
Lab 1

Lab 1: CSG 711:
Programming to Structure

Karl Lieberherr

Lab 2

Using Dr. Scheme
• context-sensitive help
• use F1 as your mouse is on an identifier.

HelpDesk is language sensitive. Be
patient.

• try the stepper
• develop programs incrementally
• definition and use: Check Syntax
• use 299 / intermediate with lambda

Lab 3

General Recipe

• Write down the requirements for a function
in a suitable mathematical notation.

• Structural design recipe: page 368/369
HtDP

Lab 4

Designing Algorithms
• Data analysis and design
• Contract, purpose header
• Function examples
• Template
• Definition

– what is a trivially solvable problem?
– what is a corresponding solution?
– how do we generate new problems
– need to combine solutions of subproblems

• Test

Lab 5

Template
(define (generative-rec-fun problem)
(cond
[(trivially-solvable? problem)

(determine-solution problem)]
[else
(combine-solutions … problem …
(generative-rec-fun (gen-pr-1 problem))
…
(generative-rec-fun (gen-pr-n problem)))]))

Lab 6

Template for list-processing
(define (generative-rec-fun problem)
(cond
[(empty? problem) (determine-solution
problem)]
[else
(combine-solutions

problem
(generative-rec-fun (rest problem)))]))

Lab 7

duple (EOPL page 24)
(duple n x)
li:= empty;
for i :=1 to n do add x to li (does not matter

where);

Structural recursion:
if i=0 empty
else (cons x (duple (- n 1))

Lab 8

History (Programming to Structure)

• Frege: Begriffsschrift 1879: “The meaning
of a phrase is a function of the meanings
of its immediate constituents.”

• Example:
AppleList : Mycons | Myempty.
Mycons = <first> Apple <rest> AppleList.
Apple = <weight> int.
Myempty = .

Lab 9

Meaning of a list of apples?
Total weight

• (tWeight al)
– [(Myempty? al) 0]
– [(Mycons? al)

(Apple-weight(Mycons-first al))
// meaning of first constituent

+
(tWeight(Mycons-rest al))]

// meaning of rest constituent

AppleList : Mycons | Myempty.
Mycons = <first> Apple <rest> AppleList.
Apple = <weight> int.
Myempty = .

PL independent

AppleList

Mycons Myempty

Apple int

rest

first

weight

Lab 10

In Scheme: Structure

(define-struct Mycons (first rest))
(define-struct Apple (weight))
(define-struct Myempty ())

Lab 11

Design Information

Scheme solution
AppleList : Mycons | Myempty.
Mycons = <first> Apple <rest> AppleList.
Apple = <weight> int.
Myempty = .

(define-struct Mycons (first rest))
(define-struct Apple (weight))
(define-struct Myempty ())

AppleList

Mycons Myempty

Apple

rest

first

intweight

Mycons Myempty

rest

first

Apple int
weight

Lab 12

In Scheme: Behavior

(define (tWeight al)
(cond
[(Myempty? al) 0]
[(Mycons? al) (+

(Apple-weight (Mycons-first al))
(tWeight (Mycons-rest al)))]))

Lab 13

In Scheme: Testing

(define list1 (make-Mycons (make-Apple
111) (make-Myempty)))

(tWeight list1)
111
(define list2 (make-Mycons (make-Apple 50)

list1))
(tWeight list2)
161

Note: A test should
return a Boolean value.

See tutorial by Alex
Friedman on testing in
Dr. Scheme.

Lab 14

Reflection on Scheme solution

• Program follows structure
• Design translated somewhat elegantly into

program.
• Dynamic programming language style.
• But the solution has problems!

Lab 15

Behavior

• While the purpose of this lab is
programming to structure, the Scheme
solution uses too much structure!
(define (tWeight al)
(cond
[(Myempty? al) 0]
[(Mycons? al) (+

(Apple-weight (Mycons-first al))
(tWeight (Mycons-rest al)))]))

duplicates all of it!

Lab 16

How can we reduce the duplication
of structure?

• First small step: Express all of structure in
programming language once.

• Eliminate conditional!
• Implementation of tWeight() has a method

for Mycons and Myempty.
• Extensible by addition not modification.
• Big win of OO.

Solution in Java

Lab 17

AppleList: abstract int tWeight();
Mycons: int tWeight() {
return (first.tWeight() + rest.tWeight());

}
Myempty: int tWeight() {return 0;}

AppleList : Mycons | Myempty.

Mycons = <first> Apple <rest> AppleList.

Apple = <weight> int.

Myempty = .
+

translated
to Java

Lab 18

What is better?

• structure-shyness has improved.
• No longer enumerate alternatives in

functions.
• Better follow principle of single point of

control (of structure).

Lab 19

Problem to think about
(while you do hw 1)

• Consider the following two Shape
definitions.
– in the first, a combination consists of exactly

two shapes.
– in the other, a combination consists of zero or

more shapes.
• Is it possible to write a program that works

correctly for both shape definitions?

Lab 20

First Shape

Shape : Rectangle | Circle | Combination.
Rectangle = "rectangle" <x> int <y> int

<width> int <height> int.
Circle = "circle" <x> int <y> int <radius> int.
Combination = "(" <top> Shape <bottom>

Shape ")".

Lab 21

Second Shape

Shape : Rectangle | Circle | Combination.
Rectangle = "rectangle" <x> int <y> int

<width> int <height> int.
Circle = "circle" <x> int <y> int

<radius> int.
Combination = "(" List(Shape) ")".
List(S) ~ {S}.

Lab 22

Input (for both Shapes)

(
rectangle 1 2 3 4
(
circle 3 2 1
rectangle 4 3 2 1

)
)

Lab 23

Think of a shape as a list!

• A shape is a list of rectangles and circles.
• Visit the elements of the list to solve the

area, inside and bounding box problems.

Lab 24

Help with the at function

• Design the function at. It consumes a set
S and a relation R. Its purpose is to collect
all the seconds from all tuples in R whose
first is a member of S.

Lab 25

Deriving Scheme solution (1)
at: s: Set r: Relation
Set s0 = {};
from r:Relation to p:Pair:
if (p.first in s) s0.add(p.second);

return s0;

at: s: Set r: Relation
if empty(r) return empty set else {
Set s0 = {}; p1 := r.first();
if (p1.first in s) s0.add(p1.second);
return union(s0, at(s, rest(r))}

definition

decompose based
on structure of a relation:
either it is empty or
has a first element

Deriving Scheme solution (2)
at: s: Set r: Relation
Set s0 = {};
from r:Relation to p:Pair:
if (p.first in s) s0.add(p.second);

return s0;

at: s: Set r: Relation
if empty(r) return empty set else {
p1 := r.first(); rst = at(s, rest(r));
if (p1.first in s) return rst.add(p1.second) else rst}

definition

decompose based
on structure of a relation:
either it is empty or
has a first element

Why not implement this
definition directly using
iteration ???

Lab 26

Lab 27

Close to final solution
;; at : Symbol Relation -> Set
(define (at s R)

(cond
[(empty? R) empty-set]
[else (local ((define p1 (first R))

(define rst (at s (rest R))))
(if (element-of (first p1) s)

(add-element (second p1) rst)
rst))]))

at: s: Set r: Relation
if empty(r) return empty set else {
p1 := r.first(); rst = at(s, rest(r));
if (p1.first in s) return rst.add(p.second)
else rst}

Lab 28

dot example

• Compute the composition of two relations.
• r and s are relations. r.s (dot r s) is the

relation t such that x t z holds iff there
exists a y so that x r y and y s z.

Lab 29

Why not implement iterative
solution?

dot Relation r1, r2
Relation r0 = {};
from r1: Relation to p1: Pair
from r2: Relation to p2: Pair
if (= p1.second p2.first) r0.add(new Pair(p1.first,p2.second));

return r0;

if empty(r1) return empty-set else
;; there must be a first element p11 in r1
Relation r0 = empty-set;
from r2: Relation to p2: Pair
if (= p11.second p2.first) r0.add(new Pair(p11.first,p2.second));

return union (r0, dot((rest r1),r2));

Lab 30

Closer to Scheme solution:
reuse at

dot Relation r, s;
if empty(r) return empty-set else
;; there must be a first element fst in r
x=fst.first; y=fst.second;
zs = at(list(y), s);
turn x and zs into list of pairs: r0;
return union (r0, dot((rest r),s));

Lab 31

Scheme solution
(define (dot.v0 r s)

(cond
[(empty? r) empty]
[else (local ((define fst (first r))

(define x (first fst))
(define y (second fst))
(define zs (at (list y) s)))
(union (map (lambda (s) (list x s)) zs)

(dot.v0 (rest r) s)))]))

Lab 32

Save for later

Lab 33

Abstractions

• abstraction through parameterization:
– planned modification points

• aspect-oriented abstractions:
– unplanned extension points

Lab 34

Structure

• The Scheme program has lost information
that was available at design time.
– The first line is missing in structure definition.
– Scheme allows us to put anything into the

fields.

AppleList : Mycons | Myempty.
Mycons = <first> Apple <rest> AppleList.
Apple = <weight> int.
Myempty = .

Lab 35

Information can be expressed in
Scheme

• Dynamic tests
• Using object system

	Lab 1: CSG 711:Programming to Structure
	Using Dr. Scheme
	General Recipe
	Designing Algorithms
	Template
	Template for list-processing
	duple (EOPL page 24)
	History (Programming to Structure)
	Meaning of a list of apples?Total weight
	In Scheme: Structure
	Design Information
	In Scheme: Behavior
	In Scheme: Testing
	Reflection on Scheme solution
	Behavior
	How can we reduce the duplication of structure?
	Solution in Java
	What is better?
	Problem to think about(while you do hw 1)
	First Shape
	Second Shape
	Input (for both Shapes)
	Think of a shape as a list!
	Help with the at function
	Deriving Scheme solution (1)
	Deriving Scheme solution (2)
	Close to final solution
	dot example
	Why not implement iterative solution?
	Closer to Scheme solution:reuse at
	Scheme solution
	Save for later
	Abstractions
	Structure
	Information can be expressed in Scheme

