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Lab 1: CSG 711:
Programming to Structure

Karl Lieberherr



Lab 2

History

• Frege: Begriffsschrift 1879: “The meaning 
of a phrase is a function of the meanings 
of its immediate constituents.”

• Example:
AppleList : Mycons | Myempty.
Mycons = <first> Apple <rest> AppleList.
Apple = <weight>  int.
Myempty = .



Lab 3

Meaning of a list of apples?
Total weight

• (tWeight al)
– [(Myempty? al) 0]
– [(Mycons? al)

(Apple-weight(Mycons-first al)) 
// meaning of first constituent

+
(tWeight(Mycons-rest al))]

//  meaning of rest constituent

AppleList : Mycons | Myempty.
Mycons = <first> Apple <rest> AppleList.
Apple = <weight>  int.
Myempty = .
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Lab 4

In Scheme: Structure

(define-struct Mycons (first rest))
(define-struct Apple (weight))
(define-struct Myempty ())



Lab 5

Design Information

Scheme solution
AppleList : Mycons | Myempty.
Mycons = <first> Apple <rest> AppleList.
Apple = <weight>  int.
Myempty = .

(define-struct Mycons (first rest))
(define-struct Apple (weight))
(define-struct Myempty ())
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Lab 6

In Scheme: Behavior

(define (tWeight al)
(cond 
[(Myempty? al) 0]
[(Mycons? al) (+ 

(Apple-weight (Mycons-first al))
(tWeight (Mycons-rest al)))]))



Lab 7

In Scheme: Testing

(define list1 (make-Mycons (make-Apple 
111) (make-Myempty)))

(tWeight list1)
111
(define list2 (make-Mycons (make-Apple 50) 

list1))
(tWeight list1)
161



Lab 8

Reflection on Scheme solution

• Program follows structure
• Design translated somewhat elegantly into 

program.
• Dynamic programming style.
• But the solution has problems!



Lab 9

Structure

• The Scheme program has lost information 
that was available at design time.
– The first line is missing.
– Scheme allows us to put anything into the 

fields.  

AppleList : Mycons | Myempty.
Mycons = <first> Apple <rest> AppleList.
Apple = <weight>  int.
Myempty = .



Lab 10

Information can be expressed in 
Scheme

• Dynamic tests
• Using object system



Lab 11

Behavior

• While the purpose of this lab is 
programming to structure, the Scheme 
solution uses too much structure!
(define (tWeight al)
(cond 
[(Myempty? al) 0]
[(Mycons? al) (+ 

(Apple-weight (Mycons-first al))
(tWeight (Mycons-rest al)))]))

duplicates all of it!



Lab 12

How can we reduce the duplication 
of structure?

• First small step: Express all of structure in 
programming language once.

• Eliminate conditional!
• Implementation of tWeight() has a method 

for Mycons and Myempty.
• Extensible by addition not modification.
• Big win of OO.



Solution in Java

Lab 13

AppleList: abstract int tWeight();
Mycons: int tWeight() {
return (first.tWeight() + rest.tWeight());

}
Myempty: int tWeight() {return 0;}

AppleList : Mycons | Myempty.

Mycons = <first> Apple <rest> AppleList.

Apple = <weight>  int.

Myempty = .
+

translated
to Java



Lab 14

What is better?

• structure-shyness has improved.
• No longer enumerate alternatives in 

functions.
• Better follow principle of single point of 

control (of structure).



Lab 15

Problem to think about
(while you do hw 1)

• Consider the following two Shape 
definitions.
– in the first, a combination consists of exactly 

two shapes.
– in the other, a combination consists of zero or 

more shapes.
• Is it possible to write a program that works 

correctly for both shape definitions?



Lab 16

First Shape

Shape : Rectangle | Circle | Combination.
Rectangle = "rectangle" <x> int <y> int

<width> int <height> int.
Circle = "circle" <x> int <y> int <radius> int.
Combination = "(" <top> Shape <bottom> 

Shape ")".



Lab 17

Second Shape

Shape : Rectangle | Circle | Combination.
Rectangle = "rectangle" <x> int <y> int 

<width> int <height> int.
Circle = "circle" <x> int <y> int 

<radius> int.
Combination = "(" List(Shape) ")".
List(S) ~ {S}.



Lab 18

Input (for both Shapes)

(
rectangle 1 2 3 4
(
circle 3 2 1
rectangle 4 3 2 1

)
)



Lab 19

Abstractions

• abstraction through parameterization:
– planned modification points 

• aspect-oriented abstractions:
– unplanned extension points
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