

Software Security
Gary McGraw, Ph.D.

Cigital, Inc.
21351 Ridgetop Circle
Suite 400
Dulles, Virginia
20166
info@cigital.com

www.cigital.com

Cigital > Software Security 1

Software Security
Software security is the idea of engineering software so that it continues to function correctly under malicious attack.
Most technologists acknowledge this undertaking’s importance, but they need some help in understanding how to
tackle it. This paper aims to provide that help by exploring software security best practices.

The software security field is a relatively new one. The first books and academic classes on the topic appeared in
2001, demonstrating how recently developers, architects and computer scientists have started systematically
studying how to build secure software. The field’s recent appearance is one reason why best practices are neither
widely adopted nor obvious.

A central and critical aspect of the computer security problem is a software problem. Software defects with security
ramifications – including implementation bugs such as buffer overflows and design flaws such as inconsistent error
handling – promise to be with us for years. All too often, malicious intruders can hack into systems by exploiting
software defects.1 Internet-enabled software applications present the most common security risk encountered today,
with software’s ever-expanding complexity and extensibility adding further fuel to the fire. By any measure, security
holes in software are common and the problem is growing: CERT Coordination Center identified 4,129 reported
vulnerabilities in 2003 (a 70 percent increase over 2002, and an almost fourfold increase since 2001).2,3

Software security best practices leverage good software engineering practice and involve thinking about security
early in the software lifecycle, knowing and understanding common threats (including language-based flaws and
pitfalls), designing for security, and subjecting all software artifacts to thorough objective risk analyses and testing.
Let’s look at how software security fits into the overall concept of operational security and examine some best
practices for building security in.

…versus application security
Application security means many different things to many different people. In most cases, it has come to mean the
protection of software after it’s already built. Although the notion of protecting software is an important one, it’s just
plain easier to protect something that is defect-free than something riddled with vulnerabilities.

Pondering the question, “What is the most effective way to protect software?” can help untangle software security and
application security. On one hand, software security is about building secure software: designing software to be
secure, making sure that software is secure, and educating software developers, architects and users about how to
build secure things. On the other hand, application security is about protecting software and the systems that
software runs in a post facto way, after development is complete. Issues critical to this subfield include sandboxing
code (as the Java virtual machine does), protecting against malicious code, obfuscating code, locking down
executables, monitoring programs as they run (especially their input), enforcing the software use policy with
technology, and dealing with extensible systems.

Application security follows naturally from a network-centric approach to security, by embracing standard approaches
such as penetrate and patch4 and input filtering (trying to block malicious input) and by providing value in a reactive
way. Put succinctly, application security is based primarily on finding and fixing known security problems after

1 G. Hoglund and G. McGraw, Exploiting Software: How to Break Code, Addison-Wesley, 2004

2 J. Viega and G. McGraw, Building Secure Software, Addison- Wesley, 2001; www.builingsecuresoftware.com

3 G. McGraw, “From the Ground Up: The DIMACS Software Security Workshop,” IEEE Security & Privacy, vol.1, no. 2, 2003, pp.59-
66.

4 G. McGraw, “Testing for Security During Development: Why We Should Scrap Penetrate-and –Patch,” IEEE Aerospace and
Electronic Systems, vol. 13, no. 4, 1998, pp.13-15.

Cigital > Software Security 2

they’ve been exploited in fielded systems. Software security – the process of designing, building and testing software
for security – identifies and expunges problems in the software itself. In this way, software security practitioners
attempt to build software that can withstand stack proactively. Let me give you a specific example: although there is
some real value in stopping buffer overflow attacks by observing HTTP traffic as it arrives over port 80, a superior
approach is to fix the broken code and avoid the buffer overflow completely.

…as practiced by operations people
One reason that application security technologies such as firewalls have evolved the way they have is because
operations people dreamed them up. In most corporations and large organizations, security is the domain of the
infrastructure people who set up and maintain firewalls, intrusion detection systems and antivirus engines (all of
which are reactive technologies).

However, these people are operators, not builders. Given the fact that they don’t build the software they have to
operate, it is no surprise that their approach is to move standard security techniques “down” to the desktop and
application levels. The gist of the idea is to protect vulnerable things (in this case, software) from attack, but the
problem is that vulnerabilities in the software let malicious hackers skirt standard security technologies with impunity.
If this were not the case, then the security vulnerability problem would not be expanding the way that it is. Clearly,
this emphasizes the need to get builders to do a better job on the software in the first place.

Protecting a network full of evolving software is difficult (even if the software is not patched every five minutes). If
software were in some sense self-protecting (by being designed defensively and more properly tested from a security
perspective) or at least less riddled with vulnerabilities, running a secure network could become easier and more cost
effective.

In the short run, we clearly – desperately – must make progress on both fronts. But in the long run, we must figure
out ways to build easier-to-defend code. Software security is about helping builders do a better job so that operators
end up with an easier job.

…in the software development lifecycle
On the road to making such a fundamental change, we must first agree that software security is not security software.
This is a subtle point often lost on the development people who tend to focus on functionality. Obviously, there are
security functions in the world and most modern software includes security features, but adding features such as SSL
(for cryptographically protecting communications) does not present a complete solution to the security problem.
Software security is a system-wide issue that takes into account both security mechanisms (such as access control)
and design for security (such as robust design that makes software attacks difficult). Sometimes these overlap, but
often they don’t.

Put another way, security is an emergent property of a software system. A security problem is more likely to arise
because of a problem in a standard-issue part of the system (say, the interface to the database module) than in some
given security feature. This is an important reason why software security must be part of a full-lifecycle approach.
Just as you can’t test quality into a piece of software, you can’t spray paint security features onto a design and expect
it to become secure. There is no such thing as a magic crypto fairy dust: we need to focus on software security from
the ground up.

As practitioners become aware of software security’s importance, they are increasingly adopting and evolving a set of
best practices top address the problem. Microsoft has carried out a noteworthy effort under the rubric of its
Trustworthy Computing Initiative.5,6 Most approaches in practice today encompass training for developers, testers

5 L. Walsh, “Trustworthy Yet?” Information Security Magazine, Feb. 2003; infosecuritymag.techtarget.com/2003/feb/cover.shtml.

6 M. Howard and S. Lipner, “Inside the Windows Security Push,” IEEE Security & Privacy, vol. 1. no. 1, 2003, pp. 57-61.

Cigital > Software Security 3

and architects, analysis and auditing of software artifacts, and security engineering. In the fight for better software,
treating the disease itself (poorly designed and implemented software) is better than taking an aspirin to stop the
symptoms. There’s no substitute for working software security as deeply into the development process as possible
and taking advantage of the engineering lessons software practitioners have learned over the years.

Figure 1 specifies one set of best practices and shows how software practitioners can apply them to the various
software artifacts produced during software development.

Security should be explicitly at the requirements level. Security requirements must cover both overt functional
security (say, the use of applied cryptography) and emergent characteristics. One great way to cover the emergent
security space is to build abuse cases. Similar to use cases, abuse cases describe the system’s behaviors under
attack; building them requires explicit coverage of what should be protected, from whom, and for how long.

At the design and architecture level, a system must be coherent and present a unified security architecture that takes
into account security principles (such as the principle of least privilege). Designers, architects and analysts must
clearly document assumptions and identify possible attacks. At both the specifications-based architecture stage and
at the class-hierarchy design stage, risk analysis is a necessity – security analysts should uncover and rank risks so
that mitigation can begin. Disregarding risk analysis at this level will lead to costly problems down the road. External
review (outside the design team) is often necessary.

At the code level, we should focus in implementation flaws, especially those that static analysis tools – tools that scan
sources code for common vulnerabilities – can discover. Several vendors now address this space, and tools should
see market-driven improvement and rapid maturity later this year. As stated earlier, code review is a necessary, but
not sufficient, practice for achieving secure software. Security bugs (especially C and C++) can be deadly, but
architectural flaws are just as big a problem.

Security testing must encompass two strategies: testing security functionality with standard functional testing
techniques, and risk- based security testing based on attack patterns and threat models. A good security test plan
(with traceability back to requirements) uses both strategies. Security problems aren’t always apparent, even when
we probe a system directly, so standard-issue quality assurance is unlikely to uncover all the pressing security
issues.

Penetration testing is also useful, especially if an architectural risk analysis is specifically driving the tests. The
advantage of penetration testing is that it gives a good understanding of fielded software architecture in its real

Cigital > Software Security 4

environment. However, any black-box penetration testing that doesn’t take the software architecture into account
probably won’t uncover anything deeply interesting about software risk. Software that falls prey to canned black-box
testing – which simplistic application security testing tools on the market today practice – is truly bad. This means
that passing a cursory penetration test reveals very little about your real security posture, but failing an easy canned
penetration test tells you that you’re in very deep trouble indeed.

Operations people should carefully monitor fielded systems during us for security breaks. Simply put, the attacks will
happen, regardless of the strength of design and implementation, so monitoring software behavior is an excellent
defensive technique. Knowledge gained by understanding attacks and exploits should be cycled back into the
development organization, and security practitioners should explicitly track both threat models and attack patterns.

Note that risks crop up during all stages of the software cycle, so a constant risk analysis thread, with recurring risk
tracking and monitoring activities, is highly recommended.

…as a multidisciplinary effort
By and large, software architects, developers and testers remain blithely unaware of the software security problem.
One essential form of best practices involves training software development staff on critical software security issues.
The most effective form of training begins with a description of the problem and demonstrates its impact and
importance. Beyond awareness, more advanced software security training should offer coverage of security
engineering, design principles and guidelines, implementation risks, design flaws, analysis techniques, software
exploits, and security testing. Each best practice called out earlier is a good candidate for in-depth training.

Software security can and should borrow from other disciplines in computer science and software engineering when
developing and evolving best practices. Of particular relevance are:

• security requirements engineering;

• design for security, software architecture, and architectural analysis;

• security analysis, security testing, and use of Common Criteria;

• guiding principles for software security and case studies in design and analysis;

• auditing software for implementation risks, automated tools, and technology developments (code scanning,
information flow and so on); and

• common implementation risks (buffer overflows, race conditions, randomness, authentication systems, access
control, applied cryptography, and trust management).

Much work remains to be done in each of the best practice areas, but some basic practical solutions should be
adapted from areas of more mature research.

As the trinity of trouble – connectedness, complexity and extensibility – continues to impact software security in a
negative way, we must begin to grapple with the problem in a more reasonable fashion. Integrating a decent set of
best practices into the software development lifecycle is an excellent way to do this. Although software security as a
field has much maturing to do, it has much to offer to those practitioners interested in striking at the heart of security
problems.

Cigital > Software Security 5

Gary McGraw is chief technology officer at Cigital. His real-world experience is grounded in years of consulting with
major corporations and software producers. He serves on the technical advisory boards of Counterpane, Fortify, and
Indigo. He also is coauthor of Exploiting Software (Addison-Wesley, 2004), Building Secure Software (Addison-
Wesley, 2001), Java Security (John Wiley & Sons, 1996) and four other books. Contact him at gem@cigital.com.

Copyright © 2004 IEEE. Reprinted from the March/April 2004 issue of IEEE Security & Privacy.

This material is posted here with permission of the IEEE. Such permission of the IEEE does not
in any way imply IEEE endorsement of any of Cigital's products or services. Internal or personal
use of this material is permitted. However, permission to reprint/republish this material for
advertising or promotional purposes or for creating new collective works for resale or
redistribution must be obtained from the IEEE by writing to pubs-permissions@ieee.org.

Cigital, Inc.
21351 Ridgetop Circle
Suite 400
Dulles, Virginia
20166

T 800 824 0022
 703 404 9293
F 703 404 9295
E info@cigital.com

www.cigital.com

Copyright © 2003 Cigital, Inc.
Cigital and the Cigital logo are registered trademarks of Cigital, Inc.

	Software Security Front Cover.pdf
	Gary McGraw, Ph.D.

