
Lab 1

Lab 1: CSG 711:
Programming to Structure

Karl Lieberherr

Lab 2

History

• Frege: Begriffsschrift 1879: “The meaning
of a phrase is a function of the meanings
of its immediate constituents.”

• Example:
AppleList : Mycons | Myempty.
Mycons = <first> Apple <rest> AppleList.
Apple = <weight> int.
Myempty = .

Lab 3

Meaning of a list of apples?
Total weight

• (tWeight al)
– [(Myempty? al) 0]
– [(Mycons? al)

(Apple-weight(Mycons-first al))
// meaning of first constituent

+
(tWeight(Mycons-rest al))]

// meaning of rest constituent

AppleList : Mycons | Myempty.
Mycons = <first> Apple <rest> AppleList.
Apple = <weight> int.
Myempty = .

PL independent

AppleList

Mycons Myempty

Apple int

rest

first

weight

Lab 4

In Scheme: Structure

(define-struct Mycons (first rest))
(define-struct Apple (weight))
(define-struct Myempty ())

Lab 5

Design Information

Scheme solution
AppleList : Mycons | Myempty.
Mycons = <first> Apple <rest> AppleList.
Apple = <weight> int.
Myempty = .

(define-struct Mycons (first rest))
(define-struct Apple (weight))
(define-struct Myempty ())

AppleList

Mycons Myempty

Apple

rest

first

intweight

Mycons Myempty

rest

first

Apple int
weight

Lab 6

In Scheme: Behavior

(define (tWeight al)
(cond
[(Myempty? al) 0]
[(Mycons? al) (+

(Apple-weight (Mycons-first al))
(tWeight (Mycons-rest al)))]))

Lab 7

In Scheme: Testing

(define list1 (make-Mycons (make-Apple
111) (make-Myempty)))

(tWeight list1)
111
(define list2 (make-Mycons (make-Apple 50)

list1))
(tWeight list1)
161

Lab 8

Reflection on Scheme solution

• Program follows structure
• Design translated somewhat elegantly into

program.
• Dynamic programming style.
• But the solution has problems!

Lab 9

Structure

• The Scheme program has lost information
that was available at design time.
– The first line is missing.
– Scheme allows us to put anything into the

fields.

AppleList : Mycons | Myempty.
Mycons = <first> Apple <rest> AppleList.
Apple = <weight> int.
Myempty = .

Lab 10

Information can be expressed in
Scheme

• Dynamic tests
• Using object system

Lab 11

Behavior

• While the purpose of this lab is
programming to structure, the Scheme
solution uses too much structure!
(define (tWeight al)
(cond
[(Myempty? al) 0]
[(Mycons? al) (+

(Apple-weight (Mycons-first al))
(tWeight (Mycons-rest al)))]))

duplicates all of it!

Lab 12

How can we reduce the duplication
of structure?

• First small step: Express all of structure in
programming language once.

• Eliminate conditional!
• Implementation of tWeight() has a method

for Mycons and Myempty.
• Extensible by addition not modification.
• Big win of OO.

Solution in Java

Lab 13

AppleList: abstract int tWeight();
Mycons: int tWeight() {
return (first.tWeight() + rest.tWeight());

}
Myempty: int tWeight() {return 0;}

AppleList : Mycons | Myempty.

Mycons = <first> Apple <rest> AppleList.

Apple = <weight> int.

Myempty = .
+

translated
to Java

Lab 14

What is better?

• structure-shyness has improved.
• No longer enumerate alternatives in

functions.
• Better follow principle of single point of

control (of structure).

Lab 15

Problem to think about
(while you do hw 1)

• Consider the following two Shape
definitions.
– in the first, a combination consists of exactly

two shapes.
– in the other, a combination consists of zero or

more shapes.
• Is it possible to write a program that works

correctly for both shape definitions?

Lab 16

First Shape

Shape : Rectangle | Circle | Combination.
Rectangle = "rectangle" <x> int <y> int

<width> int <height> int.
Circle = "circle" <x> int <y> int <radius> int.
Combination = "(" <top> Shape <bottom>

Shape ")".

Lab 17

Second Shape

Shape : Rectangle | Circle | Combination.
Rectangle = "rectangle" <x> int <y> int

<width> int <height> int.
Circle = "circle" <x> int <y> int

<radius> int.
Combination = "(" List(Shape) ")".
List(S) ~ {S}.

Lab 18

Input (for both Shapes)

(
rectangle 1 2 3 4
(
circle 3 2 1
rectangle 4 3 2 1

)
)

Lab 19

Abstractions

• abstraction through parameterization:
– planned modification points

• aspect-oriented abstractions:
– unplanned extension points

	Lab 1: CSG 711:Programming to Structure
	History
	Meaning of a list of apples?Total weight
	In Scheme: Structure
	Design Information
	In Scheme: Behavior
	In Scheme: Testing
	Reflection on Scheme solution
	Structure
	Information can be expressed in Scheme
	Behavior
	How can we reduce the duplication of structure?
	Solution in Java
	What is better?
	Problem to think about(while you do hw 1)
	First Shape
	Second Shape
	Input (for both Shapes)
	Abstractions

