

Traversal Strategies

Specification and Implementation

Idea of Traversal Strategies

- Defining high-level artifact in terms of a low-level artifact without committing to details of low-level artifact in definition of high-level artifact. Low-level artifact is parameter to definition of high-level artifact.
- Exploit structure of low-level artifact.

Applications of Traversal

Strategies

- Application 1
- High-level: Adaptive program, containing strategy.
- Low-level: Class graph
- Application 2 (see paper by Dave Mandelin on Prospector and Jungloids PLDI 2005)
- High-level: High-level API
- Low-level: Low-level API

Similar to a function definition accessing parameter generically

- High-level(Low-level)
- High-level does not refer to all information in Low-level but High-level(Low-level) contains details of Low-level.

Overview

- Use structure in graphs to express subgraphs and path sets in those graphs.
- Gain: writing programs in terms of strategies yields shorter and more flexible programs.
- Does not work well on dense graphs and graphs with self loops: use hierarchical approach in this case.

Graphs used

- object graphs
- class graphs
- strategy graphs
- traversal graphs
- propagation graphs = folded traversal graphs

Simplified form of theory

- Focus on class graphs with one kind of nodes and one kind of edges.

Strategy definition: embedded, positive strategies

- Given a graph G, a strategy graph S of G is any subgraph of the transitive closure of G with source s and target t.
- The transitive closure of $\mathrm{G}=(\mathrm{V}, \mathrm{E})$ is the graph $G^{*}=\left(V, E^{*}\right)$, where $E^{*}=\{(v, w)$: there is a path from vertex v to vertex w in G.
S is a strategy for G

Discussion

- Seems strange: define a strategy for a graph but strategy is independent of graph.
- Many very different graphs can have the same strategy.
- Better: A graph G is an instance of a graph S, if S is a subgraph of the transitive closure of G. (call G: concrete graph, S: abstract graph).
G_{1} compatible G_{2}

Theory of Strategy Graphs

- Palsberg/Xiao/Lieberherr: TOPLAS ‘95
- Palsberg/Patt-Shamir/Lieberherr: Science of Computer Programming 1997
- Lieberherr/Patt-Shamir/Doug Orleans: Strategy graphs, 1997 NU TR, TOPLAS 2004
- Lieberherr/Patt-Shamir: Dagstuhl ‘98 Workshop on Generic Programming

Strategy graph and base graph are directed graphs

Key concepts

- Strategy graph S with source s and target t of a base graph G. Nodes(S) subset Nodes(G) (Embedded strategy graph).
- A path p is an expansion of path p^{\prime} if p^{\prime} can be obtained by deleting some elements from p.
- S defines path set in G as follows: PathSet $_{s t}(G, S)$ is the set of all $s-t$ paths in G that are expansions of any s-t path in S.

generalization other relationships

Learning map

numbers: order of coverage

correspondences

 X:class path - concrete path Y:object path - concrete path traversal path - class path4 object traversal defined by concrete path set

Algorithm 1

in: strategy + class graph out: traversal graph

6 name map constraint map

11 short-cuts
generalization

- other relationships
numbers: order of coverage

\section*{| $1 \begin{array}{l}\text { graph } \\ \text { paths } \\ \text { labeled }\end{array}$ |
| :---: |}

Learning map

FROM-TO computation

Algorithm 1
in: strategy + class graph out: traversal graph

12 Algorithm 2
in: traversal + object graph out: object traversal

Remarks about traversals

- If object graph is cyclic, traversal is not well defined.
- Traversals are opportunistic: As long as there is a possibility for success (i.e., getting to the target), the branch is taken.
- Traversals do not look ahead. Visitors must delay action appropriately.

Strategies: traversal specification

- Strategies select class-graph paths and then derive concrete paths by applying the natural correspondence.
- Traversals are defined in terms of sets of concrete paths.
- A strategy selects class graph paths by specifying a high-level topology which spans all selected paths.

Strategies

- A strategy $S S$ is a triple $S S=(S, s, t)$, where S $=(C, D)$ is a directed unlabeled graph called the strategy graph, where C is the set of strategy-graph nodes and D is the set of strategy-graph edges, and $s, t \in C$ are the source and target of $S S$, respectively.

Strategies, constraint map

- Need negative constraints
- Given a class graph $G=(V, E, L)$, an element predicate $E P$ for G is a predicate over $V \cup E$. Given a strategy $S S$, a function B mapping each edge of $S S$ to an element predicate is called a constraint map for $S S$ and G.

Strategies, constraint map

- Let S be a strategy graph, let G be a class graph, let N be a name map and let B be a constraint map for S and G. Given a strategy-graph path $p=<a_{0} a_{1} \ldots a_{n}>$, we say that a class graph path p ' is a satisfying expansion of p with respect to B under N if there exist paths p_{1}, \ldots, p_{n} such that $p^{\prime}=p_{1}$. $p_{2} \ldots p_{n}$ and:

Strategies, constraint map

- For all $0<i<n+1$, Source $\left(p_{i}\right)=N\left(a_{i-1}\right)$ and $\operatorname{Target}\left(p_{i}\right)=N\left(a_{i}\right)$.
- For all $0<i<n+1$, the interior elements of p_{i} satisfy the element predicate $B\left(a_{i-1}, a_{i}\right)$.

Strategies

- Many ways to decompose a path.
- Element constraints never apply to the ends of the subpaths.
- from A bypassing $\{A, B\}$ to B

Strategies, path sets

- Let $S S=(S, s, t)$ be a strategy, let $G=$ (V, E, L) be a class graph, and let N be a name map for $S S$ and G and let B be a constraint map for S and G. The set of concrete paths PathSet[SS,G,N,B] is $\left\{X\left(p^{\prime}\right)\right.$
$\mid p^{\prime} \in P_{G}(N(s), N(t))$ and there exists $p \in$ $P_{S}(s, t)$ such that p^{\prime} is an expansion of $N(p)$ w.r.t. B\}.

Strategies

- PathSet[SS,G,N] = PathSet[SS,G,N, $\left.B_{\text {TRUE }}\right]$ for the constraint map $B_{\text {TRUE }}$ which maps all strategy graph edges to the trivial element predicate that is always TRUE.

Strategies

- Are used in adaptive programs.
- Adaptive programs are expressed in terms of class-valued and relation-valued variables. Class graph not known when program is written.
- generalization
_ other relationships

Learning map

numbers: order of coverage

FROM-TO computation
correspondences X:class path - concrete path Y:object path - concrete path traversal path - class path

What we tried.

- Path set is represented by subgraph of class graph, called propagation graph. Propagation graph is translated into a set of methods. Works in many cases. Two important cases which do not work:
- short-cuts
- zig-zags

Short-cut

$$
\begin{array}{rll}
\left\{\begin{array}{rll}
A & -> & B \\
B & -> & C
\end{array}\right\}
\end{array}
$$

class graph

strategy graph with name map

$1+1=3$

strategy: $\left\{\begin{array}{lll}A & -> & B\end{array}\right.$ B -> C\}
strategy graph with name map
Incorrect traversal code: class A \{void t() \{x.t();\}\} class X \{void t()\{if (b!==null)b.t();c.t();\}\} class B \{void t() \{x.t();\}\} class C $\{\operatorname{void} \mathrm{t}()\}\}$

Correct traversal code: class A \{void t() $\{$ x.t(); $\}$ \}
class X \{void t()\{if (b!==null)b.t2();\} void t2()\{if (b!==null)b.t2();c.t2();\} \}
class B \{void t2() \{x.t2();\}\}
class C $\{$ void t2() $\}\}$

abstract representation of traversal code

Short-cut

strategy: $\{A->B$
B $->C\}$
class graph
traversal
method t

thick edges with incident nodes: traversal graph
strategy graph with name map

Zig-zags

class graph

<A C D E G> is excluded
At a D-object need to remember
 how we got there. Need argument for traversal methods. Represent traversal by tokens in traversal graph.

Compilation of strategies

- Two parts
- construct graph which expresses the traversal PathSet[SS,G,N,B] in a more convenient way: traversal graph $T G(S S, G, N, B)$. Represents allowed traversals as a "big" graph.
- Generate code for traversal methods by using $T G(S S, G, N, B)$.

Compilation of strategies

- Idea of traversal graph:
- Paths defined by from A to B can be represented by a subgraph of the class graph. Compute all edges reachable from A and from which B can be reached. Edges in intersection form graph which represents traversal.
- Generalize to any strategies: Need to use big graph but above from A to B approach will work.

Compilation of strategies

- Idea of traversal graph:
- traversal graph is "big brother" of propagation graph
- is used to control traversal
- FROM-TO computation: Find subgraph consisting of all paths from A to B in a directed graph: Fundamental algorithm for traversals
- Traversal graph computation is FROM-TO computation.

Strategy behind Strategy

- Instead of developing a specialized algorithm to solve a specific problem, modify the data until a standard algorithm can do the work. May have implications on efficiency.
- In our case: use FROM-TO computation.

FROM-TO computation

- Problem: Find subgraph consisting of all paths from A to B in a directed graph.
- Forward depth-first traversal from A
- colored in red
- Backward depth-first traversal from B
- colored in blue
- Select nodes and edges which are colored in both red and blue.

Traversal graph computation Algorithm 1

- Let the strategy graph $S=(C, D)$ and let the strategy graph edges be $D=\left\{e_{1}, e_{2}, \ldots, e_{k}\right\}$.
- 1. Create a graph $G^{\prime}=\left(V^{\prime}, E^{\prime}\right)$ by taking k copies of G, one for each strategy graph edge. Denote the i th copy as $G^{i}=\left(V^{i}, E^{i}\right)$.
- The nodes in V^{i} and edges in E^{i} are denoted with superscript i, as in v^{i}, e^{i}, etc.

Why k copies?

- Mimics using k distinct traversal method names.
- Run-time traversals need enough state information.

Traversal graph computation

- Each class-graph node v corresponds to k nodes in V^{\prime}, denoted v^{1}, \ldots, v^{k}.
- Extend Class mapping to apply to nodes of G' by setting $\operatorname{Class}\left(v^{i}\right)=v$, where $v^{i} \in V$ and $v \in V$.

Preview of step 2

- Link the copied class graphs through temporary use of intercopy edges.
- Each strategy graph node is responsible for additional edges in the traversal graph.
- If strategy graph node has one incoming and one outgoing edge, one edge is added.

Preview of step 2

- Addition of edges from one copy to the next:

f may be \diamond

Traversal graph computation

- 2.a For each strategy-graph node $a \in C$: Let $I=\left\{e i_{1}, \ldots, e i_{n}\right\}$ be the strategy-graph edges incoming into a, and let $O=\left\{e o_{1}, \ldots, e o_{m}\right\}$ be the set of strategy graph edges outgoing from a. Let $N(a)=v \in V$. Add n times m edges v^{j} to v^{l} for $j=1, \ldots, n$ and $l=1, \ldots, m$. Call these edges intercopy edges.

Traversal graph computation

- 2.b For each node $v^{i} \in G$ ' with an outgoing intercopy edge: Add edges (u^{i}, f, v^{j}) for all u^{i} such that $\left(u^{i}, f, v^{i}\right) \in E^{i}$, and for all v^{j} which are reachable from v^{i} through intercopy edges only.
- 2.c Remove all intercopy edges added in step 2.a.

Note: there is a bug lurking here!

- It took a while to find it. Doug Orleans found it in April 99.
- We used traversal strategies for over two years
- Paper was reviewed by reviewers of a top journal (Journal of the ACM)
- Solution: switch steps two and three. Why?

Preview of step 3

- Delete edges and nodes which we do not want to traverse.

Traversal graph computation

- 3. For each strategy-graph edge $e_{i}=$ from a to b : Let $N(a)=u$ and $N(b)=v$. Remove from the subgraph G^{i} all elements which do not satisfy the predicate $B\left(e_{i}\right)$, with the exception of u^{i} and v^{i}.

$$
\begin{aligned}
& -V^{i}=\left\{v^{i}, u^{i}\right\} \cup\left\{w^{i} \mid B\left(e_{i}\right)(w)=T R U E\right\} \text {, and } \\
& -E^{i}=\left\{\left(w^{i}, l, y^{i}\right) \mid B\left(e_{i}\right)(w, l, y)=B\left(e_{i}\right)(w)=\right. \\
& \left.B\left(e_{i}\right)(y)=T R U E\right\} .
\end{aligned}
$$

Preview of step 4

- Get ready for the FROM-TO computation in the traversal graph: need a single source and target.

Traversal graph computation

- 4.a Add a node s^{*} and an edge $\left(s^{*}, N(s)^{i}\right)$ for each edge e_{i} outgoing from s in the strategy graph, where s is the source of the strategy.
- 4.b Add a node t^{*} and an edge ($N(t)^{i}, t^{*}$) for each edge e_{i} incoming into t in the strategy graph, where t is the target of the strategy.

Traversal graph computation

- 4.c Mark all nodes and edges in G ' which are both reachable from s^{*} and from which t^{*} is reachable, and remove unmarked nodes and edges from G^{\prime}. Call the resulting graph $G^{\prime \prime}=\left(V^{\prime \prime}, E^{\prime \prime}\right)$.
- The above is an application of the FROMTO computation.

Traversal graph computation

- 5. Return the following objects:
- The graph obtained from $G^{\prime \prime}$ after removing s^{*} and t^{*} and all their incident edges. This is the traversal graph $T G(S S, G, N, B)$.
- The set of all nodes v such that $\left(s^{*}, v\right)$ is an edge in $G^{\prime \prime}$. This is the start set, denotes T_{s}.
- The set of all nodes v such that $\left(v, t^{*}\right)$ is an edge in $G^{\prime \prime}$. This is the finish set, denoted T_{f}.

Traversal graph properties

- If p is a path in the traversal graph, then under the extended Class mapping, p is a path in the class graph. (Roughly: traversal graph paths are class graph paths.)
abstract representation of traversal code

Short-cut

strategy: $\{A->B$
B $->C\}$
class graph
class graph

thick edges with incident nodes: traversal graph

Can now think in terms of a graph and need no longer path sets. But graph may be bigger.

Traversal graph properties

- Let $S S$ be a strategy, G a class graph, N a name map, and let B be a constraint map. Let $T G=T G(S S, G, N, B)$ be the traversal graph and let T_{s} be the start set and T_{f} the finish set generated by algorithm 1 . Then $X\left(\operatorname{Class}\left(P_{T G}\left(T_{s}, T_{f}\right)\right)\right)=\operatorname{PathSet}[S S, G, N, B]$. (Roughly: Paths from start to finish in traversal graph are the paths selected by strategy.)
abstract representation of traversal code

Short-cut

strategy: $\{A->B$
B $->C\}$
class graph
class graph

thick edges with incident nodes: traversal graph

- generalization
_ other relationships

Learning map

numbers: order of coverage

correspondences X:class path - concrete path Y:object path - concrete path traversal path - class path

Traversal methods algorithm Algorithm 2

- Idea is to traverse an object graph while using the traversal graph as a road map.
- Maintain set of "tokens" placed on the traversal graph.
- May have several tokens: path leading to an object may be a prefix of several distinct paths in PathSet[SS,G,N,B].

Traversal method algorithm

- Traversal method Traverse(T), where T a set of tokens, i.e., a set of nodes in the traversal graph.
- When Traverse(T) invokes visit at an object, that object is added to traversal history.

Traversal method algorithm

- Traversal(T) is generic: same method for all classes.
- Traversal(T) is initially called with the start set T_{s} computed by algorithm 1.

Traversal methods algorithm

- Traverse(T), guided by traversal graph TG.
- 1. define a set of traversal graph nodes T^{\prime} by $T^{\prime}=\{v \mid \operatorname{Class}(v)=\operatorname{Class}($ this $)$ and there exists $u \in T$ such that $u=v$ or (u, \oslash, v) is an edge in $T G\}$.
- 2. If T ' is empty, return.
- 3. Call this.visit().

Traversal methods algorithm

- 4. Let Q be the set of labels which appear both on edges outgoing from a node in $T^{\prime} \in T G$ and on edges outgoing from this in the object graph. For each field name $l \in Q$, let

$$
T_{l}=\left\{v \mid(u, l, v) \in T G \text { for some } u \in T^{\prime}\right\} .
$$

- 5. Call this.l.Traverse (T_{ν}) for all $l \in Q$, ordered by "<", the field ordering.

Object graph
Short-cut
strategy:

$$
\left.\begin{array}{rll}
\mathrm{A} & -> & \mathrm{B} \\
\mathrm{~B} & -> & \mathrm{C}
\end{array}\right\}
$$

Traversal graph

Object graph
Short-cut
strategy:

$$
\left.\begin{array}{rll}
\mathrm{A} & -> & \mathrm{B} \\
\mathrm{~B} & -> & \mathrm{C}
\end{array}\right\}
$$

Traversal graph

$$
\begin{aligned}
& A(\square \\
& <x>X(\\
& B(\\
& \quad<x>X(\\
& \quad<c>C())) \\
& <c>C()))
\end{aligned}
$$

Used for token set and currently active object

Object graph
Short-cut
strategy:

$$
\left.\begin{array}{rll}
\mathrm{A} & -> & \mathrm{B} \\
\mathrm{~B} & -> & \mathrm{C}
\end{array}\right\}
$$

Traversal graph

$$
\begin{aligned}
& \text { A(} \\
& <\mathrm{x}>\mathrm{X}(\mathrm{Q} \\
& \quad<\mathrm{b}>\mathrm{B}(\\
& \quad<\mathrm{x}>\mathrm{X}(\\
& \quad<\mathrm{c}>\mathrm{C}())) \\
& \quad<\mathrm{c}>\mathrm{C}()))
\end{aligned}
$$

Object graph
Short-cut
strategy:

$$
\left.\begin{array}{rll}
\mathrm{A} & -> & \mathrm{B} \\
\mathrm{~B} & -> & \mathrm{C}
\end{array}\right\}
$$

Traversal graph

A(
 $<x>X($ $B(S$ $<x>X($ $<c>C()))$ $<c>C()))$

Used for token set and currently active object
start set

Object graph
Short-cut
strategy:

$$
\left.\begin{array}{rll}
\mathrm{A} & -> & \mathrm{B} \\
\mathrm{~B} & -> & \mathrm{C}
\end{array}\right\}
$$

Traversal graph

```
A(
\(<x>X(\)
\(<b>B(\) \(<\mathrm{x}>\mathrm{X}(\mathrm{S})\) \(<c>C()))\) \(<c>C()))\)
```


Object graph
Short-cut
strategy:

$$
\left.\begin{array}{rll}
\mathrm{A} & -> & \mathrm{B} \\
\mathrm{~B} & -> & \mathrm{C}
\end{array}\right\}
$$

Traversal graph

Object graph

Short-cut

Traversal graph

After going back to X

Traversal algorithm property

- Let O be an object tree and let o be an object in O. Suppose that the Traverse methods are guided by a traversal graph $T G$ with finish set T_{f}. Let $H(o, T)$ be the sequence of objects which invoke visit while o.Traverse(T) is active, where T is a $\underbrace{2}_{2}$ set of nodes in $T G$. Then traversing O from o guided by $X\left(P_{T G}\left(T, T_{f}\right)\right)$ produces $H(o, T)$.
strategy graph with name map

Zig-zags

class graph

<A C D E G> is excluded
traversal graph = strategy graph (essentially)

shorter: $\{A->D$ D->F F->G A->B B->E E->G\}

Main Theorem

- Let $S S$ be a strategy, let G be a class graph, let N be a name map, and let B be a constraint map. Let $T G$ be the traversal graph generated by Algorithm 1, and let T_{s} and T_{f} be the start and finish sets, respectively.

Main Theorem (cont.)

- Let O be an object tree and let o be an object in O. Let H be the sequence of nodes visited when o.Traverse is called with argument T_{s}, guided by $T G$. Then traversing O from o guided by PathSet[SS,G,N,B] produces H.

Complexity of algorithm

- Algorithm 1: All steps run in time linear in the size of their input and output. Size of traversal graph: $O\left(|S|^{2}|G| d_{0}\right)$ where d_{0} is the maximal number of edges outgoing from a node in the class graph.
- Algorithm 2: How many tokens? Size of argument T is bounded by the number of edges in strategy graph.

Simplifications of algorithm

- If no short-cuts and zig-zags, can use propagation graph. No need for traversal graph. Faster traversal at run-time.
- Presence of short-cuts and zig-zags can be checked efficiently (compositional consistency).
- See chapter 15 of AP book.

Extensions

- Multiple sources
- Multiple targets
- Intersection of traversals

Summary

- Abstract model behind strategy graphs.
- How to implement strategy graphs.
- How to apply: Precise meaning of strategies; how to write traversals manually (watch for short-cuts and zig-zags).

Where to get more information

- Paper with Boaz-Patt Shamir (strategies.ps in my FTP directory)
- Implementation of Demeter/Java and AP Library shows you how algorithms are implemented in Demeter/Java (and Java). See Demeter/Java resources page.
- Chapter 15 of AP book.

Feedback

- Send email to lieber@ccs.neu.edu.

