

6.2004 I CyberDefense Magazine I 33

eaching and writing about attacks has always been controversial. However,
if we are to make progress on the software security problem (arguably the

most critical computer security problem of our time) we must understand how
real software attacks happen. Pervasive misconceptions persist regarding the
capabilities of software exploits. Many people don’t realize how dangerous a
software attacker can be. Nor do they realize that few of the classic network
security technologies available today do much to stop them. Perhaps this is
because software seems like magic to most people, or perhaps it’s the misinfor-
mation and mismarketing perpetuated by unscrupulous (or possibly only
clueless) security vendors. This article provides a brief introduction to the idea
of exploiting software.

On Information Warfare
The second oldest profession is war. But even a profession as ancient as war

has its modern cyber-instantiation. Information Warfare (IW) is essential to
every nation and corporation that intends to thrive (and survive) in the modern

world [Denning, 1998]. Even if a nation is not building IW capability, it can be
assured that its enemies are, and that the nation will be at a distinct disadvan-
tage in future wars.

Intelligence gathering is crucial to war. Since IW is clearly all about informa-
tion, it is also deeply intertwined with intelligence gathering. Classic espionage
has four major purposes:

1. National defense (and national security)
2. Assistance in a military operation
3. Expansion of political influence and market share
4. Increase in economic power

An effective spy has always been someone who can gather and perhaps even
control vast amounts of sensitive information. In this age of highly interconnected
computation, this is especially true. If sensitive information can be obtained over
networks, a spy need not be physically exposed. Less exposure means less chance
of being caught or otherwise compromised. It also means that an intelligence
gathering capability costs far less than has traditionally been the case.

Since war is intimately tied to the economy, electronic warfare is in many cases
concerned with the electronic representation of money. For the most part, modern
money is a cloud of electrons that happen to be in the right place at the right time.
Trillions of electronic dollars flow into and out of nations every day. Controlling

T

The Achilles’ Heel of CyberDefense
By Gary McGraw and Greg Hoglund

KJL
Note
Achilles' heel: a seemingly small but crucial weakness.

(Achilles was vulnerable only in the heel.

34 I CyberDefense Magazine I 6.2004

the global networks means controlling the global economy.
That turns out to be a major goal of information warfare.

Digital Tradecraft and Software
Some aspects of information warfare are best thought of as

digital tradecraft. Modern espionage is carried out using
software. In an information system driven attack, an existing
software weakness is exploited to gain access to information,
or a backdoor is inserted into the software before it’s
deployed. Existing software weaknesses range from configu-
ration problems to programming bugs and design flaws. In
some cases, the attacker can simply request information from
target software and get results. In other cases, subversive code
must be introduced into the system. Some people have tried
to classify subversive code into categories such as: logic
bomb, spyware, Trojan Horse, etc. The fact is that subversive
code can perform almost any nefarious activity. Thus any
attempt at categorization is most often wasted exercise if you
are concerned only with results. In some cases, broad classi-
fication helps users and analysts differentiate attacks, which
may aid in understanding. At the highest level, subversive
code performs any combination of the following activities:
1. data collection

a. packet sniffing
b. keystroke monitoring
c. database siphoning

2. stealth
a. hiding data (stashing log files, etc)
b. hiding processes
c. hiding users of a system
d. hiding a digital “dead drop”

3. covert communication
a. allowing remote access without detection
b. transferring sensitive data out of the system
c. covert channels and steganography

4. command and control
a. allowing remote control of a software system
b. sabotage (variation of command and control)
c. denying system control (denial of service)

New books such as Exploiting Software, The Shellcoder’s
Handbook, and How to Break Software Security are all
focused on the technical details of exploiting software in
order to construct and introduce subversive code. The skills
and techniques of software exploit have been employed by a
small but growing community of people for almost twenty
years. Many techniques were developed independently by
small, disparate groups.

Only recently have software exploit techniques been com-
bined into a single art. The coming together of disparate

approaches is largely an historical accident. Many of the
techniques for reverse engineering were developed as an
off-shoot of the software-cracking movement that started in
Europe. Techniques for writing subversive code are similar to
techniques for cracking software protection (e.g., patching,
etc.), so naturally the virus movement shares similar roots
and core ideas. It was not uncommon in the ’80s to find virus
code and software cracks on the same bulletin-board systems
(BBS’s). Hacking network security, on the other hand,
evolved out of the community of UNIX administrators. Many
people familiar with classical network hacking think mostly
of stealing passwords and building software trapdoors, for
the most part ignoring subversive code. In the early ’90s the
two disciplines started to merge and the first remote shell
exploits began to be distributed over the Internet.

Today, there are many books on computer security but
few of them explain the offensive aspect from a technical
programming perspective. All of the books on “hacking”
(including the popular book Hacking Exposed) are
compendiums of hacker scripts and existing exploits focused
on network security issues. They do nothing to train the
practitioner to find new software exploits. This is too bad,
mostly because the people charged with writing secure
systems have little idea what they are really up against. If we
continue to defend only against the poorly-armed script
kiddie, our defenses are not likely to hold up well against
more the sophisticated attacks happening in the wild today.

The Trinity of Trouble: Making Software
Security Difficult

Why is making software behave so hard? Three factors
work together to make software risk management a major
challenge today. We call these factors the trinity of trouble.
They are:
• Complexity
• Extensibility
• Connectivity

Complexity
Modern software is complicated, and trends suggest that

it will become even more complicated in the near future. For
example, in 1983 Microsoft Word had only 27,000 lines of
code, but according to Nathan Myhrvold, by 1995 it was up
to 2 million! Software Engineers have spent years trying to
figure out how to measure software. Entire books devoted to
software metrics exist, our favorite one by Zuse weighing in
at over 800 pages. Yet only one metric seems to correlate well
with number of flaws: lines of code (LOC). In fact, LOC has
become known in some hard core Software Engineering
circles as the only reasonable metric.

The number of bugs per thousands lines of code will vary
from system to system. Estimates are anywhere between 5 to
50 bugs per KLOC (thousand lines of code). Even a system
that has undergone rigorous quality assurance (QA) testing
will still contain bugs — around 5 bugs per KLOC. A software
system that is only feature tested, like most commercial
software, will have many more bugs — around 50 per KLOC.
Most software products fall into the latter category. Many
software vendors mistakenly believe they perform rigorous
QA testing when in fact their methods are very superficial.
A rigorous QA methodology goes well beyond unit testing
and includes fault injection and failure analysis.

To give you an idea of how much software lives within
complex machinery, consider the following:

LINES OF CODE SYSTEM
400,000 Solaris 7
17 million Netscape
40 million Space Station
10 million Space Shuttle
7 million Boeing 777
35 million NT5
1.5 million Linux
Under 5 million Windows 95
40 million Windows XP

As we mention above, systems like these tend to have bug
rates that vary between 5 and 50 per KLOC.

One demonstration of the increase in complexity over the
years is to consider the number of LOC in various Microsoft
operating systems. Figure 1 shows how the Microsoft
Windows operating system has grown since its inception in
1990 as Windows 3.1 (3 million lines) to its current form as
Windows XP in 2002 (40 million lines). One simple but unfor-
tunate fact holds true for software: more lines, more bugs. If
this fact continues to hold, XP is certainly not destined to be
bug free! The obvious question to consider given our purposes
is: how many such problems will result in security issues? And
how are bugs and other weaknesses turned into exploits?

Figure 1: Windows complexity as measured by Lines of Code
(LOC). Increased complexity leads to more bugs and flaws.

A desktop system running Windows XP and associated
applications depends on the proper functioning of the
kernel as well as the applications to ensure that an attacker
cannot corrupt the system. However, XP itself consists of
approximately 40 million lines of code, and applications
are becoming equally, if not more, complex. When systems
become this large, bugs cannot be avoided.

Exacerbating this problem is the widespread use of low-
level programming languages such as C or C++ that do not
protect against simple kinds of attacks such as buffer over-
flows [Hoglund and McGraw, 2004]. In addition to providing
more avenues for attack through bugs and other design flaws,
complex systems make it easier to hide or mask malicious
code. In theory, we could analyze and prove that a small pro-
gram was free of security problems, but this task is impossible
for even the simplest desktop systems today, much less the
enterprise-wide systems used by businesses or governments.

Extensibility
Modern systems built around virtual machines that

preserve type safety and carry out runtime security access
checks — in this way allowing untrusted mobile code to be
executed — are extensible systems. Two prime examples
are Java and .NET. An extensible host accepts updates or
extensions, sometimes referred to as mobile code, so that the
system’s functionality can be evolved in an incremental fash-
ion. For example, a Java VM will instantiate a class in a name-
space and potentially allow other classes to interact with it.

Most modern operating systems support extensibility
through dynamically loadable device drivers and modules.
Today’s applications, such as word processors, e-mail clients,
spreadsheets, and Web browsers, support extensibility
through scripting, controls, components, dynamically
loadable libraries, and applets. But none of this is really new.
In fact, if you think about it, software is really an extensibility
vector for general purpose computers. Software programs
define the behavior of a computer, and extend it in interest-
ing and novel ways.

Unfortunately, the very nature of modern extensible
systems makes security harder. For one thing, it is hard to
prevent malicious code from slipping in as an unwanted
extension, meaning the features designed to add extensibility
to a system (such as Java’s class loading mechanism) must be
designed with security in mind. Furthermore, analyzing the
security of an extensible system is much harder than analyz-
ing a complete system that can’t be changed. How can you
take a look at code that has yet to arrive? Better yet, how can
you even begin to anticipate every kind of mobile code that
may arrive? These and other security issues surrounding
mobile code are discussed at length in Securing Java

34 I CyberDefense Magazine I 6.2004

[McGraw and Felten, 1999].
Mobile code has a dark

side that goes beyond the
risks inherent in its design
for extensibility. In some
sense, viruses and worms
are kinds of mobile code. That’s why the addition of
executable e-mail attachments and virtual machines that run
code embedded on websites is a security nightmare. Classic
vectors of the past, including the “sneakernet” and the infected
executable swapped over modems, have been replaced by
e-mail and web content. Mobile code based weapons are
being used by the modern hacker underground. Attack
viruses and attack worms don’t simply propagate; they
install backdoors, monitor systems, and compromise
machines for later use in nefarious purposes.

Viruses became very popular in the early 1990’s and were
mostly spread through infected executable files shuffled
around on disks. A worm is a special kind of virus that
spreads over networks and does not rely on file infection.
Worms are a very dangerous twist on the classic virus and
are especially important given our modern reliance on net-
works. Worm activity became widespread in the late ’90s,
although many dangerous worms were neither well publi-
cized nor well understood. Since the early days, large
advances have been made in worm technology. Worms
allow an attacker to carpet-bomb a network in an unbridled
exploration that attempts to exploit a given vulnerability as
widely as possible. This amplifies the overall effect of an
attack and achieves results that could never be obtained by
manually hacking one machine at a time. Because of the
successes of worm technology in the late ’90s, most if not all
global 1000 companies have been infected with backdoors.
Rumors abound in the underground regarding the so-called
Fortune 500 List — a list of currently working backdoors the
Fortune 500 company networks.

One of the first stealthy malicious worms to infect the
global network and be widely used as a hacking tool was
written by a very secretive group in the hacker underground
calling itself “ADM,” short for “Association De Malfaiteurs.”
The worm, called “ADM w0rm” , exploits a buffer overflow
vulnerability in domain-name servers (DNS). Once infected,
the victim machine begins scanning for other vulnerable
servers. Tens of thousands of machines were infected with
this worm, but little mention of the worm ever made the
press. Some of ADM’s original victims remain infected to
this day. Alarmingly, the DNS vulnerability used by the
worm only scratched the surface. The worm itself was
designed to allow other exploit techniques to be added to its
arsenal easily. The worm itself was, in fact, an extensible

system. We can only guess at how many versions of this
worm are currently in use on the Internet today.

In 2001, a famous network worm called Code Red made
headlines by infecting hundreds of thousands of servers.
Code Red infects Microsoft IIS webservers by exploiting a
very simple and unfortunately pervasive software problem.
As is usually the case with a successful and highly publicized
attack, several variations of this worm have been seen in the
wild. Code Red infects a server and then begins scanning for
additional targets. The original version of Code Red has a
tendency to scan other machines that are in proximity to the
infected network. This limits the speed with which standard
Code Red spreads.

Promptly after its network debut, an improved version of
Code Red was released which fixed this problem and added
an optimized scanning algorithm to the mix. This further
increases the speed at which Code Red infects systems. The
success of the Code Red worm rests on a very simple soft-
ware flaw that has been widely exploited for over twenty
years. The fact that a large number of Windows-based
machines share the flaw certainly helped Code Red spread
as quickly as it did.

Similar outbreaks of worms include Blaster and Slammer.
The growing connectivity of computers through the

Internet has increased both the number of attack vectors
(avenues for attack) and the ease with which an attack can
be made. Connections range from home PCs to systems that
control critical infrastructures (such as the power grid). The
high degree of connectivity makes it possible for small
failures to propagate and cause massive outages. History has
proven this with telephone network outages and power
system grid failures as discussed on COMP.RISKS and in the
book Computer Related Risks.

Connectivity
Because access through a network does not require human

intervention, launching automated attacks is relatively easy.
Automated attacks change the threat landscape. Consider
very early forms of hacking. In 1975, of you wanted to make
free phone calls you needed a “blue box”. The “blue box”
could be purchased on a college campus, but you needed to
find a dealer. They also cost money. This meant that only a
few people had blue boxes and the threat propagated slowly.
Contrast that to today; if a vulnerability is uncovered that

6.2004 I CyberDefense Magazine I 33

... analyzing the security of an extensible system is much harder than
analyzing a complete system that can’t be changed. How can you
take a look at code that has yet to arrive? Better yet, how can you

even begin to anticipate every kind of mobile code that may arrive?

allows attackers to steal pay-per-view television, the informa-
tion can be posted on a web site and a million people can
download the exploit in a matter of hours, deeply impacting
profits immediately.

New protocols and delivery mediums are under constant
development. The upshot of this is more code that hasn’t been
well tested. New devices are under development that can con-
nect your refrigerator to the manufacturer. Your cellular
phone has an embedded OS complete with file system. Figure
2 shows a particularly advanced new phone. Imagine what
will happen when a virus infects the cellular phone network?

Figure 2: A complex mobile phone
offered by Nokia. As phones gain
functionality such as e-mail and web
browsing, they become more susceptible
to software exploit.

Highly connected networks are especially vulnerable to
service outages in the face of network worms. One paradox
of networking is that high connectivity is a classic mecha-
nism for increasing availability and reliability; but path
diversity also leads to direct increase in worm survivability.

Finally, the most important aspect of the global network
is economic. Every economy on earth is connected to every
other. Billions of dollars flow through this network every
second; trillions of dollars every day. The SWIFT network
alone, which connects 7000 international financial
companies, moves trillions of dollars every day. Within this
interconnected system, huge numbers of software systems
connect to one another and communicate in a massive
stream of numbers. Nations and multi-national corporations
are dependant on this modern information fabric.

A glitch in this system can produce instant catastrophe,
destabilizing entire economies in seconds. A cascading
failure could well bring the entire virtual world to a grinding
halt. Arguably, one target of the despicable act of terrorism
on September 11, 2001, was to disrupt the world financial
system. This is a modern risk that we must face up to.

The public may never know how many software attacks
are leveraged against the financial system every day. Banks
are very good about keeping this information secret. Given
that network-enabled computers have been confiscated from
many convicted criminals and known terrorists, it would not
be surprising to learn that criminal and terrorist activity
includes attacks on financial networks.

The Upshot
Taken together, the trinity of trouble has a deep impact on

software security. The three trends of growing system
complexity, built-in extensibility, and ubiquitous networking

make the software security problem more urgent than ever.
Unfortunately for the good guys, the trinity of trouble has a
tendency to make exploiting software much easier!

Bugs and Flaws Are Distinct
A bug is a software problem. Bugs

may exist in code and never be
executed. Though the term bug is
applied quite generally by many soft-
ware practitioners, we’ll reserve use
of the term in this article to encom-
pass fairly simple implementation
problems that impact security. For
example, misusing strcpy() in C and C++ in such a way that
a buffer overflow condition exists is a bug [Viega and
McGraw, 2001]. For us, bugs are implementation level
problems that can be easily “squashed”. Bugs can exist only
in code. Designs do not have bugs. Code scanners such as
Fortify’s Dev tool are great at finding bugs.

A flaw is also a software problem, but a flaw is a problem
at a deeper level. Flaws are often much more subtle than
simply an off-by-one error in array reference or use of a dan-
gerous system call. A flaw is instantiated in software code, but
is also present (or absent!) at the design level. For example a
number of classic flaws exist in error handling and recovery
systems that fail in an insecure fashion. Another example is
exposure to cross site scripting attacks through poor design.
Flaws may exist in software and never be exploited.

Bugs and flaws are vulnerabilities. A vulnerability is a
problem that can be exploited by an attacker. There are
many kinds of vulnerability. Computer security researchers
have created taxonomies of vulnerabilities, though general
agreement on categorization has not emerged.

Security vulnerabilities in software systems range from
local implementation errors (e.g., use of the gets() function
call in C/C++), through interprocedural interface errors (e.g.,
a race condition between an access control check and a file
operation), to much higher design-level mistakes (e.g.,
error handling and recovery systems that fail in an inse-
cure fashion or object sharing systems that mistakenly
include transitive trust issues).

Attackers generally don’t care whether a vulnerability
is due to a flaw or a bug, though bugs tend to be easier to
exploit. Some vulnerabilities can be directly and completely
exploited, others only provide a toehold for a more
complex attack.

Because attacks are becoming more sophisticated, the
notion of what kind of vulnerabilities actually matter is
constantly changing. Timing attacks are now common,
whereas only a few years ago they were considered exotic.

34 I CyberDefense Magazine I 6.2004

Similarly, two stage
buffer overflow attacks
involving the use of tram-
polines were once the domain of software scientists, but are
now used in 0day exploits [Hoglund and McGraw, 2004].

Design-level vulnerabilities are the hardest category of
defect to deal with. Unfortunately, ascertaining whether or
not a program has design-level vulnerabilities requires great
expertise. This makes finding design-level flaws not only
hard to do, but particularly hard to automate. Design-level
problems appear to be prevalent and are at the very least a
critical category of security risk in code. Microsoft reports
that around 50% of the problems uncovered during the
“security push” of 2002 were design-level problems.

Consider an error handling and recovery system. Failure
recovery is an essential aspect of security engineering. But
it’s also complicated, requiring interaction between failure
models, redundant designs, and defense against denial of
service attacks. In an object-oriented program, understand-
ing whether or not an error handling and recovery system is
secure involves ascertaining a property or properties spread
throughout a multitude of classes which are themselves
spread throughout the design. Error detection code is usually
present in each object and method, and error handling code
is usually separate and distinct from the detection code.
Sometimes exceptions propagate up to the system level and
are handled by the machine running the code (e.g., Java 2
VM exception handling). This makes determining whether a
given error handling and recovery design is secure quite
difficult. This problem is exacerbated in transaction-based
systems commonly used in commercial e-commerce
solutions where functionality is distributed among many
different components running on several servers.

Other examples of design-level problems include: object
sharing and trust issues; unprotected data channels (both

internal and external); incorrect or missing access control
mechanisms; lack of auditing/logging or incorrect logging;
ordering and timing errors (especially in multi-threaded sys-
tems), and many others. For more on design problems in soft-
ware and how to avoid them, see Building Secure Software.

Software Exploit Considered
What happens when a software program is attacked? We

introduce a simple house analogy to guide you through a
software exploit. The “rooms” in our target software corre-
spond to blocks of code in the software that perform some
function. The job at hand is to understand enough about the
rooms to wander through the house at will.

Each block of code (room) serves a unique purpose to the
program. Some code blocks read data from the network. If
these blocks are rooms in a house and the attacker is
standing outside the door on the porch, then networking code
can be thought of as the foyer. Such network code will be the
first code to examine and respond to a remote attacker’s input.
In most cases, the network code merely accepts input and
packages it into a data stream. This stream is then passed
deeper into the house, to more complex code segments that
parse the data. So the (network code) foyer is connected by
internal doorways to adjacent, more complex rooms. In the
foyer, not much of interest to our attack can be accomplished,
but directly connected to the foyer is a kitchen with many
appliances. We like the kitchen, because the kitchen can, for
example, open files and query databases. The attacker’s goal
is to find a path through the foyer into the kitchen.

The Attacker’s Viewpoint
An attack starts with breaking rules and undermining

assumptions. One of the key assumptions to test is the
“implicit trust” assumption. Attackers will always break any
rule relating to when, where and what is “allowed” to be
submitted as input. For the same reasons that software blue-
prints are rarely made, software is only rarely subjected to
extensive “stress testing”, especially stress testing that
involves purposefully presenting malicious input. The
upshot is that users are, for reasons of inherent laziness,
trusted by default. A implicitly trusted user is trusted to
supply correctly formed data that plays by the rules and is

6.2004 I CyberDefense Magazine I 33

KJL
Note
An opportunity for AOSD to localize the crosscutting concern of error handling.

KJL
Note
An opportunity: how to localize functionality distributed among many different machines.

KJL
Note
That is the text book for this course.

thus also implicitly “trusted”.
To make this clearer, we’ll restate what’s going on. The

base assumption we’ll work against is that trusted users will
not supply “malformed” or “malicious” data! One particular
form of this trust involves client software. If client software
is written to send only certain commands, implicit assump-
tions are often made by the architects that a reasonable user
will only use the client software to access the server. The
issue that goes unnoticed is that attackers usually write soft-
ware. Clever attackers can write their own client software, or
hack up an existing client. An attacker can (and will) craft
custom client software capable of delivering malformed
input on purpose, and at just the right time. This is how the
fabric of trust unravels.

Terminology for the Upcoming Battle
Though novelty is always welcome, techniques for exploit-

ing software tend to be few in number and fairly specific. This
means that applying common techniques often results in the
discovery of new software exploits. A particular exploit
usually amounts to the extension of a standard attack
pattern to a new target. Classic bugs and other flaws can thus
be leveraged to hide data, escape detection, insert commands,
exploit databases, and inject viruses. Clearly, the best way to
learn to exploit software is to familiarize yourself with
standard techniques and attack patterns and come to see
how they are instantiated in particular exploits.

An attack pattern is blueprint for exploiting a software
vulnerability. As such, an attack pattern describes several
critical features of the vulnerability and arms an attacker
with the knowledge required to exploit the target system. A
list of attack patterns can be found in the sidebar.

Our use of the term pattern is after Gamma [Gamma et al,
1995]. An attack pattern is like a pattern in sewing, a blueprint
for creating a kind of attack. Everyone’s favorite example,
buffer overflow attacks, follow several different standard
patterns. Patterns allow for a fair amount of variation on a
theme. They can take into account many dimensions,
including: timing, resources required, techniques, etc.

Exploit, Attack, and Attacker
An exploit is an instance of attack pattern created to com-

promise a particular piece of target software. Exploits are
typically codified into easy to use tools or programs. Keeping
exploits as stand-alone programs is usually a reasonable idea
as they can in this way be easily organized and accessed.

An attack is the act of carrying out an exploit. This term
can also be used loosely to mean exploit. Attacks are events
that expose a software system’s inherent logical errors and
invalid states.

Finally, an attacker is the person who uses an exploit to
carry out an attack. Attackers are not necessarily malicious,
though there is no avoiding the connotations of the word.
Notice that in our use of the term, script kiddies and those
who are not capable of creating attack patterns and exploits
themselves still qualify as attackers! It is the attacker who
poses a direct threat to the target system. Every attack has an
intent which is guided by a human. Without an attacker, an
attack pattern is simply a plan. The attacker puts the plan
into action. Each attack can be described relative to vulnera-
bilities in the target system. The attacker may restrict or
enable an attack, depending on skill level and knowledge.
Skilled attackers do a better job of instantiating an attack
pattern than unskilled attackers do.

Conclusion
Exploiting software is an art and a challenge. First you

have to figure out what a piece of code is doing, often by
observing it run. Sometimes you can crash it and look at the
pieces. Sometimes you can send it crazy input and watch it
spin off into oblivion. Sometimes you can disassemble it,
decompile it, put it in a jar and poke it with experimental
probes. Sometimes (especially if you are a white hat) you can
look at the design and spot architectural problems.

If we are to defend our systems against sophisticated soft-
ware exploits, we must familiarize ourselves with the tactics
of the enemy. Nothing short of this will work.

References
• Dorothy E. Denning (1998) Information Warfare & Security, Addison-
Wesley, New York.
• Erich Gamma, Richard Helm, Ralph Johnson, John Vlissides (1995)
Design Patterns, Addison-Wesley, New York.
• Greg Hoglund and Gary McGraw (2004) Exploiting Software,
Addison-Wesley, New York.
• Stuart McClure, Joel Scambray and George Kurtz (1999) Hacking
Exposed: Network Security Secrets and Solutions, Osborne, New York.
• Gary McGraw and Ed Felten (1998) Securing Java: Getting down to
business with mobile code, John Wiley and Sons, New York.
• Peter Neumann (1995) Computer Related Risks, Addison-Wesley
(ACM Press), New York.
• Ken Thompson (1984) Reflections on Trusting Trust, Communications
of the ACM, 27(8).
• John Viega and Gary McGraw (2001) Building Secure Software: How
to avoid security problems the right way, Addison-Wesley Professional
Computing Series, New York.
• James Whittaker and Herbert Thompson (2003) How to Break
Software Security, Addison-Wesley, New York.
• Horst Zuse (1991) Software Complexity: Measures and Methods
(Programming Complex Systems, No. 4), Walter de Gruyter, Inc., Berlin.

Portions of this article adapted by permission from Exploiting
Software: How to Break Code by Greg Hoglund and Gary McGraw
(Addison-Wesley, 2004).

34 I CyberDefense Magazine I 6.2004

