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Lab 1: CSG 711:
Programming to Structure

Karl Lieberherr



Lab 2

Using Dr. Scheme
• context-sensitive help
• use F1 as your mouse is on an identifier. 

HelpDesk is language sensitive. Be 
patient.

• try the stepper
• develop programs incrementally
• definition and use: Check Syntax
• use 299 / intermediate with lambda



Lab 3

General Recipe 

• Write down the requirements for a function 
in a suitable mathematical notation.

• Structural design recipe: page 368/369 
HtDP



Lab 4

Designing Algorithms
• Data analysis and design
• Contract, purpose header
• Function examples
• Template
• Definition

– what is a trivially solvable problem?
– what is a corresponding solution?
– how do we generate new problems
– need to combine solutions of subproblems

• Test
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Template
(define (generative-rec-fun problem)
(cond
[(trivially-solvable? problem)

(determine-solution problem)]
[else
(combine-solutions … problem …
(generative-rec-fun (gen-pr-1 problem))
…
(generative-rec-fun (gen-pr-n problem)))]))



Lab 6

Template for list-processing
(define (generative-rec-fun problem)
(cond
[(empty? problem) (determine-solution 
problem)]
[else
(combine-solutions

problem
(generative-rec-fun (rest problem)))]))



Lab 7

duple (EOPL page 24)
(duple n x)
li:= empty;
for i :=1 to n do add x to li (does not matter 

where);

Structural recursion:
if i=0 empty
else (cons x (duple (- n 1))



Lab 8

History (Programming to Structure)

• Frege: Begriffsschrift 1879: “The meaning 
of a phrase is a function of the meanings 
of its immediate constituents.”

• Example:
AppleList : Mycons | Myempty.
Mycons = <first> Apple <rest> AppleList.
Apple = <weight>  int.
Myempty = .
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Meaning of a list of apples?
Total weight

• (tWeight al)
– [(Myempty? al) 0]
– [(Mycons? al)

(Apple-weight(Mycons-first al)) 
// meaning of first constituent

+
(tWeight(Mycons-rest al))]

//  meaning of rest constituent

AppleList : Mycons | Myempty.
Mycons = <first> Apple <rest> AppleList.
Apple = <weight>  int.
Myempty = .

PL independent

AppleList

Mycons Myempty

Apple int

rest

first

weight
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In Scheme: Structure

(define-struct Mycons (first rest))
(define-struct Apple (weight))
(define-struct Myempty ())



Lab 11

Design Information

Scheme solution
AppleList : Mycons | Myempty.
Mycons = <first> Apple <rest> AppleList.
Apple = <weight>  int.
Myempty = .

(define-struct Mycons (first rest))
(define-struct Apple (weight))
(define-struct Myempty ())

AppleList

Mycons Myempty

Apple

rest

first

intweight

Mycons Myempty

rest

first

Apple int
weight



Lab 12

In Scheme: Behavior

(define (tWeight al)
(cond 
[(Myempty? al) 0]
[(Mycons? al) (+ 

(Apple-weight (Mycons-first al))
(tWeight (Mycons-rest al)))]))



Lab 13

In Scheme: Testing

(define list1 (make-Mycons (make-Apple 
111) (make-Myempty)))

(tWeight list1)
111
(define list2 (make-Mycons (make-Apple 50) 

list1))
(tWeight list2)
161

Note: A test should 
return a Boolean value.

See tutorial by Alex 
Friedman on testing in 
Dr. Scheme.



Lab 14

Reflection on Scheme solution

• Program follows structure
• Design translated somewhat elegantly into 

program.
• Dynamic programming language style.
• But the solution has problems!



Lab 15

Behavior

• While the purpose of this lab is 
programming to structure, the Scheme 
solution uses too much structure!
(define (tWeight al)
(cond 
[(Myempty? al) 0]
[(Mycons? al) (+ 

(Apple-weight (Mycons-first al))
(tWeight (Mycons-rest al)))]))

duplicates all of it!



Lab 16

How can we reduce the duplication 
of structure?

• First small step: Express all of structure in 
programming language once.

• Eliminate conditional!
• Implementation of tWeight() has a method 

for Mycons and Myempty.
• Extensible by addition not modification.
• Big win of OO.



Solution in Java

Lab 17

AppleList: abstract int tWeight();
Mycons: int tWeight() {
return (first.tWeight() + rest.tWeight());

}
Myempty: int tWeight() {return 0;}

AppleList : Mycons | Myempty.

Mycons = <first> Apple <rest> AppleList.

Apple = <weight>  int.

Myempty = .
+

translated
to Java



Lab 18

What is better?

• structure-shyness has improved.
• No longer enumerate alternatives in 

functions.
• Better follow principle of single point of 

control (of structure).



Lab 19

Problem to think about
(while you do hw 1)

• Consider the following two Shape 
definitions.
– in the first, a combination consists of exactly 

two shapes.
– in the other, a combination consists of zero or 

more shapes.
• Is it possible to write a program that works 

correctly for both shape definitions?



Lab 20

First Shape

Shape : Rectangle | Circle | Combination.
Rectangle = "rectangle" <x> int <y> int

<width> int <height> int.
Circle = "circle" <x> int <y> int <radius> int.
Combination = "(" <top> Shape <bottom> 

Shape ")".



Lab 21

Second Shape

Shape : Rectangle | Circle | Combination.
Rectangle = "rectangle" <x> int <y> int 

<width> int <height> int.
Circle = "circle" <x> int <y> int 

<radius> int.
Combination = "(" List(Shape) ")".
List(S) ~ {S}.
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Input (for both Shapes)

(
rectangle 1 2 3 4
(
circle 3 2 1
rectangle 4 3 2 1

)
)



Lab 23

Think of a shape as a list!

• A shape is a list of rectangles and circles.
• Visit the elements of the list to solve the 

area, inside and bounding box problems.



Lab 24

Help with the at function

• Design the function at. It consumes a set 
S and a relation R. Its purpose is to collect 
all the seconds from all tuples in R whose 
first is a member of S. 



Lab 25

Deriving Scheme solution (1)
at: s: Set r: Relation
Set s0 = {};
from r:Relation to p:Pair:
if (p.first in s) s0.add(p.second);

return s0;

at: s: Set r: Relation
if empty(r) return empty set else {
Set s0 = {}; p1 := r.first();
if (p1.first in s) s0.add(p1.second);
return union(s0, at(s, rest(r))}

definition

decompose based
on structure of a relation:
either it is empty or 
has a first element



Deriving Scheme solution (2)
at: s: Set r: Relation
Set s0 = {};
from r:Relation to p:Pair:
if (p.first in s) s0.add(p.second);

return s0;

at: s: Set r: Relation
if empty(r) return empty set else {
p1 := r.first(); rst = at(s, rest(r));
if (p1.first in s)  return rst.add(p1.second) else rst}

definition

decompose based
on structure of a relation:
either it is empty or 
has a first element

Why not implement this 
definition directly using
iteration ???

Lab 26



Lab 27

Close to final solution
;; at : Symbol Relation -> Set
(define (at s R)

(cond
[(empty? R) empty-set]
[else (local ((define p1 (first R))

(define rst (at s (rest R))))
(if (element-of (first p1) s)

(add-element (second p1) rst)
rst))]))

at: s: Set r: Relation
if empty(r) return empty set else {
p1 := r.first(); rst = at(s, rest(r));
if (p1.first in s)  return rst.add(p.second) 
else rst}



Lab 28

dot example

• Compute the composition of two relations.
• r and s are relations. r.s (dot r s) is the 

relation t such that x t z holds iff there 
exists a y so that x r y and y s z. 



Lab 29

Why not implement iterative 
solution?

dot Relation r1, r2
Relation r0 = {};
from r1: Relation to p1: Pair
from r2: Relation to p2: Pair
if (= p1.second p2.first) r0.add( new Pair(p1.first,p2.second));

return r0;

if empty(r1) return empty-set else
;; there must be a first element p11 in r1
Relation r0 = empty-set;
from r2: Relation to p2: Pair
if (= p11.second p2.first) r0.add(new Pair(p11.first,p2.second));

return union (r0, dot((rest r1),r2));



Lab 30

Closer to Scheme solution:
reuse at

dot Relation r, s;
if empty(r) return empty-set else
;; there must be a first element fst in r
x=fst.first; y=fst.second;
zs = at(list(y), s); 
turn x and zs into list of pairs: r0;
return union (r0, dot((rest r),s));



Lab 31

Scheme solution
(define (dot.v0 r s)

(cond
[(empty? r) empty]
[else (local ((define fst (first r))

(define x (first fst))
(define y (second fst))
(define zs (at (list y) s)))
(union (map (lambda (s) (list x s)) zs) 

(dot.v0 (rest r) s)))]))



Lab 32

Save for later



Lab 33

Abstractions

• abstraction through parameterization:
– planned modification points 

• aspect-oriented abstractions:
– unplanned extension points



Lab 34

Structure

• The Scheme program has lost information 
that was available at design time.
– The first line is missing in structure definition.
– Scheme allows us to put anything into the 

fields.  

AppleList : Mycons | Myempty.
Mycons = <first> Apple <rest> AppleList.
Apple = <weight>  int.
Myempty = .



Lab 35

Information can be expressed in 
Scheme

• Dynamic tests
• Using object system
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