Applying
Aspect-Oriented
Programming to

Security

by John Viega, J.T. Bloch, and Pravir Chandra

spect-oriented programming (AOP) is a new programming paradigm
A that explicitly promotes separation o cerns. In the context of secu-
rity, this would mean that the main program should not need to encode
security information; instead, it should be moved into a separate, indepen-
dent piece of code. The object-oriented paradigm can sometimes separate
concerns in an intuitive manner by grouping
concerns into objects. However, the object-
oriented paradigm is only good at sepa-
rating out concepts that map easily to
concrete objects. It does not map well to
abstract notions. For example, it is difficult
to model security in the object-oriented
paradigm. While one could write a central
SecurityManager class for an application,
calls to this class and important checks will
necessarily be spread throughout the code
base. Unfortunately, if a critical check is
forgotten in an important spot in the code,
the central class will not have the opportu-
nity to recover. This problem exists because
security is a concern that affects the entire
system in a broad way. Aspect-oriented
programming can solve this problem by
allowing security concerns to be specified
modularly and applied to the main program
in a uniform way.

We have built an aspect-oriented extension
to the C programming language.' While this

'All work described in this article
was done at Cigital, Inc.

CUTTER

JOURNAL

extension is a general-purpose one, it has
significant benefits in the realm of security.
The aspect-oriented technique allows secu-
rity policies to be separate from the code,
enabling developers to write the main appli-
cation and a security expert to specify secu-
rity properties. Also, this technique can
abstract away much of the expert knowl-
edge currently required for writing secure
code, allowing developers to reasonably
secure their software even if a security
expert is not available to assist.@

Our approach is general enough to be
applied to any language, and in the future
we anticipate experimenting with extensions
for several different languages. At present,
we focus on C because there are several
classes of common security vulnerabilities
in that language. Further, despite any draw-
backs of C, it is still widely used to write
security-critical applications.

MOTIVATION

Experience has shown that developers
aren’t very good at writing secure software.
Part of the problem is a lack of education;
few classes cover this material, and no
books cover it well. However, education
isn’t the entire issue, as evidenced by the
fact that buffer overflow exploits in C code
are quite common, even in software written
by developers who know a lot about this
problem.

We think it should be easier to design secu-
rity into an application, instead of relying
on the “penetrate-and-patch” approach to
security, where problems are addressed in
an ad hoc manner, generally as flaws are
revealed in the field. Unfortunately, the
penetrate-and-patch approach to security is
widespread, as opposed to the alternative
of designing software with security in mind.

Vol. 14, No. 2 February 2001 31

KJL
Note
Some AOP experts stress that AOP is about separation of crosscutting concerns. The reason is that separation of concerns has been practiced for a long time before AOP was discovered.

But I agree with the statement of the authors. AOP explicitly promotes separation of concerns. Earlier paradigms did not do this so explicitly. Doug Orleans' PhD thesis at Northeastern on Socrates supports this view as well as the Law of Demeter for Concerns (LoDC).

KJL
Note
This statement seems too positive about AOP. Even if you have a reusable security aspect written by an expert, you need a solid understanding of the aspect to apply it properly.

CUTTER

JOURNAL

Developers continue to
write insecure code and to
fix security problems when

someone happens to

notice them.

32 February 2001

There are two primary reasons why this
problem is so prevalent. The first is that no
coherent design time methodologies or
tools are widely available. In fact, there are
no comprehensive resources available to
help write secure programs; developers

do not know what the problems are. As a
result, developers continue to write insecure
code and to fix security problems when
someone happens to notice them. The
second problem is that designing and
implementing secure systems currently
requires a lot of expert knowledge. Even
with good methodologies, good tools are
still critical to alleviating this problem, as
the average developer is likely to be either
unwilling or unable to use the methodology
effectively if no tools are available.

Another large part of the problem is the
state of programming languages from a
security point of view. A few languages
have given significant thought to security
primitives that should be present to help
programmers write better code. However,
two of the most widely used programming
languages, C and C+ +, present significant
security risks. This is because many of their
standard features can easily be used in such
a way as to inadvertently leave a security
flaw in a program. Even languages with
significant security architectures, such as
Java, leave something to be desired. While
looking at many commercial products, we
have found that a large percentage of appli-
cations have significant security problems
that are present in the design phase and
persist through to implementation despite
the language used. Some of the more
common problems include misuse of secu-
rity protocols and an unrealistic view of
what a system should consider “trusted.”
Languages have yet to make significant
inroads in these areas. @

Vol. 14, No. 2

PRINCIPLES

In talking with many developers about
security, we have noticed that even security-
aware people find it much easier to write
their program and then later go back and try
to “bolt on” security as an afterthought. In
our experience, this approach doesn’t work;
Currently, security generally needs to be
designed into an application from the begin-
ning. There is a fundamental conflict here
between what works well in practice and
the way developers work, even when they
are well educated on security matters.

All tools we have encountered to help
prevent security vulnerabilities in general-
purpose programming languages are after-
the-fact tools, such as vulnerability analysis
tools that look for common programming
and configuration errors. They do not
address how a developer should design and
implement software in a security-conscious
manner. Our aspect-oriented extension
provides a more proactive approach to this
problem. We designed the language with
the following principles in mind:

B The amount of expert knowledge neces-
sary to secure source code should be
minimized. It should not be easy for a
developer to accidentally introduce
security problems into a program just
because the language and the concepts
of secure programming haven’t been
mastered. Common language pitfalls
should be averted, and the programmer
should be protected from common
classes of mistakes that are not language

specific. @

B The security-related elements in a
program should be abstracted out of the
program proper, for the sake of clarity,
maintainability, and reuse.

B Security policies should be defined using
a language general enough that it is

©2001 Cutter Information Corp.

KJL
Note
After three years since the publication of this article, more has happened. See the 2004 Security Summer school.

KJL
Note
This goal seems hard to achieve.

possible to create new policies to deal
with application-specific issues or previ-
ously unknown security vulnerabilities.

B An emphasis should be placed on “secu-
rity by default,” so that the level of effort
for developing secure applications is
minimized. This is a bigger challenge for
C than for most other languages, since
the language and standard libraries
contain so many unsafe operations.

B Currently, if a security consideration is
omitted in just one place, it can easily
lead to a flaw. It should be easy to
express policies about the program that
apply generically to a consideration, and
then have the policy be applied through
the program automatically. For example,
it should be possible to say that no
secret information is ever sent over the
network unencrypted (perhaps the
actual implementation may choose to
encrypt all data to satisfy this property).

B Legacy source code with known or
potential security problems should be
able to benefit from such a tool; the
amount of new code necessary should
be minimized. It should also be possible
to avoid modifying the original program,
since doing so tends to introduce errors.

B When it makes sense to do so, security
policies should be reusable across
different applications.

LANGUAGE

The purpose of our aspect language is to
specify structured transformations on a

program. Usually this involves inserting code

at well-defined points. However, it may
occasionally involve removing code. Once
we have specified points of interest in our
code@re are three things we can do:

Get the Cutter Edge free: www.cutter.com/consortium/

CUTTER

JOURNAL

1. Insert code before points of interest
2. Insert code after points of interest
3. Replace the code at the point of interest

There are several types of locations we can
operate upon:

1. Calls to functions. For example, we can
replace all calls to functions prone to
buffer overflows with safe alternatives.

2. Function definitions. Inserting code N
around a function definition will ensure
the code runs every time the function
runs. Just operating on calls to functions
will not catch calls from third-party

libraries.

If a security consideration
is omitted in
just one place,
. . . it can easily lead to a flaw.
3. Pieces of functions. If a function uses
jump labels, we can operate on a line of

code following a label, or we can operate
on a block of code between two labels.

In our language, an aspect is a program-
ming construct that lives in its own file. It
specifies points of interest and operations to
be applied on those points of interest.

Here is an example aspect that allows us

to replace all calls to the rand() call with

a secure replacement. The rand() call is
undesirable because its output is completely
predictable and reproducible.

aspect secure random ({
int secure rand(void) {
/**
* Secure call to random defined here.
*/
}

funcCall<int rand(void)> {
replace {
secure_rand() ;

}

Vol. 14, No. 2 February 2001 33

KJL
Note
In AspectJ the places of interest in the code are specified indirectly through dynamic join points. This is a better approach.

CUTTER

34

JOURNAL

February 2001

The function secure_rand is like any other C
function. In this example, it will implement
a secure random number generation algo-
rithm. The “funcCall” keyword specifies that
we wish to match calls to functions. The
function we wish to match is specified
between the angle brackets. In this case, we
wish to match calls to rand. We specify the
function by its signature, noting that rand
takes no arguments and returns an integer.
The “replace” keyword specifies that we
wish to run code instead of calling rand().
The code inside the replace block will run
instead.

At compile time, our language takes any
aspects, along with the regular C program,
and “weaves” them into a single C program,
which is then compiled.

Wildcarding

Allowing the programmer to easily specify
patterns describing interesting constructs
makes the aspect language significantly
more powerful, but it also introduces impor-
tant subtleties into the language. We support
three types of matching facilities: name,
type, and argument matching.

Name matching allows the programmer to
indicate an interest in functions, files, or
modules whose names match a pattern.
We use the ? (question mark) construct to
specify wildcards in names. The wildcard
construct stands for zero or more charac-
ters. For instance, foo? matches foo, foobar,
and foofoofoo, but it would not match
barfoo.

Using name matching, the programmer can
focus on the functions int foo(char), and int
foobar(char) by specifying the pattern int
foo?(char). However, additional facilities are
required to specify an interest in functions
that take a single argument, where we don’t
care what type of argument it is. To support

Vol. 14, No. 2

such functionality, our language has an any
keyword, which can be used in place of any
type specifier. For example, we could say
any ?(any) to match all functions taking one
parameter, or any ?(any *) to specify all
functions with one parameter that is a
pointer.

In order to match variable argument
functions, we support a “...” operator.
For example, to match calls to the fprintf
function, we can specify fprintf(FILE*,
char *, ...).

Context Gathering

The code constituting a transformation will
often depend on the site matching the
aspect model. Our language provides vari-
ables containing useful contextual informa-
tion. For instance, a transformation may
need information about the function
containing the matching site, or the module
containing that function, or even the file
currently undergoing transformation. Just as
the preprocessor variable _ FILE _ provides
the fully qualified file name, the aspect
language variables _ FUNCTION__,
__MODULE__, and __ASPECT__ provide
information about the function, module, and
aspect related to the current transformation.
We expect this set of context-gathering vari-
ables to expand in future versions of the
language.

Order and Precedence Concerns

The order in which transformations are
applied and how conflicts between transfor-
mations are arbitrated represent an area
remaining open to inquiry. To see that appli-
cation order is an issue and conflicts are
possible, consider transformations A and B,
where A removes all calls to the insecure
function exec(...) and B logs information
about all such invocations. If the transforma-
tions are applied in order AB, we would not

©2001 Cutter Information Corp.

expect information about exec calls in the
log file, since they are all removed. If trans-
formations are applied in order BA, the log
file would remain empty, but the logging
code will never get executed. Which of
these alternatives is desirable? We currently
ignore this problem, disallowing all conflicts.
One promising option is to provide guidance
to the compile-time “weaver” by specifying
aspects that govern the order in which other
aspects transform the source code.

APPLYING AOP TO SECURITY

This general-purpose programming
language has many applications to security.
We previously gave an example of replacing
insecure function calls with secure replace-
ments, but there are plenty of other uses in
this domain:

B [t can be used to automatically perform
error checking on security-critical calls.

B We can use it to implement the
StackGuard technique of buffer overflow
protection, inserting special code at
function entry and exit.

B It can automatically log data that may be
relevant to security.

B [t can be used to replace generic socket
code with SSL socket code.

B [t can automatically insert code at
startup that goes through a set of “lock-
down” procedures that most program-
mers would not add to their programs.

B It can be used to specify privileged
sections of a program and to automati-
cally request and return privileges when
appropriate.

An aspect weaver with a suite of aspects
that address security concerns is generally

Get the Cutter Edge free: www.cutter.com/consortium/

language independent. In general, a security
concern such as secure random generation
is independent of the language in which the
application is written. A small exception to
this is the case in which a security concern
does not exist with the language being
used; for example, buffer overflows don’t
exist in applications written in pure Java. In
cases such as this, the security concern can
be thought of as being addressed by a null
aspect — one with no transforms. In any
case, we can assemble a list of our security
concerns in some meta-language such as a
simple configuration file that lists all the
security concerns we have, along with any
special language-independent parameters
for them (e.g., specify “secure random
numbers” as a security concern and specify
“my-secure-algorithm” as a parameter to
the aspect that will address this problem).
Given a common interface for the aspects
that address the same concerns regardless
of the language the aspect was written for,
we can create a configuration file that, given
a weaver for the language in which our
source is written and a suite of security
aspects for that language, can be applied to
any program source and assure it is secure
against the concerns noted within. This
meta-language provides a powerful tool for
people to automate the securing of their
applications.

Example

The following example shows a more prac-
tical example of how our technique applies
to real programs. First, we build a library of
security aspects that we wish to apply to our
program. For example, we might wish to
replace calls to rand and perform automatic
error checking on calls to malloc (though
this is only rarely a security problem and is
more a reliability problem):

Vol. 14, No. 2

CUTTER

February 2001

JOURNAL

35

CUTTER

JOURNAL

aspect secure random {
int secure rand(void) {
/**
* Secure call to random defined here. Any other accompanying
* functions can be defined in the same scope as this function.
*/
return 0;

}

void support function(void) {

}

funcCall<int rand(void)> {
replace {
secure_rand() ;

}

}

aspect malloc check {
funcCall<void * malloc(size t x)> {
after {
if(_ RETVAL == NULL) {
printf ("malloc(%i) failed in function %s (). exiting...\n”,
x, _ FUNCTION);
exit (-1);

Now, we take the C program to which we want to apply our aspects:

int init msg(char *[], int);

int main (void) {
char * msgl4];
int 1i;

init msg(msg, 4);

i = rand() % 4;
printf ("%s”,msg[i]);
return 0;

int init msg(char * arg[], int size) {

int 1i;
for (i=0 ; i<size ; ++1) {
arg[i] = (char *) malloc(20);

sprintf (arg[i], “Message Number %d\n”, 1i);

}

return O;
}
36 February 2001 | Vol. 14, No. 2 ©2001 Cutter Information Corp.

We may wish to add our own aspects for debugging purposes at this point:

aspect debug {
/* Notify when init msg starts and stops. */
funcDef<void init msg(any)> {
before {
printf (“Entering init msg.\n”);
}
after {
printf (“Leaving init msg.\n”);

}

Our compiler takes all of the above code and conceptually generates the following C program:

int secure rand(void);

void support function (void);

int rand wrap(void);

void * malloc wrap(char *, size t);
int init msg(char *[], int);

int main (void) {
char * msgl4];
int 1i;

init msg(msg, 4);

i = rand wrap() % 4;
printf (“"%s”,msg[i]);
return 0O;

}

int init msg(char * arg[], int size) {
int 1i;

printf (“Entering init msg.\n”);

for (1i=0 ; 1i<size ; ++1) {
arg[i] = (char *) malloc wrap(“init msg”, 20);
sprintf (arg[i], “Message Number %d\n”, 1i);

}

printf (“Leaving init msg.\n”);

return 0;

}

int secure rand(void) {
return 0;

}

void support function (void) {

}

int rand wrap(void) {
int retval;

Get the Cutter Edge free: www.cutter.com/consortium/ Vol. 14, No. 2

CUTTER

February 2001

JOURNAL

37

CUTTER

JOURNAL

The space of available
software security
assurance is currently
inhabited primarily
by small, open-source
tools that address only
a fraction of the

actual problem.

'See www.aspectj.org.

38 February 2001

retval = secure rand();
return retval;

}

void * malloc wrap(char * FILENAME,

void * retval;
retval = malloc(argl);

if (retval == NULL) {
printf ("malloc (%1i)
argl, FILENAME) ;
exit (-1);
}

return retval;

RELATED WORK

The aspect-oriented programming paradigm

was first introduced by Gregor Kiczales [7].
Xerox PARC developed the first aspect-
oriented programming language, Aspect],'
which is an extension to the Java program-
ming language.

The space of available software security
assurance is currently inhabited primarily
by small, open-source tools that address
only a fraction of the actual problem. There
are multiple patches for the gcc compiler
that implement array bounds checking.
There are several tools that provide some
sort of security against buffer overflow
attacks, including StackGuard [2] and FIST
[5]. However, most of these tools are solely
interested in buffer overflows.

Another type of tool in the security assur-
ance domain is the “secure data flow” tool.
Examples of this tool are the “taint” version
of Perl and the JFlow programming
language (a Java extension) [8]. In such
tools, data is labeled either “untrusted” or
“trusted.” “Untrusted” data cannot be
passed to trusted items without the
programmer explicitly allowing it. Similarly,
“trusted” data cannot be passed to
“untrusted” items for fear of leaking secret
information (unless it has been explicitly
declassified by the programmer).

Vol. 14, No. 2

failed in function

size t argl) {

%$s (). exiting...\n”,

All of the capabilities of the above tools
could be described in a security specifica-
ion and woven into a program using our

spect-oriented security approach. We hope
to incorporate existing tools as off-the-shelf
technology whenever possible. For example,
the aforementioned tools for preventing
buffer overflows can potentially be lever-
aged in the implementation of our approach.
We hope to provide a uniform and general-
purpose interface to these tools, while
adding a large amount of flexibility and
extensibility; only a few of the many prob-
lems we seek to handle are addressed by
current tools.

Commercial tools in the security assurance
space are almost universally general
purpose and not security specific. For
example, there are many tools such as
Rational’s Purify that can help find and fix
buffer overflow problems, even though the
tool is not specifically a security tool [6].

Another class of tools is the after-the-fact
tools that support the penetrate-and-patch
model. These tools generally are concerned
with taking preexisting source code and
identifying potentially dangerous constructs
based on a database and some static
analysis. Currently, the only publicly avail-
able tool for source code analysis is ITS4,
which scans C and C++ code for over 100

©2001 Cutter Information Corp.

KJL
Note
This is not true. AOP has multiple roots: Demeter at Northeastern, SOP at IBM, the reflection community, composition filters at University of Twente, etc. See Crista Lopes book chapter on the history of AOP.

potential problems [10]. Wagner has a
buffer-overflow scanner that performs a
more sophisticated analysis; however, it is
not publicly available and is limited in scope
[11]. There are similar general-purpose tools
that may catch some security bugs,
including lint tools such as LCLint [3].

Previous work has also been done in policy
languages for security. Most such languages
specify file access control, allowing the
programmer to give explicit policies stating
what a program can and cannot do to files.
Examples of such systems include Naccio
[4], Ariel [9], and PolicyMaker [1]. We antic-
ipate incorporating this sort of tool as a
small part of our total functionality.

SUMMARY

We have identified some of the major prob-
lems plaguing software security and
discussed how separating security from a
program itself might help alleviate these
problems. We have built an extension to the
C programming language for defining secu-
rity concerns and implementing a weaver
that generates and integrates code into C
programs.

REFERENCES

1. Blaze, M., J. Feigenbaum, and J. Lacy.
“Decentralized Trust Management.” In
Proceedings of the 17th IEEE Symposium on
Security and Privacy. IEEE, 1996.

2. Cowan, C,, et. al. “StackGuard: Automatic
Adaptive Detection and Prevention of Buffer-
Overflow Attacks.” In Proceedings of the
Seventh USENIX Security Symposiumn.
USENIX Association, 1998.

3. Evans, D., J. Guttag, J. Horning, and Y.
Meng Tan. “LCLint: A Tool for Using
Specifications to Check Code.” In
Proceedings of the ACM SIGSOFT

Get the Cutter Edge free: www.cutter.com/consortium/

Symposium on the Foundations of Software
Engineering. ACM, 1994.

4. Evans, D., and A. Twyman. “Flexible
Policy-Directed Code Safety.” In Proceedings
of the 1999 IEEE Symposium on Security and
Privacy. 1IEEE, 1999.

5. Ghosh, A., T. O’Connor, and G. McGraw.
“An Automated Approach for Identifying
Potential Vulnerabilities in Software.” In
Proceedings of the 1998 IEEE Symposium on
Security and Privacy. IEEE, 1988.

6. Hastings, R., and B. Joyce. “Purify: Fast
Detection of Memory Leaks and Access
Errors.” In Proceedings of the Winter USENIX
Conference. USENIX Association, 1992.

7. Kiczales, G., et al. “Aspect-Oriented
Programming.” In Proceedings of the
European Conference on Object-Oriented
Programming (ECOOP) ‘97. Springer-Verlag,
1997.

8. Myers, A. “Practical Mostly-Static
Information Flow Control.” In Proceedings of
the 26th ACM SIGPLAN-SIGACT Symposium
on Principles of Programming Languages.
ACM, 1999.

9. Pandey, R., and B. Hashii. “Providing Fine-
Grained Access Control for Mobile Programs
Through Binary Editing,” Technical Report
CSE-98-8. University of California, Davis,
1998.

10. Viega, J., J.T. Bloch, T. Kohno, and G.
McGraw. ITS4: A Static Vulnerability Scanner
for C and C++ Code. In Proceedings of the
16th Annual Computer Security Applications
Conference (ACSAC 2000). IEEE, 2000.

11. Wagner, D., J. Foster, E. Brewer, and A.
Aiken. “A First Step Towards Automated
Detection of Buffer Overrun Vulnerabilities.”
In Proceedings of the Year 2000 Network
and Distributed System Security Symposium
(NDSS). Internet Society (ISOC), 2000.

Vol. 14, No. 2

CUTTER

JOURNAL

John Viega is a senior developer
and researcher at Widevine
Technologies. He is the coauthor
of two upcoming books, Building
Secure Software (Addison-Wesley)
and Java Enterprise Architecture
(O’Reilly). He also writes a regular
column on software security for
IBM’s developerWorks.

J.T. Bloch is a developer at
Widevine Technologies and a
researcher in computer security.
He is one of the developers of the
ITS4 tool for auditing C and C++
source code. He is currently
working on software security
issues in untrusted environments.

Pravir Chandra is a developer at
Widevine Technologies and a
researcher in computer security.
He is currently working on soft-
ware security issues in untrusted
environments.

The authors can be reached at
Widevine Technologies, 11951
Freedom Sq., Suite 1333, Reston,
VA 20190, USA. Tel: +1 206 254
3000; Fax: +1 206 254 3000; E-
mail: johnv@uwidevine.com, jt@
widevine.com, and pchandra@
widevine.com.

February 2001 39

