
Aspect Security Software Security (CSG379)

College of Computer & Information Sciences Northeastern University
1

Aspect Security
Ravishekhar Gopalan Prof. Karl Lieberherr
College of Computer Science College of Computer Science
Northeastern University Northeastern University
Boston Boston

PDF Creator - PDF4Free v2.0 http://www.pdf4free.com

http://www.pdfpdf.com/0.htm

Aspect Security Software Security (CSG379)

College of Computer & Information Sciences Northeastern University
2

1. Abstract
This paper deals with security of
Aspects weaved into code. As AOP
becomes a mainstream programming
approach to software development, a
controlled and safe approach is
required for efficient development
and design using aspects. Since
aspects by their very definition imply
compartmentalization, weaving
together aspects written for different
concerns by different people can be
error-prone and might create the
same sort of problems which AOP
aims to solve. Especially with regard
to security, the interweaving of
aspects might unknowingly open a
backdoor into the system.
Determination of such vulnerability
can be extremely difficult. Hence we
need a stronger safety net than those
required by non-AOP languages
which require certain practices to be
followed along the aspect-oriented
development cycle. This paper
attempts to define such practices
which lead to the development of
secure aspects and approaches to
achieving the same. It also outlines a
proof of concept for a general
purpose approach to securing aspect
code.

1. Introduction
Security is a non-functional lateral
requirement of any system. Even
though there are daily reports of
attacks which exploiting
vulnerabilities in code, security is not
“built-in” to the system from the
design stage when it would have
been most effective, but applied or
rather “patched” onto the system at
the end of the SDLC[2]. This has led
to a preference of non-invasive
techniques for securing code. This

has further widened the gap between
the development and security cycle.
While non-invasive security
principles are quite effective, they
cannot nullify an existing
vulnerability in the system. In order
to secure a system, security has to be
built-in from the beginning [3].
Security can be applied to a system
in different ways and an
understanding of these will aid in
applying the right kind of security in
the right context. The first level of
security is provided by the language
and the runtime which is being used
to build the software. Next come
Business rules which fall into the
category of Domain Security and the
third approach is non-invasive
security application using security
policies external to the software.

The focus of this paper is the
security features provided by the
language. Specifically, in the light of
AOP, we present an approach of
building-in security rules into the
language itself using the abc
compiler. A point to be noted is that
our analysis of AOP will be limited
to OO systems. This is basically
because AOP has more support in
the JAVA community than in any
other programming language
community.

The rest of the paper is organized as
follows. Section 2 elaborates the
security of an aspect and the methods
to achieve it. Section 3 gives a brief
overview of the abc compiler from
Oxford University, UK and finally
the actual implementation is
discussed in Section 4. Future work
and References are given in Sections
5 and 6 respectively.

PDF Creator - PDF4Free v2.0 http://www.pdf4free.com

http://www.pdfpdf.com/0.htm

Aspect Security Software Security (CSG379)

College of Computer & Information Sciences Northeastern University
3

2. Aspect Security
Ideally, the programming language
should provide necessary security
related constructs which can be used
to tag the behavior of any subroutine.
The security vulnerabilities can be
reduced in part if every method
declares its behavior, thus helping
the compiler. Alternatively, metadata
could be used to tag the type of
behavior of each method.

All these approaches indirectly pass
on part of the burden of security
checking onto the language runtime.
In effect, the target is an intelligent
compiler which is able to statically
determine any current or possible
future breach of security. Wherever
the compiler is unable to determine
statically whether a piece of code can
be exploitable in future for a
particular flaw, it should
automatically weave in code which
performs checks at runtime. This
might be an ambitious project
because the field of compilers is
quite old and research has been
going on for some decades. But AOP
compilers are a recent development
and it would be advisable to build in
security checks at code weaving
time.

That brings up the next question;
“What is a secure aspect?”
Before the security of an aspect is
defined, it is important to note that
securing software usually involves
imposing restrictions on either the
operation of the software or on the
usage of the software. Extending this
definition of security to aspects
would translate to restrictions being
imposed on aspects which would
take away part of the power of AOP.

While this may be true in some
cases, what exactly is being proposed
is that the usage of AOP in a
software system should not overlap
with the usage of OOP. An example
is the creation of an inheritance
hierarchy of classes. This is possible
using both AOP and OOP. In AOP,
this can be done using the “declare
parents” construct whereas this is
supported in OOP using constructs
like “extends” or “:” depending on
the language. Using AOP and OOP
to achieve the same would inevitably
lead to confusion. It would be better
to play to the strengths of both by
keeping them independent.

In this light, a secure aspect can be
defined as an aspect which
§ Does not modify the data of the

object on which it is operating on
§ Does not violate the OO design

of the system which it is
operating on

§ Does not modify the behavior of
the object on which it is
operating on

The popularity of OO grew because
it allowed data segregation and
ownership. It would be a folly if we
introduce AOP to modify the same
data without the knowledge of the
object when it interacts with other
components of the system. Hence,
this restriction on an aspect to
modify an object’s data.

OO design violation would involve
modification of the type hierarchy of
objects. Modification of behavior
would mean adding to the existing of
behavior of objects. Both of these
can be achieved by OO techniques of
inheritance. For example,

PDF Creator - PDF4Free v2.0 http://www.pdf4free.com

http://www.pdfpdf.com/0.htm

Aspect Security Software Security (CSG379)

College of Computer & Information Sciences Northeastern University
4

modification of behavior of an object
can be achieved by creating a sub-
class in which the method of the
parent class is overridden. This does
not require a new AO paradigm to
achieve.

But does this mean that an aspect
should not do anything? Not at all.
The power of aspects does not lie in
providing the same functionality as
an object. But rather, it lies in
separating the concerns which are
tied to that object. In effect an aspect
is extending the functionality of the
object in another plane, another
dimension. And a secure object is
defined as an aspect which does just
this without overlapping on the OO
part of the system.

Basically, a secure aspect should add
to the behavior at the join-point it is
operating on i.e. perform check on
the data validity or method
arguments. But it should be an
inspector and should not modify the
data of the object. To be more
precise, an aspect should add
behavior at a join point and not to an
object.

3. Achieving aspect security
In order to check the security of an
aspect, there are a couple of
approaches that can be adopted.
§ Write an aspect that influences

other aspects
§ Modify the aspect compiler to

check the aspect security.
§ Use meta-AOP

The first approach appears to be the
easiest one. Declare an aspect with
the highest precedence among all the
aspects operating at that join point

and make it check the remaining
aspects. But the hurdle in this case
would be to make all other aspects
operating at a particular join point
available to the “master” aspect
which has the highest precedence.

The third approach specifies the
usage of meta-AOP. This would be
similar to meta-classes of OOP.
Both the above two approaches
would involve adding to the point cut
language. For e.g. the language
should have the capability to declare
a point cut that would be able to
select a call to all aspects at that join
point. This is provided in AspectJ 1.2
with the advice execution join point,
but this is not sufficient to achieve
what we want.

The third approach being the
simplest and the easiest is selected
for this POC. This involves
intervening during compile time
running the aspect code through an
aspect checker.

For reasons of simplicity and
extensibility, the abc (Aspect Bench
Compiler) compiler from Oxford
University is the best choice for
implementation. abc is built with
extensibility in mind. Also it is
conducive to the writing of an
Aspect checker by providing the
AST for the code and instead of the
checker having to parse the aspect
code.

4. abc Compiler
The Aspect Bench Compiler (abc) is
an extensible compiler which
supports the full AspectJ syntax. Its
front-end is built using the Polyglot
framework. Polyglot is an extensible

PDF Creator - PDF4Free v2.0 http://www.pdf4free.com

http://www.pdfpdf.com/0.htm

Aspect Security Software Security (CSG379)

College of Computer & Information Sciences Northeastern University
5

front-end for Java that performs all
the semantic checks required by the
language. It is structured as a list of
passes that rewrite an AST, and build
auxiliary structures such as a symbol
table and type system. The backend
is built using the Soot framework
[4]. Soot is a Java byte code analysis
toolkit based around the Jimple IR, a
typed, three-address, stack-less code.
Jimple is low-level enough for point
cut matching, in that the granularity
of any join point is at least one entire
Jimple statement. Soot can produce
Jimple from both byte code and Java
source code. As output, Soot
generates Java byte code.

The high level architecture of the abc
compiler is shown below [1].

Fig. 1. Architecture of abc compiler.

The following is a proposed point of
change to the abc compiler.

Fig. 2. Proposed change to abc.

5. Implementation
In order to modify the compiler to
verify the aspects before weaving, all
the aspects need to be run through an
Aspect Checker. The implementation
of an Aspect checker as shown in the
proposed change in the previous
section, is to introduce a call to the
Aspect Checker in the compiler.

Fig. 3. Introduction of Aspect
Checker.

Compiler
Front end

Compiler
Back end

Aspect
Checker

PDF Creator - PDF4Free v2.0 http://www.pdf4free.com

http://www.pdfpdf.com/0.htm

Aspect Security Software Security (CSG379)

College of Computer & Information Sciences Northeastern University
6

The aspect checker should check for
the security level of the aspect based
on the conditions specified above.
For this Proof of Concept, we are
checking if the aspect is modifying
the data of the object on which it is
operating. If so, then compilation
fails. The check is based on the
assumption that all data members f
the object are private and the data is
modified only through public setter
methods. It is easy to circumvent this
check, but a stronger checking is left
as future work and not included as
part of this Proof of Concept.

Shown below is a code snippet
which checks for the setter method
call within the aspect. Each
statement of every method of every
aspect is checked and if a match is
found, an exception is thrown.

Fig. 4. Code Snippet

The design of the aspect checker is
shown below. It takes into account
that each class might have aspects
which might check some behavior
specific to that class. Hence these
individual specific aspect checkers
are introduced after the Global
Aspect Checker checks the aspects
for security.

Fig.5. Design of Aspect Checker

The abc compiler passes in all the
aspects to the Global Aspect Checker
which performs checks common to
all aspects. The Global aspect
checker then passes on these aspects
to the individual aspect checkers
which are specific for a particular
class.

6. Future Work
The Proof of Concept has been
provided in this project. But it is by
no means an exhaustive work as a
more rigorous security net for the
aspects still is pending. The
following are some of the issues
which need to be addressed in the
future.

§ Incorporate DJ into the aspect
checker
Currently, the code manually
traverses the AST. DAJ
traversals might be incorporated
to facilitate this task.

§ Perform more rigorous checking
for the aspects.
This PoC checks the aspects only
for a particular rule about data

if (
(method.getParameterCount() > 0) &&
(getTargetType(method) = =

getTargetType(stmt)) &&
(

aSootMethod.getName().startsWith("set"))
)

throw new InsecureAspectException();

Individual
aspect
checkers

abc

Aspect
Info

Checker2

Global
Checker

Checker1 Checker3

PDF Creator - PDF4Free v2.0 http://www.pdf4free.com

http://www.pdfpdf.com/0.htm

Aspect Security Software Security (CSG379)

College of Computer & Information Sciences Northeastern University
7

modification. All rules need to be
incorporated in to the checker.

§ Detailed definition for aspect
security
A definition for a “secure” aspect
has been provided in this paper.
A more comprehensive definition
is pending.

§ Giving warning instead of
throwing exception
A minor modification which can
be done is to throw a warning
instead of an exception so that
the compilation goes through but
at the same tome the user is
informed about the security
violation.

§ Making security as an input flag
Security can be passed in as an
input flag so that the aspect
checker is invoked only if this
flag is passed in.

§ Dynamic Weaving of Aspect
Checking code.
This project deals with static
checking of aspects. In some
cases, code has to be dynamically
woven in so that precautionary
measures can be taken about
those vulnerabilities which
require runtime information.

7. References

[1] Building the abc AspectJ compiler
with Polyglot and Soot
abc Technical Report No. abc-2004-2
Pavel Avgustinov et al

[2] SecureUML: A UML-Based
Modeling Language for Model-Driven
Security
Torsten Lodderstedt, David Basin, and
Jürgen Doser

[3] Building Secure Software

John Viega, Gary McGraw

[4] abc : An extensible AspectJ
compiler
abc Technical Report No. abc-2004-1

PDF Creator - PDF4Free v2.0 http://www.pdf4free.com

http://www.pdfpdf.com/0.htm

