ect stri ngDat a. The value
of the attribute, which is made executable (in our case, the attribute act i on), is divided
into two sub-strings: the first part up to the semicolon is seen as a full qualified class
name and the second from the semicolon on is an Object that simply holds a String. If
you leave off the semicolon and the rest, the bj ect stri ngDat a is null.

In this exercise, we used this Object to customize a dialog message so that we can reuse
one class (Test Tool Act i on) for any number of menu commands.

13.Save the pl ugi n. xnl and start the Workbench.

Now the menu items appear because there is a plug-in in place to extend the tool action
extension point.

Exercises © Copyright IBM Corporation 2000, 2002 12-23

Creating New Extension Points

£ Resource - Eclipse Platform |:||§|r>__<|
File Edit Mavigate Search Project Run ‘Window Help

BrBEES |[#-] 7| %~

1= 25 Navigator Command 1
. . /> | Lab:Mew Command2

Bylle = E)

by ——————————— Lab: My First Command

P

£ Run Example
Parameters hard coded into the XML on the ‘action’ attribute and after the
colon : Greetings from Mew Command 1
2= Cutline

An outline is not available,

Figure 12-17
Final Result [extpt_18.tif]

Exercise Activity Review

In this exercise, you became familiar with extension point creation and usage.

Exercises © Copyright IBM Corporation 2000, 2002

12-24

Feature Development and Deployment

Exercise 13 Feature
Development and
Deployment

Exercise 13 Feature Development and Deployment...........ccovvviiiiiiiiii v 13-1
110 o (U T 1] o USRI 13-1
S o ST O] o7 =T o 13-2

Sy LY=o o] = | A T 13-2

L ST (o ST Y= (1] o FR S 13-2
EXEICISE INSITUCTIONS ... eeeeti ettt ettt ettt e e et e e e et e e e et b r e e e eebar e e e eeba e e e e eatnneeeenbnnaaeees 13-3
Part 1: Tasks of an Eclipse Feature DEVEIOPETcvuu it e e e 13-3
Step 1. Generate JAR files for selected plug-iNScoouiiiiiiiiii e 13-3
Step 2. Package the function provided by your plug-ins as a feature.............ccoccoevvviiiiincennnnns 13-7
Step 3. Add product and feature branding to the feature..............ccccoeviviiii i 13-11
Step 4. Repackage the FEAIUIEcvue e e e e e e 13-12
Step 5. Extract installable feature from Workspace and implement an update site..................... 13-14
Part 2: Tasks Of @n ECHPSE USETciieiiiii et e e e e e e e e e e an s 13-15
Step 6. Install a new feature as an extension to an existing Product..............cccevvvivveiiievinneennnn. 13-15
Step 7. Add a feature to an existing product configuration from an update site 13-19
Part 3: Tasks Of @ ProduCt DEVEIOPETuiei it e e e an s 13-20
Step 8. Implement @ branded ProdUCL.............oiiiiiiie e e 13-20
Step 9. Launch and review a branded product installationc.ccceveiiiiiiiiiin e, 13-21
EXErCISE ACHVIEY REVIBW. .. .ceeiii et e e e e e e e e e et s e e e e e e e et e e eaneeeens 13-22

This exercise takes you through the process of developing a feature and then deploying the feature using
three different approaches for installation. This exercise is designed to help you understand how features
are created and how you can use the PDE to assist in the packaging steps required for plug-ins and
features. Once packaged, you then use all the available techniques that support delivery of your features as
a product, or as part of a product, that is based on the Eclipse platform.

I ntroduction

Plug-ins are the fundamental building blocks that a tool developer creates to add new capabilities or
augment the existing capabilities of the Eclipse platform. However, the Eclipse end user's point of view is
different: they are interested in using and adding to the capabilities of an Eclipse platform-based product.
Eclipse features represent this viewpoint by offering the end user a means to add additional tool
capabilities, without having to be concerned with the underlying plug-ins and associated artifacts that make
up its implementation.

Exercises © Copyright IBM Corporation 2000, 2002 13-1

Feature Development and Deployment

Exercise Concepts

The Update Manager provides the user built-in support for installing and managing features. It falls on you,
the plug-in developer, to define features that organize your plug-ins and its dependent features so users
can integrate them as part of an Eclipse-based product. The feature definition also allows you to supply
branding for the function you want to add.

A user of an existing product can then add your features, either configured as an extension using your
install routine or installed as part of an existing product using the Update Manager. Once the features are
installed, they use Update Manager to manage the features.

The final scenario covered in this exercise is for tool builders who want to bundle their features with
Eclipse to create their own branded product. To do this, you identify one of your features, which supplies
the product and feature branding, as the primary feature.

Skill Development Goals
This exercise looks at the definition and use of features from three viewpoints.

Section 1 is from the viewpoint of plug-in developers who want to deliver their plug-ins by
means of features—that is, the role of a feature creator. In this section you'll learn how to
define and package features and plug-ins so that they can be used to add function to
Eclipse through an install process.

Section 2 is from the viewpoint of end users, and focuses on their role as a feature
consumer, as they use an existing Eclipse installation to install and configure features from
an update site.

Section 3 is from the viewpoint of the product developer, who will bundle one or

more features and their associated plug-ins, as part of a branded Eclipse-based
product.

The steps defined in each section are continuous. That is, they must be done in sequence; you cannot
jump straight to Section 2 or 3.

The role of the individual who performs each activity is different; the sequence followed is more part of
the exercise structure than the expected steps for any one individual. A feature developer defines and
packages features; a tool user installs features as an extension or using Update Manager, and a product
developer builds the configuration of Eclipse and the packaged features as a customized product.

Exer cise Setup

Setup tasks must be complete before you begin the exercise. These exercise setup tasks are required
before you can begin this exercise:

1. Install a second copy of Eclipse.

This task is actually optional. You may wish to work with an alternate install if you are
not comfortable with manipulating the Eclipse installation you are using for the
exercises during the feature installation section of the install exercise.

If you do not use a second copy of the workbench, you will need to reverse the final
product configuration steps in Part 3, as these steps will change the configuration of
your original Workbench installation.

Exercises © Copyright IBM Corporation 2000, 2002 13-2

Feature Development and Deployment

2. Import the com i bm | ab. t ool . pkg plug-in project.

If not done when preparing for other exercises, import the com i bm | ab. t ool . pkg
plug-in project from the \ Pl ugi nLabTenpl at esCor e directory as described in
Appendix A, "Installing Exercise Templates". This project provides feature and product

branding content, as well as other files you will copy to your feature project and the file
system during the exercise.

3. Choose the plug-ins for which you want to create features.

You may choose plug-ins from the exercise solutions, your previously completed
exercises, or your own plug-ins that you wish to deliver as features for this
install/lupdate packaging exercise.

Exercise Instructions

Note: Each part must be performed in sequence. The definitions in Part 1 are used in Part 2; the result of
Part 2 sets up the system for Part 3.

Part 1. Tasksof an Eclipse Feature Developer

In Part 1 you will perform the tasks required to prepare a plug-in, and define a feature, to support their
installation as part of an Eclipse configuration. This includes the following activities:

Creating runtime components for the plug-ins that will be contained in the feature
Organizing the function provided by your plug-ins as a feature

Defining product and feature branding content for your feature

Creating feature and plug-in archives that will be used by the Update/Manager to install or
service features.

Implementing an update site that Update Manager can browse for features to

install or use to service features in the current configuration.

Step 1. Generate JAR filesfor selected plug-ins

1. Identify at least one, but no more than three plug-ins that you will package as a feature during
this exercise. You could choose to package them all, but selecting more will increase the time
it takes to perform the plug-in setup and Ant build tasks.

They can be from the set of plug-in solutions provided to you or the plug-ins you have
developed following other exercises (or on your own). Suggested plug-in projects:
comibm | ab. sol n. di al ogs

comibml ab. sol n. view

comibmlab.soln. firstplugin

2. Create abui |l d. properti es file if one does not already exist.

The PDE can generate the runtime JAR file. This process requires that you have a
properly configured build.properties file for the plug-ins you want to prepare for runtime.

If the build.properties file does not exist, you can cause one to be created by editing the
plugin.xml file. Add the appropriate source folder (src-pluginname) folder to the runtime

Exercises © Copyright IBM Corporation 2000, 2002 13-3

Feature Development and Deployment

specification page as shown in Figure 13-1 and the PDE will create a build.properties
file.

2 5ol X]

Run-time Information

Run-time libraries Library exporting

Define libraries that need tobe Define the portions of the
included in the class path of yvour selected library that should be
plug-in. visible to plug-ins.

W view,jar @ Do not export
O Export the entire library
2 O Export uzing content filters

Crawt

Library Content

List source folders that should be
included into the selected library.

=</ | Add..

Chveryiew |Dependencies IRunTime‘ExTensions |Extension Points | Source

Figure 13-1
Updating plug-in JAR Definition to Generate build.properties File

Note: The source folders for projects you have imported will have names such as src-
view/ because of how the source was created from an zip file in the imported plug-in.

You can even just edit the pl ugi n. xni ; any changes made on the Runtime page will
trigger the creation of a partially configured bui | d. propert i es file. The generated
bui I d. properti es file has one entry; you will add others as you proceed through the
exercise.

3. Customize the bui | d. properti es file to support plug-in install JAR creation processing.

The PDE can generate the install JAR file to support runtime deployment. This build
process requires that you have a properly configured bui | d. properti es file for each
plug-in you want to prepare for a runtime deployment. First we will review the process
and requirements for creating a properly configured bui | d. properti es file and then
you will customize one for each plug-in that you have chosen to include in your feature.

The bui | d. properti es file is associated with a specialized editor, this is shown in
Figure 13-2.

Exercises © Copyright IBM Corporation 2000, 2002 13-4

Feature Development and Deployment

B, t:uuilu:; X
Properties
Build script variables Replacement Yalues
Control the operation of the build script List the values that should be included in
by setting the replacement variables. the selected variable.
bdbin.includes Add..| | pluginxml
4 source.dialogs.jar getstart_b.EIF

Variables ‘ Source

Figure 13-2
build.properties editor

In Figure 13-2 you see two variables:

source.identifier.jar — where identifier.jar is the name of the runtime jar file identified in the
plug-in specification. The variable value identifies the source tree that determines the
contents of the JAR file.

bi n. i ncl udes — identifies the files that need to be included when preparing a

plug-in install JAR or the ZIP file that supports distribution of the feature and

contained plug-ins. A bi n. i ncl udes is also used in a Feature project to define the

files that should be included in the feature install JAR file or distribution ZIP file.

To complete this task, for each plug-in that you have chosen to include in your feature,
ensure that the associated bui | d. properti es file:

Includes an appropriate source.identifier.jar entry and value to correctly identify the source
directory for the runtime JAR file you want to build

Includes a bi n. i ncl udes entry that lists all the files and directories that should be
included in the runtime distribution for the plug-in (you do not need to identify the

runtime JAR file in this list).

Files such as the pl ugi n. xni , image files, or other files used in the plug-in must be
specified in the bi n. i ncl udes variable of the bui | d. properti es file if you want them
to be available at runtime.

Note: You have to add the pl ugi n. xm file to the bi n. i ncl udes entry. This
mandatory file is not automatically added by the PDE when creating the
bui | d. properti es file.

Turning to the Source page of the bui | d. properti es editor, you should see
something like this (the example below is for the com i bm | ab. di al og plug-in):

bi n.includes = plugin.xn,\
getstart _ b.AF
source. dialogs.jar = src/

The entry above will include any Java packages in the sr c folder in a JAR named
di al ogs. j ar; the files pl ugi n. xm and getstart_b. @ F will be included in the
runtime distribution (\ is a continuation character).

Exercises © Copyright IBM Corporation 2000, 2002 13-5

Feature Development and Deployment

About now, you might recognize the wisdom of placing all image files in a directory
such asi cons. This allows you to simply add i cons/ to the bi n. i ncl udes variable
in the bui | d. properti es file in order to include all your images. That is, identifying a
directory indicates that all files and subdirectories contained within the specified
directory should be included in the runtime distribution.

Notes:

If you modify or add values to the bui | d. properti es file, be sure to regenerate the
build.xml file. This is done by selecting the pl ugi n. xml file and choosing the context
menu option Create Plug-in JARs. This choice regenerates the bui | d. xm files and then
opens a dialog that will allow you to run Ant using the build.xml for the selected plug-in.
This is what you will do in the next task.

If you select the bui | d. xni file and select the Run Ant... menu choice, any

changes made to the bui | d. properti es file will not be reflected in the

bui I d. xml file. That is, the Ant processing will either fail or omit required files from

the runtime or install JAR files.

You will use these options to create the bui | d. xn and build the plug-in runtime JAR
file in the next step.

4. Generate the runtime JAR files for a plug-in using the PDE Create Plug-in JARs option.

For one plug-in project, select the pl ugi n. xnl file and choose the context menu
option Create Ant Build File. This creates a bui | d. xm file based on the current
content of the bui | d. properi t es file.

5. Select the bui | d. xm file and choose the Run Ant... context menu option to start the Ant

launcher. Only the default target, build.jars, should be selected on the Targets page. Select
Run to start the Ant processing.

The Console view displays a log of the processing performed to create the runtime
JAR file (see Figure 13-3).

Console [<terminated= d : | H v o ox

[javac] done 5/7 @ D:WaWSYClass_Import_Testicom, ibm, lab,soln.contributionstsrc-contr ibutions combibrmtlabhsolntcontributio
[javac] process 6/7 : D:AWSNClass_Import_Test\com.ibm.lab.solh.contributions'src-contr ibutionsycombbmbabheolntcontribo
[javac] done &/7 @ D:aWShClass_Import_Testicom,ibm, lab,soln.contributionstsrc-contr ibutions combibmtabhsolntcontributio
[javac] process 7/7 D:AWSNClass_Import_Test\com.ibm.lab.soln.contributions'src-contr ibutionsycombybmbabheolintcontriby
[javac] done 7/7 @ D:awWShClass_Import_Testicom,ibm, lab,soln.contributionstsrc-contr ibutions combibmtabhsolntcontributio
[javac] 7 units compiled
[javac] Compiled 500 lines in 811 ms (616.5 lines/s)
[javac] 8 .class files generated

[jar] Building jar: 0uiaWShClass_Import_Testycom.ibm, lab.soln. contributionstcontributions, jar

[delete] Deleting directory D:\a2WShClass_Import_Testycom.ibm. lab.soln. confributionstte mp. folderycontributions., jar bin
BUILD SUCCESSFUL

Total time: 2 seconds] -
4| |]
Figure 13-3

Runtime plug-in build log

6. Select the project and choose the Refresh context menu option. This will make sure you can
see all the files created by the JAR creation process. Review the files added to the project.

Exercises © Copyright IBM Corporation 2000, 2002 13-6

Feature Development and Deployment

Note: If you are using CVS this would be a good time to add a *. j ar entry to the
. cvsi gnor e file in plug-in and feature projects to prevent sending the runtime and
install JAR files to the repository.

You can add the folder to the . cvsi gnor e file by selecting the temp.folder, and using
the Team > Add to .cvsignore context menu option. If you decide not to send any JAR
files to CVS, use the same process and then select the Custom pattern option, enter
* jar, and select OK.

Only run the Create Ant Build File and Run Ant... process and for one plug-in. We did
this so that you would know how this works in case you need to generate a runtime
JAR for a single plug-in. The runtime JARs for the other plug-ins will be automatically
generated when the feature that includes the plug-ins is processed. This is part of the
next step.

Step 2. Package the function provided by your plug-ins as a feature
1. Create a feature project using the PDE wizard.
Create a feature project using File > New > Project; select the Plug-in Development
category and Feature Project wizard. Enter the following as attributes on the wizard
pages:
Project Name: com.ibm.lab.tool.pkg-feature

Feature Id: com.ibm.lab.tool.pkg
Feature Name: Demonstration Tools Package
Feature Version: 2.0.0

Feature Provider: IBM
2. Select the plug-ins that you have chosen to include in your tool feature package.

Shown below is an example of the feature.xml source that is created after you select
the desired plug-ins:

<?xm version="1.0" encodi ng="UTF- 8" ?>
<feature
i d="comibml ab.tool.pkg"
| abel =" Denonstrati on Tool s Package"
version="2.0.0"
provi der - nanme="1 BM >

<requi res>
<i nport plugin="org.eclipse.core.runtine"/>
<i mport plugin="org.eclipse.core.resources"/>
<inport plugin="org.eclipse. ui"/>

</requires>

<pl ugi n
i d="com i bm | ab. sol n. di al ogs"
downl oad- si ze="0" install-size="0"
version="2.0.0">

</ pl ugi n>

<pl ugi n

i d="comibmlab.soln.firstplugin"
downl oad- si ze="0" install-size="0"

Exercises © Copyright IBM Corporation 2000, 2002 13-7

Feature Development and Deployment

version="1.0.0">
</ pl ugi n>

<pl ugin
i d="com i bml ab. sol n. resources"
downl oad-si ze="0" install-size="0"
version="2.0.0">

</ pl ugi n>

<pl ugin
i d="comibml ab. sol n. vi ew
downl oad-si ze="0" install-size="0"
version="2.0.0">

</ pl ugi n>

</ feat ure>

Note: It is very important that the version reference in a f eat ure. xm file match the
version defined in the target plug-in’s pl ugi n. xm file. If these do not match, the
feature manifest editor will identify that there is a mismatch on the Content page; errors
will also occur when you attempt to package the feature install JAR.

If you select a plug-in entry on the Content page of the feature manifest editor, you can
use the Synchronize Versions... context menu option to open the Feature Versions
dialog (see Figure 13-4). The Feature Versions dialog helps coordinate the version
defined for the feature with the versions identified in the feature for the contained
plug-ins and the version defined in the manifest file for each included plug-ins. The
Feature Versions dialog options allow you to:

Set the plug-ins' version number(s) to the version specified for the feature.

Copy the version numbers from the plug-in manifest(s) in the workspace to the matching
plug-in entries in the f eat ure. xm file

Update the version numbers in the plug-in manifest(s) files in the workspace with
the version values from the matching plug-in entries in the f eat ur e. xni

¥Yersion Synchronization
Choose a method to synchronize feature and plug-in versions, @

Synchronization Options
" Force feature wersion into plug-in and fragment manifests

" Force wersions defined in the faature into plug-in and fragment manifasts

Einish | Cancel

Exercises © Copyright IBM Corporation 2000, 2002 13-8

Feature Development and Deployment

Figure 13-4
Coordination of version ids between feature and plug-ins

3. Add license text to the feature definition. You must enter some text.

The license text is added using the Information page of the f eat ur e. xmi manifest
editor. Choose the License Agreement entry from the section pull down and enter the
text you would like shown on the Feature License page of the feature install wizard.

The user must accept the feature license displayed before they will be able to install
the package using Update Manager.

When the HTML version of the license is identified in the f eat ur e. xnl it can be
opened from the About product Features dialog. (Help > About product > Feature
Details > More Info).

Note: If you do not have any text in your license, the install button is not visible. A
license is required.

4. New in 2.1, the PDE automatically creates a bui | d. pr operti es file for the feature. The
bi n. i ncl udes entry identifies the files that should be included in the runtime distribution for
the feature. The PDE created bui | d. properti es file contains this entry:

bi n.i ncl udes = feature.xn

If your feature includes a f eat ur e. properti es file, an HTML version of the license,
or a banner graphic, these should also be included in the bi n. i ncl udes entry.

Note: Afeature. properti es file can be used to provide translatable strings that are
substituted for values in the f eat ur e. xni file. In this exercise, we have kept the
feature definition simple, but you may wish to add additional files and definitions to suit
your needs.

5. To package the feature:

Select the feature.xml file and choose the context menu option Create Ant Build File
Select the bui | d. xm file and choose the Run Ant... context menu option.

The Create Ant Build File will regenerate the bui | d. xml based on the current
feature. xnm and bui |l d. properti es definition.

Note: If you just invoke the bui | d. xm 's Run Ant... option, any changes to the

bui I d. xm file that are required because of f eat ure. xm or bui | d. properti es file
updates will not be applied to the bui | d. xm file before it is processed. The other
feature packaging options will generate a new bui | d. xni file to reflect any changes in
the content of the bui | d. properti es orfeature. xnl files. The

The Run Ant... option will open the Ant launcher. Only the bui | d. updat e. j ar target
should be selected in the Targets page. If not, adjust the selections until only the

bui | d. updat e. j ar target is selected, and select Run. The Create Ant Build File
option will also create the build.xml files required for the plug-ins referenced by the
feature.

You can deselect/select the available targets in the Ant launcher dialog to select which
targets will be processed and control the order. The order that they will be invoked is

Exercises © Copyright IBM Corporation 2000, 2002 13-9

Feature Development and Deployment

displayed as part of the dialog. The targets chosen will first run their dependent
targets. You may want to experiment with alternative target selection later. For the
duration of this exercise, to ensure you get to expected results, stick with the target
selection guidance provided.

Selecting Run to invoke Ant for only the bui | d. updat e. j ar target will:

Process the build.xml for each plug-in referenced in the feature to:
Generate the runtime JAR(s) for the plug-in

Generate the plug-in install JAR

Generate the feature install JAR for the feature project.

Note: You may need to refresh the plug-in and feature projects before you can see the
JAR files that are created.

These JAR files would be created for the com i bm | ab. sol n. di al ogs plug-in project
if it was included in your feature:

dialog.jar
com.ibmlab.soln.dialogs 2.0.0.jar

The first file, di al og. j ar, is the plug-in runtime JAR file. If the feature is composed of
more than one plug-in, runtime JAR files are created for each plug-in included in the
feature. The second file, com i bm | ab. sol n. di al ogs_2. 0. 0. j ar, is the plug-in
install JAR file.

The file com i bm | ab. t ool . pkg_2. 0. 0. j ar is created in the
com i bm | ab. t ool . pkg- f eat ur e project. This is the feature install JAR.

The plug-in install JAR and feature install JAR file names are based on the respective
plug-in or feature id, not the project name. During an install, the Update Manager will
read the f eat ur e. xni file from the feature install JAR, and using the plug-in id
references, find the plug-in install JAR files that should be processed when an
installation is requested.

You may choose other target options in the Ant launcher dialog, but be sure you
understand the overall processing flow before you add to the list of targets to be
processed. The different target options in the bui | d. xni file sometimes include
depends=".." definitions along with directed activity. The depends=".." definitions are
targets that are performed first before the directed activity, which represents tasks or
other targets that are then invoked. You do not need to select targets that will be run
anyway; you may want to review the bui | d. xml source to become familiar with the
processing for each target.

The bui | d. updat e. j ar target triggers processing which includes:

init processing — a dependency for the build.update.jar target

al | . chi | dren — a directed target that runs the bui | d. xm script for each plug-in in the
feature

gat her. bi n. part s — a directed target customized from the bi n. i ncl udes entry in the
bui I d. properti es file. This target processing gathers all the files required in the feature
install JAR into a temporary directory.

Exercises © Copyright IBM Corporation 2000, 2002 13-10

Feature Development and Deployment

Antj arfil e processing to create the feature install JAR file from the contents of
the temporary directory

This processing flow is visible (key sections are in bold) when you review the Ant
bui | d. updat e. j ar target definition from the feature bui | d. xnl file:

<target name="buil d.update.jar" depends="init" description="Build the
feature jar of: comibmlab.tool.pkg for an update site.">
<antcall target="all.children">
<param nane="target" val ue="buil d.update.jar"/>
</antcal |l >
<property nane="feature. base" val ue="${feature.tenp.folder}"/>
<del ete dir="${feature.tenp.fol der}"/>
<nkdir dir="${feature.tenp.folder}"/>
<antcall target="gather.bin.parts" inheritAl="fal se">
<par am nane="feat ure. base" val ue="${feature.tenp.folder}"/>
</antcal |l >
<jar jarfile="${feature.destination}/${feature.full.nanme}.jar"
basedi r="${feature.tenp.fol der}/features/ ${feature.full.name}"/>
<del ete dir="${feature.tenp.folder}"/>
</target>

6. With the bui | d. xni file selected, start the Ant launcher dialog again, and select the r ef r esh
target as the second target to be processed. Select Run to start the Ant processing. This will
refresh the plug-in and feature projects so that you can see the JAR files created during the
Ant build.

Remember, if you change the feature definition, you would need to regenerate the
bui I d. xm file.

Step 3. Add product and feature branding to the feature

Features support the definition of brand information, in the form of graphics, descriptive text, and license
content. This allows the feature to uniquely identify itself in the workbench through entries in the About
product Features dialog and Install/Update perspective.

One feature is identified as the primary feature, which means it contributes product branding. The primary
feature provides the startup splash image, Workbench title, and the content found in the Help > About
product dialog.

By default, almost all of the branding content is kept in a plug-in that has the same id as the feature; the
feature only provides the image and license information that can be seen in the Install/lUpdate perspective.
The feature license can also be seen when you select the More Info button (Help > About product >
Feature Details > More Info). In this step, you will add a plug-in that will supply branding content for the
feature you just defined.

1. Create a plug-in with the same id as your feature

A plug-in with the required branding content has been provided for your use. If
required, import the plug-in com i bm | ab. t ool . pkg into your workspace from the
exercise template location.

@since 2.1 — You can now identify the plug-in that will supply branding content as part
of the f eat ur e. xm definition. The attribute pl ugi n="com grs. br and. pl ugi n" can
be defined as part of the <f eat ur e> element in the f eat ur e. xmi file.

Exercises © Copyright IBM Corporation 2000, 2002 13-11

Feature Development and Deployment

2. Add a banner image to the feature. Move the Feat ur eUpdat e. j pg file from the i cons
directory of the com i bm | ab. t ool . pkg project to the feature project. The f eat ure. xm
definition can identify a feature graphic as an attribute of the <f eat ur e> tag.

3. Update the f eat ure. xnl file to identify the banner image (i nage=" Feat ur eUpdat e. j pg").
Enter Feat ur eUpdat e. j pg in the banner image field on the Overview page of the feature.xml
manifest editor.

The Install/Update perspective displays the feature graphic when the feature is
selected.

4. Addthe comibm | ab. t ool . pkg plug-in to the f eat ur e. xnd definition.

Use the Feature plug-ins and fragments Add... button on the Content page of the
f eat ur e. xn manifest editor to select the com i bm | ab. t ool . pkg plug-in. Save the
f eat ure. xn file when done.

5. Add the Feat ur eUpdat e. j pg file to the bi n. i ncl udes list in the bui | d. properti es file for
the feature project. This will ensure that packaging includes the image as part of the feature
install JAR and ZIP distribution. Save the bui | d. properti es file.

Remember, these updates require that you recreate the build.xml file for the feature.

Step 4. Repackage the Feature
Multiple techniques are available when you want to prepare a runtime distribution. You can create either a:

Distribution ZIP file with a directory structure for the feature, its plug-ins, and their files.
Feature install JAR for the feature and a plug-in install JAR for each plug-in

included in the feature. These JARs are added to an update site and can then be
used to install function using the Update Manager.

In this exercise step, you will create both distribution formats.

1. Package the feature by either selecting the f eat ur e. xni file and choosing the Create Ant
Build File context menu option

2. Select the bui | d. xm file and choose the Run Ant... context menu option to open the Ant
launcher dialog.

3. In the Ant launcher dialog, make sure you have selected the three targets with the processing
sequence shown in Figure 13-5.

Exercises © Copyright IBM Corporation 2000, 2002 13-12

Feature Development and Deployment

£ com.ibm.lal

Modify attributes and launch. :

[ame: Icum.ibm.Iab.TUUI.pkg—fea’rur‘e build.xml

| pkg-feature buildxml

= Mainl @9 Refresh ¥ Targets |i]",, Classpa'rhl B Pr‘oper"riesl o3 Communl

Check targets to execute:

L2

MName | Description
[“]1¥ build.update. jar (default target) Build the feature jar of: cam.ibm. lab.tool.pkg for an upd:

% build.zips

1% children
[P clean Clean the feature: com.ibm.lab.tool.pkg of all the zips, j:

[P gather bin.parts
% init

P refresh

P zip distribution Create a zip containing all the plug-ins and features for t

[0 zip.folder
. |

[EET

3 out of 15 selected

Target execution order:

.

build.update jar, zip.distribution, refresh ;I Crder...
Apply Revert
Run Close

Figure 13-5
Target Selection for Feature Packaging

To get the target invocation order correct you can deselect/select the targets or use
the Order... button.

4. Selecting Run will generate runtime JAR files and then install JAR files for the plug-ins
contained in the feature and then a feature install JAR file for the feature itself. A distribution
ZIP file of the feature and plug-ins will also be created. The content of both the packaged JAR
files and the zip file and is determined by the bi n. i ncl udes setting in the appropriate
bui | d. properti es file for each plug-in and feature project.

The distribution ZIP file can be used to support installing the feature by either
unzipping the contents over an existing Eclipse platform install or unzipping the
contents to a new location and adding the function to an existing Eclipse platform
install as an extension. You will use the packaged JAR files to implement an update
site in Step 5. Step 6 and 7 will cover the extension and update site installation

approaches.

Exercises © Copyright IBM Corporation 2000, 2002 13-13

Feature Development and Deployment

@since 2.1 — The feature manifest editor includes support for the direct export of the
update JARSs, or a distribution zip file, for the feature and it referenced plug-ins. Select
Export... on the Overview page of the feature manifest editor to use this function.

You should now have a set of projects with a runtime JAR and plug-in install JAR for
each plug-in and a feature install JAR and distribution ZIP file for the feature project.
This will look similar (depending on your choice of plug-ins) to the files shown in the
Package Explorer view in Figure 13-6. Make sure you refresh the feature project so
that the JAR and ZIP files are visible.

folm
=@ com.ibm.lab.solndialogs
51- @ src
buildproperties
1 buildm|

Bl about.html

] about.ir
=1 about.mappings
] about.properties
1 buildproperties
. 5 buildsm|
Install JAR for plug-in ——— &
Runtime JAR for plug-in —— 2 P
4 pluginxm
] plugin_custemization.ini

B plugin_customization.properties
1 splashbmp
1 welcomexm|
= com.ibm.lab.toolpkg-feature
] Feature
S buildproperties

Distribution ZIP for feature S

il com.ibm.lab. toolpkg_2.00 jar

Install JAR for feature — " <oarurenn

com.ibm.lab.toolpkg_200.bindist.zip

Figure 13-6
Project content after packaging feature

Step 5. Extract installable featur e from Workspace and implement an update site

The feature has been built and packaged. The next step is to integrate these files as part of an update site,
which can be used to modify an existing Workbench configuration. This requires that the feature install
JAR and plug-in install JARs be copied from the development workspace to the local file system along with
asite.xm file which defines the structure and content of the update site.

1. Create target directory structure.

Create a directory tree (for example, d: \ | absi t e\ f eat ur es and
d:\ 1 absi t e\ pl ugi ns) to use as a site location target.

Exercises © Copyright IBM Corporation 2000, 2002 13-14

Feature Development and Deployment

2. Copy files from the workspace to the appropriate location in the site directory tree
(d: \'l absi t e). The site files, feature install JAR, and plug-in install JARs need to be copied to
the site directory tree. You can drag and drop the files directly from the Navigator to the
Windows Explorer.

The site files located in the site-files directory of the branding plug-in provided to you
(com.ibm.lab.tool.pkg) need to be copied to the site directory tree:

d:\labsite\site.xnl
d:\labsite\siteinfo. htn

@since 2.1 — The PDE now supports the development of an install site, with its
associated si t e. xni file, as a new type of project. Use the New wizard to create an
Update Site Project if you want to learn more about si t e. xm development.

The feature install JAR file located in the feature project needs to be copied to the site
directory tree:

d:\labsite\features\comibmlab.tool.pkg_2.0.0.jar

The plug-in install JARs located in each plug-in project need to be copied to the site
directory tree:

d:\ I absi te\plugins\comibmlab.tool.pkg 2.0.0.jar

d:\labsite\plugins\comibmlab.soln.dialogs 2.0.0.jar

... and so on, for as many plug-ins as you included in the feature, which includes the
branding plug-in that was provided to you.

Part 2: Tasks of an Eclipse User

In Part 2, you will play the role of a user of the Workbench and add function to the current Workbench
installation. This includes:

Installing a new feature as an extension to an existing Workbench installation
Adding a feature to an existing Workbench configuration using Update Manager

The result of these two techniques is the same with respect to a given workspace; the feature is added to
the current configuration. What can differ is whether the feature will be accessible when you open a new
workspace.

The answer is yes when extending a Workbench installation, but if a default configuration exists, you must
accept the features in the extension as part of the configuration when opening a new workspace.

When using an Update Site to add features, the features will not be accessible when opening a new
workspace if the features are added to a new install location. The location of the new install location is only
recorded in the current workspace; another workspace would have no visibility. To have the new features
accessible when opening a new workspace you must add the features to the same directory tree as the
current installation of Eclipse. If a default configuration exists, you must accept the features in the extension
as part of the configuration when opening a new workspace.

Step 6. Install a new feature as an extension to an existing product

Using the zip file created in Part 1, you can integrate its contents with an existing Workbench installation.
Unzipping the feature and plug-in content emulates how you, as tool provider, would use a product
installation routine to allow others to install and use your tool.

Exercises © Copyright IBM Corporation 2000, 2002 13-15

Feature Development and Deployment

As a tool provider, you may decide to use installer technology, such as InstallShield, to extend an existing
Eclipse platform installation. Your installer would add your features and plug-ins to the file system and then
add a link file to identify the new install site to the existing Eclipse platform-based product you want to
extend. The new site is processed during the next startup of the Eclipse platform, which adds your features
and plug-ins to the existing Workbench-based product.

1. Unzip the feature and plug-ins distribution file to the file system.

First create a directory tree (for example, d: \ | abpkg\ ecl i pse) to use as a target and
then unzip the com i bm | ab. t ool . pkg_2. 0. 0. bi n. di st. zi p file into this directory.

The target of a link file is a directory that contains an ecl i pse directory; the zip file
only contains f eat ur es and pl ugi ns directory trees.

2. Start the Eclipse with a new workspace using one of these techniques:

Open a command prompt, change to the <install-dir>\eclipse directory (for example,
c:\eclipse2.1\eclipse) for the Workbench instance that you are using for this exercise, and
start the Workbench by entering eclipse —data altworkspace on the command line

Create and then run a shortcut for the eclipse.exe with these parameters:
ecI i pse —data al twor kspace

The workbench will display the splash image shown in Figure 13-7 as it initializes the
configuration for the new workspace. If this image is not displayed you are using a
workspace that already exists.

Please wait ... Completing the install.

Figure 13-7
Eclipse initialization

After Eclipse has started, you should have a new workspace directory (al t wor kspace)
in the same directory as the ecl i pse. exe program.

Important: Close Eclipse before continuing to the next step.

3. Add a link file to the Eclipse platform install to identify the new feature location. This task would
normally be done by the install routine for an extension. A link file connects an Eclipse install
with the extension install site; an install site is a directory that contains an eclipse directory
tree with features and plug-ins.

Create a directory named | i nks in the <i nst al | - di r >\ ecl i pse directory (for
example, c: \ ecl i pse2. 1\ ecl i pse\l i nks) and add a file named | abpkg. | i nk with
this content:

pat h=d: \\ | abpkg

The entry is treated as a properties file entry, so an escape sequence is necessary for
the backslash (i.e., "\ \"). Since the entry is a URL, it could be entered as:
pat h=d: /| abpkg

Exercises © Copyright IBM Corporation 2000, 2002 13-16

Feature Development and Deployment

This will instruct the Eclipse platform to look for additional features and their associated
plug-ins in the d: \ | abpkg directory during startup. The link file content identifies where
you have unzipped the feature and plug-ins that you previously packaged. You can use
any file name you want for the link file. However, you should use a file name that will
be unique when adding to a product that may be extended by others. You may want to
consider using your feature id as the file name (com i bm I ab. t ool . pkg. I i nk).

Note: Be sure there are no trailing blanks in the entry. Trailing blanks, in V2.0 of the
Eclipse platform, will result in the link entry being ignored (see
http://dev. eclipse. or g/ bugs/ show bug. cgi ?i d=22993).

4. Start the Eclipse using the al t wor kspace.

If you watch carefully, you will see that the Eclipse platform knows you made a change.
On the first invocation, Eclipse completes the install as was shown by the "Please
wait... Completing install" information image shown in Figure 13-7. When changes are
detected during subsequent invocations, the Workbench processes the changes and
prepares for a possible acceptance of the new feature(s). This is visible at startup time
because the splash screen will appear twice.

5. Accept the new feature as part of the current configuration.

Once Eclipse has started, you are prompted about new updates. Accept the option to
open up the Update Manager Configuration Changes dialog. Eclipse prompts when it
has discovered that the existing configuration (stored in the pl at f or m cf g file in the
wor kspace\ . met adat a\ . confi g directory) might need to change because of new
features that exist. The features might have been added to the configuration by
extension (link file) or directly added to the existing f eat ur es and pl ugi ns directories;
either way, you will be prompted to accept the configuration modification.

Note: If you just add a plug-in without a corresponding feature, you do not get to
decide if you want to add the new function to the active configuration. Eclipse will
detect the change, and the plug-ins are unconditionally added to the configuration.
Plug-ins that are not referenced by a feature are unmanaged plug-ins and are not
recognized by the Update Manager user interface.

Use the Configuration Changes dialog to select the change and add it to the current
configuration as shown in Figure 13-8.

Exercises © Copyright IBM Corporation 2000, 2002 13-17

Feature Development and Deployment

Configuration Changes

Pending Configuration Changes
)

Check the changes you wish to process now. Remaove changes that \%;

should never be processed. e

Detected changes:

= [F1F% Der 4, 2002 5:46:53 AM

[F¥& Demonstration Tools Package (2.0.0) 4

Einish | Cancel

Figure 13-8
Installing Exercise Feature

Once you have selected the root entry and clicked on Finish, you will be prompted to

restart Eclipse. Allow Eclipse to shut down and then restart. This activates the new
configuration.

6. Validate that the new feature functions are available.

The configuration change should have added the packaged feature and associated
plug-ins to Eclipse. Use one or mare of the following to confirm that this is true:

Open the About product dialog (or Help > About product name...) and look for the Tools

Package feature icon. You should see icons for the active feature families, one of which is
for the Tools Package (see Figure 13-9).

_

Tools Package

Feature Details | Plug-in Details | Configuration Details |

Figure 13-9
About Product Dialog Feature Icon

A family of features is represented by one image; features are in the same family when

their images are identical. The About product dialog logic will compare the images for the
available features, only unique images are shown.

Select the Feature Details button in the About product dialog, the Demonstration Tools
Package feature will be in the table of active features.

Exercises © Copyright IBM Corporation 2000, 2002 13-18

Feature Development and Deployment

Open the Install/Update perspective (Help > Software Updates > Update Manager) and
expand the current configuration to find the Demonstration Tools Package feature, as

shown below in Figure 13-10:

£ Install/Update - Eclipse Platform
File Edit Mavigate Search Project Run ‘Window Help

B - ¥ &%~
= || @ nstall Configuration G x fa & X
By | = & current configuration _ Demonstration Tools Package 2
f{)& - %g file:h: /Eclipse-2.0/labpkgfeclipse/

a L Demonstration Tools Package 2.0.0
% +. g file:H: /Eclipse-2.0/eclipse/
+- LB Configuration History

+- 0 Saved Configurations Yersion
2.00

Provider

Installed Yersi
g Feature Updates & - x nzs ; De ersion

+ (% Sites to Visit
& pvailable Updates
+- B My Camputer

Download Size
OkB

+ Supported Platforms

Description

Figure 13-10
Installed Feature as shown in Install/Update Perspective

Open the New Wizard (File > New > Other... or Ctrl+N) and find any wizards added as
part of the Dialogs exercise (the Lab: My New Wizards or Soln: My New Wizards category
will exist).

Open the My First View created as part of the View exercise.

Run the First Plug-in action in the current perspective; you may need to reset or
customize the current perspective in order to add the action.

Any of the above should prove that the feature has been added and is functional in the
new Workbench configuration. The function provided by the plug-ins you referenced in
the f eat ure. xn fill would be available.

Step 7. Add afeatureto an existing product configuration from an update site

This approach is different from the previous "link file" technique. The Install/lUpdate perspective of Eclipse
will be used to pull a feature into the current configuration. In this exercise the feature site is local (on the
file system), but a site could just as easily be found using a htt p: // reference if the site were loaded onto
a Web server.

1. Remove the ecl i pse\links\ | abpkg. | ink file from the Workbench installation you used
during the previous install test (you may want to just move it to another directory, such as
ecl i pse\link-out).

If you have not done so already, close the Eclipse instance that was used in the
previous install test.

2. Start Eclipse using the same (alternative) workspace used during the previous install test.
3. Use the Install/Update perspective to locate the Tools Package site on the file system.

Exercises © Copyright IBM Corporation 2000, 2002 13-19

Feature Development and Deployment

Open the Install/Update perspective (Help > Software Updates > Update Manager) and
then use the Feature Updates view to navigate to the \ | absi t e\ si t e. xml location in

the file system.

4. Install the Tools Package feature. Once selected in the Feature Updates view, the Tools
Package feature can be installed.

Press the Install button, accept the license, use the default install location, and click on
Finish, and then Install, to add the feature to the current configuration.

You will be prompted to restart the Workbench. Select yes. Eclipse shuts down and
then restarts. This activates the modification to the configuration.

5. Validate that the new feature functions are available.
The configuration change should have added the packaged feature and associated

plug-ins to Eclipse. Use one of the techniques described earlier to validate that the
function is available as expected.

Part 3: Tasks of a Product Developer
In Part 3 you will create your own branded version of the runtime platform.
In the previous step, you used the Update Manager to add the Tools Package feature and associated plug-

ins to the existing Eclipse platform installation directory. We are now going to alter the configuration so that
the directory contains an installed and branded Eclipse platform-based product.

Important: As part of this process, you will delete the configuration information that tells the Eclipse
platform that the Tools Package feature was installed. Delete the existing workspace to reset the installation.
In the previous step, the com i bm | ab. t ool . pkg feature was installed in the same directory tree as the
Eclipse platform. The Update Manager install registered the feature in the

wor kspace/ . net adat a/ . confi g/ pl at f or m cf g file. By deleting the workspace, the feature will be
viewed as part of the Eclipse platform install on subsequent invocations.

Step 8. Implement a branded product
You will identify the Tools Package feature as the primary feature, the branding plug-in will then contribute
additional information and graphics to Eclipse startup and user interface.

1. Modify the i nstal | .ini file inthe ecl i pse directory.

The install.ini file identifies the primary feature. This value is read by the ecl i pse. exe
during startup processing.

Edittheinstal | .ini file and change the f eat ure. def aul t. i d setting to
feature. default.id=comibmlab.tool.pkg

2. ldentify the target feature as a primary feature. Edit the f eat ur e. xni file in the
com i bm | ab. t ool . pkg project and add the primary="true" attribute setting to the feature
entry (see highlighted text):

Exercises © Copyright IBM Corporation 2000, 2002 13-20

Feature Development and Deployment

<?xm version="1. 0" encodi ng="UTF-8"?>
<feature
i d="comibmlab.tool.pkg"
| abel =" Denonstrati on Tool s Package"
version="2.0.0"
provi der - nane=""
i mage="Feat ur eUpdat e. j pg"
primary="true">

Step 9. Launch and review a branded product installation
This will allow you to see how the Tools Package feature, now defined as the primary feature, has added
branding content to the Workbench user interface.

1. Close, if required, and then start the Workbench with a new workspace, or delete the previous
workspace (al t wor kspace) to use the short cut or command line invocation.

You should see a new splash screen during startup processing.
2. Review the product branding information (About product dialog, Install/Update perspective
content).

There are many indicators of the active primary feature in use by a Workbench
instance. The identified primary feature controls the Workbench product branding.
Content from the branding plug-in is used to modify the system icon, default welcome
page, About product dialog, configuration shown in the Install/Update perspective, and

window title.
Many of these changes are visible in the Workbench image shown below:

Exercises © Copyright IBM Corporation 2000, 2002 13-21

Feature Development and Deployment

[InstallfUpdate - Demonstration Tools Package |Z||E|P5__<|
File Edit Mavigate Search Project Run WWindow NEE[E

Welcome..,
~——— @ Help Contents
Software Updates 4

Current Co
5@ = Current Configuration i
w - g file:H: /Eclipse-2.0/eclipse
-4 Eclipse Project SDK (W
5 Demonstration Tools P
+- LB Configuration History
+- 0 Saved Configurations

Dermonstration Tools Package

Wersion: 2.0
Build id: 200206271835

{(c) Copyright IBM Corp. and
others 2000, 2002, All rights

reserved.

Wisit

http: £fwewewe ibm. com fsoftwarefac
far mare

< | * information on WebSphere

Studio Workbench,

% Feature Updates &9 w» x

+-L$ Sites to Visit This offering is based on

@ available Updates : technology from the Eclipse
+- B My Camputer Praject.
Wisit hitp:/fwww eclipse.arg

Figure 13-11
Workbench with customized product branding

Exercise Activity Review

What you did in this exercise:

Learned how to use the PDE and Ant processing to automate the creation of runtime JAR
files for a plug-in

Identified the content required in a bui | d. properti es file to instruct the Ant processing
on what should be included in a runtime JAR, plug-in install JAR, and feature install JAR.
Defined features to organize plug-ins and provide feature and product branding.

Packaged the feature and plug-ins to create runtime JAR files and plug-in install JAR files
for each plug-in and a feature install JAR for the feature project.

Learned how to installed a feature using a variety of techniques (extension using a link file,
installation using the Update Manager to pull code into the Workbench configuration)

Configured a branded product by adding an alternative primary feature to an Eclipse platform installation.

Exercises © Copyright IBM Corporation 2000, 2002 13-22

SWT Layouts

Exercise 14
SWT Layouts

L T (o ST S Y I Y0 T | 14-1
1100 (U T 1o o U SUPPPT PPN 14-1
= o ST O] o T o 14-1
S [LY=o o] i =T | AT = 14-1
ST (0 1T TS 1= (o 14-1
EXEICISE INSITUCTIONS ... eeeeti ettt sttt et e et e e e et e e e e et r e e e eeba e e e eaba e e e eeabn s eeeentnneaeees 14-2
Part 1: Add SWT button CONtrols t0 the VIEW..........ccouuuiiiiiii e 14-2
T 2 Yo (o I 1IN0 T | 1Y = g = Vo = 14-3
Part 3: Add @ ROWLAYOUL IMBNAGETcieeiieeeeeei e eeee e e e e e e e e et s e e e e e e et e e e e an e aean e eeaneeenns 14-4
Part 4: Add @ GridLayOUt MaNAGETcieenieeieeei e eeie e e e e e e e e e e e e e et e e e e an e a et e e eanaeenns 14-6
Part 5: Create ANOther Grid LAYOUL............ivuuiiiii e ee e e e e e e e e e e e e e e e e eaneeeeas 14-7
Part 6: Add @ FOrmMLayOUt MANAGJETuiveeiiii i eeie e e e e e e e e e e e e e e et e e e e e e et e e eaneeenns 14-8
Additional INvestigation Of LAYOULS..........ccuuiiiiiiii e e e e e e e e e e eaeee 14-12
EXErCISE ACHVIEY REVIEW. .. .cue ittt e e e e et e e e e et s e e e e e e e et e e eaneeeens 14-13
Introduction
Exer cise Concepts

This exercise will show you how to use all the mgjor SWT layout managers. At the
completion of thelab al mgjor layouts: Fi | | Layout , RowLayout , Gri dLayout , and
For mLayout can be viewed side by side for comparison purposes.

Skill Development Goals

At the end of this lab, you should be able to use basic elements of al the major layout
managers and understand their differences.

Exer cise Setup:

A PDE project has been setup for you named com i bm | ab. | ayout s. As a container
for our layouts, we will use aview. You may not be familiar with views, so a plug-in
containing an empty view, and the class defining the view, has been defined for you. Load
the lab project com i bm | ab. | ayout s into your workspace. A file named
Layout Vi ewScr apbook. j page isavailableto assist you.

a Copyright IBM Corporation 2000, 2002 14-1

SWT Layouts

Exercise Instructions

Part 1: Add SWT button controlsto the view

1. A view class has been defined in the project named Layout Vi ew. It is an empty view (you can actually
display it if you test the PDE project). The view isnamed Lab: Layout Lab.

2. Define the following button fields. They will be incorporated in severa layouts:

Button bil;
Button b2;
Button b3;
Butt on b4;
Butt on bb5;

To clear up any compile problems use the editor context menu called Organize Imports. You
will need to use this feature frequently in the lab. Of course, if you typed “Button” followed by
Ctrl-Space to activate content assist, thei nport statement would be generated as well.

3. Define method named set But t ons to create and initidize these controls.

voi d
bl
b2
b3
b4
b5

bl.
b2.
b3.
b4.
b5.

set Butt ons(Conposite parent) {

set Text ("Button
set Text ("Button
set Text ("Button
set Text ("Button
set Text ("Button

new Button(parent, SW. PUSH);
new Button(parent, SW. PUSH);
new Button(parent, SW. PUSH);
new Button(parent, SW. PUSH);
new Button(parent, SW. PUSH);

abwN ek
vv\;vv

4. In method cr eat ePar t Cont r ol , add the following code that will define a vertically oriented
fill layout that will contain a set of Gr oup controls, one for each layout we will define.

Fill Layout fillLayout = new Fill Layout();
fill Layout.type = SWI. VERTI CAL;
parent . set Layout (fill Layout);

a Copyright IBM Corporation 2000, 2002 14-2

SWT Layouts

Part 2: Add FillLayout Manager

1. Create anew method named set Fi | | Layout . Thisisidentical to what we just did, but we are going to
populate it with the buttons we created earlier.

voi d setFill Layout (Conposite parent) {

set Buttons(parent);

Fill Layout fillLayout = new Fill Layout();
fill Layout.type = SW. VERTI CAL;
parent . set Layout (fill Layout);

2. Inmethod cr eat ePar t Cont r ol , define a Group control that will contain our fill layout of

buttons in the previous step.

G oup groupFill

= new G oup(parent, SW.NONE);
groupFill.setText("Fill Layout");

This group will participate in the fill layout we previoudly defined. Call set Fi | | Layout to

imbed the button set in this new group.

set Fi | | Layout (groupFill);

We will repeat this pattern as we define additional layouts.

3. Test your plugrin. In the test instance of the workbench, open the Lab: Layouts Lab view. It
will be listed under Window > Show View > Other. Openview Lab: Layout > Lab:
Layouts Lab. It should look like Figure (when the view isfully expanded).

m Lab: Layout Lab
Fill Layout

Button 1

Button 2

Button 3

Button 4

Button 5

Figure 14-1

Simple FillLayout [layout_01.tif]

a Copyright IBM Corporation 2000, 2002

14-3

SWT Layouts

4. Not very interesting, isit! If you were to change the style bit on the buttons to SWI'. CHECK you
would get a set of vertical check boxes. Figure might be a more useful application of afill
layout.

m Lab: Layout Lab X
Fill Layout

[~ Button 1

[~ Button 2

[~ Button 3

[~ Button 4

[~ Button S

Figure 14-2
Simple FillLayout using checkboxes [layout_02.tif]

Part 3: Add a RowL ayout Manager
1. Let'screate aRowLayout . Create the following method.

voi d set RowLayout (Conposite parent) {
set Buttons(parent);
RowLayout rowiLayout = new RowLayout ();
rowLayout . wap = true;
rowLayout . pack = fal se;
rowLayout.justify = true;
rowLayout . margi nLeft = 5;
rowLayout . margi nTop = 5;
rowLayout . mar gi nRi ght = 5;
rowLayout . mar gi nBott om = 5;
rowLayout . spaci ng = 10;
par ent . set Layout (rowLayout) ;

We have defined the layout to have margins of five pixels. Controls will wrap to the next
row, if required, and the size of the buttons will not change, if the containing window is
resized.

Add this code to the cr eat ePar t Cont r ol method to define a Gr oup and populate it
with our RowLayout .

G oup groupRow = new G oup(parent, SW.NONE);
gr oupRow. set Text (" Row Layout");
set RowLayout (gr oupRow) ;

a Copyright IBM Corporation 2000, 2002

14-4

SWT Layouts

Note that we are defining the same buttons, b1 through b5, using the set But t ons
method. Obviously, we are doing this for illustration and convenience. Normally, widgets
would not be used in this way. However, are we creating issues with respect to widget
disposal by specifying button b1 in RowLayout and Fi | | Layout (and shortly in

G i dLayout aswell)?When b1 is disposed, which one will be disposed? Does the second
and third use of button b1 result in losing track of the previous uses of b1? Y ou need not
worry. First, we are creating separate instances of the object each time. Second, each
instance has its own Conposi t e parent; and it is the job of the parent to dispose of its
children. Moreover, each instance that b1 once referred to can have its own listener. These
are, effectively, separate widgets that can have their own behavior. If you were to add the
following code to the set But t ons method, you could observe each instance of b1 in
operation. Note that our Par ent isdefined asfi nal (it never changes) so we that we are
permitted to reference it in the Sel ect i onAdapt er inner class.

final Conposite ourParent = parent;
bl. addSel ecti onLi st ener (new Sel ecti onAdapter() {
public void wi dget Sel ect ed(Sel ecti onEvent e) {
System out . printl n(
"Button bl pressed. Parent is
}

1),

+ ourParent.toString());

This code displays the following on the console.

Button bl pressed. Parent is Goup {Fill Layout}
Button bl pressed. Parent is G oup {Row Layout}

2. Retest the plug-in and you should see aview that looks like Figure .

m Lab: Layout Lab I X
Fill Layout

Button 1

Button 2

Button 3

Button 4

Button 5

Fow Layout
Button 1 Button 2 Button 3 Button 4 Button 5

Figure 14-3
Addition of a smple RowLayout [layout_03.tif]

By adjusting the window size, you can see how the wr ap attribute behaves.

a Copyright IBM Corporation 2000, 2002

14-5

SWT Layouts

3. You can adjust other layout attributes like wr ap, pack, andj usti f y and observe the changes.

Part 4. Add a GridLayout Manager

Let's add a smple grid layout to our collection of layouts. Actualy, we will add two. We
will reuse our buttons in one grid layout and then create another using Labels and Text
fields. Thislatter one will provide a transition to our fina layout, aform layout.

1. Create amethod named set G i dLayout But t ons. In this method, we will create a grid two columns

wide. Button 3 will be wider than the others due to its label length. Button 5 will be centered within its
cell of the grid by defining aGr i dDat a object for it.

voi d set Gi dLayout Buttons(Conposite parent) {
GidLayout gridLayout = new GidLayout();
gri dLayout . nunmCol umms 2;
set Buttons(parent);
b3. set Text ("W der Button 3");
GidData b5GidData = new Gi dData();
b5G i dDat a. hori zontal Al i gnment = Gri dDat a. CENTER,
b5. set Layout Dat a(b5G i dDat a) ;
parent. set Layout (gri dLayout);

2. Inmethod cr eat ePar t Cont r ol , define a Group control that will contain our grid layout. This
isjust as we did for the row layout earlier.

G oup groupGidButtons = new G oup(parent, SW.NONE);
groupGidButtons. set Text ("Gid Layout: Buttons");
set Gi dLayout Butt ons(groupGi dButtons);

3. Test the plug-in and you should see a view that looks like Figure .

m Lab: Layout Lab x

Fill Layout

Button 1
Button 2
Button 3
Button 4
Button 5

Fow Layout

Button 1 Button 2 Button 3 Button 4 Button 5

Grid Layout: Buttons
Button 1 Button 2

wider Button 3| Buttan 4

Button 5

Figure 14-4
Addition of asimple GridLayout [layout_04.tif]

a Copyright IBM Corporation 2000, 2002 14-6

SWT Layouts

4. Observe that, unlike the row layout, shrinking this view will not reposition the buttons.

Part 5: Create Another Grid Layout

1. Let’'srepeat the process again with a simple name and address layout.
2. Add the following label and text fields to the class.

Label firstNaneLbl;
Text firstNane;
Label | ast NanelLbl ;
Text | ast Nane;
Label streetlbl;
Text street;

Label cityLbl;

Text city;

Label statelLbl;
Conbo st at e;

3. Create a new method named set Fi el ds as described below to define your widgets and
initialize them. Observe the use of multiple style bits in the constructor for severd of the fields.

voi d set Fi el ds(Conposite group) {
firstNanmeLbl = new Label (group, SW. SINGLE);
firstName = new Text (group, SW. SINGLE | SWI. BORDER);
| ast NameLbl = new Label (group, SWI. SINGLE);
| ast Name = new Text (group, SWI. SINGLE | SWI. BORDER) ;
streetLbl = new Label (group, SW. SINGLE);
street = new Text (group, SW. SINGLE | SW. BORDER) ;
cityLbl = new Label (group, SW. SI NGLE);
city = new Text(group, SW.SINGE | SW.BORDER);
stateLbl = new Label (group, SW. SINGLE);
state = new Conbo(group, SW.DROP_DOM | SWI. BORDER | SWI. SI MPLE) ;

firstNaneLbl . set Text ("Fi rst Nane: ");

| ast NaneLbl . set Text ("Last Nane: ");

streetLbl.set Text("Street: ");

cityLbl .setText("City: ");

statelLbl . set Text ("State/ Province: ");

state.setltens(new String[] { "AL", "AK', "AZ", "..." });

4. With thisin hand, create a method called set G i dLayout Addr ess as described below. This
will be defined as a four-column grid. We will layout the fields in alabel-text field pattern.

a Copyright IBM Corporation 2000, 2002 14-7

SWT Layouts

voi d set Gi dLayout Address(Conposite parent) {
G idLayout gridLayout = new GidLayout();

gri dLayout . nunmCol ums = 4;

/1 Layout nanme and address fields into the grid

set Fi el ds(parent);
par ent . set Layout (gri dLayout);

5. Inmethod cr eat ePar t Cont r ol , define a Gr oup control that will contain our grid layout. This

isjust as we did for the row layout earlier.

G oup groupGi dAddress = new G oup(parent, SW. NONE);

group@ i dAddress. set Text ("Gid Layout:
set G i dLayout Addr ess(groupG i dAddr ess) ;

Nane and Address Forni);

6. Test your plug-in. It should look like Figure .

W Lab: Layout Lab

Fill Layout
Button 1
Button 2
Button 3
Button 4
Button 5

Fow Layout

Button 1 Button 2 Button 3 Button 4 Button 5

Grid Layout: Buttons
Button 1 Button 2

wider Button 3| Buttan 4

Butns|
Grid Layout: Mame and Address Form
First Mame: Last Mame:
Street: City:
State/Province: -

Figure 14-5

Addition of a set of name and address fields using GridLayout [layout_06.if]

Part 6: Add a FormLayout Manager

1. Lastly, let’s build a name and address layout using For niLayout . We want to exert alittle more control
over the appearance. When completed it will look like Figure .

FaormLayout: Mame and Address Form

First Mame: | Last Mame: |

Streat: | City:

Figure 14-6
Name and address using FormLayout [layout_05.tif]

State/Province: -

a Copyright IBM Corporation 2000, 2002

14-8

SWT Layouts

2. Create a new method named set For niLayout Addr ess as described below.

voi d set For mLayout Addr ess(Conposite parent) {
/1 Sinple name and address input form
For mLayout addressLayout = new Forniayout();
addr essLayout . margi nWdth = 3;
addr essLayout . mar gi nHei ght = 3;
par ent . set Layout (addr essLayout) ;
set Fi el ds(parent);

In this method, we have defined a For mLayout , defined margins of 3 pixels and linked it
to the parent. Findly, we have initidized the fields as did before. We have not yet laid out
the fields onto the form.

3. Inmethod cr eat ePar t Cont r ol , define a Gr oup control that will contain our form layout.

G oup groupFor mAddress = new G oup(parent, SW. NONE);
gr oupFor mAddr ess. set Text (" Form Layout: Name and Address Forni);
set For mLayout Addr ess(gr oupFor mAddr ess) ;

4. Inthe set For nLayout Addr ess method, let's add atext field for first name and precede it
with alabel. These two fields will be located inside the group box. The label will be placed 5
pixels from the left and 5 pixels from the top of the group box. The text field will be placed 5
pixelsto the right of the label. Its right edge will be at 40% of the group box width.

Add the following code to the end of the method.

/1 FirstNanme. 5 pixels fromtop and | eft edge of group
FornData firstNanmeLbl FD = new For nDat a() ;

firstNameLbl FD. 1 eft = new FormAttachnment (0, 5);
firstNamelLbl FD.top = new FormAttachnent (0, 5);
firstNanmelLbl . set Layout Dat a(first NameLbl FD);

FornData firstNameFD = new FornDat a() ;

/1 place first nane adjacent its label plux 5 pixels
firstNameFD. l eft = new FormAttachnent (firstNanelLbl, 5);
/1 place right edge of text field at 40% of parent w dth
firstNameFD. ri ght = new For mAtt achnent (40, 0);
firstNameFD.top = new FormAttachnment (0, 5);

firstName. set Layout Dat a(first NameFD) ;

We could try testing at this point, but recall that in the set Fi el ds method we defined al
the fields for the form. They will appear on top of each other until they are laid out. An

alternative approach would be to refactor the set Fi el ds method so that the fields are defined

in this method.

a Copyright IBM Corporation 2000, 2002

14-9

SWT Layouts

5. Now let's add the last name label and text field. That will complete the first line of the form. The
last name label will be adjacent the first name text field plus five pixels. The last name text field
will be adjacent its label and the right edge will extend to the right edge of the parent group
control less afive pixel margin. Add this code to the end of the method.

/1 Last Nane

For mDat a | ast NaneLbl FD = new For nDat a() ;

| ast NaneLbl FD. | eft = new FornmAttachment (firstNanme, 5);
| ast NaneLbl FD. t op = new For mAttachnent (0, 5);

| ast NarreLbl . set Layout Dat a(| ast NaneLbl FD) ;

FormDat a | ast NaneFD = new For nDat a() ;

| ast NanmeFD. | eft = new FormAtt achrent (1 ast NaneLbl , 5);
/1 set right edge at right edge of

/1 parent |less 5 pixels

| ast NanmeFD. ri ght = new For mAtt achnent (100, -5);

| ast NanmeFD. t op = new For mAtt achnent (0, 5) ;

| ast Narre. set Layout Dat a(| ast NaneFD) ;

6. Let's complete the second line of the form. Add the following constant to the class. We will use
this as an offset value in pixels to position the second line contents.

static final int |ine2offset = 30;

7. When we add the street labd, we want to position the top relative to first line plus thirty pixes,
and we want it to line up vertically with the first name label.

/1 Street

FornDat a streetLbl FD = new For nDat a() ;

streetLbl FD.l eft = new FormAttachnent (0, 5);

/llocate street |abel vertically relative

//to previous line

streetLbl FD.top = new FornmAttachnment (firstNaneLbl, |ine2offset);
streetLbl. set Layout Dat a(streetLbl FD);

8. Let'smove aong and add the street text field, city label, city text field.

The street text field lines up vertically with the first name text field. Its right edge lines up with
the last name field less five pixels.

The city labdl’s |eft edge lines up with the last name label and its right edge lines up with the last
name text field.

The City text field lines up with the last name text field. The right edge of the City text field is

positioned at 75% of the parent group width less five pixels. This leaves reasonable room for
the State/Province field. How was this determined? Trial and error!

a Copyright IBM Corporation 2000, 2002

14-10

SWT Layouts

FaormLayout: Mame and Address Form

First Mame: | Last Mame: |
Streat: | City: State,/Province: -
Figure 14-7

Name and address FormLayout [layout_05.tif]

FornDat a street FD = new FornDat a() ;

/1 line up vertically with firstnane

streetFD. | eft = new For mAttachment (firstNamelLbl, 5);
street FD. ri ght = new FormAttachment (1 ast NaneLbl, -5);

street FD. top = FormAttachnent (firstNanelLbl, |ine2offset);
street. setLayout Dat a(street FD);
[/ Gty

FornData cityLbl FD = new FornDat a() ;

/1 line up vertically with |ast nane

cityLbl FD. l eft = new For mAtt achnent (firstNane, 5);

/1 locate street label vertically relative

/1 to previous line

cityLbl FD. top = new FornmAttachnent (firstNanelLbl, |ine2offset);
cityLbl . setLayout Data(cityLbl FD);

FornData cityFD = new For nDat a() ;

cityFD. I eft = new FormAttachnent (| ast NameLbl, 5);
cityFD.right = new FormAttachnent (75, -5);

cityFD.top = new For mAtt achnent (firstNaneLbl, |ine2offset);
city.setLayoutData(cityFD);

9. The state label and combo field completes the layout. This should be routine by now!

/] State

FormDat a statelLbl FD = new FornDat a() ;

statelLbl FD. | eft = new FormAttachnent (city, 5);

/1 locate street |abel vertically

/lrelative to previous line

statelLbl FD. top = new FornAttachment (firstNamelLbl, |ine2offset);
st at eLbl . set Layout Dat a(st at eLbl FD) ;

FormDat a st ateFD = new FornDat a();

stateFD. | eft = new FormAttachnent (statelLbl, 5);

stateFD.ri ght = new For mAttachnent (100, -5);

stateFD.top = new FormAttachment (firstNanelLbl, |ine2offset);
st at e. set Layout Dat a(st at eFD) ;

a Copyright IBM Corporation 2000, 2002 14-11

SWT Layouts

10.Test your plug-in. It should look like Figure .

W Lab: Layout Lab
Fill Layout

Button 1

Button 2

Button 3

Button 4

Button 5

Fow Layout

Button 1 Button 2 Button 3 Button 4 Button 5

Grid Layout: Buttons
Button 1 Button 2

wider Button 3| Buttan 4

Button 5

Grid Layvout: Mame and Address Form

Street: City:
State,/Province: -

Street: City:

First Mame: Last Mame:

FormLayout: Mame and Address Form

First Mame: Last Mame: |

—

State/Province: Z|

Figure 14-8

Completed lab using all four layout managers [layout_08.tif]

If you resize the workbench window small enough, you will notice that the contents get clipped.
Typically, thisis afixed size didog so thisis less of a problem. Also, naotice that the fill layout
that was used to lay out our groups resultsin al groups being the same size even though the
contents vary. This choice of layout manager, which is convenient for this exercise, might not be
the choice you would make in ared situation. If you have time, experiment with using
RowLayout instead of Fi | | Layout at the beginning of the cr eat ePart Cont r ol method.

Changing this line of code should do the trick:

FillLayout fillLayout

= new Fill Layout ();

Replace with:

RowLayout fill Layout

= new RowLayout () ;

Additional Investigation of

Layouts

Try using the SWT Layouts Example that is part of the workbench examples (assuming you installed the

workbench examples). Open view SWT Examples >SWT Layouts. You can lay out avariety of

widgetsin any of the four layout managers. It will even generate the code for you.

a Copyright IBM Corporation 2000, 2002

14-12

SWT Layouts

B SWT Layouts] -

FillLayout | Rowlayout | GridLayout | FormLayout

~Layout ~Parameters
™ Preferred Size
~Type
ST HORIZOMT AL
" SWT VERTICAL

~Children

g_ddl Qeletel Clear |

Code |

Figure 14-9
SWT Layouts Example Tool [layout_07.tif]

Exercise Activity Review

Examined al the major SWT layout managers.

a Copyright IBM Corporation 2000, 2002 14-13

SWT Layouts

a Copyright IBM Corporation 2000, 2002 14-14

Java Development Tooling

Exercise 15. Extending
the Java Devel opment
Tools

110 o (U T 1] o S UPPPTPPPIN 15-1
S o ST O] o T o 15-1
SKill DEVEIOPMENT GOAIS ... ceveeieeeee ettt et e et e e e e e et e e e e e e e e et e e et e e et e e e eean s 15-2
ST (o TSI T (1] o 15-2

EXEICISE INSITUCTIONS ... eeeeti ettt ettt et e e ettt e e e et e e e et b r e e e eeban e e e eabn e e e e eabn s e eeentnneeaees 15-2
Part I: Traversing a Simple AST With HEIIOASTorie e e e 15-2

Step 1: Create ASTVISILOr SUDCIASScvvvuieii it e e e e e e e e eaeees 15-3
Step 2: Complete HEIOASTACHON CIASS.........uiiiiiiiii e e e e e e e ees 15-3

S (] TR N =15 B = 0T N 15-4
Part Il: Extending the Java EQItOrcouuieiiie e e e e e e e e e e e e eens 15-6
Mini-review of JavaUl Working Copies (Read this later if you are pressed for time).................... 15-6
Step 1: A QuiCK LOOK at the SOIULIONieiiiei e e e 15-7
Step 2: Create AddTraceStatementsEditorActionDelegate Class..........ccoevevvviiiviiiiieiiiiciin e 15-8

S =7 o R A =1 15-12
Part 1ll: Generating Code Metrics while Traversing an AST (Optional)cccoeveviieiiieiiineeinens 15-12
Mini-Review of WOrkDENnCh VIEWSoooiin e 15-13
Step 1: Complete JAVAMELIICS ClaSS........uuiveiiiiii e e e ean s 15-14
Step 2: Create JavaMetricsAccumulator iNNer Class............ovvei v 15-15
Step 3: Complete JavaMetrics ASTNode processing, notifications............c.cccovvvvivviiiieviineennnn. 15-16
Step 4: Complete JAVAMEICSVIBWvee e e e e e e e e e an s 15-19
Step 5: Review plugin.Xml @nd TESEcveue e e 15-21
EXEICISE ACHVILY REVIEW. .. .ceeiiiii it ee ettt e e e e e e e e e e e e e e et e e e e e et s e e e e e e e et e eeaneeeens 15-22

Introduction

This exercise will familiarize you with the keys classes and interfaces of the Java
Development Tools plug-in. You will create several code examples that create and process
Java Abstract Syntax Trees (AST).

Exer cise Concepts

During this exercise, you will implement one or more of the following:
A simple "Hello AST" class that displays the structure of an AST created from a hardcoded string
representing a simple Java program and a user-provided Java source file example.
A Java Metrics view that shows the number of methods, fields, and literals within the selected

EX_Extending_JDT.doc a Copyright IBM Corporation 2000, 2002 15-1

Java Development Tooling

* javafile (I Conpi | ati onUni t). The view automatically updates when modifications are saved
or new methods/ fields are added.

Skill Development Goals

At the end of this exercise, you should be able to:
Create and analyze an AST using subclasses of ASTVisitor.

Create an "Add Trace Statements' menu choice for the Java editor. This choice will analyze the
source and insert trace statements that output the name and parameters of each method.

Integrate a new view with the JDT model, and extend the Java editor.

Exercise Setup

Common lab setup tasks should have been performed such that a PDE project named
comibm I ab. jdt should beavalable in Workbench PDE perspective. The JDT lab
template provides you with a plug-in template and a base set of code, but the
implementation of some code components is incomplete. Y ou will add new methods and
references to other methods not yet invoked by the base code.

Thecom i bm | ab. j dt project containsthe following files:

pl ugi n. xm —the plug-in manifest file. The focus of this exercise will be the DT and its
framework, so the provided manifest filesis already complete.

nmetrics.gif andaddtrace. gi f - graphic files that are referenced by the plug-in manifest
file.

Partially coded classes that will be completed during the lab.

A set of Java scrapbook pages, organized by class, which contain code fragments referenced in this
lab. Y ou can use these to minimize the need to retype code defined in this chapter.

Other files, such as . cl asspat h, which we are not working with in this exercise.

Exercise Instructions

Part I: Traversing a Smple AST with HelloAST

Thisfirst section of the exercise has you create a new class that will print the basic
structure of agiven AST to Syst em out . Theideaisto get a quick tour of the
ASTVi si t or classand see how it helps you easily analyze Java code. As a bonus, this
classis both instructive and helpful when debugging more complex ASTSs.

Asthe name "Hel | 0 AST" suggests, this code will be primitive in its choice of input and
output: Syst em i n and Syst em out . This demonstrates the fact that the JDT model
intheor g. ecl i pse. j dt. cor e package, which defines the various Java e ements, has
no dependency on the JDT user interface package or g. ecl i pse. j dt. ui .

EX_Extending_JDT.doc a Copyright IBM Corporation 2000, 2002 15-2

Java Development Tooling

Step 1. Create ASTVisitor subclass

The ASTVi si t or subclassis responsible for processing instances of the desired subtypes
of ASTNode's. In thisfirst exercise, we want to print a hierarchical list of all the nodes.

1. Create asubclass of ASTVi si t or caled ASTNode2Stri ngVi sitor.

2. Takealook at its superclass implementation using the Hierarchy view. You will see that there
are several categories of public methods:

amethod for each node type that a visitor can visit, for examplevi si t (Bl ock),

vi sit(Javadoc), etc. Thevi si t (XXX) method's return value, true or false, indicates
whether the visitor wishes to continue by visiting the current node's children, or visiting the next
sibling node.

aendVi si t (..) method for each node type, called after the node's children are visited.

and two arbitrary node-type methods, pr eVi si t (ASTNode) and

post Vi si t (ASTNode) , that are invoked for all types before and after the type-specific

Vi si t methods.

3. Inthis particular case, we want to visit al nodes, including their children. We do not have any
specific code for a given node type, so override the pr eVi si t (ASTNode) method. You can
type the method signature yourself based on the superclass, or select the class in the Outline
view and use the Override Methods... pop-up menu choice to help you insert the
preVisit(.) method body.

4. All that's left to do is print the node. The ASTNode class providesat oSt ri ng() method, but
it isabit too sophisticated for our needs here, so instead, only print the class name itself. Enter:

System out. printl n(node. get Cl ass())

in the method body of preVi sit (..) and save. You might wonder if it is necessary to call
super. preVisit(..). Therecertainly would be no harm in doing so, but we know in this
case that the ASTVisitor class only provides a default implementation. In particular,

ASTVi sitor. preVisit (ASTNode) isanempty method body.

Step 2. Complete HelloASTAction class

We are ready to use the ASTNode2St ri ngVi si t or to help us display an AST. Recall
that to further smplify this example, were only using Syst em i n and Syst em out for
our 1/0O.

1. Open the class fragment, Hel | 0ASTAct i on. Noteitisa
| Wor kbenchW ndowAct i onDel egat e subclass, so we can invoke its r un method by selecting
JDT Exercise > Run HelloAST from the workbench menu when we're ready to test.

2. The AST class provides two instance methods for parsing. The first accepts a character array
(Java source), the second accepts an instance of | Conpi | ati onUni t . Well use the first to
test our node visitor. To save you typing, the hel | oWor | dExanpl e() method returning a
sample Java source string is aready coded in Hel | 0 AST, you only need to call it in ther un
method:

String javaCode = ne. hel | oWor | dExanpl e() ;
System out. printl n(javaCode);

EX_Extending_JDT.doc a Copyright IBM Corporation 2000, 2002 15-3

Java Development Tooling

Use an AST to analyze the "Hello World" snippet of code as follows:

Conpi lationUnit cu =
AST. par seConpi | ati onUni t (j avaCode.toCharArray());

Note: The Conpi | ati onUni t inthiscaseisasubclass of ASTNode, not an instance of

| Conpi | ati onUni t. The latter isthe in-memory representation of the * java file itself and
is part of the IDT model (e.g., it knows it is contained in a project). The former isan AST-
specific class that only represents Java language elements. It knows nothing about projects, since
they are specific to the Eclipse Workbench. The public AST classes are found in the

org. eclipse.jdt.core.dompackage. Implementations of the JDT public interfaces,
likel Conpi | ationUnit, arelocatedintheor g. eclipse.internal.jdt.core
package. Y ou will want to import the

org. eclipse.jdt.core.dom Conpi |l ati onUnit for the steps above.

3. Now that we have an AST, let's ask our visitor to visit it:

ASTVisitor visitor = new ASTNode2StringVisitor();
cu. accept(visitor);

Step 3: Test HelloAST

Save your code, and verify there are no compilation errors. You may need to add i npor t
statements. The Organize Imports... pop-up menu choice is very handy to detect and add
the necessary imports, or you can select the class you wish to import and use Source >
Add Import (Ctrl+Shift+M). Now we're ready to test.

1. Sdect the Hel | 0ASTAct i on. j ava file, then select the Run As > Run-time Workbench menu

choice. Once the run-time instance has started, select the menu choice Lab: JDT Exercise and then

sdect the Lab: Run Hello AST menu action (you may need to activate this action set to add it to
your current perspective). Y ou should see the result below in the Console:

package exanpl e;

public class Hellowrld {

public static void main(String[] args) {
Systemout.printin("Hello Wrld!'");

}
}
class org.eclipse.jdt.core.dom Conpil ationUnit
class org. eclipse.jdt.core.dom PackageDecl arati on
class org.eclipse.jdt.core.dom Si npl eNane
class org.eclipse.jdt.core.dom TypeDecl arati on
class org.eclipse.jdt.core.dom Si npl eNane
class org.eclipse.jdt.core.dom Met hodDecl arati on
class org.eclipse.jdt.core.domPrinmitiveType
class org.eclipse.jdt.core.dom Si npl eNane
class org.eclipse.jdt.core.dom Singl eVari abl eDecl arati on
class org.eclipse.jdt.core.dom ArrayType
class org.eclipse.jdt.core.dom Sinpl eType
class org.eclipse.jdt.core.dom Si npl eNane
class org.eclipse.jdt.core.dom Si npl eNane
class org.eclipse.jdt.core.dom Bl ock

EX_Extending_JDT.doc a Copyright IBM Corporation 2000, 2002

15-4

Java Development Tooling

class org. eclipse.jdt.core.dom ExpressionSt at enent
class org. eclipse.jdt.core.dom Met hodl nvocati on
class org.eclipse.jdt.core.dom QualifiedNane

class org. eclipse.jdt.core.dom Si npl eNane

class org. eclipse.jdt.core.dom Si npl eNane

class org. eclipse.jdt.core.dom Si npl eNane

class org.eclipse.jdt.core.dom StringLiteral

2. That's not bad, but wouldn't it be much better if it were properly indented? Solution: Walk up
the hierarchy to calculate the proper indentation. Add this to the pr eVi si t method of
ASTNode2Stri ngVi sitor:

ASTNode t enpNode = node. get Parent ();
while (tenpNode !'= null) {
Systemout.print('\t");
t enpNode = tenpNode. get Parent () ;
}

Re-run the code and you should see the tree structure below:

class org.eclipse.jdt.core.dom Conpil ati onUnit
class org.eclipse.jdt.core.dom PackageDecl ar ati on
class org.eclipse.jdt.core.dom Si npl eNane
class org.eclipse.jdt.core.dom TypeDecl arati on
cl ass org.eclipse.jdt.core.dom Si npl eNane
class org.eclipse.jdt.core.dom Met hodDecl arati on
class org.eclipse.jdt.core.domPrimtiveType
class org.eclipse.jdt.core.dom Si npl eNane
cl ass org.eclipse.jdt.core.dom Singl eVari abl eDecl arati on
class org.eclipse.jdt.core.dom ArrayType
cl ass org.eclipse.jdt.core.dom Si npl eType
class org.eclipse.jdt.core.dom Si npl eNane
cl ass org.eclipse.jdt.core.dom Si npl eNane
class org.eclipse.jdt.core.dom Bl ock
class org.eclipse.jdt.core.dom ExpressionSt at ement
class org.eclipse.jdt.core.dom Met hodl nvocati on
class org.eclipse.jdt.core.dom QualifiedNane
class org.eclipse.jdt.core.dom Si npl eNane
cl ass org.eclipse.jdt.core.dom Si npl eNane
class org.eclipse.jdt.core.dom Si npl eNane
class org.eclipse.jdt.core.dom StringLiteral

3. We printed the name of the class of each node instead of using their default t oSt ri ng()

method because they are principally for debugging and include more information than we need

for our example. To see the difference, put a breakpoint on

System out. println(node. get Cl ass()) inASTNode2Stri ngVi sit or, then
launch the debugger. When it stops at this line of code, select node in the Variables pane and

show details (see arrow below).

EX_Extending_JDT.doc a Copyright IBM Corporation 2000, 2002

15-5

Java Development Tooling

B variables | B & S F x
a this= ASTHode25tringvisitor (id=47) s

EXe W riocle= CompilationUnit (id=48)
& tempMode= null

CormpilationUnit{Hellovworld]

Figure 15-1

Variable Debug View [jdt_1.tif]
Resume several times and reselect the node variable. The Details pane shows the
toString() output of the selected variable. Adding t oSt ri ng() methods to your own
classes can similarly help you debug without adding Syst em out . printl n(..) statements.

5. Theexigting get JavaExanpl e() method in Hel | 0ASTAct i on will create an AST from
an arbitrary * javafile. Add acal to it in the r un method, directly below our previous "hello
world" AST example. The code below will prompt the user for a source file and return its
content:

j avaCode = ne. get JavaExanpl e();
System out. println(javaCode);

cu = AST. parseConpi |l ati onUnit (j avaCode.toCharArray());
visitor = new ASTNode2StringVisitor();
cu. accept(visitor);

Relaunch "Hello AST" and enter the fully qudified file specification of a*.javafilein the
Console when prompted, "Enter a fully qualified Java fil espec:".

The size of the AST tree can increase dramatically, so don't choose a very large source file.
There is dready a HelloWorld.java example in your project. If you installed Eclipsein
c\eclipse2.0, this would be its path (one line, of course):

C \eclipse2.0\eclipse\wrkspace\
comibmlab.jdt\src\comibmlab\jdt\HelloWrld.java

Thisis available in the jpage, if you prefer to copy/paste it into the Console. You can try
analyzing HelloASTAction.java in the same subdirectory, too.

Part 11: Extending the Java Editor

In this exercise, you will reuse the AST skills that you've acquired in the previous part and
add a new editor menu choice that adds trace statements to each method in a Java source
file. The new concepts in this exercise are principally the workings of the Java editor itsdlf,
especialy the "working copy” that all JDT editors use to stage modifications before
committing them to the in-memory Java mode!.

Mini-review of JavaUl Working Copies (Read this later if you are pressed for time)

As areminder, here's areview of what was covered in "Extending the IDT User Interface.”
We will implement some of these stepsin our new editor action.

EX_Extending_JDT.doc a Copyright IBM Corporation 2000, 2002 15-6

Java Development Tooling

Java elements support the notion of a"working copy.” Thisis a staging area for
modifications separate from the moded. This alows, for example, the editor or refactoring
code to modify its client's source code and corresponding Java model without committing
changes to the "real" Java model until desired.

Below is the sequence of editor events when the user opens, modifies, and saves a Java
source file:

1. When the user opens a *.javafile, the editor gets aworking copy of the Java e ement, an implementor of
| Conpi | ati onUni t . Again, the working copy is an instance implementing | Conpi | ati onUni t,

but it isn't the Java element itself.

| Wor ki ngCopyManager ngr = JavaUl . get Wr ki ngCopyManager
(conpil ationUnitEditor.getEditorlnput());

| ConpilationUnit cu =
ngr . get Wr ki ngCopy(conpi |l ati onUni t Edi t or. get Edi torl nput());

The working copy manager requires the editor input to create the working copy. Thisisto
assure that the same editor input receives the same working copy. And it allows the editor
framework to track change modifications (e.g., the famous dirty marker "*" is added when the
working copy is modified).

2. The user makes their desired modifications. Since the modifications are against a working copy,
Java element change listeners are notified with al JavaEl enent Del t a that refersto the
uncommitted working copy, not the true Java model. This brings us back to the point that was
mentioned in Part 1l regarding working copies and the
JavaMetrics. fi ndJavaEl enent Del t a(..) method, that it, Java element natifications
can refer to either the committed Javamodel or the working copy if
El ement ChangedEvent . POST_RECONCI LE is specified in the call to
JavaCor e. addEl erent ChangelLi st ener (I El ement Changeli st ener
listener, int event) orthedefault event flags are accepted by calling
JavaCor e. addEl emrent ChangelLi st ener (|1 El ement Changeli st ener), namely
El ement ChangedEvent . POST_RECONCI LE and
El ement ChangedEvent . POST_CHANGE.

3. You have probably noticed that the Java editor's Outline view updates dynamically once you
stop typing in the editor. The editor uses an internal timer to resynchronize with its helper, the
Outline view, by calling r econci | e() against the working copy. That invocation triggers an
el ement Changed(..) notification. The element delta is based on the original copied
contents of the working copy and the changes that have occurred since its inception. In other
words, the deltais based on the working copy at two points in time, not the working copy and
the original source. This is because the changed contents have not yet been committed to the
model

4. The user saves the modifications. During save processing, the working copy's cormmi t (..)
method is invoked to put its changed contents to the underlying in-memory Java model and it
writes the changes to disk.

OK, with the above sequence in mind, let's start coding again.
Step 1: A Quick Look at the Solution

While there isn't much code and only one class, there are alot of stepsin this exercise. It
helps to see where we are going with them, so load the solution first, launch the run-time

EX_Extending_JDT.doc a Copyright IBM Corporation 2000, 2002

15-7

Java Development Tooling

Workbench, and open an example Java source file. Select the "Soln: Add Trace
Statements"' pop-up menu choice, or the same action from the toolbar.

It should add trace statements like this to each method:

Systemout.println("Start nethodnanme" + " <" + parml + ">" +
n <Il + par rT.Q + m >Il) ;

Did it add trace statements as expected?

Step 2: Create AddTraceStatementsEditor ActionDelegate class

Previous labs have already covered the necessary extensions to add editor actions, and our
case issimilar. Here is the relevant extract of plugin.xml:

<ext ensi on
poi nt="org. ecli pse. ui.editorActions">
<edi torContri bution
target| D="org. eclipse.jdt.ui.ConpilationUnitEditor"
id="comibmlab.jdt.conpilationuniteditor">
<action
| abel =" Add Trace Statenents”
i con="addtrace.gif"
toolti p="Add trace statements to each mnethod"
class="comibm |l ab.jdt. AddTraceSt at ement sEdi t or Act i onDel egat e"
t ool bar Pat h="addi ti ons"
id="comibmlab.jdt.addtracestatenentsl">
</ action>
</ editorContribution>
</ ext ensi on>

<ext ensi on
poi nt="org. ecl i pse. ui . popupMenus" >
<vi ewer Contri bution
target| D="#Conpi |l ati onUni t Edi t or Cont ext "
id="comibmlab.jdt.conpilationunit.editorcontext">
<action
| abel =" Add Trace Statenents”
class="comibm |l ab.jdt. AddTraceSt at ement sEdi t or Act i onDel egat e"
nmenubar Pat h="addi ti ons"
id="comibmlab.jdt.addtracestat enents2">
</ action>
</ vi ewer Contri buti on>
</ ext ensi on>

The editor action, AddTr aceSt at erent sEdi t or Act i onDel egat e, is added in two
contexts for demonstration purposes only. Redlistically, you would likely choose one or the
other (toolbar or pop-up menu) as the best placeto add it. The" addi t i ons" location is
the default, generally at the end of the toolbar or pop-up menu, and is sufficient for our
purposes.

Although the editor action delegate, AddTr aceSt at enent sEdi t or Act i onDel egat e, is
referenced in two places (once for the editor toolbar as an editor contribution and a second
time for the context menu as a pop-up menu contribution), the Workbench will nonetheless
refer to the same instance in both cases. In other words, menu contributions are shared by
al like-instances of an editor, indicated by their t ar get | D.

Design Note: Sharing editor actions simplifies menu creation (e.g, no need to worry about
duplicate menu choices if two editors are open, no need to rebuild menus if focus changes

EX_Extending_JDT.doc a Copyright IBM Corporation 2000, 2002

15-8

Java Development Tooling

to an editor with the same ID, etc.), but it requires that the editor action delegate be notified
which editor it is being asked to act upon. Well return to this point in just a moment.

1. Start by creating the referenced editor action class, AddTr aceSt at enent sEdi t or Act i onDel egat e.
It must implement | Edi t or Act i onDel egat e. Also remember to check the "inherited abstract
methods" choice when creating the class so you'll have stub methods with which to work. Define an
instance variable cuEdi t or of typel Edi t or Part before continuing to the next step.

2. Aswe discussed in the mini-review above, the editor action is in fact shared among open
instances of its associated editor target. Modify the set Act i veEdi t or (..) method to store
the active editor. Then we'll know to which editor the action applieswhenr un() iscalled to
carry out the user's request:

public void setActiveEditor
(I'Action action, IEditorPart targetEditor) {
CcuEdi tor = targetEditor;

}

3. Similar to our prior use of JavaMet ri csAccunul at or, well use an inner class to define an
operation against an AST, thistime called JavaMet hodsCol | ect or . Create this class and
include an instance variable, met hodDecl ar at i ons, in which to collect the method
declarations, and a getter for it:

private class JavaMet hodCol | ect or extends ASTVisitor {
public List nmethodDecl arations = new ArraylList();

public List getMethodDeclarations() {
return met hodDecl arati ons;
}

4. Now we pick what node(s) we wish to work with — an easy choice, right? Just method
declarations, since we plan to insert our trace statements at the beginning of each method. So
add the method below to JavaMet hodsCol | ect or, overriding the superclass no-op
implementation:

public bool ean visit(MthodDecl arati on node) {
net hodDecl ar at i ons. add(0, node);
return fal se;

Particularly observant readers might notice that the add(..) above will insert the node at the
head of thelist. Thisisintentional. We want the method declarations in reverse order (bottom to
top) and will explain why later.

Design Note: It would be equally legitimate to have the visitor handle al aspects of the
operation, not just gathering a list of method declarations. Or even have the editor action
subclass from ASTVisitor and avoid an inner class completely. But for instructive purposes, it is
clearer to separate these activities.

5. Asbefore, we will use a constructor to start the visit:

public JavaMet hodCol | ector (Il Conpil ationUnit cu) {

EX_Extending_JDT.doc a Copyright IBM Corporation 2000, 2002 15-9

Java Development Tooling

AST. parseConpi |l ati onUnit(cu, false).accept(this);

Nothing new here, but it will get more interesting in the next few steps (promised).

6. Now we have a visitor ready to collect all the method declarations; let's actually do something
with them! Goto ther un() method. This is the method that will be invoked when the user
selects the toolbar button or pop-up menu choice, "Add Trace Statements.” We start by getting
aworking copy of the editor's input, an implementor of | Conpi | ati onUni t:

| Wor ki ngCopyManager manager = JavaUl . get Wr ki ngCopyManager () ;
| Conpil ationUnit cu =
nmanager . get Wr ki ngCopy(cuEdi tor. get Edi tor | nput ());

7. Then we are ready to actually collect the method declarations.

Li st met hodDecl arati ons = new
JavaMet hodCol | ect or (cu) . get Met hodDecl arati ons();

Take amoment to review the public methods of Met hodDecl ar ati on. You'll find that it
has everything that one can specify in a method signature: name, return type, parameters,
thrown exceptions, etc. In particular, we are interested in where the first line of code for this
method starts. That isin another AST node, Bl ock, achild accessible directly from

Met hodDecl ar ati on'sget Body() method. All ASTNode's have a source starting
position and length. For instances of Bl ock, that is the locations of the opening and closing
brace, respectively.

8. Now something we haven't talked much about until this point. Y ou have the method, its name
and parameters, and the location where you want to insert your trace statements. But how do
you insert them such that the editor(s) — and user — will see them? Thisis where the
| Conpi | ati onUni t (and its equivalent working copy) belie the fact that they are based on
source text, specifically represented by an instance of | Buf f er . The working copy's buffer
content iswhat is displayed in an editor. To retrieve it, add the code below:

| Buf fer buffer = cu.getBuffer();

The buffer interface is similar to St r i ngBuf f er , e.g., append(..), repl ace(..), etc.
Remember, the cu variable above is aworking copy, so any changes we make will not be
passed to the element change listeners until we specificaly request it viar econci | e() .

9. Iterate through each method declaration and get its opening block:

for (lterator iterator = nmethodDeclarations.iterator();
iterator.hasNext();) {
Met hodDecl arati on nmet hodDecl aration =
(Met hodDecl aration) iterator.next();
Bl ock bl ock = net hodDecl arati on. get Body();

EX_Extending_JDT.doc a Copyright IBM Corporation 2000, 2002

15-10

Java Development Tooling

The method declaration's block knows precisely where the opening brace of the method is, but it
is possible that this method declaration is not the introduction of a method at all, but instead part
of an interface declaration. So test to verify that the method declaration has a block, and if so,
start to build up the find resultina St ri ngBuf f er :

if (block '= null) {
int i = block.getStartPosition();
if (i >=0) {
StringBuffer sb = new StringBuffer();
sb. append("\n\t\tSystemout.println(\"Start ");
sb. append(met hodDecl arati on. get Narme().getldentifier());
sb. append("\"");

Thiswill output "St art et hodNane". There will be quite afew quotes-within-quotes,
tabs, returns, etc. in this part of the code, and they are easy to miss. Y ou may want to copy
portions of this code from the jpage to save some typing and puzzling about which quote is
missing.
10.The method name is done, now for the parameters. We won't get fancy, just the default
t oSt ring() method for each parameter:

if (!methodDecl aration. paranmeters().isEmty()) {
for (lterator parmterator =
net hodDecl arati on. paraneters().iterator();
parmterator. hasNext();) {
sb. append("\n\t\t\t + \" <\" + "),
Si ngl eVari abl eDecl aration parm =
(Si ngl eVari abl eDecl aration) parmterator.next();
sb. append(parm get Nane().getldentifier() + " + \">\"");

Insert this code, it directly follows that in the prior step.

Finally, close the end of the trace statement:

sb. append(");");

To then insert it into the buffer, usether epl ace() method.

buffer.replace(i+1, 0, sh.toString());

Note that we are processing the method declarations in reverse order (bottom to top) to avoid
the situation where inserting something into the buffer invalidates all the AST's calculated source
positions before the insertion point.

EX_Extending_JDT.doc a Copyright IBM Corporation 2000, 2002

15-11

Java Development Tooling

In other words, if we insert something at position 100 of length 10, then all the positions
calculated in the AST referring to said buffer beyond that point are now off by -10. We could
compensate, but it is easier to work backwards and not worry about it.

Design Note: If you later code more complex modifications, ones that require multiple passes,
then clearly this trick won't work. In that case, you could either double-buffer to another

St ri ngBuf f er and copy back to the | Buf f er when finished, or compensate as you go
along. The latter would likely require a modification framework, but that's beyond the scope of
this exercise.

11.Close thetwo f or () loops. At this point, we have inserted all the trace statements into the
buffer and are ready to let the others know. Add the invocation below after the loops:

synchroni zed (cu) {
cu.reconcile();
}

12.Now save your method. Did you see any compiler errors? Y ou should see the compiler flag an
uncaught exception, JavaModel Except i on, thrown by afew of the methods we invoked.
Wrap a catch block around the code, as shown here:

try {
...code written in prior steps ...

} catch (JavaModel Exception e) {
e.printStackTrace(System out);

}

Y ou can type this yourself, or select the block of code and use the editor's Surround with
try/catch pop-up menu choice.

Step 3 Test

Now you are ready to save and test. Try the same tests that you did for the solution and
verify that you see the same behavior (or better ©).

Extra Credit:

Detect if the code has aready inserted a trace statement beforehand and skip that method if oneis

found.
Detect those trace statements that have been modified and offer the user the choice of
replacing them with the default or skipping them.

Trace statements added to a constructor or method in a subclass that callsis parent class
using the super() method results in a compilation error because super() must be the first
statement, not the trace statement. Resolve that.

Part I11: Generating Code Metrics while Traversing an AST (Optional)

Let's build on what we learned in the previous exercise while producing a more interesting
user interface:

EX_Extending_JDT.doc a Copyright IBM Corporation 2000, 2002 15-12

Java Development Tooling

[Helloworld. java X [Eﬂgﬂ! *®
s mample code for testing metrics.
<4 instrumenting
package com.ibm.lab.jdt . test: # Methods =3
Fields = 1

public class HelloWorld { 0 - —
public int useCount = 0 e tinolCietEbE

public static void main{String[] args=)
HelloWorld me = new HelloWorld():

ne.zayHellol):
ne . sayGoodbye():

+

public void =ayHello() {
Systen.out . println("Hello!"):
useCount++;

¥

public void sayGoodbyei) {
Systemn.out .println("Goodbye! ") :
useCount++;

Figure 15-2
Java Metrics Example View [jdt_2.tif]

Here we have a view that displays code metrics for the selected * .java file (an instance of

| Conpi | ati onUni t). The Java Metrics view on the right includes the number of
methods, defined fields, and string literals. We could certainly add more metrics (e.g.,
hierarchy depth, number of imports, etc.), but the focusis on integrating with the JIDT user
interface and better familiarizing ourselves with ASTSs, so let's keep it smple.

This exercise has several classes involved, so it paysto first ook at the overall design of the
solution we'll be producing. First, the classes and their basic responsibilities:

JavaMet ri cs — encapsulates the Java metrics for agiven | Conpi | ati onUni t.

The Java Metrics view creates a new JavaMetrics instance as its model when it opens. The
JavaMetrics instance listens for changes to its compilation unit, updates the calcul ated
metrics appropriately, and notifies interested parties.

JavaMet ri csAccunul at or —aninner class of JavaMetrics, this ASTVi si t or
subclass hel ps drive the metrics collection activity.

| JavaMetri csLi st ener —definesthe interface between aJavaMet ri cs instance
and those, like JavaMet r i csVi ew, who wish to be notified of its state changes.

JavaMet ri csVi ew— view that displays the results of the JavaMet ri cs instancein
simple text format. Listens for changes in its model and updates its display appropriately.
Also listens for changes in the Workbench selection in order to set its model's

| Conpi |l ati onUnit.

You'l find that this exercise contains a fair amount of code that you have already seenin
prior exercises in one form or another. So the exercise commentary will focus on how to
integrate with the JDT model along with the help of an AST to produce arealistic and
useful view.

Mini-Review of Workbench Views
Before we begin, a mini-review of some of the key characteristics of a Workbench view.

A perspective will only display one instance of a given view type (Outline, Navigator,
Properties, etc.). A view can derive their input from different sources.

We have already seen a number of views that derive their input from "well-known
sources." These sources are typically singletons that represent the "root" of a model. The

EX_Extending_JDT.doc a Copyright IBM Corporation 2000, 2002

15-13

Java Development Tooling

Plug-in Registry, Navigator, and CV S Repositories views are just a few examples you may
have seen so far.

Another kind of view displays additional information about the currently selected object. A
Properties view is such an example. Our view will work much the same, displaying the
code metrics for the selected | Conpi | at i onUni t , or amessage if the current selection
isnot a*.javafile

Step 1. Complete JavaMetrics class

Instances of the JavaMet ri cs class are not dependent on the user interface, but only

their underlying model, an instance of | Conpi | ati onUni t . Inasense, thisclassisa

"model of amodel," the source model being the instance of | Conpi | ati onUni t .

Keeping thisin mind, let's start coding.

1. NoteJavaMet ri cs'instance variables met hodDecl ar at i onCount ,
fi el dDecl arati onCount,andstringLiteral Count, corresponding to our desired code
metrics. We have also defined afield for our underlying model, | Conpi | ati onUni t , and an array
for listeners to the class' state changes.

private int nmethodDecl arati onCount;
private int fieldDeclarationCount;
private int stringLiteral Count;

private | ConpilationUnit cu;

private List |isteners = new ArrayList();

Note that while in our example JavaMet ri c¢s will only have one listener (the Java metrics
view), we'll allow for more than one listener by declaring Li st | i st ener s should we later
decide to alow for more than one view on the same model.

Public accessors (get XXX) for the three above metrics are already defined, but no setters.
Remember, these values are only set when accepting a new compilation unit, or when the
compilation unit changes, so there is no need for public setters. Y ou can define private setters if
you wish; thisis more a matter of coding style in this case. If you choose to do so, the Refactor
> Self Encapsulate Field... wizard can generate the getters/setters for you.

2. Takeabrief look at thel JavaMet ri csLi st ener interface. The pattern should look rather
familiar by now: a notification method that is called againgt registered listeners, in this case,
cdledrefresh(JavaMetrics).

3. JavaMet ri csVi ewwill use listener APIs to register interest with its modd, an instance of
JavaMetri cs, so asto receive updates. These methods are fairly standard, except for the
two lines of code that you will add to the JavaMet ri cs class, shown in bold below:

public void addLi stener(lJavaMetricsLi stener |istener) {
|isteners.add(listener);
JavaCor e. addEl enment ChangedLi st ener (this);

}

public void renovelLi stener(lJavaMetricsListener |istener) {
listeners.renove(listener);
JavaCor e. r enobveEl enent ChangedLi st ener (thi s);

}

EX_Extending_JDT.doc a Copyright IBM Corporation 2000, 2002 15-14

Java Development Tooling

private void notifyListeners() {
for (lterator iterator = listeners.iterator();
iterator.hasNext();) {
| JavaMetri csLi stener listener =
(I JavaMetricsListener) iterator.next();
listener.refresh(this);

}
}

If you save now, you will see that afew errors were detected. That's because we added a call to
register JavalMet ri cs asan element changed listener in

addLi st ener/ renoveli st ener (..) above, but haven't yet defined thei npl emrent s

| El ement ChangedLi st ener clauseor theel ement Changed(..) method to handleit.
Add the clause and skeletal method to resolve the errors; we'll complete these methodsin a
moment. Note that you can use context assist in the class body after adding the implements
clause to create a skeletal method corresponding to the new interface or you can select
Override Methods... from the Hierarchy view, as before.

By registering with JavaCor e' s | El enent ChangedLi st ener interface,

JavaMet ri cs will benctified if its | Conpi | ati onUni t ismodified. It can then in turn
notify its listener, JavaMet r i csVi ew. We're adding these invocations in the same methods
as our own model's add/remove listener methods since we will only be interested in Java model
changes as long as someone elseis interested in our own metrics updates. To put this another
way, the JavaMet ri ¢s model doesn't bother updating itself if there are no views (listeners)
displaying its results.

Step 2: Create JavaM etricsAccumulator inner class

To process an AST, you need a subclass of ASTVi si t or . We could have

JavaMet ri cs subclassfrom ASTVi si t or and process the desired ASTNode
subclasses directly. Perhaps that would be expedient, but would clutter our metrics model
with anumber of vi si t XXX(..) methods that have more to do with the mechanics of
AST processing than metrics gathering. Instead, let's create an inner class,

JavaMet ri csAccurul at or, to handle the AST processing.

1. Definethe JavaMet ri csAccunul at or inner class as a private subclass of ASTVi si t or. You
may need to add the appropriatei nmport statements so the superclassis visible. Include afield for the
visitor'sclient, JavaMetri cs:

private class JavaMetri csAccurul ator extends ASTVisitor {
private JavaMetrics jm
}

2. Our ASTVi si t or subclass handles the mechanics of traversing an AST, and our
JavaMet ri cs class handles calculating the metrics. To keep this separation of responsibilities
clear, our visitor defers the processing to private methods of its client:

public boolean visit(StringLiteral node) {
return jmprocessStringLiteral (node);
}

public bool ean visit(FieldDeclaration node) {

EX_Extending_JDT.doc a Copyright IBM Corporation 2000, 2002 15-15

Java Development Tooling

return jmprocessFi el dDecl arati on(node);

}

public bool ean visit(MethodDecl arati on node) {
return jm processMet hodDecl ar ati on(node) ;
}

Add these methods to the visitor class, and ignore the compile errors about the undeclared
method invocations for the moment.

3. To start avisit, create a constructor method that accepts an instance of our client,
JavaMet ri cs, and the compilation unit whose metrics it represents:

public JavaMetri csAccumul at or
(JavaMetrics jm | ConpilationUnit cu) {
this.jm=jm
AST. parseConpi |l ati onUnit(cu, false).accept(this);
}

We have seen avariation of the AST. par seConpi | ati onUni t (..) method beforein
Hel | 0AST. In the prior case, it accepted a source code string. Here it accepts an instance of
|CompilationUnit (a subtype of | Resour ce) for anadysis and returns the root ASTNode, an
instance of Conpi | ati onUni t.

Remember: Thisis not an instance of type | Conpi | ati onUni t (which is part of the IDT
model), rather it is part of the AST parse tree (i.e., models of the Java language elements and
nothing more). There is another JDT class named Conpi | ati onUni t that implements

| Conpi |l ati onUnit,butitisinaninterna package and we have no need to reference it.

The boolean parameter in par seConpi | ati onUni t (..) specifies whether it should
generate the map necessary to enable variable identifier-to-type information binding. If this
parameter ist r ue, then those ASTNode subclasses implementing r esol veBi ndi ng() can

return a description of the type associated with their identifier as an subtype of | Bi ndi ng (e.g.,

| TypeBi ndi ng, | Bi ndi ng, | PackageBi ndi ng, and | Vari abl eBi ndi ng corresponding
to ASTNode subclasses AnonynousC assDecl arati on, | nport Decl arati on,
PackageDecl ar at i on, and Vari abl eDecl ar at i on respectively). Caculating this binding
takes additional time, and we don't need it in our case. The

Conpi | ati onUni t. accept (..) method starts the visit, passing our visitor instance.

Step 3: Complete JavaMetrics ASTNode processing, notifications
We are almost finished with our metrics mode.

1. Our metrics are quite trivial, we only increment a counter as we find the corresponding node type. Recall
that the return value of the type-specific vi si t (XXX) methodsin ASTVi si t or indicatesif you
wish to continue to the child nodes. Y ou can use this to optimize your traversal, e.g., to only look at
methods and not the method's implementation (child nodes) within. Our visitor used the type-specific
methods, and will defer the "visit child nodes or not" decision to the metrics generation code rather than

including it in the visitor code:

prot ect ed bool ean processStringLiteral (StringLiteral node) {
stringLiteral Count ++;
return fal se;

EX_Extending_JDT.doc a Copyright IBM Corporation 2000, 2002

15-16

Java Development Tooling

}

prot ect ed bool ean processFi el dDecl arati on
(Fi el dDecl arati on node) {
fi el dDecl ar ati onCount ++;
return false;

}

prot ect ed bool ean processMet hodDecl arati on
(Met hodDecl arati on node) {
nmet hodDecl ar at i onCount ++;
return true;

Add these methodsto JavaMet ri cs (not itsinner class), and then carefully study them for a
minute or two. Will al string literals that appear in the sample code be counted? If not, which
will be excluded and why? Hint: Where else can string literals appear besides methods?

2. Thismode has inbound natifications (from JavaCor e) and outbound natifications (to
JavaMet ri csVi ew). Let's handle the inbound notifications first. The Java element change
notification is much the same as a Resource change event notification, that is, it is a delta
potentially describing more than one change. We will need to discern whether the change
affects our underlying compilation unit. For the moment, let's code up a skeletal method and get
to the details later:

publ i c voi d el enent Changed(El enment ChangedEvent event) {
if (cul=null) {
| Conpi l ationUnit cu2 = (I ConpilationUnit)
fi ndJavaEl enent Del t a(event.getDelta(), cu);
if (cu2 '=null)
reset (cu2);

Thefirst part of thei f condition indicates that there is no need to update (reset) if the
JavaMetri cs' modd isnull. Thiswill be the case when the JavaMet ri csVi ewis
initialy created, since the newly created JavaMet r i ¢ instance does not yet have a
compilation unit from which to calculate metrics. On the other hand, if the metrics model has a
compilation unit, the model must determine if the | JavaEl enment Del t a returned by
event . get Del t a() referencesit. Thisis necessary because change notifications are sent
for dl | JavaEl emrent s in the workspace to all element change listeners, and our metrics
model is only interested in its own.

Put a breakpoint on this method for later investigation. We'll use the debugger to see that the
El ement ChangedEvent . get Del t a() method returns an array of changed elements,
starting with the project, folder, and finally compilation unit.

Views like the Navigator, which display a complete hierarchy, are interested in each element in
the tree, but again, the JavalMet r i ¢s instanceis only interested if its compilation unit (or one
of its child ements) has changed. Thisiswhy thef i ndJavaEl enent Del t a(..) method
recursively searches for a specific element. If it is among the changed elements, it recalculates
the metrics, otherwise the change is ignored.

EX_Extending_JDT.doc a Copyright IBM Corporation 2000, 2002 15-17

Java Development Tooling

3. Briefly note how thef i ndJavaEl emrent Del t a(..) method below recursively searches the
provided structure, and that it checks if the java element is a "working copy.” Well return to
this point in Part 111 of this exercise. For the moment, suffice it to say that the JDT defines the
notion of a staging area for uncommitted (unsaved) changesto an | Conpi | ati onUni t
called a"working copy.” A working copy has the same interface as its origina € ement, but
changes to it do not effect the Java mode until they are explicitly committed. Working copies
are not attached to a resource, hence why the code below must retrieve the original element in
order that a meaningful comparison between the changed element and the JavaMetrics
| Conpi | ati onUni t instance can be done.

Also notethat | JavaEl ement overrides Obj ect 'sdefinition of equal s() inorder to
qualify it logically rather than by strict object identity. It looks for whether the two elements
have the same name, parent, etc.

private |JavaEl ementDelta findJavaEl enment Del t a(
| JavaEl enent Del t a parent Jed,
| JavaEl enent je) {

| JavaEl enentDel ta j ed = parentJed;
| JavaEl enent je2 = parentJed. getEl enent () ;

if (je2 instanceof |WrkingCopy
&& ((1'Wor ki ngCopy) je2).isWrkingCopy())
je2 = ((1'WrkingCopy) je2).getOiginal El enent();

if (je.equals(je2)) {
return parentJed,
} else {
for (int i =0; i < parentJed.getAffectedChildren().length; i++) {
jed = findJavaEl enent Del t a
(parentJed. get AffectedChildren()[i], je);
if (jed '= null)
return jed;
}
}

return null;

}

Openthel JavaEl enent Del t a interface. Y ou can do this by selecting its name in the code
above and pressing F3. This interface includes more detail about the nature of the change than
we will explore during this lab. But looking at the interface, can you describe the difference
between the get Af f ect edChi | dr en() and get ChangedChi | dr en() methods?

4. Complete ther eset method by starting a new visit (see code in bold). This method will accept
anew compilation unit and update the metrics, or null where it smply resets them to zero. In
both cases, the listeners are notified so they can update themselves accordingly.

public void reset (I ConpilationUnit cu) {
this.cu = cu;

nmet hodDecl ar ati onCount = O;
fi el dDecl arati onCount = O;

EX_Extending_JDT.doc a Copyright IBM Corporation 2000, 2002

15-18

Java Development Tooling

stringLiteral Count = 0;

if (cu!=null)
new JavaMetri csAccurul ator(this, cu);

notifyLi steners();

Remember to save and correct any compiler errors before continuing.

Step 4: Complete JavaM etricsView

This step will seem quite familiar, since it follows the same pattern as the other view
exercises. Thisview isintentionally unsophisticated in appearance — it only has a single text
widget for displaying its results. But it demonstrates how to synchronize the Workbench
sdlection with the currently displayed results, and how to keep displayed results
synchronized with the underlying Java model.

1. ThecreatePart Control (..) method is partially complete. It begins by creating the text widget to
display its results. To get selection notifications when the user moves the focus, add the code bel ow:

getViewSite().
get Wor kbenchW ndow() .
get Sel ecti onService().
addSel ecti onLi stener(this);

Thisis only one line of code, but it traverses several object relationships that are worth
understanding. Follow the method invocations using the background information below:

Get the view part's view site. View site is an interface between view parts and the rest of the GUI
framework (access to the workbench window, action bar, shell, decorator manager, etc.).

Ask the Workbench window for its selection service. The selection service tracks the current
selection, maintains a list selection listeners, and notifies them when the selection changes among
| SelectionProviders.

Add our view (part) to the list of selection listeners. Our view part will now get notified

when the selection changes.

Y ou may remember the selection listener interface from prior exercises. In this case, we want to
know if the selection changesto an | Conpi | at i onUni t within those views in the same
Workbench window as our view. A selection can either be "text only" (I Text Sel ecti on),
or "structured” (I St ruct ur edSel ect i on, like the entriesin alistbox, tree view, etc.). We
are only interested in selections from the Navigator, Outline, etc., all of whom are

| Sel ecti onProvi der implementors providing I St r uct ur edSel ect i on results.

We've dready created the viewer and view part and established the view/viewer relationship.
Now let's create our model and store areference to it, the JavaMet ri csVi ew:

jm= new JavaMetrics();
j m addLi stener(this);

Save the class before continuing.

EX_Extending_JDT.doc a Copyright IBM Corporation 2000, 2002 15-19

Java Development Tooling

2. Now let's finish the selection listener method, sel ect i onChanged(..) . When this method
iscdledindicating that an | Conpi | ati onUni t was selected, we want to update the
JavaMet ri cs instance and subsequently the view:

if (selection instanceof |StructuredSel ection) {
| ConpilationUnit cu =
get Conpi l ationUnit((1StructuredSel ection) selection);
jmreset(cu);

}

Theget Conpi | ationUnit(..) extractsthel Conpi | ati onUni t from the selection, if
possible, or returns null. We code it in the next step.

3. Theget Conpi | ati onUni t (..) method handles those cases where a sub-element of a
compilation unit is selected. For example, if a method is selected in the Outline, Packages, or
Hierarchy view, well treat it as if its containing compilation unit itself was selected. It also
handles the case where the selected element is the source file itself (*.java) from aview like the
Navigator, where it will be an instance of | Fi | e, not | Conpi | ati onUni t. The method is
already coded, here it is for reference:

private | ConpilationUnit
get Conpi l ati onUnit (I StructuredSel ection ss) {

if (ss.getFirstEl enent() instanceof |JavaEl enment) {
| JavaEl enment je = (1JavaEl enent) ss.getFirstEl enent();
return (I ConpilationUnit)
j e.get Ancestor (1 JavaEl enent. COMPI LATI ON_UNI T) ;

}
if (ss.getFirstEl enent() instanceof IFile) {

IFile f = (IFile) ss.getFirstEl enment();

if (f.getFileExtension() !'= null &&

f.get Fil eExt ension(). conpareTol gnoreCase("java") == 0)
return (I ConpilationUnit) JavaCore.create(f);

}
return null;

In a nutshell, this method will either return null (because the selectionisnot al JavaEl enent
or a*.javafile), or will walk up the Java model object hierarchy looking for the parent
compilation unit, if one exists, starting from the new selection.

4. The last case to consider is when the compilation itself changes. As you recall, the
JavaMet ri ¢ instance registers with JavaCor e's element change listeners. When the
JavaMet ri c¢'s compilation unit changes, it in turn notifies its listeners by calling the listener's
refresh(JavaMetri cs) method. Our view will respond by setting the value of the text
field, or if theJavaMet ri cs isnot valid (for example, because it does not yet have a
compilation unit or the compilation unit has been deleted), it sets the text to a "no metrics
available" message to aert the user. Add this codetother ef resh(..) method:

if (jmhasvalidMetrics())
nessage. set Text (j m sunmaryString());

EX_Extending_JDT.doc a Copyright IBM Corporation 2000, 2002 15-20

Java Development Tooling

el se
nmessage. set Text (NO_SELECTI ON_MESSACE) ;

Since the notifications can come from a non-Ul thread, the above code will have to be enclosed
in an Runnabl e. r un method in order to execute it in the Ul thread using

Di spl ay. get Defaul t (). syncExec(Runnabl e) . That part of the code isn't shown
here, but isin the template code and solution. Once you make this change, you'll see a compiler
error about referencing a non-final variable (thej mparameter in the
refresh(JavaMetrics jnm) method). Change the method parameter to 'unused’, since
we want to refer to the j minstance variable anyway.

Now we have finished dl the coding, only one more step to go!
Step 5: Review plugin.xml and Test

Let's turn to the plugin.xml file that wires our view into the Workbench. This should seem
like old hat by now, so we won't bother you with too many details.

1. Takealook at plugin.xml, here's the relevant extract below:

<ext ensi on
poi nt="org. ecl i pse. ui.views">
<cat egory
nanme="Edu- Sol "
id="comibmlab.view category">
</ cat egory>
<vi ew
nane="Lab: Java Metrics"
icon="netrics.gif"
category="comibm /| ab. vi ew. cat egory"
class="comibmlab.jdt.JavaMetricsVi ew
id="comibmlab.jdt.javametricsvi ew' >
</ vi ew>
</ ext ensi on>

The category defined is the same asis used by other exercies. You could aso decide to place the
view into the existing Java category. To do this you would use a category value of
org.eclipse.jdt.ui.java intheview definition. If you were actualy building atool that
was designed to complement the JDT, choosing to use the existing Java category might give the
user interface a stronger fedling of integration.

2. Now we're ready to test. Select the plugin.xml and start the Workbench run-time instance using
the debugger. Y ou will need some test data, we've provided you with a Helloworld.java source
fileinthecom i bm | ab. j dt project that you can either import directly into your run-time
workspace, or create a test project, package, and class, then paste in the code. Once you have
created this class, open the Edu > Lab: Java Metrics view and select the HelloWorld.java
source file in the Packages view. Do your metrics update?

If you followed the steps above precisely, you may remember that you set a breakpoint in
el ement Changed(El enent ChangedEvent) . If you save a modification of your test
Java source once the Java Metrics view has been displayed, you should stop at this breakpoint.

Open the Details pane of the Variable view in the debugger and select the JavaElementDelta.
You will see adisplay similar to this:

EX_Extending_JDT.doc a Copyright IBM Corporation 2000, 2002 15-21

Java Development Tooling

B variables By & o X
+ s this= JavaMetrics (id=51)
—|- & event= ElementChangedEvent (id=58)

+- @ faffectedChildren= DavaElementDelta[1] (id=75)
< fChangedElement= \WorkingCopy (id=54)
m fChangeFlags= 16392
s fKind=4
< fMovedFromHandle= null
< fMovedToHandle= null
< resourceDeltas= null
resourceDeltasCounter= 0
m type=4
[Working copy] HelloWorid, java[*]: {CHILDREN | FINE GRAIMED}
Helloworld[*]: {CHILDREN | FINE GRAINED}
testCount[-]: £+

&

Figure 15-3

Variable Debug View [jdt_3.tif]
Another very helpful example of t oSt ri ng() output displayed in the Details pane. In this
case, it isrecursively displaying the result of get Af f ect edChi | dr en(), giving you a clear
view of what Java model elements are affected by the updates.

Exercise Activity Review

In this exercise you should have learned:
How to analyze Java source code using ASTs and ASTVisitor
How to extend the IDT Ul by adding new actions to an editor
How to extend the JDT Ul by adding a new view

EX_Extending_JDT.doc a Copyright IBM Corporation 2000, 2002 15-22

Using Eclipse

(Optional) Exercise 16
Using Eclipse

(Optional) Exercise 16 USING ECHPSE.......iiiiiiiiiiiiii e aaeens 16-1
[T goTo [N o1 i o] o HANN TS OUPUTTTTTRPUUPPPPRPTIN 16-1
SKill DEVEIOPMENE GOAISc.eeviieeeiii et e e e et e et a e e era s 16-1
EXEICISE INSIIUCHIONS ...ttt e e e ettt e e e e e e e ee bbb e e e e aaeeennes 16-2
Part 1: Your First ECHIPSE PrOJECE.......iiiiiii i 16-2
Part 2: EQIOrS And VIEBWSuiiiiiiiiiiii ettt e e e ettt e e e e e e annaan s 16-8
Part 3: WOrking With RESOUICES.iiiiiiieeiiii et e et e e e e e e e e eaeens 16-15
Part 4: PeISPECHVES. .. .cceitiiieei et e e e et e e e n e e e et e e et e e eanans 16-19
EXErCISE ACHVILY REVIEW.....uuiiiiiii et e et e et e e e e et e e eanans 16-20
Introduction

The objective of this lab is to provide you with a hands-on introduction to using
Eclipse, including creating and using resources, and manipulating the user interface.

Note: This material has been tested on 2.1, but screen images still reflect the 2.0
user interface.

Skill Development Goals
At the end of this lab, you should be able to:

Be familiar with the basic structure of Eclipse

Navigate the Eclipse user interface

Move and resize views

Compare and replace projects and editions of resources
Recover deleted files and projects

Customize a perspective

The time available during a formal class may not let you complete the entire exercise. Consider
this subset first:

Part1 —all
Part2 —1-10
Part3 —-1-5
Part4 —all

If you finish you can return to do the steps you skipped.

Exercises © Copyright IBM Corporation 2000, 2002 16-1

Using Eclipse

Exercise Instructions

Part 1. Your First Eclipse Project

Let's get started. In this part, we'll explore the Eclipse user interface and create and import
projects, files, and folders.

There is no set up for these exercises, nor sample code or files. You just need to have Eclipse
installed. We'll create what we need as we go.
1. Inyour Eclipse directory, invoke the ecl i pse. exe.

Figure 16-1 below shows the Eclipse user interface as it comes, out of the box.
Eclipse opens the Resource Perspective.

Menu bat T Rcourcs T Eelipss Platiamn T T T T O
TOOI bal‘ Flz Edit Source PRefactor Mavigabs Search Project Pun Window Halp
iE-lRmall 7B ER 0 e e s e
| [&5 navoator v x| {Heieword jaa X | 95 cutline x
% & A package con.example hw; la:) \‘&5 a
%l. =129 Example public class HelloWorld { H# com.exampe.hw
5 435 bin bli . I = @ Rellowond
| — public static woid main(String ox 9 pos i '
2| E_*;m Systen.out . priantlnf Hello world") L
=t (= example 1 Outline
| L 2 o g
/ [37 Heloworld View
| .clesspath
Resource / _ % Dottt
Navigator |
view I &
| es | B 2% B —] .]
[Propesties .1'& BE x| " | & .
|| Property e .
= 55| Tasks [itams) WG ow o x m Backmarks X B_OO LS
i I edtabie brue | ! | Desaription Resaurcs In Faldar g | VIEW
propertles/ i last madified /2802 S:10 PM 1 { |] { R /
view nams HalloWorld java /
| path JExamplajsrefcon
size 144 b
on = 5
e | 3| Tasks | Saarch
/' |wriable \Insert |61 16
o
Stacked Tasks
Views view

Figure 16-1
Resource Per spective

The Eclipse user interface is presented as an adjustable multi-paned window
comprising the following.

Menu bar. All user interface actions are available from menu bar items. If you
were an Eclipse 1.0 user, you'll notice a significant reorganization of the menu bar
items.

Tool bar. This is a set of icons that represent shortcuts to some Eclipse actions
that also appear as menu items.

Editors. Editors are stacked in the middle pane, with tabs for navigation. When
Eclipse first comes up with the Resource perspective, the welcome page is

Exercises © Copyright IBM Corporation 2000, 2002 16-2

Using Eclipse

shown. This is an XML document that lists common actions. Welcome pages can
contain links to user interface actions along with the text descriptions. Try
selecting one of the links. You can resize the editor pane by grabbing and moving
one of the interior edges or the pane.

Views. Views are organized by the perspective in the window. The Resource
perspective includes the Navigator view for navigating through and operating on
resources, the Outline view for navigating within a resource (one that supports an
outline view, such as Java source code), and the Task view for listing things to
do. In Figure 16-1, we added the Bookmarks and Properties views. Views can be
resized and stacked.

Shortcut Area. This is the wide left border of the main window. Initially, only your
open perspectives are shown. When you have multiple perspectives open, you
can navigate through them by selecting the icons. You can also minimize views to
an icon on the shortcut bar to free up desktop real estate. These are called fast
views. We’'ll get to them in a moment.

OK, now that you have a basic understanding of the organization of the user
interface, let's get out of first gear. To do this, we need some resources to work
on. Let's create these now.

2. Create a project by selecting File > New > Project... You can also select the New
Wizard™ ¥ drop-down and then Project. This opens the New Project wizard.

Select L

()
Create a new project resource ﬁ

v EVroject
Plug-in Development
Simple

| Next = | Cancel

Figure 16-2
Creating a Project

3. Select Simple and then Project. Press Next.

Exercises © Copyright IBM Corporation 2000, 2002 16-3

Using Eclipse

4. Enter My First Project asthe project name, leave the other defaults, and select
Finish. You new project appears in the Navigator view. If you expand the project, you'l
see that Eclipse has added file . pr oj ect . This is a file Eclipse maintains to keep
information about your project.

5. Select File > New > Folder or select Open the New Wizard =F. When you use the
New Wizard, if you select the button (verses the pulldown), you'll see the New wizard
selection page. This same page can be opened using Ctrl+N. Select Simple and
Folder. You can also press on the small down arrow to the right of the image to see a
list of choices. Select Folder.

6. Select My First Project, enter Text Files as the folder name, and press Finish. In the
Navigator view, you see the folder added to your project.

Folder

Create a new folder resource. @

Enter or select the folder:

| My First Project

& My First Project

Folder name: |Text Filesi

Finish | Cancel

Figure 16-3
Adding a Folder

7. From the menu bar or the tool bar, use the New pull-down again to create a new file.
Expand My First Project and select the Text Files folder. (If you select the Text
Files folder before you open the wizard it will already be selected in the wizard.) Enter
“My First File"as the file name and press Finish. In the Navigator view, observe
the file added to your project. The file will also be opened in an editor.

Exercises © Copyright IBM Corporation 2000, 2002 16-4

Using Eclipse

New File
File .
Create a new file resource.

Enter or select the folder:
| My First Project/Text Files

=& My First Project
(= Text Files

File name: | My First File

Finish | Cancel

Figure 16-4
Creating a File

@since 2.1 — By default folders and files in the Project root are created in the
project directory. With 2.1 you can use the Advanced >> button to link a file or
folder to another file system location. A Path Variable may also be used to
support the link. Try it if you want, add a linked file or folder in My First Project.

8. In the editor, add some text to the file. As soon as you start typing, an asterisk, “*”, is
added as a prefix to the file name on the editor tab. This is an indication that you have
changed the contents of the file.

9. Create a second text file in the same folder called My Second Fi | e. Add some text to
this file as well.

10.Create a second simple project called My Second Proj ect.
11.The Navigator view should now appear as shown in Figure 16-5.

Exercises © Copyright IBM Corporation 2000, 2002 16-5

Using Eclipse

_
& Navigato v x

=& My First Project
-I-(& Text Files
My First File
My Second File
.project
=R 4My Second Project

.project

Figure 16-5
Project Organization in the Navigator View

12.We've created files. Now let's add some existing files to one of your projects. We're
going to do this by importing files you have on your file system. Select My Second
Project in the Navigator view and select Import... from the context menu. In the Import
Wizard, select to import from the File System and then select Next >.

13.Select Browse... to browse your file system for a folder with some files to import (it
really doesn’t matter which files). In the Browse for Folder dialog, select a folder and
then select OK.

14.Expand the folder in the left pane to see its sub folders (if the folder you selected
previously has subfolders). If you select (check) a folder in the left pane, you will import
the folder and all the folders and files it contains. If you give a folder focus you can
select individual files in the right pane. If you expand the folder you can select from the
subfolders and the files in each subfolder. Select a set of folders and or files. Select
Finish to import the folders and/or files you selected.

Exercises © Copyright IBM Corporation 2000, 2002 16-6

Using Eclipse

File system
Import resources from the local file system. C"
Directory: |E:'\I\f1‘,r Documents\Miscellaneous j Browse...

[]| Duty Manger Notebook.ppt
[7 InnerCircleCustomerPMRs. hwp

[kFBS.fc

[= Rughy Poster.doc
[= Solution Found.doc

Filter Iypes...| Select All Deselect All

Select the destination for imported resources:

Folder: | My Second Project Browse...

Options:

I Dverwrite existing resources without warning
" Create complete folder structure
' Create selected folders only

< Back | Finish | Cancel

Figure 16-6
Importing Resources

You'll see the files you selected to import show up in the Navigator view

15.You can also drag and drop files to add them to a project. Open a file system dialog, for
example Windows Explorer, drag a file from it and drop it on My Second Project.

16.1f you are using 2.1, you can also add files and folders to the project using a resource
link. Select My Second Project and then open the New wizard. Select File or Folder,
and then select Advanced >> to expose the link portion of the new resource dialog.

17.Browse to locate the target File or Folder for the resource link. Note that the wizard will
prevent you from creating a linked resource in a location other than the project itself.

The Navigator will include linked resource decorators for linked resources.
This is controlled using Label Decorations preference page (Use Window >
Preferences > Workbench > Label Decorations to open the Preferences
dialog).

If you delete a linked resource, you delete the workspace reference to the
resource. If you delete a file in a linked folder, you have deleted the file on the
file system.

Exercises © Copyright IBM Corporation 2000, 2002 16-7

Using Eclipse

Part 2: Editorsand Views

Let's take a look now at using editors and views. We'll see how to edit files, manipulate views and
editors, and use tasks and bookmarks.

1. Select the tab on one of the editors you should already have open. On the bottom right
margin of the window is the editor message area (see Figure 16-7).

= Resource - Eclipse Platform
File Edit Mavigate Search Project Run Window Help

B-EES | 5%~

B || &) Navigator v x =My First File X
THE EMANCIPATION PROCLAMATION: A~
@3 By the President of the United States of America:

=Il& My First Project & PROC
2. Text Files The: = on the 22nd day of September. A4.D. 1862, a proclamation
.)) waz i=sued by the President of the United States, containing.
B My First File anong other things, the following, to wit:

My Second File

"That on the lst day of January, A.D. 1863, all persons held as

E -project =zlaves within any State or designated part of a State the people
--l& My Second Project whereof shall then be in rebellion against the United States shall
B .project be then. thenceforward. and forever free; and the executive

R governmnent of the United States, including the military and nawval
2 InnerCircleCustomerPM authority thereof. will recognize and maintain the freedom of such
B KkFBS.fr persons and will do no act or acts to repress such persons. or any
@D Rugby Poster.doc of them, in any efforts they may make for their actual freedom.

< > "That the executive will on the lst day of January aforesaid.
by proclamation., designate the States and parts of States, if any.
EE Qutline x in which the pecple thereof, respectively, shall then be in
rebellion against the United States: and the fact that any State
An outline is not available. or the people thereof shall on that day be in good faith

represented in the Congress of the United States by members
chozen thereto at elections wherein a majority of the gqualified
voters of =s=uch States shall have participated shall, in the
abzence of strong countervailing testimony. be deesmned conclusive
evidence that such State and the people thereof are not then

in rebellion against the United States.

How, therefore. I. Abrsham Lincoln, President of the Tnited
States, by wirtus of the power in me vested as Comnander-In-Chief

~F Flm darmrr A Werrrr ~F bl TTaa b ~Ad T b mm G bams —~F —mdbaam] mmem A
< >
47| Tasks (0 items) W R x
| C.| ! | Description Resource | In Folder Location
Writable Insert 4:10

Figure 16-7
Editor Message Area

The editor message area contains three fields, File State, Typing Mode, and
Position. These fields provide information about the current editor. The values
you should see are Writable, Insert, and n:n. “Writable” means you can change
the file. If the file property was read-only, you wold see “Read Only” in this field.
“Insert” indicates the state of the “Insert” button on your keyboard. Pressing the
Insert button will change this to “Overwrite” meaning your typing will overwrite text
instead of inserting the text. The final field indicates the row and column of the
cursor position.

2. Close My Second File by selecting on the ‘X’ on the editor’s tab. You can also do this
by selecting Close from the context menu on the editor tab, or use the menu option
File > Close (Ctrl+F4) . You can even close all open editors at once using
File > Close All (Ctrl+Shift+F4).

3. Reopen My Second File by double clicking on it in the Navigator view. You can also
select the file and select Open or Open With > from the Navigator context menu.

Exercises © Copyright IBM Corporation 2000, 2002 16-8

Using Eclipse

When you use the Open With > popup menu, the System Editor option refers to the
operating system associated program for files of this type. You can alter the editor
mapping and behavior using the Workbench > File Associations preference page.

4. There are several ways to navigate and manage your editors. Try selecting My First
File and then My Second File in the Navigator view. You see that active editor is
synchronized with your selection. The reverse is also true; selecting an open editor will
put that file in focus in the Navigator view. In 2.0 this behavior is actually defined by the
Workbench preference setting Link Navigator to active selection.

@since 2.1 - In 2.1 the Navigator and Package Explorer views now include a
Link with Editor toggle to control the synchronization with the active editor.

5. Double click on the blank area to the right of the editor tabs or on one of the file names
on the tabs. You'll see that the editor expands to fill the entire window as shown in
Figure 16-8. This is useful for serious editing where you need more screen real estate.
Double click again to restore the editor to its original size.

£ Resource - Eclipse Platform
File Edit Mavigate Search Project Run Window Help

B-EES | 5%~

= || =My First File X
THE EMANCIPATION PROCLAMATION: A~
@3 By the President of the United States of America:
& PROCLAMATION
PEEEEEE on the 22nd day of September, 4.D. 1862, a proclamation
waz i=sued by the President of the United States, containing.
anong other things, the following, to wit:

"That on the lst day of January, A.D. 1863, all persons held as
=zlaves within any State or designated part of a State the people
whereof =shall then be in rebellion again=t the United States shall
be then. thenceforward. and forever free; and the executive
governmnent of the United States, including the military and nawval
authority thereof, will recognize and maintain the freedom of such
per=zons and will do no act or acts to repress such persons, or any
of them, in any efforts they may make for their actual freedom.

"That the executive will on the lst day of January aforesaid.
by proclamation., designate the States and parts of States, if any.
in which the pecple thereof, respectively, shall then be in
rebellion against the United States: and the fact that any State
or the people thereof shall on that day be in good faith
represented in the Congress of the United States by members
chozen thereto at elections wherein a majority of the gqualified
voters of =s=uch States shall have participated shall, in the
abzence of strong countervailing testimony. be deesmned conclusive
evidence that such State and the people thereof are not then
in rebellion against the United States. "

How, therefore. I. Abrsham Lincoln, President of the Tnited
States, by wirtus of the power in me vested as Commander-In-Chief
of the Army and Havy of the United States in time of actual armed
rebellion again=t the authority and government of the United States.
and a= a fit and necessary war measure for supressing said
rebellion., do, on this lst day of January, A.D. 1863, and in
accordance with ny purpose so to do. publicly proclaimed for the v

Writable Insert 4:10

Figure 16-8
Expanding an Editor

6. You can change the ordering of the editors in the editor pane. Select the tab for My
Second File, drag it in front of the tab for My First File, and release it. The order of
the editors is changed, as you can see by the order of the tabs.

7. Resize the area the editors occupy by selecting and dragging the bottom or left border
of the editor pane. You can also do this by selecting Size from the editor tab context
menu, choosing a side to move, and using the arrow keys.

Exercises © Copyright IBM Corporation 2000, 2002 16-9

Using Eclipse

Editors open stacked one in front of another. You can change this organization by tiling

one or more of the editors within the editor area. Create another file called My Third
File. Select the tab of My Third File and drag it to the left border of the editor pane.
When the cursor changes to a left arrow, drop the editor. Select the tab of My Second
File, drag it to the bottom border of the editor pane below My Third File, and drop it.
The result of this is shown in Figure 16-9.

Resource - Eclipse Platform

File Edit Mavigate Search Project Run Window Help
B - Ba| ¥ %~
=g Navigator v x || [El My Third File X [E] =My First File X
EEI THE MAGHA CARTA (The Great Cha:a
Preamble:
SR = My First Project -~ John, by the grace of God., kinc
2. Text Files duke of Hormandy and Aquitaine
X . . archbishop, bishop=. abbots, e:
My First File foresters. sheriffs, stewards.
My Second File and liege subjects, grestings.
My Third Fil and for the salvation of our =
) UL L. and heirs. and unto the honor o
.project holy Church and for the rectif-
i ; asz underwritten by advice of o
= MY SECQnd Ll = archbishop of Canterbury., prim:
-project the holy Roman Church, Henry. :
iz InnerCircleCustomer London, Peter of Winchester, Ju
2 Hugh of Lincoln, Walter of Wor
KFBS.fc b v v Benedict of Rochester, bishops
< > menber of the household of our
o THE EMANCIFATION PROCLAMATION: || (master of the Knights of the ~
a= Outline X || By the President of the United 1%158?1?8 mea_ﬁlliillam Maish?.
& PROCLAMATION o alisbury, William, earl o
An outline is not available. [TSTEE on the 22nd day of Se Alan of Galloway (constable of
was issued by the President of Peter Fitz Herbert. Hubert De |
among other things, the followi gﬁg}f'dedNiv]J:-‘]:le' M;t]t:,‘hew F%té 1
ilip d'Aubigny, Robert o 0]
"That on the lst day of Janus Hugh, and others. our liegemsn
=slaves within any State or desi
whereof shall then be in rebell 1. In the first place we have ¢
be then, thenceforward, and for present charter confirmed for o
government of the United States English Church shall be free. :
authority thereof. will recognis aed EBI_‘ liberties %nvlolste; Sy
< ¥ < ¥
% Tasks (0 items) o 2 ow X
| C.| ! | Description Resource | In Folder Location
Writable Insert 4:10
Figure 16-9

Reorganizing Editors

9. Of course, you can also re-stack the editors. Select the tab of My First File and drag it
on top of the tab of My Second File or the area to the right of it. Select the tab of My
Third File and drag it on top of on of the other two tabs or the area to the right of
them. The editors should be stacked again. The order of the tabs may have changed
from what it was before, depending on where exactly you dropped the editors.

10.Select anywhere in the Tasks view to make it active. Press F12. The editor for the
resource you were most recently editing is now active. This is a quick way to get back
to your most recent active editor.

Note: This is a good point to move on to the next part if you are just trying to experience a subset
of each lab part.

11.You have keyboard shortcuts for navigating between editors. Press Ctrl+F6 to go to
the next editor. Press Ctrl+Shift+F6 to go to the previous editor. While pressing Ctrl,
you can press of F6 repeatedly to move the current selection in the list of open editors.

Exercises © Copyright IBM Corporation 2000, 2002 16-10

Using Eclipse

=My First File My Third File X
THE EMANCIPATION PROCLAMATION: A~
By the Pre=sident of the United States of America:
& PROCLAMATION

Whereas on the 22nd day of September, A.D. 1862, a proclamation
waz i=sued by the President of the United States. containing,
amnong other things, the following, to wit:

"That on the lst day of January, A.D. 1863, all persons held as
=zlaves within any State or designated part of a State the people
whereof =shall then be in rebellion against the United State=s shall
be then, thenceforwyard. and forever free; and the executive

governmnent of Views ez, including the military and nawval
authority thf—— nize and maintain the fresedom of such
persons and) Editor i acts to repress such persons, or any
of them, in Navigator inay make for their actual fresdom.

% Tasks (0 items)

"That the qg= R the lst day of January aforesaid.
by proclamat = Outline = States and parts of States, if anv.
in which the pecple thereof., respectively., shall then be in
rebellion against the United States: and the fact that any State
or the people thereof =hall on that day be in good faith
represented in the Congress of the United States by nenbers b
< ¥

Figure 16-10
Editors List

@since 2.1 —In 2.1, the user interface includes Workbench actions in the form of
editor navigation arrows (see Figure 16-11). These can be used to move
backwards, forwards, and return to the last file you modified.

o ow v

Figure 16-11
Editor Navigation

12.You've seen how to open, close, move and resize the editors. You can do the same
with views. Select the ‘X’ on the top right of the Task view to close the view. You can
also select Close from the Task view context menu. Reopen it by selecting Window >
Show View > Tasks. Not all views are listed in this short list, you may have to select
Other..., a category, and then the view you actually want to open.

13.Like editors, views can be reorganized in the window. Select the title bar of the
Navigator view and drag it on the title bar of the Outline view. These views are now
stacked (see Figure 16-12). You can navigate between them with the tabs at the
bottom.

& oo o
=& My First Project
--{&= Text Files
My First File
My Third File
.project
=18 My Second Project
.project
¥ InnerCircleCustomerPMRs.lwp
KFBS.fc
®] Rughy Poster.doc

Navigator | Outline

Figure 16-12
Sacked Views

Exercises © Copyright IBM Corporation 2000, 2002 16-11

Using Eclipse

14.Grab a view by its title bar and try dragging it around. Observe how the cursor
changes. A folder icon indicates that the view will be stacked. An arrow icon indicates
that the view will be placed to that side of the view you're over. You can do this with
single views and a group of stacked views.

15.You can also place a view in the shortcut area. This is the wide border on the left side
of the window with the icons for the open perspectives. This is a handy way of freeing
up screen real estate. Select Window > Show View > Bookmarks to open the
Bookmarks view. Grab it by its title bar, drag it over to the shortcut area so that you
see the stacked image, and drop it there. You will see an icon for the view in the
shortcut area under the icon representing the open Resource perspective (the one
you're in now). You can also select Fast View from the view menu (click on the view
icon on the title bar) to add the view to the shortcut area.

16.Select the icon for the Bookmarks view you just placed in the shortcut area. Watch as it
slides to the right to become visible (see Figure 16-13).

& Resource - Eclipse Platform
File Edit Mavigate Search Project Run Window Help

B EE v %~

= A* _ x FMy First File My Third File =My Second File X

1E EMANCIPATION PROCLAMATION: A~
@3 ;s the President of the United States of America:

PROCLAMATION

Iw Whereas on the 22nd day of September., 4.D. 1862, a proclamation
3= imsued by the President of the United States. containing,

wong other things, the following, to wit:

"That on the lst day of January, A.D. 1863, all persons held as
laves within any State or designated part of a State the people
rereof shall then be in rebellion against the United States shall
= then. thenceforward. and forever free: and the emecutive
overnment of the Tnited States, including the military and nawval
ithority thereof., will recognize and maintain the freedom of such
=r=on=s and will do no act or acts to repress such person=. or any
: them, in any efforts they may make for their actual freedom.

"That the executive will on the lst day of January aforesaid.
; proclamation. designate the States and parts of States, if any.
- wrla s .

e T e e T e T G i e e R

Tasks (0 items) o 2 ow X

C.| ! | Description Resource | In Folder Location

Figure 16-13
Expanding a View from a Shortcut

17.Select the icon again to see it slide back up to the left to become hidden. If you resize
the view while it is being displayed, it will return to that size each time you make it
visible as a fast view. You can restore the view to its original state by deselecting the
Fast View 0* toggle in the view.

18.At this point, you're probably wondering how to clean up the mess you've created of
your user interface. Select Window > Reset Perspective to do so. The user
interface returns to its original configuration.

Exercises © Copyright IBM Corporation 2000, 2002 16-12

Using Eclipse

19.As with the editors, you also have keyboard shortcuts for switching between views or
the set of editors. The set of open editors is treated a view for purposes of navigation.
Press Ctrl+F7 to switch to the next view and Ctrl+Shift+F7 to switch to the previous
one. The list of views remains visible as long as you hold the keys down. Pressing F7
repeatedly, while holding Ctrl,or Ctrl+Shift, will move the view selection.

(=

B EE v %~

=M Navigator v X *My First File My Third File *My Second File X
THE EMANCIPATION PROCLAMATION:
E‘F:I By the Pre=sident of the United States of America:
=Il& My First Project & PROCLAMATION
2.5 Text Files Whereas on the 22nd day of September. A.D. 1862, a procl.
5)) was issued by the President of the United States. containi:
My First File amnong other things, the following, to wit:

My Second File

My Third File "That on the lst day of January., 4.D. 1863, all persons |

=zlaves within any State or designated part of a State the

.project whereof shall then be in rebellion against the United Stat
i ; be then, thence - pver free; and the executiw
= MY Secgnd Ll = governmnent of t Views including the military am
-project authority therd [l Bookmarks ke and maintain the freedom

iz InnerCircleCustome persons ar_ld willg ts to I_'epre_ss_such DETsSOns ¥
KFBS.fc < Editor -

®] Rughy Poster.doc E;u 2= outline x
% Tasks (0 items)

< >
Outline | Navigator Tasks Bookmarks

Figure 16-14
Views List

20.Bookmarks are for marking files, or specific locations in a file. Drag the Bookmarks view
to stack it on top of the Tasks view. Select the open editor for My First File. In the
marker area of the editor (the left margin) bring up the context menu and select Add
Bookmark... Name the bookmark St art here tonorrowand select OK. You'll see
the bookmark added in both the marker area of the editor and the Bookmarks view
(see Figure 16-15). You can also add a bookmark to a file using the Navigator context.

£~ Resource - Eclipse Platform
File Edit Mavigate Search Project Run Window Help

LY

= 5. Navigator v x X My Third File My Second File
HE MAGHA CARTA (The Great Charter): e
EE Preamble:
- My First Project I John., by the grace of God. king of England, lord of Ireland.
2.3 Text Files duke of Hormandy and Agquitaine. and count of Anjou, to the
e s archbizhop. bishop=s. abbot=s. earls. barons. justiciaries.
'y First File foresters, sheriffs. stewards, servants, and to all his bailiffs
My Second File and liege subjects, greetings. EKnow that, hawing regard to God
hird Eil and for the =alvation of our =soul, and those of all our ancestors
) My Third File and heirs, and unto the honor of God and the advancement of his
.project holy Church and for the rectifving of our realm., we have granted
+18 My Second Project a=z underwritten by advice of our wenerable fathers. Stephen.

archbishop of Canterbury. primate of all England and cardinal of
the holy Roman Church. Henry. archbishop of Dublin., William of

=2 -
aZ Outline X London, Peter of Winchester, Jocelyn of Bath and Glastonbury,
. Hugh nf Tinmnln Walter nf Wnreester WHilliam of Cowentrw b
An outline is not available.
Il Bookmarks % 29 x

| start here tomorrow (on My First File in My First Project/Text Files)

Tasks Bookmarks

Writable Insert 1:1

Exercises © Copyright IBM Corporation 2000, 2002 16-13

Using Eclipse

Figure 16-15
Creating a Bookmark

21.Close My First File and then double click on the bookmark you just added. The
resource associated with the bookmark is opened and the line it refers to is selected.
You can delete a bookmark using the context menu of the Bookmarks view or by
selecting Remove Bookmark from the context menu of the bookmark in the editor
marker area.

22.Tasks are for tracking specific work items. Like bookmarks, tasks can be associated
with a resource and location in the resource, though they don't have to be. Unlike
bookmarks, tasks have state and priority information. You create tasks in the same
way you create bookmarks. Select the editor on My Second File. In the marker area,
bring up the context menu and select Add Task... Enter text for the task, select a
priority, and then select OK to create the task.

& Resource - Eclipse Platform
File Edit Mavigate Search Project Run Window Help

rMEEIRIEE

=g Navigator v x My First File My Third File My Second File X
% THE EMANCIPATION PROCLAMATION: A~
%ﬂ By the President of the United States of America:
=Il& My First Project & PROCLAMATION
2= Text Files Whereas on the 22nd day of September., 4.D. 1862, a proclamation
.)) waz i=sued by the President of the United States, containing.
My First File anong other things, the following, to wit:
My Second File .
E My Third Fil That on phe 1=t day of January, 4.D. 1863, all persons held as
y Third File =zlaves within any State or designated part of a State the people
E) .project whereof shall then be in rebellion against the United States shall
+ 18 My Second Project be then. thenceforward. and forever free; and the executive

governmnent of the United States, including the military and nawval
authority thereof, will recognize and maintain the freedom of such
perzons and will do no act or acts to repress such persons, or any
af them in anw Affort= thew maw make for their actnal fresdom ¥

2=/ outline ®

An outline is not available.

Tasks (1 item) o 2 ow X
C, ! | Description | Resource | In Folder | Location
VJ """""" Get source URL My Seco... My First Project/Text F... line 1

Tasks | Bookmarks

1 item: 1 task, 0 errors, 0 warnings, 0 infos

Figure 16-16
Creating a Task

23.Close My Second File and double click on the task you just created. As with
bookmarks, an editor is opened on the file associated with the task and the line the
task references is selected.

To create a task associated with no file, select New Task in the Tasks view.

24 Finally, let's take a look at the toolbars. You can reorganize the icons on the toolbar to
reorder them or to put them on another toolbar line. Select one of the dividers between
the groups of tool bar buttons and try moving the group on the same line or to another
line. You can also compress a group of icons into a drop down menu. Select one of the
toolbar dividing lines to compress the group of icons. Then select the drop down to see
the icons. If you don’t want to move the toolbar icons around, you can disable this
function by selecting Lock the Toolbars from the toolbar context menu.

Exercises © Copyright IBM Corporation 2000, 2002 16-14

Using Eclipse

Part 3: Working with Resour ces

In Part 3, we're going to look in a bit more detail at projects. We'll also see how to compare and
replace resources with other editions and recover resources you've deleted.

1. Previously, when we created projects, we took the defaults, including project location.
By default, the resources you define are located in a folder named wor kspace in your
main Eclipse folder. Browse this folder to view its contents. You'll see a folder structure
that pretty much mirrors the project structure you see in your workspace.

2. When you create a project, you can create it in an alternate location, which is not in the
folder wor kspace. Open the wizard to create a new project. Call it My Al ternate
Pr oj ect . Uncheck Use Default for Project contents and select Browse... to select

a location for your project. Choose a folder in your file system with a few files and
subfolders. Select Finish to create the project.

Project

Create a new project resource. E’

Project name: | My Alternate Project

Froject contents:

™ Use default

Directory: | E:\My Documents

< Back | Next = | Finish | Cancel

Figure 16-17

Creating a Project at an Alternate Location

In the Navigator view, you'll see the new project. You'll also see that the files and
folders at the location you specified are automatically part of the project. A

. proj ect file is added to the file system to identify the target folder as an Eclipse
project.

If you wanted to create a new project in a new location, you could add to the

selected folder name or enter the drive and directory specification in the new
project wizard.

3. Moving and copying files and folders between projects and other folders is easy. Select
a file or folder in the Navigator view and then select Copy from the context menu.

Select another project or folder and then select Paste from the context menu. Your
selection is copied.

Exercises © Copyright IBM Corporation 2000, 2002 16-15

Using Eclipse

To move a file or folder, simply drag it and drop it on another folder or project.
You can also copy a file with drag and drop. If you want to copy the file to another
folder, press Ctrl and then drag and drop the file to the target folder. If you want
to make a copy of the file in the same folder, press Ctrl and then drag and drop it
in the target folder. You will get a dialog prompting for the new name.

4. Add afolder to My Alternate Project. Add a file to the folder you added. Browse your
file system and go to this location. You'll see that Eclipse has created the folder and
file at this location.

Important Note: If you delete a project at an alternate location and specify to have
its contents deleted also, Eclipse does just that. If this is the only copy of these
resources, they will be deleted. Take care when deleting projects at alternate
locations, especially when you mapped the project to and existing folder and file
tree with content.

5. Now, let's see how to replace a file with a previous edition of it. Open an editor on

My First File or switch to this editor if it is already open. Make a few changes to your
text and save the file. Make some more changes and save the file again. Select
My First File in the Navigator view and select Replace With > Local history... from
the context menu.

A dialog is displayed with the previous editions of My First File in the top pane

and a side by side comparison of the current contents with the selected previous

edition in the bottom pane.

£ Replace from Local History 3]

Local History of 'My First File'
=& Today (Nov 21, 2002)

[OF 4:42:44 PM

@ 3:40:58 PM
Text Compare 44
My First File @© Local History (Mov 21, 2002 4:42:44 PM)
1. In the first place we have granted to Alan of Galloway {constable of Scotla
present charter confirmed for us and our Peter Fitz Herbert, Hubert De Burgh i
Engli=h Church =hall be free, and shall | Hugh de Hewille, Matthew Fitz Herbert
and her liberties inviolate: and we will Philip d'Aubigny., Robert of Roppesleyw

which i= apparent from this that the free Hugh, and others. our liegemen.
1 oned most important and =
f our pu nd
arter confirm an
lord. Pope Innoce .
d our barons: and this we w
d in good ith by
o all fr n of our
all the underwritten libe
ind _their he

1. In the first place we have granted
present charter confirmed for us and
Engli=h Church shall be free. and sha
and her liberties inviolate:; and we w
which iz apparent from this that the
is reckoned most important and very o

< >

Replace | Cancel |

Figure 16-18
Replacing a File from Local History

Note: This is a good point to move on to the next part if you are just trying to experience a subset
of each lab part.

6. Navigate the changes with Select Next Change * and Select Previous Change .
You can also select the change indicators (rectangles) in the overview ruler on the

Exercises © Copyright IBM Corporation 2000, 2002 16-16

right border. Select a previous edition of My First File and then select Replace to

Using Eclipse

replace its contents in the editor.

Selecting Compare With > Local History... is similar to Replace With, except
that it only shows the differences. It does not allow you to replace the file.

7. You can also select two files in the Navigator view and then select
Compare With > Each Other. In the Navigator view, select My First Project and
My Second Project. Then select Compare With > Each Other from the context

menu.

A dialog is displayed showing the files and folders that are different between the
two projects. The label decorations in the top pane (small plus, “+”, and minus, “-
“ signs) indicate this. File . pr oj ect has no label decoration. This means it exists
in both projects. Double click on this file. The differences are shown in the bottom
pane. Close the Compare Editor by clicking on the “X” on the tab of the editor.

My First File My Third File

My Second File N compare (] x

& Structure Compare

.project

®B CD Inventory.doc
®B Rughy Poster.doc
CI& slides.zip

(=8 Text Files

Text Compare

BlEE & & &

= My First Project

<projectlescription:

<comment < /‘comment »
{projects:
{sproject=s:
<buildSpec:
<~buildSpec:
<naturesr
<snatures:
<sprojectlescription:

<

TTRIL VELELON= 1.0 EBOCOOLHg= 01 STRILVEISIONT LU ENCU0ingy o

<nane:ly First Project < nanciiiill <name > M3

4 < 4

= My Second Project

<projectlescr

iption:
1 Hm)

{projects:
{sproject=s:
<buildSpec:
<~buildSpec:
<naturesr
<snatures:
<sprojectlescription:

Figure 16-19
Comparing Two Projects

8. Now we’'ll see how to recover files you've deleted. From the Navigator view, delete My
First File and My Second File from My First Project. Select My First Project and
then select Restore From Local History... from the context menu. A list of files you
have deleted from the project is displayed.

Exercises

© Copyright IBM Corporation 2000, 2002

16-17

Using Eclipse

Restore from Local History 3]

Check files to restore from the local history: Select an edition of a file:
1= My First Project - Available Files in Local History: Local History of 'My First File'
M| Text Files/My First File =@ Today (Nov 21, 2002) ~
Text Files/My Second File @© 6:30:40 PM
@ 5:53:54 PM w

@© Local History (Mov 21, 2002 6:30:40 PM)

[THE MAGNA CARTA (The Great Charter):

Preamble:

John, by the grace of God, king of England, lord of Ireland,

duke of Mormandy and Aquitaine, and count of Anjou, to the
archbishop, bishops, abbots, earls, barons, justiciaries,
foresters, sheriffs, stewards, servants, and to all his bailiffs

and liege subjects, greetings. Know that, having regard to God
and for the salvation of our soul, and those of all our ancestors
and heirs, and unto the honor of God and the advancement of his
holy Church and for the rectifying of our realm, we have granted
as underwritten by advice of our venerable fathers, Stephen,
archbishop of Canterbury, primate of all England and cardinal of -

tthe hnlv Rnman Chiurch Henre archhishon of Nohlin William nf
Restore | Cancel

Figure 16-20
Recovering a Deleted File

9. Select a file to see the editions of the file Eclipse is maintaining. Select an edition to
see its contents in the bottom pane. To restore a file, check the file in the upper left
pane, select an edition, and then select Restore. Restore the files you deleted from

My First Project.

@since 2.1 — Local history and linked resources. There are subtle differences in
the use of the local history for the recovery of deleted resources that were linked
resources. The local history support for recovery of a deleted linked file does not
re-establish a link, nor does it return the most recent version of the linked file. The
local history has current-1, current is always available from the file system given
that a delete of a linked resource is a link delete, not a resource delete.

10.You can also recover projects you delete, if you do not delete their contents. Select My
First Project in the Navigator view and then select Delete from the context menu. At
the prompt, do not select to delete its contents. From the Navigator view, select
Import... from the context menu. Select Existing Project into Workspace and then
select Next >. Select Browse.... Browse your file system to go to folder wor kspace in
your main Eclipse folder. In this folder, you'll see folder My Fi rst Proj ect. Thisis
the contents of the project left when you deleted the definition of the project. Select
this folder and then select OK. If this folder is recognized as a project (by the presence
of file . pr oj ect), Finish is enabled. Select Finish to recover the project. Verify this in

the Navigator view.

Exercises © Copyright IBM Corporation 2000, 2002 16-18

Using Eclipse

Part 4. Perspectives
Let's work a little more with perspectives, in particular, customizing your own perspective.

1. At this point, if you followed this script you have modified the default layout of the
Resource perspective by adding the Bookmarks view. Close the Resource perspective
by selecting Close from the context menu of the Resource perspective icon in the view
shortcut area. Select Window > Open Perspective > Resource. The Resource
perspective opens again, but without the changes you had made.

2. Change the Resource perspective by reorganizing the views and adding or deleting
views. Select Window > Save Perspective As..., name the new perspective My
Fi rst Perspective (no pun intended), and select OK to create your customized
perspective.

Observe the change on the title bar of the window. It now reflects that this is your
perspective. Select Window > Open Perspective >. You'll see that your
customized perspective is added to this list.

3. Select Window > Customize Perspective.... You'll see a dialog listing the menu
actions that can be included in your perspective (see Figure 16-21). Expand the list in
the left pane. The selected entries will appear in the menus for your perspective. The
entries under File > New, Window > Open Perspective, and Window > Show
View are the entries that appear on these menus. The other items are available, but
you must select Other... first and then select them from a list. The items under Other
are groups of menu items and toolbar buttons. Select an entry here to see the items
that would get added. Try customizing My First Perspective by adding some items.
Select OK. Verify the changes to your perspective.

£ Customize Perspective 3]
Select the items to be displayed in the current perspective (My First Perspective).
Available Ttems: Details:
+-[Z]File = New | |9 Help...
=-[F]wWindow = Open Perspective) Help Contents
[¥]CvS Repository Exploring
[JDebug

[Jinstall/update

[#]lava

[¥]3ava Browsing

[13ava Type Hierarchy

My First Perspective

[JPlug-in Development

[JResource
+[F]Window = Show View
--[7]other

[Jcvs

[JDebug

[¥]External Tools

Mizaua Cadina

oK | Cancel

Figure 16-21
Customizing a Perspective

Exercises © Copyright IBM Corporation 2000, 2002 16-19

Using Eclipse

4. To make these changes permanent, you need to save your perspective again with
Window > Save Perspective As.... Select My First Perspective to replace it with
your changes. Or restore your perspective to its original state by selecting
Window > Reset Perspective.

5. When you create a new project, the default perspective will be opened. If you create a
new simple project while in your custom perspective, the Resource perspective will be
opened. You can change the setting for the default perspective. Select Window >
Preferences. Expand Workbench and select Perspectives. Under Available
perspectives, select My First Perspective and then select Make Default. Select
OK.

Exercise Activity Review

The basic structure of Eclipse

To navigate the user interface

To move and resize views

To compare and replace projects and editions of resources
To recover deleted files and projects

To customize a perspective

Exercises © Copyright IBM Corporation 2000, 2002 16-20

Using the Java Development Tools

(Optional) Exercise 17
Using the Java
Development Tools

(JDT)

Exercise 17 Using the Java Development TOOIS (IDT).....viviiiiiieieiiiieeeiiii e 17-1
1010 Lo (U T (o] o P 17-1
SKill DEVEIOPMENE GOAIScceeviieeeeii et e e e e e e e e e e ara s 17-1
EXEICISE INSIIUCHONS ... ceiieii et et e e e e e e e e et e e e et e e e et e e e et e e e eaan s 17-2
= 1 A T Lo Y g Lo P 17-2
Part 2. QUICK FiX ...ouniiiii e e e e e e e 17-3
IMPOIt USING JAVA PIOJECE. ... ciiiiiie et e et e 17-3
QUICK FiX INSIIUCLIONS ...t e e s 17-4
[L T oo [€T =T -1 1o) o [P 17-10
o L R L = Ued (o]] o PP 17-15
[LU ST 1= o 1H T o o PP 17-22
EXErCISE ACHVILY REVIEW......uiiiiiii et e et e e e e e et e e et e e eaaans 17-29
I ntroduction
Q The objective of this lab is to provide a hands-on demonstration of using Eclipse’s Java

\ Development Tools (JDT) to edit, run, and debug Java programs. We’'ll start with a basic
@ “Hello World” program and then get into more detail on various JDT capabilities.

Note: This material has been tested on 2.1, but screen images still reflect the 2.0 user interface.

Skill Development Goals
At the end of this exercise, you should be able to:

Write and run a simple “Hello World” program.

Use the Java editor to more quickly and efficiently write Java code, including quick
fix, content assist, code generation, and refactoring.

Run Java programs using scrapbook pages

The time available during a formal class may not let you complete the entire exercise. Consider
this subset first:

Part 1 - all (“Hello World™)
Part2 —1 - 10 (“Quick Fix”)
Part 3 — 1 - 3 (“Code Generation”)

Exercises © Copyright IBM Corporation 2000, 2002 17-1

Using the Java Development Tools

Part4 — 1 -4 (“Refactoring”)
Part5 —1- 10 (“Debugging”)

If you finish you can return to do the steps you skipped.

Exercise Instructions

Part 1. Hello World

Let's start with the basics: The minimum required to create a class that we can execute, and two
ways you can run the class.

1. Start Eclipse, if required. Select Window > Open Perspective > Javato open the
Java perspective.

@since 2.1 - Eclipse 2.1 provides additional filters that control the visibility of
resources in the Package Explorer view. The simple projects created earlier
now show up in the Package Explorer view by default. You can remove non-
Java projects from the Package Explorer view by using the Filters... view
menu choice and selecting the non-Java Projects option.

2. Select Create a Java Project % Name the project com.ibm.lab.usingjdt.helloworld.
Leave the other values as the defaults and select Finish to create the project.

3. Ensure your project is selected in the Package Explorer view and select New Java
Class " on the action bar. Just use the default package and name the class
Hel | oWor | d. Under method stubs select only the main method option. Select Finish to
generate the class.

4. A default package and the file Hel | oWor | d. j ava is created for the HelloWorld class.

Edit the method main as shown in Figure 17-1 and save your changes by selecting
Save from the context menu or by pressing Ctrl+S.

£ Java - Eclipse Platform
File Edit Source Refactor Mavigate Search Project Run Window Help

Br-lEES |- o ||deced || ¢ K- ERY i

= o) Package Explorer = x | |[RJEGEIENT x 2 Outline X
g SRR a 5
W 8w ° * Administrator z @ W @

=@ Helloworld
o ¥ main(Stri

=& com.ibm.lab.usingjdt.hell
i To change this= generated comment =dit the te
i (default packag.e) Window:Preferences:Java:Tenplates.
+- [0 HelloWorld.java To enable and di=sable the creation of type o
+- (M JRE_LIB - E:\Eclipse\E * Window:Preferences:Java:Code Generation.
- *
public class HelloWorld {

LRI

public static wvoid main{String[] arg=) {
Systemn.out .println("Hello World!"):

¥

< > < >
% Tasks (0 items) o 2 ow X
P 5 | C.| ! | Description Resource | In Folder | Location /3
Package Explorer Hierarchy
Writable Insert 12 : 44

Figure 17-1
Hello World Class

Exercises © Copyright IBM Corporation 2000, 2002 17-2

Using the Java Development Tools

5. Expand Hel | oWor | d. j ava in the Package Explorer view. The “runner” decoration #
on the class icon indicates the class contains a main method and can be executed.
Select class HelloWorld in the Package Explorer view and then select Run > Run As
> Java Application. The main method in the HelloWorld class runs and and output is
shown in the Console view.

i

Hello World!

Tasks | Console

Figure 17-2

Hello World Class Output

6. Now let's see another way to run a Java program. Ensure your project is selected in the
Package Explorer view, select New Scrapbook Page 3‘, and call the page HelloWorld.
File HelloWorld.jpage is added to your project. Scrapbook pages are another way to
execute Java code. In addition to running your program, you can use them to try out
shippets of Java code. Enter the following Java expression in the scrapbook page.

String[] array = {};
Hel | oWor | d. mai n(arr ay)

7. Select the entire expression (both lines) and then select Display Result of Evaluating
Selected Text = from the editor toolbar. The expression is evaluated, which causes
method main of the HelloWorld class to execute. The return value displays in the
scrapbook page (in this case, there is no return value) and output is shown in the
Console view.

HelloWaorld.java [' *HelloWol X

String[] array = {}:
HelloWorld. main{arrsa
(Ho explicit return wvalue)

Figure 17-3
Hello World Scrapbook Page Output

Part 2. Quick Fix

In Part 2, we'll see how to navigate and fix errors in Java code. A lab template project named
com i bm | ab. usi ngj dt contains several packages. Be sure you have this in your workspace.
If you do not, refer to the instructions below.

Import Using Java Proj ect

Import com.ibm.lab.usingjdt project from the C. \ Lab_| nport _Mast er\ JavaProj ect s
directory. This directory should have been created using the lab templates zip file which is required
to support this and other exercises.

1. Open the Import wizard using the Eclipse File > Import menu option.
2. Select the Existing Project into Workspace option

Exercises © Copyright IBM Corporation 2000, 2002 17-3

Using the Java Development Tools

3. Use the Browse button to locate and select the com i bm | ab. usi ngj dt folder (not
the com i bm | ab. sol n. usi ngj dt folder).

4. Press Finish, this will import the project into your current workspace; the project will be
part of the workspace but physically exist at the file system location referenced during
import. The errors in the Tasks view after the import are expected.

Quick Fix Instructions

Each package in the imported project contains code for one part of this exercise, as indicated by
the name of the package. The example code represents several iterations of a program to generate
numbers, prime numbers at first. While the code is relatively simple and at times may appear a bit
contrived, the example allows us to focus on demonstrating the use of JDT with a minimal amount
of code.

The same class is defined in multiple packages. We've done this to provide on set of programs
we can carry through the different parts of the exercise. The packages hold different versions of
the same classes so that you don't have to do parts 1 through 5 if all you want is part 6. In this part
of the exercise, you'll be working with package com.ibm.lab.usingjdt.quickfix. You should see a
number of errors in package quickfix. These are what you are going to navigate to and fix.

1. Select Window > Preferences > Java > Editor > Annotations. Ensure that the two
options on this page for error identification and resolution are selected (checked).
Select OK.

2. Before getting started, let's simplify what is shown in the Package Explorer view. The
package names are too long and we really don't need to see the JRE entries. Open
the Java > Appearance preferences page. Select the Compress all package name
segments, except the final segment option and enter “0” as the Compression
pattern. Select OK to save the preference setting change.

+- Workbench #| Appearance
Build Order
Debug Appearance of Java elements in viewers:
4
+ External Tools I Show method return types
Help W Show pverride indicators in outline and hierarchy
Install/Update W Show members in Package Explorer

—I-Java

Appearance ¥ Compress package name segments (except for the last one)

Classpath Variables Compression pattern (e.g. given package name 'org.eclipse.jdt'
Code Formatter pattern " will compress it to "..jdt', '0' to 'jdt’, '1~." to 'o~.e~jdt"):
Code Generation 0
Compiler
+- Debug I Stack views vertically in the Java Browsing perspective
Editor MNote: This preference will only take effect on new perspectives
Installed JREs v
< S Restore gefaults| Apply |

Import... | Export... | oK | Cancel |

Figure 17-4
Java Appearance Preferences

3. To hide the JRE entries, select Filters... from the Package Explorer pulldown and then
select Referenced libraries. Select OK.

Exercises © Copyright IBM Corporation 2000, 2002 17-4

Using the Java Development Tools

4= Java Element Filters

I Hame filter patterns (matching names will be hidden):

X

Select the filters:

[FHide .= files
[JHide anonymous inner class files
[JHide binary plug-in projects
[JHide empty packages

[“lHide empty parent packages
[JHide Java files

[JHide non-lava elements
% Hide referenced libraries

Filter description:

Hides referenced libraries i.e. those not contained inside the project
itself

Select All Deselect All |

oK | Cancel

Figure 17-5
Filtering Package Explorer Contents

4. In package quickfix, open class Pri meNunber Cener at or . The JDT indicates errors in a

number of ways:

Error clues (small red rectangles) in the overview ruler in the right margin of the

editor.

Error clues (red underlining) on text in the editor.

Quick fix icons & on the marker bar in the left margin of the editor, indicating there

are suggestions to fix the error.

Build Error entries @ in the Tasks view.

Build Error markers @ on the marker bar. Sometimes these are overlaid with the

quick fix icon.

Build Error label decorations & on icons in the Java views and editor tab(s)

In the next several steps, we'll see how to navigate to the errors and get

information about them.

Exercises

© Copyright IBM Corporation 2000, 2002

17-5

Using the Java Development Tools

£ Java - Eclipse Platform

File Edit Source Refactor Mavigate Search Project Run Window Help
B EE Fr--|e|deced || ¢ K- ERY]
i) Package Explorer X || &f] PrimeNumberGenerator.java X
%j 5] \@\5 @ package com.ibm.lab. usingjdt . quickfiz; rS
35 |(E @ com.ibm.lab.usingjdt public class PrimeNumberGenerator {
- CDdEgeneratiDn public void generatePrimeHumnbers{) { - = @ PrimeNumberG
+ - debugging o Arraylist nunbsrs = new Arrazlist(): g generateP
- quickfix boolean prime: =}
+-#] PrimeNumberGene ¥ M - 02". =
[4) QuickFix.jpage o) while (cownt < muam) 1
= prime = true;
< refactoring X int factor = 2
-} remotedebugging while (factor <= n ~ factor && prin
+- @ threadeddebugging if (n % fathDr1== 0o
+JE=I'}3JRE_LIB-E:'\Eclipse'\E Velse oo =
+-1@ com.ibm.lab.usingjdt.hell factor++: o
1@ com.ibm.lab.usingjdt.jre1 3
+-1 com.ibm.lab.usingjdt.lau Q if (pmimd {
numnbers . add{new Integerin)): o
@ SRR
+
n++;
¥ r QL T ERY b
< > < >
% Tasks (8 items) o 2 ow X
| C.| ! | Description Resource | In Folder | Locatio
1<) ArrayList cannot be resolved or i... PrimeNu... com.ibm.lab.usingjdt/c... line @i
1<) ArrayList cannot be resolved or i... PrimeNu... com.ibm.lab.usingjdt/c... line @i
< 2| count cannot be resolved PrimeNu... com.ibm.lab.usingjdt/c... line 81
Package Explorer |Hierarchy < i p— - i R
com.ibm.lab.usingjdt. quickfix.PrimeNumberGenerator.java/com.ibm.lab.usingjdt.quickfix - com.ibm.lab.usingjdt

Figure 17-6

Java Error Indicators

5. Click on an error indicator in the overview ruler; these are the small red rectangles. The
text scrolls to the line with the error and the error is highlighted. This is a useful way to
navigate to errors without having to manually scroll the file. Hollow rectangles indicate
errors found through code analysis as you edit. Solid rectangles indicate compilation
errors.

6. Close the file and double click on one of the errors in the Tasks view or select Go To
from the context menu. The file with the error is opened and the error highlighted. If an
error message in the Tasks view is truncated, you can hover over it in the Tasks view
to see the full message.

7. Hover over text underlined in red in the editor and you'll see a description of the error,
or position the cursor in the error text and press F2. Hover over one of the error
indicators in the left margin to see the error message. When a quick fix icon is not
shown you can also click on an error indicator in the left margin to select the error text.

8. Let’s use quick fix to fix these errors. Click on the first quick fix icon, the one for the
Arrayl i st reference. You will see a list of possible solutions (see Figure 17-7). As
you select each of the proposed solutions you'll see the code that would be generated
or a description of the fix. In this case, we omitted an import statement. Select i npor t
‘“java.util.ArrayList’ and press Enter. The error clues disappear, but the build
errors remain. They will do so until you re-build the file. Save the file. The build
problem is also resolved. On to the rest of the errors.

Exercises © Copyright IBM Corporation 2000, 2002 17-6

Using the Java Development Tools

) X

package com.ibm.lab. u=singjdt gquickfix: ~

public class PrimeHumberGenerator

public void generatePrimeHumnbers({) {
o rraylizt numbers = new Arxaylist():

0

package com.ibm.lab.usingjdt.quickfix; o

o B0
N

@ Change to 'Array'

@ Change to 'Arrays'

@ Change to 'Arrays'

© Create class 'ArrayList’

O Create interface 'ArrayList’

import java.util. ArrayList;

. 1t oram) 1
nunbers . add{new Integerin)): (=]

9 ==tk A

RS SR S, ST R

Figure 17-7
Quick Fix Proposed Solutions

9. Go to the next problem by selecting Go to Next Problem . The error message is
displayed in the message area at the bottom of the window. Press Ctrl+1 to activate
quick fix. In this case, we omitted the definition of a local variable. Select Create local
variable ‘count’ to see the code that would be generated, including the original
initialization. Press Enter. The original line setting count to 0 is no longer necessary, so
delete it.

10.Go to the next error on the while statement. If you use Go to Next Problem to do this,
you will see another instance of variable count not being resolved. You've already
fixed this so select Go to Next Problem again to get to the error on quan. We did not
define quan, the number of prime numbers to generate. Click on the quick fix icon in
the marker bar in the left margin of the editor. Again, we have several options. Let's
make quan a field on Pri nmeNunber Gener at or . Select this option and press Enter. By
default, the new field is pri vat e. Change this to a publ i ¢ field. Initially, we're going to
access this field directly outside the class for simplicity. We'll change this later.

Note: This is a good point to move on to the next part if you are just trying to experience a subset
of each lab part.

11.Go to the next error; a simple misspelling. The JDT can detect and fix these, too. Click
on the quick fix icon, select Change to ‘pri ne’, and press Enter.

12.0n to the final quick fix icon; a missing definition for results. In this case, we want to
define results as a field of Pri meNurber Gener at or . Click on the quick fix icon, select
Create field ‘resul t s’, and press Enter. All of the quick fix icons should be gone. The
build error indicators remain. Save the file and these should disappear as well.

13.We're almost through with this first version of our code. We have our results, but no
way yet for them to be accessed. Select field r esul t s in the Outline view and then
select Source > Generate Getter and Setter... from the context menu. The getter
and setter methods for r esul t s should be selected.

Exercises © Copyright IBM Corporation 2000, 2002 17-7

Using the Java Development Tools

£ Generate Getter and Setter

Select Methods to Create in Type 'com.ibm.lab.usingjdt. quickfix.PrimeNumberGenerator':

=Rl oon
e getquan()
[Qe setQuan(int)
—|-[#]= results
[F1° getResults()
[¥]e setResults(Object[])

i 2 methods selected

oK | Cancel

Figure 17-8

Generating Getter and Setter Methods

Select OK to generate the getResults and setResults methods.

14.In method gener at ePri neNunber s, replace the “resul ts = nunbers.toArray()”
statement with “set Resul t s(nunmbers.toArray());".

We'll see a way to combine these two steps later when we go through you some
refactoring exercises. Save the file.

15.Great! We're finished with the first version of the code. The code should look like this,
minus the generated comments.

package comibm | ab. usi ngj dt. qui ckfi x;
i mport java.util.ArraylList;

public class PrinmeNunber Generator {
public int quan;
private oject[] results;

public void generatePrineNunbers() {
int count = O;
ArrayLi st nunbers = new ArrayList();
bool ean pri ne;
int n = 2;
whil e (count < quan) {
prime = true;
int factor = 2;
while (factor <= n / factor && prine) {
if (n %factor == 0) {
prime = fal se;
} else {
fact or ++;

}
}
if (prinme) {

nunbers. add(new | nteger(n));
count ++;

}

n++;

}

nunbers. trinfloSi ze();
set Resul t s(nunbers.toArray());

Exercises © Copyright IBM Corporation 2000, 2002 17-8

Using the Java Development Tools

}

public (bject[] getResults() {

return results;

}

public void setResults(Object[]

this.results = results;

}
}

results) {

16.Let’s test the code. Select package qui ckfi x in the Package Explorer view, select

Create a Scrapbook Page i}‘, and call it Qui ckFi x. Enter the following expression in

the scrapbook page to test your code.

Pri meNunber Generator p = new Pri nmeNunber Generator ();

p. quan = 10;
p. gener at ePri meNunbers();
p. get Resul ts();

17.We need to set an import statement in the scrapbook page so Pri neNunber Gener at or
can be resolved. This is because there are additional definitions of the class in other
packages in the project. We'll be using these in other parts of this exercise. From the
scrapbook page editor context menu, select Set Imports and then select Add Type....
Enter the first few charaters of the Pri meNunber Gener at or type and then select it and
com i bm | ab. usi ngj dt. qui ckfi x for the Qualifier. Select OK and then OK again to

set the import.

Select a type to add as an import:

|prime

Matching types:

® PrimeFactorialGenerator
@ PrimeNumberGenerator

Qualifier:

4 com.ibm.lab.usingjdt.codegeneration - /com.ibm. #

H3 com.ihm_lah.usinaidt.refactaring - /eom.ihm_lah. ¥

oK | Cancel |

Figure 17-9

Setting Imports for a Scrapbook Page

Exercises © Copyright IBM Corporation 2000, 2002

17-9

Using the Java Development Tools

18.In the scrapbook page, select the entire expression you entered and then select
Inspect from the context menu. Method generatePrimeNumbers runs and the output is
shown in the Expressions view. Select Show Details Pane < to open a pane in the

bottom of the view; it will show the results of the selected object’s toString() method.
== =%

[0]= java.lang.Integer (id=27)
[1]= java.lang.Integer (id=31)
[2]= java.lang.Integer (id=32)
[3]= java.lang.Integer (id=33)
[4]= java.lang.Integer (id=34)
[5]= java.lang.Integer (id=35)

e s M B e
[I I

. 7,11, 13,17, 19, 23, 29]

Tasks | Expressions

Figure 17-10
PrimeNumber Generator Results

When you're through, close the open editors open on PrimeNumberGenerator.java and
QuickFix.jpage and close the Expressions view.

Part 3. Code Generation

In this part, we're going to take a closer look at how you can generate code with content assist,
including completing statements, generating code from templates, and generating anonymous inner
classes. We're going to enhance class Pri meNunber Gener at or with methods to output and to
sort its results, the prime numbers.

Unless we specify otherwise, when we refer to a class or some other Java element or resource,
we are referring to the element or resource in the com i bm | ab. usi ngj dt . codegener ati on
package. The code in this package is the same as the code in package qui ckf i x now, if you did
all of Part 2.

1. First, we're going to code the method to output the prime numbers. In package
codegener at i on, open class Pri neNunber Gener at or . Just before the comments for
the get Resul t s method, enter a new line, begin typing “pub”, and with the insertion
cursor just after the “b” press Ctrl+Space to active content assist and see a list of
suggestions (see Figure 17-11).

i *PrimeNumbel X
n++; -
numnbers. trinToSize():
szetResults{nunbers. tohrrav()):
puby
public_method - public method public return_type name(arguments) {
PUK @ pUBLIC_MEMBER - org.omg.CORBA
+ | @ Publickey - java.security i
pul
+
o
+
v
Figure 17-11

Content Assist Suggestions

Exercises © Copyright IBM Corporation 2000, 2002 17-10

Using the Java Development Tools

2. Select public_method — public method. This is a code template for defining public
methods. Press Enter. Don’t enter any more keystrokes, you are ready to use the
template (see Figure 17-12).

i *PrimeNumbel X

numnbers. trinToSize():
szetResults{nunbers. tohrrav()):
+
” public ESARRSENASE nane(argunsntsl {
+
public Object[] getResult=s() {

return results:
+

public void =setResults{0Object[] result=s) {
this results = results:
+

Figure 17-12
Public Method Template

You now have a stub for the new method. Because the method is incomplete
(and incorrect), you'll see the quick fix icon. You could use quick fix at this point,
but there is an easier way.

3. The placeholder for the return type of the method is selected. Enter a return type of
voi d for the method. Press Tab and nane is selected. This is the next placeholder you
can modify. Type out put Resul t s. Press Tab again and type over the ar gunrent s
placeholder with “St ri ng pr efi x”. Press Tab again and the cursor is placed in the
body of the method for you to begin coding. Neat!

If you open the preference page Java > Editor > Templates, you can see a
list of all the currently available JDT editor templates. You can modifiy these or
add your own. This powerful function in the JDT editor is open ended.

Note: This is a good point to move on to the next part if you are just trying to experience a subset
of each lab part.

4. On to the rest of the method. Enter statement “Date d = new Date();".

You'll get an error clue with this statement. Hover over the text that's underlined
in red and you'll see that Date cannot be resolved. We neglected the import
statement. We saw previously how we could use quick fix here. We can also use
code generation to fix this. Select one of the Date references and then select
Source > Add Import from the context menu. Here we have two choices. Select
java.util.Date and then OK to generate the import statement.

Exercises © Copyright IBM Corporation 2000, 2002 17-11

Using the Java Development Tools

£ Add Import EE®E

Choose element to generate an import statement for:

© java.sql.Date

L} java. util.Date

oK | Cancel

Figure 17-13
Generating an Import Statement

5. Create a new line after Date d = new Date();. On the new line type “System.“ and then
press Ctrl+Space. Select field out and press Enter. Type a period, “.”, and then press
Ctrl+Space. Select printin(String arg0) and then press Enter. The statement is

completed, the cursor positioned, and a prompt appears indicating the parameter type.

Ki *PrimeNumberG X

numnbers. trinToSize():
szetResults{nunbers. tohrrav()):

+
public void DutputReS prefi=x) {
Date d = new Date(m

Systemn.out . println()

-

public Object[] getResult=s() {
return results:

} (=}

public void =setResults{0Object[] result=s) {
this results = results:

¥

T v

Figure 17-14
Parameter Hint

Type “pr” and press Ctrl+Space. Select prefix from the list and press Enter. Enter
“+d.” and press Ctrl+Space. Select toString() and press Enter. Add a semicolon
to complete the statement. When you have many choices in the content assist
prompt, you can continue typing to narrow the choices. You should have the
following statement.

Systemout.println(prefix + d.toString());

6. After this statement, create a new line, begin typing “for*, and press Ctrl+Space. Select
template for — iterate over array in the list and press Enter to add a block of code for
the for statement. Tab to array, delete this and press Ctrl+Space. Add getResults().
Press Tab to go to the new line in the body of the for statement. Enter the following
statement with content assist.

Systemout.println(prefix + getResults()[i]);

Exercises © Copyright IBM Corporation 2000, 2002 17-12

Using the Java Development Tools

7. We're finished coding the method. Let's add a Javadoc comment. Position the insertion
cursor in the code in method outputResults and select Source > Add Javadoc
comment from the context menu. Create a new line in the comment and press
Ctrl+Space. Content assist also allows you to add content to Javadoc comments, e.g.
an @author tag.

] X

SEKE
* Method outputResults.
* prefix

*

*71¢></pre= ~
pul <»<h> g
4> <hr= =l
«» <code> gth: i++) {
Oy i =ults{)[1]):

1 [¢»<pre=

b4 Gauthor

@ @deprecated
1 | @ @exception
@ @link . N

pul

Figure 17-15
Generating a Javadoc Comment

8. Save the file. Your code for out put Resul t s look like this.

/**

* Met hod out put Resul ts.

* @ut hor Shavor, et al

* @aram prefix

*/

public void outputResults(String prefix) {

Date d = new Date();

Systemout.printin(prefix + d.toString());

for (int i =0; i <getResults().length; i++) {
Systemout.println(prefix + getResults()[i]);

}

}

Wow! This gives you an idea of the power of content assist and code generation.
Save your changes. Let’s test the code.

In the Package Explorer view, select package codegeneration. Select Create a
scrapbook page @ and call it CodeGeneration. Select Set Imports from the
context menu of the scrapbook page editor and add an import for package
com.ibm.lab.usingjdt.codegeneration. Enter the following expression. Content
assist works in scrapbook pages; try it.

Pri meNunber Generator p = new PrinmeNunber Generator();
p. quan = 50;

p. gener at ePri meNunber s() ;

p. out put Resul ts("");

Select the entire expression and then select Execute from the context menu. The
results appear in the Console view.

Exercises © Copyright IBM Corporation 2000, 2002 17-13

Using the Java Development Tools

9. Let's look at a more involved example of content assist in which we’ll define an
anonymous inner class and override a method. To do this, we're going to create a
method to sort the results. Since the results are already in order because of the way
we generate them, our sort routine will sort in reverse order. Granted, this is a bit
contrived, but it will illustrate what we want with a minimal amount of code.

In the editor for Pri meNunber Gener at or, add import statements for
java.util.Arrays andjava. util . Conpar at or .

10.Below method outputResults, use content assist to create a new public method, return
type void, name sortResults, with no parameters. Position the cursor in the body of the
method, type “Arrays.” and press Ctrl+Space. Select sort(Object[] a, Comparator c)
and press Enter. For the first parameter, enter “getResults(),”. Once you type the
comma, watch as the highlighting on the parameter prompt changes to indicate you
need to enter the Comparator for the second argument.

11.For the second argument, press Enter to start a new line. Begin typing “new Com”, and
press Ctrl+Space. Select Comparator from java.util and press Enter. Add “() {}" to
create the body of the class. Here we're defining an anonymous innerclass to be used
to sort our results array. Position the cursor in the body of the class definition, that is
between “{* and “}", and press Ctrl+Space. Select compare and press Enter. Content
assist knows what methods you can override.

12.Replace the return 0 line to complete the invocation of sort as follows. Save the file.

public void sortResults() {
Arrays.sort(getResults(), new Conparator() {
public int conpare(Cbject arg0, Object argl) {
if (((Integer) arg0).intValue()
< ((Integer) argl).intValue()) {

return 1,
} else {

return -1,
}

}
1)
}

13.Test sortResults with the following code in CodeGeneration scrapbook page.

Pri meNunber Generator p = new PrinmeNunber Generator();
p. quan = 20;

p. gener at ePri meNunber s() ;

p. sortResul ts();

p. out put Resul ts("");

This adds output to what is already displayed in the Console view. To clear the Console view, select

Clear Console &
When you're through, don't forget to close the editors open on PrimeNumberGenerator.java and
CodeGeneration.jpage.

Exercises © Copyright IBM Corporation 2000, 2002 17-14

P

Using the Java Development Tools

art 4. Refactoring

In Part 4, we're going to look at refactoring Java. We're going to use these refactoring capabilities
to clean up the PrimeNumberGenerator class, reorganize it, and add a new class to generate the
prime factorials.

if

1

[

Unless we specify otherwise, when we refer to a class or some other Java element or resource,
we are referring to the element or resource in the com i bm | ab. usi ngj dt. refactoring
package. The code in this package is the same as the code in package codegener at i on now,

you did all of Part 3.

. Recall in Part 3 (If you did it all), we made r esul t s a field and then updated a
reference to it. We can do this in one step by refactoring. Open class

Pri meNunber Gener at or in package r ef act ori ng. Select field quan in the Package
Explorer view, the Outline view, or the editor and then select Refactor > Encapsulate
Field... from the context menu. If you have editors open with unsaved changes, you

will be prompted to save them; do so.

Leave the selections on the first page of the Refactoring wizard as they are and
select Preview >. You will see the proposed changes, as shown in Figure 17-16.
On this page of the Refactoring wizard, you can select which code changes you
want to keep. Expand the list in the top pane to see the list of fields and methods
that will be changed. Select entries in the list to see their respective changes in
the bottom panes. You can also select the rectangles on the overview ruler to the
right of the source panes to go directly to the respective change. Leave all of the
proposed code changes selected and then select OK to make the changes.

Self Encapsukrte Field

Chonges to be performed 42

b e

- [F1® PrimebumbarGenarmatar
11 ® guan
[F# Add Setter nethod
E e Add SeHer nethod
- I _neneeatePrimablumbers ™ j
3

il F'rirr-d‘\lunben'_:emrnw.Jm = cnrn.bm.lub.unng]di}cumﬂ'lbn.-'ld:u"usthdtJnﬂﬂ:n:iur'lng) St
drignal Sourp= Refeciored Souroes
private int quan;

e SORTA * Fleld <ooderresylis</ooder oo
private Object(] results; private object[] reaults;

Jl I] [I I

TRy I K I Cancel |

Figure 17-16

Slf Encapsulate Refactoring
2. The name quan is not very descriptive. Let’'s change it to quantity. Select field quan (in
a view or in the editor) and then select Refactor > Rename... from the context menu.
Enter quant i t y for the name. Select the last two options to rename the getter and

setter methods, too.

Exercises © Copyright IBM Corporation 2000, 2002

17-15

Using the Java Development Tools

= Rename Field

Enter new name: |quan’ri1y

v Update references to the renamed element
u Update references in Javadoc comments
™ Update references in reqular comments

™ Update references in string literals

¥ Rename getter: 'int getQuan()' to 'gettuantity’
¥ Rename setter: 'void setCluan(int quan)' to ‘setQuantity’

(] 4 | Cancel

Preview »

Figure 17-17
Rename Refactoring

3. Select Preview >. Review the proposed code changes. Select OK.

4. Select the gener at ePri neNunber s local variable n in the editor and then select
Refactor > Rename... to rename it to something more descriptive like candi dat e.
Save the file. Your code should look like this:

public class PrinmeNunber Generator {
private int quantity;

private oject[] results;

public void generatePrineNunbers() {
int count = O;
ArrayLi st nunbers = new ArrayList();
bool ean pri ne;
int candidate = 2;
while (count < getQuantity()) {
prime = true;
int factor = 2;
while (factor <= candidate / factor && prine) {
if (candidate %factor == 0) {
prime = fal se;
} else {
fact or ++;

}

}

if (prinme) {
nunbers. add(new I nt eger (candi date));
count ++;

}

candi dat e++;

}

nunbers. trinfloSi ze();
set Resul t s(nunbers.toArray());

Exercises © Copyright IBM Corporation 2000, 2002 17-16

Using the Java Development Tools

/**
* Met hod out put Resul ts.
* @ut hor Shavor, et al
* @aram prefix
*/
public void outputResults(String prefix) {
Date d = new Date();
Systemout.printin(prefix + d.toString());
for (int i =0; i <getResults().length; i++) {
Systemout.println(prefix + getResults()[i]);
}

}
public void sortResults() {

Arrays. sort(getResults(),
new Conparator () {
/**
* @ee java. util.Conparator#conpare(Chject, bject)
*/
public int conpare(Chject arg0, nject argl) {
if (((Integer) arg0).intValue() < ((Integer)
argl).intValue()) {
return 1,
} else {
return -1,
}

}
1),
}

public Cbject[] getResults() {
return results;
}

public void setResults(Object[] results) {
this.results = results;
}

public void setQuantity(int quan) {
this.quantity = quan;
}

public int getQuantity() {
return quantity;
}

}

Note: This is a good point to move on to the next part if you are just trying to experience a subset
of each lab part.

5. We've cleaned up the code a bit. Now we’re going add a class to generate the prime
factorials, Pri meFact ori al Gener at or. To do this, we're going to create a superclass
for Pri neNunber Gener at or and Pri neFact ori al Gener at or called
Nunber Gener at or and move methods and fields to this new superclass. Select
package r ef act ori ng in the Package Explorer view and create class
Nunber Gener at or . Do not select to have any method stubs generated.

Exercises © Copyright IBM Corporation 2000, 2002 17-17

Using the Java Development Tools

Java Class

Create a new Java class.

Source Folder: |c0m.ihm.|ah.usingjdt Browse...

Package: | com.ibm.lab.usingjdt.refactoring Browse...

I Enclosing type: |

[t e

Mame: | NumberGenerator
Modifiers: & public " default .
™ abstract [final r
Superclass: |java.|ang.0hject Browse...

Interfaces:

I

Which methed stubs would you like to create?
I public static void main(String[] args)
I Constructors from superclass
I” Inherited abstract methods

Finish | Cancel

Figure 17-18

Creating Class Number Generator

6. In the superclass, we need a method the subclasses will override to generate numbers.
Create the following method in Nunber Gener at or (try it by generating from a
template).

public void generateNunbers() { }

7. Now we need to fix Pri neNunber Gener at or to override this method. In class
Pri meNunber Gener at or , select method gener at ePri meNunber s and then Refactor
> Rename... to rename it to gener at eNunber s. If you did not save the changes to
Nunber Gener at or . j ava, you will be prompted to do so.

8. Pri meNunber Gener at or should be a subclass of Nunber Gener at or, so change class
Pri meNunber Gener at or to extend Nunber Gener at or by editing its definition as
follows. (Hint, use Ctrl+Space to enter this additional code).

public class PrinmeNunber Generator extends Nunber Generator {

9. Because Pri neNunber Gener at or and the class we will create to generate prime
factorials will inherit from Nunber Gener at or, fields quanti ty and resul t s and their
getter and setter methods really belong in Nunber Gener at or , as do methods

Exercises © Copyright IBM Corporation 2000, 2002 17-18

Using the Java Development Tools

out put Resul t s and sort Resul t s. Select the editor for Pri meNunber Gener at or. In
the Outline view, select fields r esul t s and quant i t y and then Refactor > Pull Up...
from the context menu. Review the code changes and select Finish. You may have
noticed that these changes span multiple files. In fact, when you perform a refactoring
operation, the refactoring analysis includes all open projects in your workspace.

10.We need to pull up the getters and setters and methods sort Resul t s and
out put Resul t s (six methods in all). In the Outline view for Pri meNunber Gener at or,
select these six methods, select Refactor > Pull Up... from the context menu, and then
select Next >. In this Refactoring dialog, the code in the left pane is the code before
the changes. Select Finish.

& pefoctorng x|
Pull up

; o1

i Select the methods to be removed in subtypes after pull up. D:I_O

& hathioda] 24 lecidd,

Subtypes of typa Source
|El @ nunberGanesator i
ISR @ Frinetonbenenerator

e gerauantiyl) & o

e getResuts) a

i .-_,. m F“hlnia_lia.vzid z:;pg;ﬁ:::.;lt:(ﬂtring pr
1 & = (]

| B e sg:?uo,n?ﬂ','rm] Svetan.ont.printlo(prafiz + d.to
{E] e sethesuttsiobjeet]) for (int i = 0: 1 { getRe=ult=|
“[F] e sortResurtal) Shesten, out . println{prefix +

< Bk Hext | Erizh | Cancel

Figure 17-19
Pull Up Refactoring

11.The organization of classes Nunber Gener at or and Pri meNunber Gener at or should

now look like this:
i Package Explorer v X
8 @
] com.ibm.lab.usmgjdt [
+ @ codegeneration
+-# debugging
+-H quickfix
-8 refactoring
= @ NumberGenerator.java
- *Z import declarations
=@ HumberGeneratar
+ guantity
% results
@ generateNumbers()
@ getQuantity()
@ getResults()
@ outputResults(String)
@ setQuantity(int)
@ setResults{Object[])
@ sortResults()
= @ rimeNumberGenerator.java
-2 import declarations
=@ PrimeNumberGeneratar
@ generateNumbers{) -

Package Explorer |Hierarchy

Figure 17-20
Code Organization After Refactoring

Exercises © Copyright IBM Corporation 2000, 2002 17-19

Using the Java Development Tools

12.Now class Nunber Gener at or is defined and Pri meNunber Gener at or is refactored.
We now need to create the class to generate prime factorials. In package
ref actori ng, create class Pri neFact ori al Gener at or . For its Superclass, select
Browse... and then enter Nunber Gener at or . In the Superclass Selection dialog, for
Qualifier be sure to specify package com i bm | ab. usi ngj dt. ref act ori ng. Select
OK to set the superclass. Do not generate any of the method stubs. Select Finish to
generate the class.

13.To generate the numbers, we need to override gener at eNunber s in
Nunber Gener at or . Do this in the Package Explorer view by dragging method
gener at eNunber s from class Nunber Gener at or and dropping it on class
Pri meFact ori al Gener at or (not the .java file) to create a method stub with the same
signature. Enter the following for method gener at eNunber s in class
Pri meFact ori al Gener at or.

publ i c voi d generateNunbers() {

Pri meNunber Generat or primes = new Pri meNunber Generator();

prinmes.setQuantity(getQantity());

pri nmes. gener at eNunbers();

Qoj ect[] nunbers = new Object[prines.getResults().length];

int factorial = 1;

for (int i =0; i < prinmes.getResults().length; i++) {
factorial = factorial *

((I'nteger) prinmes.getResults()[i]).intValue();

nunbers[i] = new Integer(factorial);

}
set Resul t s(nunbers);

}

14.Congratulations, you're done. Save your changes to the three files that you're editing.
Your code should look something like this. To save trees, some sections of code
unchanged from step 4 are replaced with comments and other comments eliminated.

package comibm | ab. usi ngj dt.refactoring;
i mport java.util.ArraylList;

i mport java.util.Arrays;

i mport java.util.Conparator;

i mport java.util.Date;

public class Nunber Generator ({
public void generateNunbers() { }

public void outputResults(String prefix) {
/1 Rel ocat ed from PrimeNunber Gener at or
/1 Code unchanged

}

public void sortResults() {
/1 Rel ocat ed from Pri meNunber Gener at or
/1 Code unchanged

}

Exercises © Copyright IBM Corporation 2000, 2002 17-20

}

Using the Java Development Tools

public Cbject[] getResults() {
return results;
}

public void setResults(Object[] results) {
this.results = results;

}

public void setQuantity(int quan) {
this.quantity = quan;
}

public int getQuantity() {
return quantity;
}

protected int quantity;

protected Object[] results;

package comibm | ab. usi ngj dt.refactoring;

i mport java.util.ArraylList;
i mport java.util.Date;

i mport java.util.Conparator;
i mport java.util.Arrays;

public

}

public void generateNunbers() {
/ I Unchanged

}

package comibm | ab. usi ngj dt.refactoring;

public class PrineFactorial Generator extends Nunber Generator {

public void generateNunbers() {

Pri meNunber Gener at or prinmes = new Pri meNunber Generat or () ;

primes. setQuantity(get Quantity());
pri mes. gener at eNunbers();

hj ect[] nunmbers = new oject[prines.getResults().length];

int factorial = 1;
for (int i =0; i < primes.getResults().!length;
factorial = factorial *

cl ass PrineNunber Gener at or extends Nunber Generator {

i ++) {

((Integer) primes.getResults()[i]).intValue();

nunbers[i] = new Integer(factorial);

}
set Resul t s(nhunber s) ;
}
}
Exercises © Copyright IBM Corporation 2000, 2002 17-21

Using the Java Development Tools

15.Give the new and refactored code a try by executing the following in a scrapbook page
(remember to set an import statement).

PrimeFactori al Generator f = new PrinmeFactorial Generator();
f.setQuantity(5);

f. gener at eNunber s();

f.sortResults();

f.outputResults("");

Pri meNunber Generator n = new Pri nmeNunber Generator();
n. set Quantity(5);

n. gener at eNunber s();

n. out put Resul ts("");

When you're through, don'’t forget to close any editors open on .java and .jpage files.

Part 5. Debugging

In Part 1, we're going to look at debugging Java programs, including using different kinds of
breakpoints, examining program execution, viewing and changing variable values, using launch
configurations, and referring to classes in a runtime library. To help illustrate this exercise, we've
provided project com i bm | ab. usi ngj dt, containing several packages. This code represents
several iterations of a program to generate numbers. It is the same code we used in the earlier
steps.

If you have not completed all of the steps in the previous exercise parts, you may see errors in
some of the packages. Don’t worry about the errors, they're intentional. We put them there so they
could be fixed during the exercise. In any case, you can ignore them for this exercise.

The same class is defined in multiple packages. Unless we specify otherwise, when we refer to a
class or some other Java element or resource, we are referring to the element or resource in
package com i bm | ab. usi ngj dt . debuggi ng. We've also added class Debuggi ngExanpl e
with a simple mai h method to drive the code and a launch configuration,

Debuggi ngExanpl e. | aunch.

1. Using the Java perspective, edit class Debuggi ngExanpl e in package debuggi ng
and set a breakpoint on the first statement in the method by double clicking on the
marker bar of the editor next to the line (see Figure 2-21).

¥ Debuggingl X

package com.ibm.lab u=ingjdt . debugging:

public class DebuggingEzample {
public static woid main{String[] arg=) {
@ PrimeHunberGenerator p = new PrimeNumnberGenerator():
p.e=etQuantity(20);
p.generatelunbers():
p.outputResults(""):
+
+

Figure 2-21

Setting a breakpoint

2. Select the Debug =g pulldown and then Debug As > Java Application. The mai n
method in class Debuggi hgExanpl e executes, the Debug perspective opens, and
execution suspends before the line on which we defined the breakpoint. The
breakpoint icon is decorated with a checkmark. This indicates that the class has been
loaded by the Java VM running in this debug session. Each debugging session has its

Exercises © Copyright IBM Corporation 2000, 2002 17-22

Using the Java Development Tools

own associated Java VM. This is important because it means that if you are not

running a Java VM that supports hot code replace and you change the class, you must
restart your debug session.

£ Debug - Eclipse Platform EBX
File Edit Source Refactor Mavigate Search Project Run Window Help

S-ERa(s-k-|o] v %-|[|BEE s

B || %5 pebug [5] TG || @ x || Variables BE e & X
§|= %% DebuggingExample [Java Application] #!| = a args= java.lang.String[4] (id=12)
% - com.ibm.lab.usingjdt.debugging.DebuggingExample +- & [0]="alpha"
@ System Thread [Finalizer] (Running) +-- & [1]="beta"
@ System Thread [Reference Handler] (Running) +- & [2]="gamma"
-8y Thread [main] (Suspended (breakpoint at line 5 i +-- & [3]="delta"

= com.ibm.lab.usingjdt.debugging.DebuggingEx:—
@ System Thread [Signal Dispatcher] (Running)
@ System Thread [CompileThread0] (Running) b
| >

< Variables | Breakpoints | Expressions | Display

¥ DebuggingExal X 52 outline |3, @ «f o x

package com.ibm.lab. usingjdt . debugging: # com.ibm.lab.usingjdt.d

public class DebuggingEzample { - @y DebuggingExample
public static voi i i o ¥ main(String[])

| >

ratori)

p
p.=etQuantity (207

p.generatelunbers():
p.outputRBesult={""};

} —
! b
< | >
= Console [com.ibm.lab.usingjdt.debugging.DebuggingExample at localhost:5187] By x
Console | Tasks
Writable Insert 6:1

Figure 2-22
Debug Per spective

3. Select Debug Target &

com i bm | ab. usi ngj dt. debuggi ng. Debuggi ngExanpl e in the Debug view
and then select Properties... from the context menu. You see information on how the
debug session was started, including the input parameters we defined in the launch
configuration. Select OK.

£ Properties for com.ibm.lab.usingjdt.debugging.DebuggingExample at localhost:9766

Process Info

Command Line: | £:\Eclipse\Edlipse 2.0\jre\bin\javaw -classpath E:\Eclipse\Eclipse
2.0\labs\com.ibm.lab.usingjdt -Xdebug -Xnoagent -Djava.compiler=NONE
-Xrunjdwp:transport=dt_socket,suspend=y,address=localhost: 9766
com.ibm.lab.usingjdt.debugging.DebuggingExample alpha beta gamma delta

oK | Cancel

Figure 2-23
Debug Target Properties

4. In the next several steps, we’'ll look at the debugging commands you use to control
program execution.

Exercises © Copyright IBM Corporation 2000, 2002 17-23

Using the Java Development Tools

Select the current stack frame =lin the Debug view, and then select Step Over or press F6.
One line executes and execution suspends on the next line. Variable p appears in the Variables

view.

~ Debug - Eclipse Platform
File Edit Source Refactor Mavigate Search Project Run Window Help

BrHES |[#-k-|e|s]%-|BF
ﬁ%Debug L1 - = e " EIX Bh B & x

[33]=1]E3]

g B E:\Edlipse\Eclipse 2.0\jre\bin\javaw (12/2/02 9:42 PI~ || F- a args= java.lang.String[4] (id=12)
35 = % DebuggingExample [Java Application] =¥ W 0= com.ibm.lab.usingjdt.debugging.PrimeNumberGenerg
--&2 com.ibm.lab.usingjdt.debugging.DebuggingExample < quantity=0
@ System Thread [Finalizer] (Running) < results= null

@ System Thread [Reference Handler] (Running)
-8y Thread [main] (Suspended)

= com.ibm.lab.usingjdt.debugging.DebuggingEx: e 3
@ System Thread [Signal Dispatcher] (Running) b
< | S Variables | Breakpoints | Expressions | Display
[J] DebuggingExample.java X 82 Outline 1% @ «f o x
package com.ibm.lab u=ingjdt . debugging: ~ [com.ibm.lab.usingjdt.d

public class DebuggingEzample { - @y DebuggingExample
public static woid main(String[] args) { of main(String[])

PrimeNunberGe: tor p = new PrimsHumberGensrator
g .

p.outputResults(""):

} =
A
< | >
= Console [com.ibm.lab.usingjdt.debugging.DebuggingExample at localhost:6454] B & x
Console | Tasks
Writable Insert 7:1
Figure 2-24
Sep Over

5. Select Step Into - or press F5. A new stack frame is created for method invocation
set Quantity(), the editor opens on Nunber Gener at or . j ava, and execution
suspends on the first statement in the method.

Exercises © Copyright IBM Corporation 2000, 2002 17-24

Using the Java Development Tools

£ Debug - Eclipse Platform
File Edit Source Refactor Mavigate Search Project Run Window Help

B~ . A . Aail-SIEAIE

= [o .= L@ || @ x || variables Bmh & o X
f|= %% DebuggingExample [Java Application] #| = a this= com.ibm.lab.usingjdt.debugging.PrimeNumberGen
% - com.ibm.lab.usingjdt.debugging.DebuggingExample < quantity=0

@ System Thread [Finalizer] (Running) < results= null

@ System Thread [Reference Handler] (Running) & quan= 20

-8y Thread [main] (Suspended)
=3 com.ibm.lab.usingjdt.debugging.PrimeNumbe
= com.ibm.lab.usingjdt.debugging.DebuggingEx:

@ System Thread [Signal Dispatcher] (Running) b 3)
< | b3 Variables | Breakpoints | Expressions | Display
DebuggingExample.java [J] NumberGenerator.java X 3= outline 1% @ & 9 x
¥ L —-® NumberGenerator fad
public void setQuantitv(int guan © generateNumbe
this guantity = guan: @ outputResults(S
¥ @ sortResults()
public int getQuantity() { @ getResults()
return quantity: @ setResults(Obje —
= @ setQuantity(int)
orotected int guantitwv: b @ getOuantitv()
< | >
= Console [com.ibm.lab.usingjdt.debugging.DebuggingExample at localhost:6454] By x

Console | Tasks

Figure 2-25

Sep Into

6. Step Over this line and the next to exit the method. The top stack frame is discarded
and execution suspends on the statement following the one you just stepped into. Step
into p. gener at eNurber s() . Select Step Return - or press F7. Execution
resumes to the end of the method in the current stack frame, returns from the method

execution, and suspends on p.outputResults(*"), the statement following the method
invocation.

7. Step Into p. out put Resul t s() . Set a breakpoint on the line with the f or statement
and select Step Return. Execution suspends at the breakpoint because rather than
after the method returns, because the breakpoint is encountered first.

8. Step over the f or statement. Hover the cursor over variable i . The value of the

variable is displayed:

DebuggingExample.java [J] HumberGenerator.java X

public void outputREesults({String prefi=z) { ~
Date d = new Date(): 0

o ho< getResultS().lenE{th; i++) {
Lcom.ibm.lab.usingjdt.debugging.DebuggingExample at localhost:6454] i = (int) l]_—

public void sortResults() {
Arrays.=ort (getResult=s().
new Comparatori) { b

Figure 2-26
Hovering to View a variable value

9. Select Run to Line from the context menu or press Ctrl+R. Execution resumes and
then suspends it on the line that was selected, after an iteration of the loop. You did

Exercises © Copyright IBM Corporation 2000, 2002 17-25

Using the Java Development Tools

not have to define a breakpoint. You can verify this by the increase in the value of
variable i.

10.Select Step Return to complete method out put Resul t s. The output appears in the
Console view. Select Terminate ® to stop execution or select Resume ¥ to
continue execution to the end of the program. The status of your program in the Debug
view shows it has terminated. Remove the terminated entries in the Debug view with
Remove All Terminated ==.

<terminated> com. m.lab.usingjdt.debugging.DebuggingExample at localhost:6454
B <terminated> E:\Eclipse\Eclipse 2.0\jre\bin\javaw (12/2/02 9:46 PM)

Figure 2-27
Terminated Debug Sessions

Note: This is a good point to consider if you want to return to a previous part of the exercise, or
complete this part, given how much time might be left in the allotted lab time.

11.Now let's see how to view and change variable values. Select Debug T or press F11
to restart a debugging session on Debuggi ngExanpl e. Step Over the first line and
then Step Into p. set Quantity(20).

12.Switch to the Variables view and select Show Detail Pane <. Successively select the

variables and watch as the values displayed in the detail pane in the bottom of the
view. These are the values of the variables’t oSt ri ng() methods. You can provide
useful debug information if you override of this method in your own classes to display
your object’s state. Select variable quan, select Change Variable Value from the
context menu, and enter a new value. You can also double click on a value to change
it. You cannot change a variable’s value from the Detail Pane.

=l a this= com.ibm.lab.usingjdt.debugging.PrimeNumberGenerator (id=15)
< quantity=0
@ results= null
a quan= |30
20
Variables | Breakpoints | Expressions | Display
Figure 2-28

Changing a Variable's Value

13.Select Step Return then Step Into on line p. gener at eNunber s() . In the Variables
view, expand t hi s and verify field quant i t y has the changed value.

14.With the Variables view visible, Step Over lines to continue through an iteration of the
whi | e loop. The colors of the entries in the Variables view change as values change.

15.Breakpoints can have hit counts; let’'s see how this works. Set a breakpoint on the
second line of the outer whi | e loop, “pri me = true; ”. From the context menu on

Exercises © Copyright IBM Corporation 2000, 2002 17-26

Using the Java Development Tools

the breakpoint ® on the marker bar, select Breakpoint Properties.... Select to
Enable Hit Count and set Hit Count to 5. Click on OK. This will cause execution to

suspend the fifth time the breakpoint is encountered.
4= Java Line Breakpoint Properties

Java Line Breakpoint Properties

Type: com.ibm.lab.usingjdt.debugging.PrimeNumberGenerator
Member: PrimeNumberGenerator

Line Number: 16

¥ Enabled

¥ Enable Hit Count

3]

Hit Count: |5

Suspend Policy
' Suspend Thread
" Suspend ¥M

I” Enable Condition

Condition: |
Restrict to Selected Thread(s)

= com.ibm.lab.usingjdt.debugging.DebuggingExample at localhost:10830

oK | Cancel

Figure 2-29
Setting a Breakpoint Hit Count

16.Hover over the breakpoint icon to verify its hit count. Hover over variable candi dat e

in the editor and remember its current value.

DebuggingExample.java x

boolean prine; ~
int candidate = 2:
while (count ¢ getQuantitwil) {
Hit Count: 5]| prime =
int factor = 2:
while (factor <= candidate - factor &é& prime) {
if {candidate ¥ factor == 0) {
prime = false:
} else {
factor++:

< 4

Figure 2-30
Viewing a Breakpoint Hit Count

17.Select Resume. Execution resumes and then suspends on the breakpoint after five
iterations of the whi | e loop. Hover again over variable candi dat e to verify this; its
value should be incremented by five, or four depending on where you were in the loop.
The breakpoint shows as disabled - . Enable it for five more iterations by selecting
Enable Breakpoint from the context menu. Select Resume again. Execution
suspends on the same line after another five iterations. Hover over variable

candi dat e to verify this.

18.Close the editor on class Pri neNurmber Gener at or and go to the Breakpoints view.
You can quickly get back to the source where you've set a breakpoint by double-
clicking one in the Breakpoints view. This will open the associated source file and
select the line containing the breakpoint. Do this for the disabled breakpoint.

Exercises © Copyright IBM Corporation 2000, 2002

17-27

Using the Java Development Tools

19.Let's change this breakpoint to suspend execution when a condition (Java expression)
evaluates to true. In the Breakpoints view, select the disabled breakpoint and then
select Properties... from the context menu. Check Enabled, un-check Enable Hit
Count and check Enable Condition to make this a conditional breakpoint. Enter
“candi dat e == 40" for the condition and select OK.
£ Java Line Breakpoink Properties 53]
Java Line Breakpoint Properties

Type: com.ibm.lab.usingjdt.debugging.FrimeMumberGenerator
Member: PrimeMumberGenerator

Line Mumber: 16

¥ Enabled

™ Enable Hit Count

Hit Count:
Suspend Policy
" Suspend Thread
" Suspend ¥M
¥ Enable Condition
Condition: |candidate I= 40|

Restrict to Selected Thread(s)
3 com.ibm.lab.usingjdt.debugging.DebuggingExample at localhost:12951

OK Cancel

Figure 2-31
Setting a Breakpoint Condition
In the editor, the 7 decoration on the breakpoint indicates it is a conditional one. Hover over the
breakpoint icon in the editor to see the conditional expression.
20.Select Resume. Execution resumes and then suspends. Hover over variable
candi dat e in the editor to verify its value is 40.

21.Finally, let’s look at evaluating expressions. Step Over lines until you are inside the

inner whi | e loop ontheline, “i f (candidate % factor == 0) {". Inthe

editor, select expression “candi date % fact or == 0". From the context menu,

select Display to evaluate the expression and display the results in the Display view.
candidate ¥ factor == 0

(boolean) true

Variables | Breakpoints | Expressions | Display

Figure 2-32

Displaying an Evaluated Expression

22 .Enter an expression in the Detail pane of the Display view that can be evaluated in the
context of the current stack frame, like nunber s. t oArray() . Content assist is
available here. Select the expression you entered and then select Inspect Result of
Evaluating Selected Text L to display the results in the Expressions view. Select to
display the Detail pane =

Exercises © Copyright IBM Corporation 2000, 2002 17-28

Using the Java Development Tools

()

[1]= java.lang.Integer (id=44)
[2]= java.lang.Integer (id=45)
)

By
- i [D]:java.lang.lntéger id=40)
e
T
+ [3]= java.lang.Integer (id=46

L

FAT— Smuim lomm Tobnnne fid_aT

(2, 3, 5, 7,11, 13, 17, 19, 23, 29, 31, 37]

Variables | Breakpoints | Expressions | Display

Figure 2-33
Inspecting an Evaluated Expression

23.In the Display view, enter nunber s. get (1), select it, then select Inspect from the

context menu. Another entry is added to the Expressions view with the result.
EE 8t ==l@é s x
+- & [9]= java.lang.Integer (id=52) fad
+- & [10]= java.lang.Integer (id=53)
+- & [11]= java.lang.Integer (id=54)
= XY "numbers.get(1)"
m value=3

3

Variables | Breakpoints | Expressions | Display

Figure 2-34

Evaluating an Expression in the Detail Pane

24.Expand the nunber s. t oArray() entry in the Expressions view and modify the value
of the first entry to a number that is obviously not prime, like 100. The result of
evaluating nunber s. t oArray() returned an array of | nt eger s, or more precisely
an array of references to the | nt eger s of variable nunber s. In the Expressions
view, when you change a value to a referenced object, you change the value in the
current stack frame. The point here is that with object references, you are not just
changing a value in the Expressions view. While you make the change there, you are
actually changing the value of an object in your executing program and (potentially)
altering its behavior.

25.Select Resume to continue execution to the end of the program. Verify that your
changed value appears in the Console view.

When you're through, don't forget to close open editors and terminate and remove existing
debugging sessions. Also remove your existing breakpoints.

Exercise Activity Review

At the end of these exercises, you should be able to:

Write and run a simple “Hello World” program

Navigate Java errors in JDT and use quick fix to use recommended solutions
Complete Java expressions and generate Java code with content assist and
templates

Refactor your code

Exercises © Copyright IBM Corporation 2000, 2002 17-29

Using the Java Development Tools

Exercises © Copyright IBM Corporation 2000, 2002 17-30

Workbench JFace Text Editor

Exercise 18
Workbench JFace
Text Editor

Exercise 18 Workbench JFace Text EditOr...........cuiiiiiiiiiiiiiiiie e e 18-1
[[g1 oo (V1o 1To] o TP USROS

Exercise Concepts

SKill DEVEIOPMENT GOAISoeeeeeieeieeiiitiiies ettt e e e e e e e e e etb e e e eeeeaes
EXEICISE INSIIUCHIONSuueiiiiii e e e e e e e e e e et e e et e e e aaeeeeaas

Part 1:
Part 2:
Part 3:
Part 4:
Part 5:
Part 6:

Basic Text Editor Creationcc.e....
Create Custom Editor............ccccvvvvvvieiieneenn.
Create a Document Provider.................
Implement a Document Partitioner
Implement a SourceViewerConfiguration
Add Menu Contributions and Context Menu Options

Part 7: Implement Syntax/Color Highlighting...............coeiiiiiiiiiieiie,
Part 8: Implement a Content Formatter (OPTIONAL)ccooviiiiiiiiiiiiiiieie e
Part 9: Implement a simple content assist for the release notes editor (OPTIONAL).......... 18-18
EXErCISE ACHVITY REVIEW......cciiiiiiiiiiiee ettt e e e e e et e e e e e e e e e e eeaaaeennnnns 18-21
Introduction

Exercise Concepts

The objective of thislab isto create a JFace text editor for fileswith a. r el ease
file type. The editor will be designed to show content assist, syntax highlighting and
content formatter features of JFace Text.

Skill Development Goals

At the end of this lab, you should be able to:

Add an editor plug-in to the workbench
Implement a simple JFace Text editor that implements content assist,
syntax highlighting and content formatting features.

EX_JFace_Text_Editor_V2.doc & Copyright IBM Corporation 2000, 2001 18-1

Workbench JFace Text Editor

Exercise Instructions

Common lab setup tasks should have been performed such that a PDE project
named com i bm | ab. edi t or should be available in the PDE perspective.

Part 1: Basic Text Editor Creation

In this part we will create we will create a text editor for files of type . r el ease. The platform text
editor will be used initially.

1. This requires that we add an editor extension to the pl ugi n. xmi file.

To implement this support, open the pl ugi n. xm with the Plug-in Manifest
Editor. Add the org. ecli pse. ui . edi t or s extension point to the pl ugi n. xni
using either the Extensions or Source tab. The xml source for the extension
point is as follows:

<extension point = "org.eclipse.ui.editors">
<edi t or
id ="comibmlab. Rel easeEdi tor"

nane="Lab: Rel ease Notes Editor"
icon="editor.gif"
ext ensi ons="r el ease"
class="org.eclipse.ui.editors.text. TextEditor" >
</ editor>
</ ext ensi on>

The editor extension tag of the pl ugi n. xm specifies the file extension your
editor will work on.

Lab: Editor Plugin
#alerts and Action Items
% There are 1 problem(s), 0 task(s) associated with this plug-in.
General Information Runtime Libraries

This section describes general information about this The following libraries will be added o the classpath

plugin of this plug-in:

Plug-in Id i, release.jar
Plug-in Mame |Lab: Editor Plugin

version [2.00

Required Plug-ins

The following plug-ins must be installed for this

|
|
Provider Name |IBM |
|

Class |\:Um‘|bm‘Iab.edltur.EdltDrP\ugm plug-in to work properly:
q)
Exttensions 4 org.eclipse.core runtime.

o N
== org.eclipse.core resources

The following extensions are defined in this plug-in: a)
=J> org.eclipse.ui

More...

Extension Points

Other plug-ins can use the following extension points

0 extend this plug-in:

Overview |Dependencies |Runtime |Extensions | Extension Points | Source

Figure18-1
Manifest Editor for Editor Plug-in

EX_JFace_Text_Editor_V2.doc & Copyright IBM Corporation 2000, 2001 18-2

Workbench JFace Text Editor

2. Launch the runtime Workbench making sure the com i bm | ab. edi t or plug-in
is included.

3. The first step is create a file for the editor. If required, create a project and then
copy the t est . rel ease file from the com i bm | ab. edi t or project to the
project in the workspace used by the runtime instance of the Workbench. Use
copy/paste or drag and drop to copy the file between workspaces.

4. Openthetest. rel ease file by double clicking on it in the project root.

:

Test Release Notes ;I

l.Abstract

This release notes editor is not fancy.
z2.Install

No instructions about this whatsoever.

3.Error Handle

Are you kidding, this is error free!

4_3vstem Requlrements

You need a better than 486 machine to run this.
Also, this will not run in OB/2.

i o

Figure 18-2
Basic Text Editor

Congratulations! You have just created your first text editor.

The pl ugi n. xm entry for the editor extension identified the Eclipse platform text editor
(org. eclipse.ui.editors.text. Text Editor) as the editor implementation for the
.rel ease files. Now it is time to build your own editor implementation.

Part 2: Create Custom Editor

It is now time to create a custom editor implementation that can be enhanced to provide tool

specific function.

1. Change the class defined in the editor extension in the pl ugi n. xm so that it identifies
the custom editor we will implement, the Rel easeEdi t or class. Change the xml for
the editor extension to look like this:

<extension point = "org.eclipse.ui.editors">
<edi t or
id = "comibmlab. Rel easeEdi tor"

nane="Lab: Rel ease Notes Editor"
icon="editor.gif"
ext ensi ons="r el ease"
class="comibml ab. edi t or. Rel easeEdi t or ">
</ editor>
</ ext ensi on>

EX_JFace_Text_Editor_V2.doc & Copyright IBM Corporation 2000, 2001 18-3

Workbench JFace Text Editor

2. Create aRel easeEdi t or class in the package com i bm | ab. edi t or
using the following options:

Extend org. eclipse. ui.editors.text. Abstract Text Editor
Select the Constructors from superclass option
Do not select the Generate the Inherited abstract methods option

Java Class
Create a new Java class.

Source Folder: ‘cnm.ihm.\ah‘edimrjsrc Browse...

Package: ‘ corm.ibm.lab.editor Browse.,..

™ Enclosing type; ‘

I Lbie

Namme: ‘ ReleaseEditor
Modifiers: = public O default o
I~ absfract I final r
Superclass: ‘ org.eclipse.ui.texteditor AbstractTextEditar Browse,..
Interfaces: Add

i

withich method stubs would you like to create?
I public static ¥oid main(String[] args)
W Constructors from superclass
I~ Inherited sbsiract methods:

Figure18-3
New Java Class Wizard

Congratulations! You have just created your first custom text editor.

3. Time to take the editor for a test drive. Try the following:

Create a bookmark and/or task on the .release file. Is it shown in the editor?
Close the editor, and then open the editor by using the Bookmark or Tasks view to
find and double-click on the marker created previously. Does the editor open? Is
the cursor positioned somewhere in the text?

Make a change to the text and select Edit > Undo (or press Ctrl+z). Is the change
backed out? Do you get multiple undo support?

Close the editor but do not save the file.

This is an indication of how the function provided by the Abst r act Text Edi t or
in an “unconfigured” state. You get basic text editing function, but it needs
more work to match the capabilities of the platform text editor.

The Rel easeEdi t or inherits basic text editing capability, but the full JFace text editing framework
has more to offer.

EX_JFace_Text_Editor_V2.doc & Copyright IBM Corporation 2000, 2001 18-4

Workbench JFace Text Editor

Part 3: Create a Document Provider

The capabilities of the Abst r act Text Edi t or can be enhanced when the appropriate support is

configured. The first step is to add a document provider.

To develop a custom text editor with add-ons, we need a class that produces and manages

documents containing textual representation of editor input elements. This class has been provided

for you in the template.

Note that the class Rel easeEdi t or Docunent Pr ovi der extends Fi | eDocunent Pr ovi der .

In this class, the key method to implement is cr eat eDocunent (Qoj ect) . This method is a

factory method to create an element's textual representation. We will go back to this method and

supply the missing code later.

1. Create a Rel easeEdi t or Docunent Provi der class in the package
com i bm | ab. edi t or using the following options:

Extend org. ecl i pse. ui . editors. text. Fi | eDocunent Provi der
Select the Constructors from superclass option
Select the Generate the Inherited abstract methods option

2. Use the JDT to generate a default implementation for the cr eat eDocunent ()
method. Do this by placing the cursor at an appropriate place for a new
method in the editor, typing a few characters (“cre”) and pressing Ctrl+Space,
then select cr eat eDocunent (Obj ect el enent) from the list and press enter.

Now it is time to connect the document provider to the editor. This can be done in the editor logic

or by defining an extension point. We will use the extension point option.

3. Add a document provider extension to the pl ugi n. xm file.

To implement this support, open the pl ugi n. xm with the Plug-in Manifest
Editor. Add the or g. ecl i pse. ui . docunent Provi der s extension point to the
pl ugi n. xm using either the Extensions or Source tab. The xml source for the
extension point is as follows:

<ext ensi on poi nt="org. eclipse. ui . docunent Provi ders">
<provi der
ext ensi ons="r el ease"
class="comibm | ab. edi t or. Rel easeEdi t or Docunent Pr ovi der"
i d="comibml ab. edi t or. Rel easeEdi t or Docunent Pr ovi der" >
</ provi der >
</ ext ensi on>

The platform will use the document provider for all . r el ease files.

Part 4: Implement a Document Partitioner

A document partitioner is used to divide the document into disjoint regions. For our
release notes editor, we will partition our document into three kinds of regions or
content types:

EX_JFace_Text_Editor_V2.doc & Copyright IBM Corporation 2000, 2001

18-5

Workbench JFace Text Editor

Release title
Header
Body or section

If you review the content of the t est . r el ease file in the text editor you have implemented so far
you see something like this:

re X
Test Releasze Hotes

1. Abstract
This release notes editor i=s not fancy.
2. Install
Ho instructions about this whatsoswver
3. Error Handle
Are you kidding. this is error free!
4. Sy=ten Requirements
You need a better than 486 machine to run this
&lso. this will not run in 0S5-2

Figure18-4
Current Editor Status [editor_04.tif]

Based on this view you can see the regions we want to define:

The release title is: Test Release Notes

The headers are: 1.Abstract, 2.Install, 3.Error Handle, 4.System Requirements
Sections are below each header — for example, one of the sections is:

This release notes editor is not fancy.

1. Create a class named Rel easeEdi tor Parti ti oner that implements the
| Docurrent Par ti ti oner interface in the com i bm | ab. edi t or package. This
document partitioner will be used to divide the document into these disjoint
regions.

Select these options in the New Java Class wizard:

Constructors from superclass
Inherited abstract methods

EX_JFace_Text_Editor_V2.doc & Copyright IBM Corporation 2000, 2001 18-6

Workbench JFace Text Editor

Java Class

Create 3 new Java class,

Source Folder: | com.ibm. lab.editor farc Browse...

Package: | com.ibm.lab.editor Browse...

I Enclosing type: |

Marme: | ReleaseEditorPartitioner
Modifiers: * public O default iy
[abstract [final r
Superclass: | java.lang.Object Browse...
Interfaces: O org,eclipse. jface. text. IDocurmentPar titioner

dd

Wivthich method stubs would you like to create?
I™ public static void main{String[] args)
v Constructors from superclass
IV inherited abstract methods

Einish | Cancel

Figure 18-5
New Java Class Wizard [editor_05.tif]

Alternatively, you can wait and add stubs for inherited abstract methods to a
class with the Add Unimplemented Methods choice from its context menu in the
Outline view, and then create the constructor manually.

You should have nine methods, including the constructor, after the class is
correctly generated.

2. Add the following fields to support the predefined set of content types:

public final static String RELEASE DEFAULT = " _rel ease_default";
public final static String RELEASE TITLE = "__release_title";
public final static String RELEASE HEADER = "__rel ease_header";

private | Docunent fDocunent;

3. Create a utility method get Li neEndCf f set () as follows:

private int getLineEndOfset(int |ine, |Document docunent)
t hrows BadLocati onException {

int length = docunent. getLineLength(line);
int start = docunent.getLineOfset(line);
return start + length - 1;

}

EX_JFace_Text_Editor_V2.doc & Copyright IBM Corporation 2000, 2001

18-7

Workbench JFace Text Editor

You will use this method later. Use the Organize Imports option to resolve any
warnings about missing imports. Make sure you select the JFace package.

4. The method get Parti ti on(int) returns the partition containing the given
character position of f Docunent . Instead of returning null, modify the
get Partition(int) method so thatit returns a TypedRegi on, an indexed text
representation consisting of start, length, and content type:

return new TypedRegi on(0, fDocunent.getlLength(), RELEASE DEFAULT);

Adjust imports as required.

5. The method conput ePartitioni ng(int, int) returns the partitioning of the
given section of the document.

The highlighted sections of code identify the function of the method:

The first line is defined as the RELEASE_TITLE
Any line that starts with a digit is defined as a RELEASE_HEADER
Anything else is defined as a RELEASE_DEFAULT

Modify the method so that it looks like this:

public | TypedRegi on[] conputePartitioning(int offset, int length) {
List list = new ArrayList();
try {
int start, nextOfset;
bool ean i sHeader = true;
int docLength = fDocument. getLength();

if (offset == 0) {
next O f set = getLi neEndOfset(1, fDocunent);
|'i st.add(new TypedRegi on(0, nextOffset + 1, RELEASE TITLE));

int i =1,
while (nextOfset + 1 < docLength) {
start = nextOffset + 1;
if (Character.isDigit(fDocunent.getChar(start)))
i sHeader = true;
el se
i sHeader = fal se;

next Of f set = getLi neEndOfset(i + 1, fDocunent);
if (isHeader) {
|'ist.add(new TypedRegi on(
start, nextOffset - start + 1, RELEASE HEADER));
} else {
|'ist.add(new TypedRegi on(
start, nextOfset - start + 1, RELEASE DEFAULT));

EX_JFace_Text_Editor_V2.doc & Copyright IBM Corporation 2000, 2001 18-8

Workbench JFace Text Editor

} else {
if (Character.isDigit(fDocunent.getChar(offset)))
i sSHeader = true;
el se
i sHeader = fal se;

if (isHeader)
i st.add(new TypedRegi on(of fset, |ength, RELEASE HEADER));
el se

list.add(new
TypedRegi on(of fset, |ength, RELEASE DEFAULT));

} catch (BadLocati onException x) {

if (list.isEnpty())
|'i st.add(new TypedRegi on(offset, length, null));

TypedRegi on[] result = new TypedRegion[list.size()];
list.toArray(result);
return result;

}

Adjust the imports selecting the j ava. util . Li st option.

6. Modify the connect () method as follows:

public void connect (I Docurent docunent) {
org.eclipse.jface.util.Assert.isNotNull (docunent);
f Docunent = document;

}

This method is called to connect the partitioner to a document.

7. Modify the get Cont ent Type() method as follows:

public String getContent Type(int offset) {
return | Docunment . DEFAULT_CONTENT_TYPE;
}

This method is called by a document to obtain the document type that is
supported by the partitioner.

8. After each document change the document’s partitioning must be updated.
Make sure that the document partitioner is set on each document produced by
the document provider.

Go to the Rel easeEdi t or Docunent Provi der class and modify the

cr eat eDocunent (Obj ect) method to set the document partitioner to your
newly created Rel easeEdi t or Parti ti oner . Modify the method so that it
looks like this:

EX_JFace_Text_Editor_V2.doc & Copyright IBM Corporation 2000, 2001 18-9

Workbench JFace Text Editor

protected | Docunment createDocunent (Chj ect el ement) throws CoreException

{

| Docunment docunent = super. creat eDocunent (el ement);

if (docunent !'= null) {
| Docurment Partitioner partitioner = new
Rel easeEditorPartitioner();
partitioner.connect (docunent);
docunent . set Docunent Partitioner(partitioner);

}

return docunent;

}

Part 5: Implement a SourceViewerConfiguration
The capabilities of the Abst r act Text Edi t or can be enhanced when the appropriate support is
configured. The first step is to create and add the Sour ceVi ewer Confi gur ati on to the
Rel easeEdi t or.
1. Create a class named Rel easeEdi t or Sour ceVi ewer Confi gurati onin the
comibm | ab. edi tor. confi gurati on package which will be the source-
viewer configuration class for the Rel easeEdi t or.

The source-viewer configuration class is used to enable function such as
content-assist and content formatting, and color highlighting. that enables the
content-assist function of the editor. When using the wizard to create this class:

Extendorg. ecl i pse. j face. t ext. source. Sour ceVi ewer Confi guration
Choose only the Constructors from superclass option.

2. Add the highlighted code to the Rel easeEdi t or constructor:

public Rel easeEditor() {
super () ;

set Sour ceVi ewer Conf i gur ati on(new
Rel easeEdi t or Sour ceVi ewer Configuration());
set Rangel ndi cat or (new Def aul t Rangel ndi cator());

Adjust the imports for the Rel easeEdi t or Sour ceVi ewer Conf i gur at i on class
from the com i bm | ab. edi t or. confi gur ati on package.

The steps that follow will add additional function to the editor by modifying the source-viewer
configuration and adding additional code.

EX_JFace_Text_Editor_V2.doc & Copyright IBM Corporation 2000, 2001 18-10

Workbench JFace Text Editor

Part 6: Add Menu Contributions and Context Menu Options

1. Integrate the editor action contributor

In the pl ugi n. xm , add the cont ri but or d ass attribute to the editor
extension. Add this line:

contributord ass="comibml ab. edi t or. Rel easeEdi t or Acti onContri butor"

Your editor extension should look like this:

<editor

id = "comibmlab. Rel easeEdi tor"

name="Lab: Rel ease Notes Editor"

icon="editor.gif"

ext ensi ons="r el ease"

class="comibml ab. edi t or. Rel easeEdi tor"

contributord ass="comibm | ab.editor. Rel easeEditorActi onContributor">
</editor>

Make sure you move the > from the cl ass= entry to the cont ri but or d ass=
entry.

The class Rel easeEdi t or Act i onCont ri but or sets up an action bar
contributor who contributes release notes editor-related actions to the
workbench Edit menu. This class has been provided for you. We will now step
through the implementation:

Go to the constructor Rel easeEdi t or Acti onCont ri but or () method of the

Rel easeEdi t or Acti onCont ri but or class. The first line in the constructor reads
the Edi t or Pl ugi nResour ces. properti es file, which was supplied along with the
other lab template code in the com i bm | ab. edi t or project directory.

Resour ceBundl e bundl e = Edi t or Pl ugi n. get Def aul t (). get Resour ceBundl e() ;

If you want to provide support for NLS translation you should consider using a

. properti es file for your editor. Resource bundles contain locale-specific
objects. When your program needs a locale-specific resource, a String for
example, your program can load it from the resource bundle that is appropriate for
the current user's locale.

In this way, you can write program code that is largely independent of the user's
locale, isolating most, if not all, of the locale-specific information in resource
bundles. This allows you to write programs that can be easily localized, or
translated into different languages.

This line of code will add a content assist entry to the workbench Edit menu:

f Cont ent Assi st Proposal = new Ret ar get Text Edi t or Acti on(bundl e,

EX_JFace_Text_Editor_V2.doc & Copyright IBM Corporation 2000, 2001 18-11

Workbench JFace Text Editor

" Cont ent Assi st Proposal . ");

Ret ar get Text Edi t or Act i on is the action used by an editor action bar contributor
to establish placeholders in menus or action bars which can be retargeted to
dynamically changing actions, for example, those which come from the active
editor.

The targeted action is initialized by the set Acti on(| Acti on) method; for an
example see the method set Acti veEdi t or () inthe
Rel easeEdi t or Acti onCont ri but or class.

2. Add a context menu to the Rel easeEdi t or

We need to implement cr eat eAct i ons() to add the Text Oper ati onActi on
action entries for content-format, content-assist, content tip.

This method creates the editor's standard actions and connects them with the
global workbench actions. Add this method to the Rel easeEdi t or class:

protected void createActions() {
super. creat eActions();

Resour ceBundl e bundl e =
Edi t or Pl ugi n. get Def aul t () . get Resour ceBundl e() ;

set Acti on(" Cont ent For mat Pr oposal ",
new Text Oper ati onActi on(bundl e, "Content For mat Proposal . ",
this, |SourceViewer. FORVAT));

set Acti on(" Cont ent Assi st Proposal ",
new Text Oper ati onActi on(bundl e, "Content Assi st Proposal . ",
this, |SourceVi ewer. CONTENTASSI ST_PROPCSALS)) ;

set Acti on(" Cont ent Assi st Ti p",
new Text Oper ati onActi on(bundl e, "ContentAssistTip.",
this, |SourceVi ewer. CONTENTASSI ST_CONTEXT_| NFORVATI ON)) ;

Adjust imports as required.

3. Add this method to the Rel easeEdi t or class to set up the editor's context menu before
it is made visible:

public void editorContext MenuAbout ToShow(| MenuManager menu) {
super . edi t or Cont ext MenuAbout ToShow(nenu) ;

addAct i on(menu, "Cont ent For mat Proposal ") ;
addAct i on(nmenu, "ContentAssistTip");
addAct i on(nmenu, "Content Assi st Proposal ");

}

EX_JFace_Text_Editor_V2.doc & Copyright IBM Corporation 2000, 2001 18-12

Workbench JFace Text Editor

Adjust imports as required.

The addActi on() invocation above retrieves the Text Qper at i onAct i on, with
the action id such as "Cont ext Assi st Proposal ”, which was created by the
creat eAct i ons() method.

4. Testthe editor. The new menu options should be on the context menu and the
common edit pull-down menu for the workbench. These actions are not yet
enabled as we have not implement their logic.

Part 7: Implement Syntax/Color Highlighting

In this lab exercise, you will be implementing color highlighting for the .release notes editor. We will
show keywords in red and words that start with a vowel in green.

To implement syntax highlighting either:
Define a presentation damager and presentation repairer
Use the Rul eBasedDanager Repai r er

Note: If you define a presentation repairer, you need to implement the
creat ePresent ation(Text Presentati on, TypedRegi on) method.

In this exercise we will use Rul eBasedDamager Repai r er.
1. Create a class Rel easeEdi t or BodyScanner that extends Rul eBasedScanner in the
comibm | ab. edi tor. scanner package.

Do not select Constructors from superclass or Inherited abstract
methods.

This class defines the key words if any that will be highlighted and the rules
that are used to define how sequences or patterns of characters are to be
styled in the text viewer. For example, rules could be provided to style
keywords, links, and so on.

To customize the class:
a. Add the following field:

private static String[] fgKeywords =
{ "Abstract", "Install", "Error", "Handle", "Systent, "Requirenents"
1

b. Add the following constructor:

publ i c Rel easeEdit or BodyScanner (Rel easeEdi t or Col or Provi der provider) {
| Token keyword =
new Token(
new Text Attri bute(
provi der. get Col or (Rel easeEdi t or Col or Provi der . KEYWORD))) ;
| Token defaul t Text =
new Token(
new Text Attri but e(
provi der . get Col or (Rel easeEdi t or Col or Provi der. DEFAULT))) ;

EX_JFace_Text_Editor_V2.doc & Copyright IBM Corporation 2000, 2001 18-13

Workbench JFace Text Editor

| Token vowel =
new Token(
new Text Attri bute(
provi der. get Col or (Rel easeEdi t or Col or Provi der. VOAEL))) ;

List rules = new ArrayList();

/] Add generic nunber rule.
rul es. add(new Nurber Rul e(def aul t Text));

/1 Add generic whitespace rule.
rul es. add(new Wi t espaceRul e(
new Rel easeEdi t or Whi t espaceDet ector()));

rul es. add(new Rel easeEdit or Vowel Rul e(
new Rel easeEdi t or VONELWOr dDet ector (), vowel));

/] Add word rule for keywords, types, and constants.
Wir dRul e wor dRul e = new Wor dRul e(
new Rel easeEdi t or WrdDet ector (), defaultText);
for (int i =0; i < fgKeywords.length; i++) {
wor dRul e. addWor d(f gkeywords[i], keyword);
}

rul es. add(wor dRul e) ;
IRule[] result = new IRul e[rul es.size()];

rules.toArray(result);
set Rul es(result);

Use the organize imports option to add any required imports. Remember to
choose the java.util.List and JFace options when more than one choice is
available.

Note: The Rel easeEdi t or Col or Provi der class was provided as part of the
lab base template code (you don’t need to write this bit of the code). This class
is used to provide colors for the . r el ease editor.

2. Modify Rel easeEdi t or Sour ceVi ewer Conf i gur at i on to the following
variables:

private static Rel easeEditorCol or Provi der fgQol or Provi der;
private static Rel easeEditorBodyScanner fgBodyScanner;

3. Modify the Rel easeEdi t or Sour ceVi ewer Confi gurati on() constructor to
add the following lines of code after super () :

f gCol or Provi der = new Rel easeEdi t or Col or Provi der () ;
f gBodyScanner = new Rel easeEdi t or BodyScanner (f gCol or Provi der) ;

EX_JFace_Text_Editor_V2.doc & Copyright IBM Corporation 2000, 2001 18-14

Workbench JFace Text Editor

4. Addthe get Rel easeEdi t or BodyScanner () method to the
Rel easeEdi t or Sour ceVi ewer Confi gur ati on class:

public static Rul eBasedScanner get Rel easeEdit or BodyScanner () {
return fgBodyScanner;

}

5. Override get Present at i onReconci | er (1 Sour ceVi ewer sourceVi ewer) in
the Rel easeEdi t or Sour ceVi ewer Conf i gur ati on class:

public | PresentationReconciler getPresentationReconciler(
| Sour ceVi ewer sourceVi ewer) {

Present ati onReconci | er reconciler = new Presentati onReconciler();

Def aul t Damager Repai rer dr = new Def aul t Danager Repai r er (
get Rel easeEdi t or BodyScanner ());

reconciler.setRepairer(dr, "_release_default");

reconci |l er. set Damager (dr, "__rel ease_default");

dr = new Def aul t Danmager Repai r er (

get Rel easeEdi t or BodyScanner ());
reconciler.setRepairer(dr, "__rel ease_header");
reconcil er. set Damager (dr, "__rel ease_header");

dr = new Def aul t Danager Repai r er (

get Rel easeEdi t or BodyScanner ());
reconciler.setRepairer(dr, "__release_title");
reconci |l er. set Damager (dr, "__release_title");

return reconciler;

6. You are now ready to test your color highlighting code. Start the workbench
and edit a .release file.

Notice that words that begin with a vowel are in green, while those that are
keywords are shown in red. The last rule executed wins, so keywords that
start with a vowel are green. It is a good idea to version your code again now.

Part 8: Implement a Content Formatter (OPTIONAL)

In this part of the exercise we will add a content formatter to our .release notes editor. The content
formatter will capitalize all the letters of the title (the first line of a .release file). The sections in the
file will also be indented.

EX_JFace_Text_Editor_V2.doc & Copyright IBM Corporation 2000, 2001 18-15

Workbench JFace Text Editor

TEST RELEASE HOTES

1. Ab=tract
Thi= release notes editor i= not fancy.
2. Install
Ho instruction= about this what=soever.
3. Error Handle
Are wvou kidding, this i= error freel
4. Sy=ten Fequirements
¥ou need a better than 486 machine to run this.
Al=o, thi=s will not run in 05-2.

4 o

To implement a content formatter:

Implement your formatting strategy in a class that implements the

| Format tingStr at egy interface.

Add this strategy as the Cont ent For mat t er for the editor by adjusting the
Sour ceVi ewer Confi gur at i on. get Cont ent For mat t er () method.

Make the content-format available in the editor user interface by using a
menu item and/or a shortcut key.

1. Create a Rel easeEdi t or Def aul t St r at egy class in the
comibm | ab. editor. configuration package that implements
| FormattingStrategy.

Select both the Constructors from superclass and Inherited abstract
methods options.

2. Create a method get Tabs(i nt) that returns a String of tabs:

private String getTabs(int num {
String result ="";
for (int i =0; i <num i++) {
result += "\t";
}

return result;

}

3. Customize the format() method.

The method f ormat (Stri ng, bool ean, String, int[]) formats the
content string and adapts the positions according to the reformatting (review
the javadoc for the method).

EX_JFace_Text_Editor_V2.doc & Copyright IBM Corporation 2000, 2001

18-16

Workbench JFace Text Editor

The strategy is told whether the beginning of the content string is a line start. It
is also told how the indentation string to be used looks like. Change this
method to look like this:

public String format(
String content, bool ean isLineStart,
String indentation, int[] positions) {

if (content.charAt(0) != "\t")
return get Tabs(1) + content;
el se

return content;

4. Review the other formatting classes that were provided in the template.
The Rel easeEditorTitl eStrat egy and Rel easeEdi t or Header St r at egy
classes were provided to you when you imported the lab base.

If you review these classes you will see that no special formatting is performed
on the header while the title is converted to upper case characters.
5. Add the formatters to the editor.

To add these formatters to the .release editor, implement the
get Cont ent For mat t er (|1 Sour ceVi ewer sour ceVi ewer) method in the
Rel easeEdi t or Sour ceVi ewer Confi gur at i on class:

public | ContentFormatter getContentFormatter(
| Sour ceVi ewer sourceVi ewer) {
Content Formatter formatter = new Content Formatter();

| FormattingStrategy titleStrategy = new
Rel easeEditorTitl eStrategy();

| FormattingStrategy header Strategy = new
Rel easeEdi t or Header Strat egy() ;

| FormattingStrategy defaultStrategy = new
Rel easeEdi t or Def aul t Strat egy() ;

formatter.set FormattingStrategy(defaultStrategy, "_release_default");
formatter.set Formatti ngStrategy(header Strategy, "_ rel ease_header");
formatter.setFormattingStrategy(titleStrategy, "_release_title");

return formatter;

6. You can now test your code. Start the workbench and open the
test . rel ease file. Put your mouse pointer on the editor area, open the pop-up
menu and select Content Format.

EX_JFace_Text_Editor_V2.doc & Copyright IBM Corporation 2000, 2001 18-17

Workbench JFace Text Editor

Part 9: Implement a simple content assist for the release notes editor (OPTIONAL)

A content-assist processor is responsible for determining a list of proposals. A proposal is a
possible completion for the portion of the document for which content-assist was requested. In the
simplest case you can provide content assist by:

Creating the content-assist processor class that is specific to the content to be
edited

Creating a source-viewer configuration class to enable the function in your editor
application

Make the content-assist available in the editor user interface by using a

menu item and/or a shortcut key.

In our exercise, the content-assist processor class is provided. We will modify this class so that
when you press CTRL-Space, or when you select the Edit > Content Assist menu item, or when
you do a pop-up menu Content assist from the release notes area, you will get a list of proposals.

Note that the class Rel easeEdi t or Conpl et i onPr ocessor implements the interface
org. eclipse.jface.text.contentassist.|ContentAssistProcessor. This class is
provided in the com i bm | ab. edi t or. confi gur at i on package.

1. Make a list of proposal items that we want to show when content-assist is invoked. In
the Rel easeEdi t or Conpl eti onProcessor class, add a protected final static field
named f gPr oposal s of type String[]:

protected final static String[] fgProposals =
{"Abstract", "Install", "Error", "Handle", "Systenf, "Requirenents"};

2. Replace the conput eConpl et i onProposal s(| Text Vi ewer, int) method so
that it returns an array of | Cont ent Assi st Proposal instances:

public | Conpl eti onProposal [] conput eConpl eti onProposal s(
| Text Vi ewer viewer, int docunmentOffset) {

| Conpl etionProposal [] result = new
| Conpl et i onProposal [f gProposal s. | ength];

for (int i =0; i < fgProposals.length; i++) {
| ContextInformati on i nfo = new Cont ext | nformation(
fgProposal s[i], "'" + fgProposals[i] + "' Release Editor popup");

result[i] = new Conpl eti onProposal (
fgProposal s[i],
docunent O f set
0,
fgProposal s[i].length(),
null,
fgProposal s[i],
info,
"Rel ease notes keyword: '" + fgProposals[i] +"'");

}

return result;

}

EX_JFace_Text_Editor_V2.doc & Copyright IBM Corporation 2000, 2001 18-18

Workbench JFace Text Editor

When content assist is requested at run time, the following method is called to
build the code-assist completion list the conput ePr oposal s() method in the
Conpl et i onPr oposal Popup class is called.

The conput ePr oposal s() method calls the

conput eConpl et i onProposal s(ITextViewer,int) method in the

Cont ent Assi st class - passing the viewer whose document is used to
compute the proposals and the document position as parameters to build the
completion list.

The position is used to determine the appropriate content-assist processor to
invoke. The process completes after the

conput eConpl eti onProposal s(I Text Vi ewer, int) method in the

Rel easeEdi t or Conpl eti onProcessor class is called.

In this simplified case, the input parameters are ignored and the same list of
proposals are returned each time.

3. Enable code assist by adding the completion processor to the editor
configuration.

Override the get Cont ent Assi st ant (| Sour ceVi ewer) method in the
Rel easeEdi t or Sour ceVi ewer Confi gurati on class:

public | ContentAssi stant get Content Assi stant (1 SourceVi ewer sour ceM ewer)

{

Cont ent Assi st ant assi stant = new Cont ent Assi stant();
assi st ant . set Cont ent Assi st Processor (

new Rel easeEdi t or Conpl eti onProcessor (),

| Docunent . DEFAULT_CONTENT_TYPE) ;

assi st ant . enabl eAut oActi vati on(true);

assi st ant . set Aut oAct i vati onDel ay(500);

assi st ant. set Proposal PopupOri ent ati on(
| Cont ent Assi st ant . PROPOSAL_OVERLAY) ;

assi st ant. set Cont ext | nf or mat i onPopupOri ent ati on(
| Cont ent Assi st ant . CONTEXT_| NFO_ABOVE) ;

return assistant;

Adjust the imports as required.

4. Override the get Confi gur edCont ent Types(Qbj ect) method inherited from
the superclass as follows:

public String[]getConfiguredContent Types(| SourceVi ener sourceVi ewer) {

return new String[] {
Rel easeEdi torPartitioner. RELEASE DEFAULT,
Rel easeEdi torPartitioner. RELEASE HEADER,
Rel easeEdi torPartitioner. RELEASE Tl TLE };

EX_JFace_Text_Editor_V2.doc & Copyright IBM Corporation 2000, 2001

18-19

Workbench JFace Text Editor

5. You are now ready to test your content-assist processing:
a. Start the Workbench using Run Edit Configurations... .

b. Edit the test.release file and make sure that your mouse pointer is over the
Test Release Notes editor area, i.e. focus is in the editor area.

Check that Content Assist shows on the Edit menu. Check that after you

C.
select the Content Assist menu item, you will get the list of proposals.
2
[
ot
[@ Paste Criwy
% Delete Delete
Select all Cirl+a

Find/Replace,.. CrlH+F

Add Bookmark...
Add Task.

Cir HSPaCE

Content Tip Ctr HSHIFT+SPACE

Figure 18-6
Edit Menu with Content Assist Activated [editor_06.tif]

d. Check that Content Assist shows on the pop-up menu when you are in the
Release Notes editor area.

Paste

Content Tip

Figure 18-7
Context Menu with Content Assist Activated [editor_07.tif]

e. Add a 5" header in test.release file. Invoke content assist by pressing
Ctrl+Space, thru the popup menu or thru the Edit menu. Did you get the
list of proposals as shown below?

EX_JFace_Text_Editor_V2.doc & Copyright IBM Corporation 2000, 2001

18-20

L required — or when at least.

Workbench JFace Text Editor

B *test.r x

Test Release Hotes

1. Abstract
This release notes editor 1= not fancy.
2. Install
Ho instructions about this whatsoswver
3. Error Handle
Are you kidding. this is error free!
4 System Requiremesnts]

You need a better|

Also, this will pcsiesy
5. Whats Hext? Ingtall
Errar
Handle
System
Requirements

Figure 18-8
Content Assist Menu [editor_08.tif]

Exercise Activity Review

What you did in this exercise:

Used Workbench extensions to create an editor for files of type .release.

Implemented content-assist, syntax highlighting and content formatter features in

your editor

EX_JFace_Text_Editor_V2.doc & Copyright IBM Corporation 2000, 2001

18-21

Eclipse Platform Enablement
D/3ECA
IBM Corporation - RTP, NC

Eclipse Platform Enablement
D/3ECA
IBM Corporation - RTP, NC

