Federated ldentity-Management Protocols
—Where User Authentication Protocols May Go—

Birgit Pfitzmann and Michael Waidner

IBM Zurich Research Lab
{bpf, wnm }@urich.ibmcom

Abstract. For authentication, one answer to the workshop questiorferhave
all the protocols gone?” is “into federated identity marmagat”. At least this
is what many influential industrial players are currentlgivitg for. The best-
known examples are Microsoft Passport, the Liberty Allglagroposals, and
WS-Federation. While there have been many political disioms about Passport,
in particular its privacy, and some technical studies ofrafienal risks, there is
almost no public literature about the actual protocols &edt security.

We start with an overview of the driving factors in this spabe security prop-
erties desirable and achievable under the given desigriragts, and the proto-
cols proposed so far. We present a new protocol, BBAE, witteberivacy and
scalability, i.e., absence of single points of controltipgior proposals. We also
discuss particular difficulties of rigorously treating afarcol that can be a profile
in current standardization efforts.

1 Introduction

While cryptography and security research has devised isg@rptocols for a wide
range of functionality, such as payment systems and fainaxge, the majority of se-
curity protocols used in real networks and products only atnuser authentication
and secure channel establishment. Research has also edochany good protocols
achieving these goals; they are even the main focus of thefdeemal methods in se-
curity. Nevertheless, a surprising number of new such gadgoare continuously being
designed in practice, and typically not by adopting welleistigated proposals. While
lack of knowledge and a marketing-driven desire for novedistainly play a role, new
applications truly have new requirements, and it seemsfoire researchers to extend
the existing basic ideas appropriately to these new reagings.

Federated identity management is a case in point. The leiggl-gjoal of enterprises
is to simplify user management in an increasingly dynamiddvdn particular, they
want to benefit from user registration done in other placeshfeir own user manage-
ment. The market demand is mostly for business-to-busisemsarios, less than the
much-discussed initial scenario of Microsoft Passportielome enterprise essentially
authenticates the world population. Current demand is evastly for simplifications
within one enterprise, and the next steps are scenarioadikess control for employ-
ees of supply-chain partners and customer-relationshipagement in a federation of
travel agencies, airlines, and hotels.

! This paper reflects the view of the authors, which is not rearélg shared by IBM.

To appear in LNCS, Springer-Verlag.
© Springer-Verlag Berlin Heidelberg 2004.



The main requirement on current federated identity-mamage protocols is to
work if the user agent is only a standard browser. This isedddrowser-basedr
zero-footprint The reason is that a large percentage of potential userprbasd to
be unwilling to download specific software. Further, thauiohs should work without
active content, because many users turn that off for sgcrg#isons. Optimally, they
should even work without cookies for the same reason; howee all solutions do,
and it is definitely accepted to take advantage of cookieshfoavser returns them.
Enterprises even require that the solution cabtogvser-statelessThis means that the
user uses multiple browsers on different machines, up td&iwgronly from Internet
cafes. While the latter is not advisable for security, nobisdforced to use Internet
cafes at least in developed countries, and we simply acoheptquirement.

In research terms, this amounts to three-party autheisticapossibly under
pseudonyms, combined with an exchange of user attributescalN the third party
wallet and the recipient of the authentication and attribatestination siteHowever,
no state-of-the-art protocol applies because they allmsspecial user agents. In par-
ticular, a user agent in three-party authentication tyljiazses a newly generated or
received cryptographic key, while a standard browser vatldo this. We have to work
with browser redirects and other standard HTTP construdys Blore precisely, HTTP,
HTML, and secure SSL/TLS channels triggered by HTTPS adémeare assumed.
Normal authentication protocols are known to be very pranéesign errors, and the
browser constraint can only make things worse. Hence we\zethat detailed security
considerations for such protocols will become very impatrt&urther, the transfer of
additional attributes and the possibly quasi-automatigasadds privacy as an impor-
tant dimension.

In this paper, we start with an overview of the security andgmy properties desir-
able and achievable under the zero-footprint and browsg¢eless constraints, and the
protocols proposed so far. We then present a new protoc@d\EBRiith better privacy
and scalability, i.e., absence of single points of contr@n prior proposals. Between
this workshop and these proceedings, scalability has bddmessed in similar ways in
standards proposals, while similar privacy is still notiagld.

We designed BBAE to be suitable as a profile in existing stadidation efforts
such as SAML, Liberty or WS-Federation, as this is the beahch of adoption. While
this paper contains a more precise and mathematical defirdfiBBAE, this point of
view had two consequences: First, a few parameters are nsgukecific ways to fit
a particular standard. Secondly, the definition is more rfaydhan usual in research
definitions of security protocols. All current standardiaa efforts aim for such modu-
larity, e.g., independence of underlying transport promaryptographic mechanisms,
and policies, and even relative independence of concressage formats and mes-
sage flows, the so-called profiles. (We discuss this tendaitymore in the outlook.)
Concretely, we have specified this version of BBAE compjeted a SAML profile,
i.e., with SAML message formats and general constraintis 3jecification was pro-
totyped by Stephen Levy in the IBM Privacy Services protetffor an earlier version
see [3]). At the time of this workshop, SAML was the only cteicontaining the only
message standard with general attributes. The only reailctesn by this choice was in
the inclusion of privacy policies, see below. In the meantime also specified BBAE



as a WS-Federation Passive Requestor profile with very nuhanges together with
Daniel Lutz, ETH Zurich, who also prototyped that versiomeTexistence of these
profile specifications should not be misunderstood as IBMtitg standardization.

A particular reason to present profiles of standards like $Aibre formally is
that each participant has several names in such profiles,ie.the certificate in an
underlying SSL channel, in the certificate for an XML sigmatuand in metadata; in
text representations it is hard to say precisely which nameséd where. Additionally,
there can be several channel and protocol identifiers.

Two other challenges in precisely describing a browseedasotocol are indepen-
dent of a relation to standards: One has to describe the ndeha browser. We are not
aware of prior protocol definitions that include user ruRviding them is important
for a later security analysis, because in a zero-footpuimmyser-stateless protocol the
user is an important protocol principal, and security caly e defined with respect
to certain user actions and shown under certain assumpiomst the user behavior.
It is vital for implementations and documentation of sucbtpcols to be aware of this
semantics of the users actions. We even recommend to sthrel#ine corresponding
user syntax, i.e., the graphical user interface, to a laxtgné

2 Existing Proposals and Design Goals

Figure 1 gives an overview of browser-based federatedilgemianagement protocols.
The first such protocol was Microsoft Passport. It is not @itad, but guessable from
existing publications [11, 9]. The only open standard sdd&8AML [17]. Shibboleth
[18] is a more elaborated SAML application to a universitgdeation. The Liberty
Alliance, also building on SAML, makes public proposalsheitit an open standard-
ization process [10]. WS-Federation belongs to a largerserhices roadmap by IBM
and Microsoft; its passive requestor profile is the browssesed case [20]. BBAE is
our proposal of this paper; it precedes Liberty 2 and WS-Fam. WebSEAL is a
product from the enterprise space [8], its 2002 version @swshfor comparison with
standardization efforts. The round icons are browserébpsatocols. For comparison,
the square icons show other protocol classes for web authéon and attribute ex-
change, but not zero-footprint and browser-statelesgifdler” denotes local wallet
products like [7, 16, 12, 23] and more recently browser peaipation. “Proxy wallets”
denotes similar products working as remote proxies. As eeythe user’s entire web
traffic, they are much worse for privacy than the protocasldiscussed here where the
wallets only participate in authentication and attributeteange. “PKI” means public-
key infrastructure, and “idemix” (Identity Mixer) is an IBMrototype of unlinkable
credentials [5].

Vertically we show to what extent a singtentrol pointis inherent in the protocol
design. We call the oppositealablebecause a single control point may be acceptable
in one enterprise or a small federation, but not beyond. ©@bpbints occur for differ-
ent reasons in protocols: the wallet addressing may be fatddast per installation, as
in Passport; all wallets may have to trust each other; thexg Ise no room for certifi-
cate chains in messages; or there may be a symmetric-keipdikin center that can
impersonate all other parties. A common cookie domain, apgeed by Liberty, is at



Control point?

A SAML SAML
SSO msg PKI BBAE
Fully . .
scalable c|'c (o} C  idemix
Proxy
. wallets Liberty 2 ID-FF,
Liberty 1 WS-Fed Passive
. Form filler
Disjoint c
small )
federations Shibboleth
WebSEAL
in 2002 . Browser -based
Passport
. Local client
Slngle C Certified attributes
enterprise
Attribute
flexibilit
SSO only Attributes exibility
Some privacy Full privacy

Fig. 1. Overview of browser-based protocols and some related igabs.

least dangerous. However, we accept the lack of a fully §pdcet-up phase as long
as such a phase could be added.

Horizontally, we first show whether only single signon iseséd or multiple user
attributescan be exchanged. We joined this with firé&vacy dimension because multi-
ple attributes without privacy are simply a very long identPrivacy on this protocol
layer means that all information exchange can be governegoligy, and arbitrary
policies are possible. In other words, no information isrerged automatically. We
include here that users are not forced to give attributekitd-party wallets, i.e., they
can choose between the zero-footprint version landl walletsin the same protocol.
One exception from privacy seems unavoidable for browssed protocols: A wallet
learns the identities of the destination sites that a usthieaticates to. Detailed privacy
goals and which protocol features enable them are discuis$&d]. Note that privacy
in the overall system additionally requires a well-des@jpelicy-management system
and privacy on lower layers.

The “C” in some icons means that attributes may be certified,donfirmed by the
wallet or other parties. In most protocols certified attté@suallow less privacy than un-
certified ones (such as the user’s book preferences). Camgtertified attributes and
strong anonymity is impossible with browser-based prded&/here one needs that,
one has to give up the zero-footprint restriction and upgtadcryptographic unlink-
able credentials [4], here exemplified by idemix [5].

Looking at browser-based protocols (round icons) only, amitting the shaded
“SAML msg” icon, which denotes that SAML already defines naggsformats for this
case, but no protocols yet, one sees that no other protodmssks full privacy, and no
protocol prior to BBAE addressed attribute exchange forfdiig federated case.



3 Overview of the BBAE Protocol

In this section, we present a browser-based attributeasgdprotocol, BBAE.

3.1 Message Flow

Figure 2 shows the message flow of the longest execution palie 8BAE protocol,
and when no error occurs. Steps 0 and 13 show that the usesuisiad to browse at
the destination site before the protocol and to get someacgtioin-level response after
the protocol. Steps 1-2 locate the wallet, Steps 3-4 redirecbrowser to it, Step 5
authenticates the user to the wallet, Steps 6-10 trangpoéadtual request and response
on a backchannel, where Step 8 allows the real-time reldag#ibutes, and Steps 11-
12 redirect the browser back to the destination site withradleethat links this browser
to the response. The figure contains all the exchanged paesweth hopefully self-

( User ) Destination
U Browser Wallet W site D

0. Access a resource

already
known

-— — — — — — - — — — — == 1 Unless
} address

3. Redirect to wallet (adr,,, (adr,, gsid))
4. End of redirect to wallet
(adr,, (adr,, dsid))

5. Authenticate user -
Unless existing
secure channel

6. Connect (adrp, dsid, handle)

; *| Linkto
Getid,, from | 7. Request (attribute_names, Steps 0-3

secure channel <promises, handle) by dsid

8. Real-time release if ngeded (id,,, attributes, restrictions) . .
-+~ — = — — — — — —m 9. Response (attributes, restric-
tions, handle, id,, name,,, sig,

handle’)
Possibly
f
10. Return (ret_adr)) rs‘i‘;f,a} rom

1. Redirect (ret_adr,, handle)

g

12. End of redirect (ret_adr,, handle)

> Linkto

. _— response
13. Continue application by handle

Fig. 2. BBAE protocol with abstract parameters. Steps with dasimed lare only needed in cer-
tain cases. The boxes denote secure channels.



explanatory names:(i denotes addresses a#idd a session identifier), except that all

messages also contain a protocol identifier and a messagdeenwithin the protocol.

If not stated otherwise, these identifiers are not proteetedpt by the secure channels.
The submodules used are defined in Section 4, the detailtatpigteps in Section

5, and Section 6 gives additional explanations when and mbset steps are necessary.

3.2 Notation

We use a straight font fokonstants, including constant sets, functions, and
submodules, and italics fowvariables Assignment by possibly probabilistic functions is
written <. An inputin to an asynchronous submoduledule is written module!(in)
and an outpubut from it module?(out). Most of these submodules are distributed, i.e.,
they get inputs and make outputs for several participantseofmain protocol. Simple
sending of a message is shown as»— or «— m— between participants; concretely
it stands for HTTP messages.

4 Required Submodules and Set-up

Browser-based protocols, at least if one keeps close tdatdization, use several sub-
modules whose implementation is left open. Some submodedgsre that certain data
is exchanged in advance; this corresponds to constraintisednglobal initial states.
In this section, we describe these submodules and cortstrBBAE does not require
parameter exchange except for its submodules, and in theeterversion this only
means SSL server certificates and XML signature capabililieis makes BBAE eas-
ier to bootstrap than all prior proposals. Negotiation ofmooon submodules among
multiple possible ones is not part of the subsequent protescription. Further, we
do not present details of how a user’s authentication in&tion, attributes, and privacy
policies are managed over time.

4.1 Browser Channels

Every wallet and every destination site must be able to raairgecure channels with
standard browsers. We define this to mean that message cuidiiyg and integrity
hold with respect to the same principals for all messagesemnthe channel. The eas-
iest implementation is SSL/TLS channels, triggered by HS BEdresses [21]. Servers
that release SSL channels after each HTTP response mayatbesecure implemen-
tation, but should have at least one zero-footprint version

Submodule $ecchan”. We denote the submodule sschan and the possible actions
as follows:

Browser Server
secchan?(new, cid, adr)
secchan!(accept, cid, id)
secchan?(receive, cid, m)
secchan!(send, cid, m')

secchan!(new, adr)
secchan?(accepted, cid, adr, id)
secchan!(send, cid, m)
secchan?(receive, cid, m')

[

AP WOWNPR



Line 1 shows that the browser initiates a secure channel éaldressidr € URLHost.
This set denotes the set of URL host names, Wwithlhost € URLHost. Recall that “!”
denotes that this is an input to an asynchronous module. ditversis notified with a
channelidentifierid. Line 2 shows that the server may accept the channel andfident
itself under an identityd. We denote anonymity by = ¢. The browser is notified of
the acceptance and & andcid. Then both parties may send. This is shown in Lines
3-4 with messages andm/’.

The abstract message

redirectS(adr, path, query)

models a redirect (HTTP 302 or 303) to httpsdit/path?querystring, where
querystring is an encoding of the abstrapiery. Its consequences are that the browser
establishes a secure channel to the addiégssand then sendgath and query over
that channel [21]. Modeling the channel establishmentiwithe redirect explicitly is
important for a security analysis.

Certificates neededn BBAE, wallets must be identified in secure browser session
Concretely, they need SSL/TLS certificates acceptabledwdrrs. Abstractly, we re-
quire that each walléti” has an identityidy, such that, ifi usesid := idy in Line

2, a correct browser gets the outgatchan?(accepted, cid, adr, idy ). Nobody else
must be able to achieve this, i.e., to impersonate the watéeridy, .

User involvemenBrowsers must reliably present secure channels and thegpaden-
tity d to their users. The typical implementation is browser ictmrsvindows with
secure channels and the possibility to look up certificAtéglets may support this by
personalizing the window content. We denote the outputsea nexeives, and inputs
that he makes, by

secchan?(receive, id, m’);?

secchan!(send, id, m).

4.2 Backchannel Sessions

We also use secure channels between wallets and destirsitisn We model these
secure channels by the same modaéehan as the browser channels, because they will
typically also be SSL/TLS. However, as no party is a browsee this implementation

is easier to change. Again the initiating party need nottifieitself; hence the in- and
outputs are exactly as above. Destination sites must tjpica identified; otherwise
they only obtain the attributes that the users’ privacy ge$ permit for anonymous
recipients. Letidp be the identity under which destination sifecan securely identify
itself in secure channels, in the same sense as for walletiids idy;; above. If a real
organization has several such identities, we treat it asrabdestination sites because
the identity choice can be made before a BBAE execution.

2 \We only model that the user sees the partner iderititynot a channel identifier, because
he will not notice if a channel is interrupted. Usually, hewge he can distinguish different
channels with one partner by different windows.



4.3 Response Authentication

A wallet must typically authenticate responses for a datiin site. With SAML mes-
sages, this means XML signature capabilities [22]. They mase both digital sig-
natures in the cryptographic sense and authenticatiorscaiie allow many types of
certification and key distribution. We discuss typical ussain Section 9. Generally, we
write such authentication as a function

m’ « auth(id, m, strength)
for authenticating a messageunder an identityid with a certain strength, and
(id, m, strength) < test(m')

for verifying a received message and extracting an identitya payloadm, and

a strength. We denote failure kiyd, m) = (e,¢) and the unauthenticated case by
strength = ¢ andm’ = (id, m). We assume that a dom&arengths for the parame-
tersstrength is given; for implementations without this notion we defBteengths to
have one element only. The Liberty Alliance made detailesppsals [10]. The func-
tions denote authentication including all necessary exgband verification of keys
and certificates.

4.4 User Registration

A userU must register with at least one wallet. Lat&Vallets;; denotes the set of
wallets thatU registered with, andJsersy, the set of user identities registered at a
wallet .

Installation or addresslLet localy, € Bool denote whether a wallé¥ is local. (This
can be fixed for all users d#".) If W is local, it must be installed; this should be com-
bined with a local firewall that only allows local access tis thvallet. If 17 is remote,
the user obtains a contact addregs,y € URLHost of it (else letadry := ¢). This
address must be fixed for all usersiéf unless a user consented to a different privacy
policy. We assume a fixed paBBAEpath by which these addresses are extended to
address the wallet services.

User authentication modulevauth”. The user and the wallet set up a method for later
user authentication via a browser. We explicitly model pasds, in order to analyze
the security of the zero-footprint and browser-statelesecUsers who do not insist
on these properties may set up higher-quality authemicat particular with remote
wallets. The overall method must comprise means to protectiser from fake-wallet
attacks, because the browser arrives at the wallet (or aersaly) by redirection from
an untrusted site. This means at least user education abofyting the wallet certifi-
cate® We denote the submodule asuth and the possible actions as follows:

3 A dangerous feature in Passport and Liberty is “inline @rgignon”, where the wallet uses a
part of the destination site’s window, because it disahles snethods.



User Wallet
1 uauth?(start, idw) «— uauth!(start, cid)
2 uauth!(do, idw, login) — uauth?(done, cid, idy)

Line 1 denotes that the wallet initializes user authenticadver a secure channel with
identifier cid. Thus the moduleauth uses the modulgscchan. At the user, this leads
to an output that asks for authentication. This output dostdne wallet’s identityidy,
that the browser obtained in the set-up of channiél With current concrete imple-
mentations this happens automatically by the browser windte user inputs login
informationlogin into the same window (Line 2), and the wallet derives a usemtity
idy € Usersw U {e}, wheree denotes failure.

Exchanged parameteréfter registration of usef/ at wallet W, the user knows an
identity idyy that the wallet can use for secure browser channels (congeateon 4.1),
and the wallet knows an identitil;; of the usef. Further, they share login informa-
tion loginy, w. We have to assume that the entropyl@finy, w is large enough and
the protocoluauth good enough that, as long &sonly uses correct browsers, an at-
tacker cannot achieve th#lt' obtains an outputauth?(done, cid, idy) for a channel
cid where the attacker is the other principal. Note that thisitagdion is not always
fulfilled in practice; then every browser-based protocosfa

4.5 Attributes and Privacy Policies

Vocabulary.If a wallet and a destination site interact, they need a comruxab-
ulary for user attributes. We simplify this as sétstribute_Names and Attributes

of attribute names and name-value pairs. Elementtaibute_Names may contain
further information, e.g., whether an attribute is mandato the answer or what
degree of certainty or even liability of this attribute iseded. SimilarlyAttributes
may contain such degrees of certainty. With SAML this would dasier if the at-
tribute names could be of arbitrary types, not only stringle assume a function
auth_strength: Attributes™ — Strengths that computes the necessary authentication
strength for a list of attributes with their desired degréeastainty.

Privacy exchange languag@/allets and destination sites need a common privacy lan-
guage because user attributes can typically only be fomehfdr certain purposes
and with certain obligations to the recipient. We assumedfigets Promises and
Restrictions for this. For simplicity, we lePromises comprise all additional information

a destination site adds about itself, e.g., certified groamberships.

Privacy evaluation functionsWallets need an internal privacy-management system
(see, e.g., [3]). The languagBsmises andRestrictions will typically be derived from

the internal policy language by additional bindings to ataitribute names and by ele-
ments that characterize policies as promises or restmitibhe internal privacy policies

41f the nameidy is used for anything beyond recognition &f by W, it is considered an
attribute and treated in Section 4.5, with examples in 8edi Different roles thal/ wants to
play with destination sites, but manage in one wallet, alHoriy to those sections. A person
wishing to interact in different, unlinked roles with onellgais treated as multiple users.



may be three-valued, i.e., the set of decision&itow, deny, askme}. Hereallow and
deny characterize situations where the user knows what he wahtkg askme is for
situations that the user does not want to think about beffweh an approach corre-
sponds well to user studies that people do not want to sténtatistract concepts like
policies, but with examples. For the evaluation of privaoligies in a wallet, we there-
fore assume a function

(att, namew , restr, rtr) < priv_eval(DB, idy, idp, att_n, prom).

The inputs are the wallet’s current datastér® including privacy policies, the iden-
tity idy of a registered user, the identity, of a destination site, a listtt_.n €
Attribute_Names®, and promisegrom € Promises by idp. The outputs are

— alist att € (Attributes x {allow, askme})* containing the potentially permitted
answers taitt_n,

— a hamenamey under which the wallet should authenticate the attribiges Sec-
tion 9),

— their restrictiongrestr € Restrictions,

— andrtr € Bool denoting if a real-time release is necessary.

The evaluation function may have special properties likérepatt := () if a requested
mandatory attribute is denied.

Users also take privacy decisions, in particular for attiéls whereriv_eval outputs
askme. To show what parameters the user needs and decides on, teethisi as a
function for each usdr,

(att’, name’y, , restr’) < priv_evaly, (idp, att, namew , restr™, ctat).

This defines that the user sees the identiy of the destination site, a proposed at-
tribute list att and namenamey, as output bypriv_eval with restrictionsrestr*, and
has a contexttzt in which this data request occurs. For instari¢anay release more
attributes taD when buying something than when only browsing. The walletitdhde-
rive overall restrictiongestr™ as a suitable combination of the promises and the original
restrictions,

restr” «— priv_combine(restr, prom).

The user possibly modifies the attributes (in particulaolkess theaskme decisions),
the name, and the restrictions.

Figure 3 shows how a wallet can present a privacy decisiohdaser. Where the
wallet knows the attribute, it distinguishes the policy idemsallow (green, vertical
stripes) andskme (red, diagonal stripes). In the example the name and shg@uldress
are pre-authorized, while the ID number is not. The privagstrictions are initially
hidden under the button “Show privacy”. The user might aetbe ID number and not
add an income because the fields are not mandatory. If they, Wemmight cancel. We
define that registering for BBAE covers consentlbyor W to use the BBAE protocol
at all. The privacy policy must also govern all storage arajef received information
by W, but we need no notation for this because it concerns actifiasthe protocol.

10



/Your partner, idp, would like the following data about you:
* Name *

e Shipping address Sbedtfaltd 1| *
qH-880d Zdrich
« National ID number W
* Yourincome 1

%: You may not want to send this
*: They won't continue without this

[Show privacy] [ Cancel J [ Submit ]

Fig. 3. Simple example form for a user privacy decision (for the-téak release, Step 8).

Unless the policy allows otherwise all values th&t receives in a BBAE execution
must be deleted at the end of this execution.

Concrete user attributes and privacy policid$ie user deposits attributes together with
privacy policies, or consents to the use of already preg#itites according to certain
privacy policies. We denote the data set associated withligewalletW by DBy .

Attribute verificationslf the wallet is to confirm certain attributes beyond justristg
them for the user, it has to verify them. For names, this isudised in Section 9.

4.6 Miscellaneous Submodules

NoncesWe also need nonce generation, written
n <— nonce_gen,

where we omit the dependency on a security paranietiémust have the usual cryp-
tographic properties, and is implemented most easily asrgéion of ak-bit random
string. SAML uses typed nonces (artifacts), but we do ndtrdjsiish such types here.

Destination site addressesEach destination siteD chooses two addresses
adrp, ret_adrp € URLHostPath. They must be fixed for all executions of the BBAE
protocol, at least in a certain time period.

Session administratiomzor a destination sit®, we need a sef/Dp of current BBAE
session identifiers, initially empty. It is important to adefihowD links the three parts
of a BBAE execution that have no common channels from itstpafiniew, Step 0-3,
Step 6-10, and Steps 12-13. A similar set in wallets can neinaglicit.

Location query formEach destination sit® needs a location query form
form «— loc_formp(ctat)

for Step 1, in case it has to ask a user in person for the addféss wallet. It can be
a function ofD’s context. An example form is shown in Figure 4. The mandaparrts
are at least one “no” or “cancel”, a radio buttlaal € Bool where the text “itis local”

11



representsrue and “my wallet holder is” representslise, and a text fielthdr after the
latter button. These mandatory parts enable a consisteneMperience over multiple
destination sites and allow local proxies to handle locafarms instead of the user.
We represent the user’s choices for the mandatory fieldsrgde t

(ok, local, adr) € Bool x Bool x (URLHost U {e}),

whereok = true if no “no” or “cancel” was chosen and the buttolagal were enabled,
andadr = e if the address field is empty or not IWRLHost. The user should be able
to verify whether a formform has the mandatory parts, written as

ok’ = verify_form(form)

with ok’ € Bool. The user will decide whether he agrees to start BBAE and hwhic
wallet to use depending on his context. We write this

(ok, W) «— decideBBAEy (ctzty)

with W € Walletsy U {e} and(ok = false = W = ¢).

We would like to know something about you.
How can we find out?
o No, | don't want to tell anything
o | have a user name/password with you
o | have a wallet and
o ...itis local

o ... my wallet holder is |:|

You can see who we are and our privacy policy.

Fig. 4. Example form for a wallet location query (Step 1)

Request derivatiori-or Step 7, the destination sifehas to construct an attribute-name
list att_n € Attribute_ZNames™ that it asks for and promisesom € Promises that it
can make. This will be based dp's context, e.g., whethd¥ is buying something from
D or trying to access employee-only web pages. We write it as

(att_n, prom) < make_request,(ctzip).

5 BBAE Step by Step

We now define the individual steps of BBAE, including paraangeneration and tests.
In contrast to Figure 2, which showed the error-free casenove use different vari-
ables for values that can be different under attack, edyy at the browser in Steps 2
and 4. We only do this per participant; variables of diffénearticipants are implicitly

12



qualified with the participant name. Further, some variglglet shorter names than in
the figure for readability in protocol tables.

In addition to the participants’ long-term parameters,dity, and ctxty denote
the contexts oD andU in which the current BBAE execution starts.

5.1 Find Appropriate Wallet

The wallet-finding phase, Steps 1-2, provides the destinaiite D with the host part
adryy of the wallet address for the subsequent redirection, whérg, = localhost

for local wallets. Possibilities for omitting this step aliscussed in Section 6. The only
general protocol version is that asks the user for the wallet location. Thus these steps
are (compare Section 4.6 for more explanations):

UserU Destination siteD
la dsid < nonce_gen,
ctrlgsia = ctztp
1b if verify_form(form) = false abort; —form—  form := loc_formp (ctatisia)
2a (ok,W) « decideBBAEy (ctaty);
2b 1 :=localw;a := adrw —(ok,l,a) — if ok = false abort;
if | = true

then adrgsiq := localhost
elseadrysia == a

In Step 1a,D generates a session identifigtid (“ D's session id”) for this execution

of the BBAE protocol. It is used as an index for storing theteghand the obtained
address. The best way f@r to link Steps 0 to 3 is to already use a secure channel, but
we do not prescribe this because it only influences avaitpimilarly, U is only sure
about its contextizt; if a secure channel is already used, but no serious damage can
result if not.

5.2 Redirect to Wallet

In Steps 3-4, the destination sife redirects the browser to the obtained address. This
is a secure redirect as defined in Section 4.1, and the addreggended with the fixed
path from Section 4.4. The query string transports the latstin site’s backchannel
address and session identifier. Thus Step 3 works as follows:

Browser Destination siteD
3a a' = adrysiq;
path := BBAEpath;
SIDp := SIDp U {dsid}
3b «— redirectS(a’, path, query)— query := (adrp, dsid)

The browser reacts by establishing a secure channel anihgethé path and query-
string over it. We call the channel identifiewid for browser-wallet id. A message with
path = BBAEpath triggers a BBAE execution at the wallet. As we only specifyAEB
here, not the dispatching, we only abort if the path is wrdrge wallet chooses a local
session identifiewsid (“WW's session id”) if BBAE really starts.

13



Browser WalletiV/
4a secchan!(new,a’) — secchan?(new, bwid, a’)
4b secchan?(accepted, bwid, a’, idw) +« secchan!(accept, bwid, idw )
4c secchan!(send, bwid, (path, query)) — secchan?(receive, bwid, (path, query))
4d if path # BBAEpath abort;
wsid «— nonce_gen;
(@wsid, dsidysia) := query;
if this failsor a,siq ¢ URLHostPath abort

The notationidw indicates that this is a wallet identity, but not yet knowrbtothat of
a specific wallet? known asidy to U.

5.3 Authenticate User

After successful execution of Step 4, the wallet authetgia user over the established
secure channel. With the notation from Section 4.4, Steplgfised as follows:

UserU Wallet W
5a uauth?(start, idw); «— uauth!(start, bwid)
if idw # idw abort
5b uvauth!(do, idw, loginy, w) — uauth?(done, bwid, iduysid);
if iduysiq = € abort

In Step 5ajdw is the identity that the browser obtained in Step 4b. The resaembers
from Step 2a which walletl” he wanted to use and aborts if the secure channel is with
an identity other thamdy, .° In Step 5b, the user sends login information, and the wallet
derives a registered identity or aborts.

5.4 Request

The wallet sets up a backchannel by contacting the desimatie at the address ob-
tained in Step 4d, and transmits the destination site’s@esdentifier. In the concrete

version, this is done in the query string of the HTTPS reqthedttriggers the SSL/TLS

channel. The wallet also transmits a fresh noheedle, ;¢ that is mainly needed to

link Steps 9 and 12. This is due to a SAML idiosyncrasy. In SANis nonce is called

an artifact.

WalletWw Destination siteD
6a secchan!(new, ausiq) — secchan?(new, wdid, adrp);
6b secchan?(accepted, wdid, aysid, iddysid) «— secchan!(accept, wdid, idp)

6C handleysiqa < nonce_gen

6d secchan!(send, wdid, (dsidwsia, handlewsia)) — secchan!(receive, wdid, m);
(dsid, handlegsia) == m;
if this failsor dsid ¢ SIDp abort

5 Recall that unless we have a secure channel already, theeetisambiguous link to Step 2a
for the user, but only availability is affected if the uses@mes another wallét’’ here.

14



The destination sit® only reacts (at least with Step-6 behavior) if the addrgss; is
adrp, as denoted implicitly in Step 6a; then it identifies itseifleridp . If a message
then arrives over this channel, its first parameter must beséssion identifiedsid

of a current BBAE execution. Theh can usedsid to retrieve information from this
protocol execution. It first derives what attributes it weatt ask for, and then sends the
request together with the received noeadle ;4 over the secure channel.

Wallet W Destination siteD
7a (att_n, prom) < make_request ;, (ctatisia)
7b secchan!(receive, wdid, (att-n, <« secchan!(send, wdid, (att-n,
7b prom, handle_d)) prom, handlegsiq))

7c if handle-d # handleys;q abort

Inthe SAML version, the message in Step 7b is a SAML requegiining exactly one
SAML attribute query, an@andlegs;q is the artifact in that. The wallet aborts if this is
not the handle it expects on the chanwéid. The wallet may now markandle,,s;q as
used so that Step 7c will abort if repeated as a backup sgcneiasure.

5.5 Deriving a Response

If Step 7c was passed, the wallet tries to derive a respofast luses the privacy eval-
uation function from Section 4.5; it has all the necessapyia in the current BBAE
execution. Then, if necessary, it continues with a reaktiglease as explained in Sec-
tion 4.5.

UserU Wallet W
8a (att, namew , restr, rir) «— priv_eval(DB,
idUwsid, 1ddysid, att_n, prom)
8b if rér then
restr™ <« priv_combine(restr, prom);
secchan?(receive, idw, (idd, att, — secchan!(send, bwid, (iddysid, att,
namew , restr™)) namew , restr™))

8c (att', nameyy, , restr’) « priv_eval(
idd, att, namew , restr™, ctxty )
8d secchan!(send, idw, (att’, namey,, — secchan?(receive, bwid, (att’, nameyy,
restr’)) restr’))
else(att’, nameyy , restr’) := (att,
namew , restr)

The wallet uses the attributest’ and restrictiongestr’ as the main part of its response
to the destination site. It adds the nanad,,,;; of the destination site as a measure
against man-in-the-middle attacks and the ndneeile, ;4. It authenticates these ele-
ments underame’,, with the appropriate strength. (Recall Section 4.5 andtimatal
choices of this name are discussed in Section 9.) Similatdp 6, we include a new
fresh noncehandle,,,;, in case Steps 7 and 9 will be repeated. The destination site

makes the natural verifications. If it decides not to repeap 3, it tells the wallet the
return addresset_adrp for the browser.

15



Wallet W Destination siteD
9a str « auth_strength(att’);
sig + auth(nameyy, (att’, restr’,
1ddusid, handleysid ), str);
handle,,;, < nonce_gen
9b secchan!(send, wdid, (sig, handle,,;;)) — secchan?(receive, wdid, (sig, handlel;;))
9c (namew ,m, str) « test(m’);
if (namew,m) = (e, €) abort;
(att, restr, idd, handle*) := m,;
if this failsor idd # idp
or handle™ # handlegs;q abort;
10 secchan?(receive, wdid, ret_adr) — secchan!(send, wdid, ret_adrp);
SIDp := SIDp \ {dsid}

We did not formalize howD decides if it wants to repeat Step 7, e.g., because it is not
satisfied with the attributes, and héwndle’ then becomeBandle. All other decisions
thatD bases on the attributes have no consequence in BBAE andianedhformalized
either, butD must delete attributes if it cannot fulfill the restrictiofes them. The
channelwdid can now be released.

In the SAML version, Step 9 is a POST of a SAML response, whetelle,,s;q iS a
SAML artifact included as SAML subject confirmatioidd,,s;4 iS the SAML recipient
elementnamel;, the issuer element, and the strengthis only implicit in the presence
or absence of an XML signhature and its type.

5.6 Redirect Back

If the wallet obtains a Step-10 message, it redirects theréepback to the destination
site with handle,s;q as a parameter. The redirect is sent within the secure chaithe
the identifierbwid, and the redirect must also trigger a secure channel.

Browser Walleti/
11 (ra, path) := ret_adr;
secchan?(receive, bwid, «— secchanl!(send, bwid,
(redirectS(ra, path, handleysiq))) (redirectS(ra, path, handleysia)))

This has the following effect:

Browser Destination sit®
12a secchan!(new, ra) — secchan?(new, bdid, ra)
12b secchan?(accepted, bdid, ra, idp) — secchan!(accept, bdid, idp)
12c secchan!(send, bdid, (path, handleysiq)) — secchan?(receive, bdid, (path, handleb))
12d find dsid with handleysiq = handleb

That D inputsidp for this channel helps the user keep track of the channel tite
BBAE protocol. D useshandleb to retrieve the corresponding session identifieid

and thus also the contextzt,,;4 and the response from Step 9 of the protocol execution
with dsid. This finishes the BBAE protocol. Typicallp will internally redirect the
browser to its original target URL, storedétictz5;4, With parameters from the response.

16



6 Optimizing the Number of Steps

In this section, we sketch why we believe the steps in BBAEbatanal for the general
case, and in which cases steps can be omitted. As in the pafier, we consider the
situation where the user is initially browsing at the dediion site. A portal scenario,
where the user starts at the wallet and addresses destisé#s via special links, only
starts with Step 4.

The two redirects, Steps 3-4 and 11-12, are common to all krimewser-based
protocols. They seem unavoidable if the user and the braavearmnknown at the desti-
nation site and the browser contains no user-related irgtiom.

Steps 1-2, i.e., asking the user for the wallet location,psomal in BBAE. It is
necessary in the browser-stateless case, i.e., when n#itheestination site nor the
browser knows anything about the user. It is also needed $ea lnas several wallets
without clear separation of responsibilities that couldezaluated automatically. Mul-
tiple unlinked wallets are, e.g., Microsoft’s proposal fandling multiple roles; only
in Passport they are all at the same address. With a standavddr and free choice of
wallets, and without an overall cookie domain, the stepsatse needed at least once
per user and destination-site domain. For the other caspginenters may choose any
state-of-the-art techniques of state keeping, such ase®okbrowser extensions. The
steps then either disappear completely into Step 0, or dganti the user.

Step 5 is clearly needed if no prior secure channel is avail&urther, reusing an
existing channel can be dangerous if only cookies are usedefgsion maintenance
and in the mobility scenario; compare attacks on Passp®}ttep 5 cannot be joined
into the real-time release (Step 8) if that becomes necgsdtirough one can postpone
it until after Step 7: Before the real-time release, a renva#let must know whose
attributes it is looking up, and every wallet must autheatdts user before showing
privacy-critical attributes on his or her screen for reiegs

The backchannel (Steps 6-10) can be omitted if both requestessponse are short
enough to fit into a URL. As a protocol extension, the desiimasite could indicate
this in Step 3, i.e., immediately add a request there and evetthe addressdrp if it
does not expect a long response. However, if one adheres BIthP recommendation
of at most 255 bytes, this does not often work except in sredifations with a-priori
exchanged symmetric keys, because signatures and céesfiee too long. An alter-
native to backchannels for long data are POSTs. Howevsnehuires user interaction
between Step 3 and 4 and between Step 11 and 12, or activenttorteross-domain
posting, which is not zero-footprint. The inconvenienceieér interaction can only be
avoided by integrating it with something meaningful for theer. We do not see such
a possibility for the first redirection. The second one cannbegrated with the real-
time release where that is present, but this greatly redieoékility, e.g., for multi-step
interaction and for making privacy choices also for futurailar requests. Hence we
believe a backchannel is the better solution. It may alsendfie faster.

Steps 6 and 10 are needed because we build the backcharmeh&avallet side.
This is done to enable anonymous local wallets. Those caddiressed as “localhost”
by the destination site in Steps 3-4, but the destinati@ncsinot build a backchannel
to them.

17



7 Multi-Wallet Extensions

Deriving a response between Steps 7 and 9 may involve a secaltet that holds or
confirms certain attributes. We sketch the four main optifie prior proposal contains
confirmed attributes.) If the second wallet has to confirmraytterm attribute for a
certain name, e.g., the year of birth, it can give the firstleva confirmation token,
e.g., a SAML attribute assertion, with an appropriate wglideriod. This becomes an
attribute in the first wallet. If the confirmation must be fieend the second wallet's
policy allows release to the first wallet, the first wallet datch the confirmation on a
backchannel. For a real-time release at the second wélkefirst wallet must redirect
the browser to it. If the wallets are not linked, the first vwalbnly answers what it can
and the destination site has to restart the protocol, agkiegiser for the appropriate
wallet for the remaining attributes.

8 Security

The main issue with a security protocol should be securigyéytheless, all prior proto-
cols for federated identity management come with almostuldighed security justifi-
cation. (The most detailed one is that of SAML, but it is stifl attack-by-attack listing
of countermeasures taken, not an overall analysis.) Futtiesy do not visibly follow
robust-design principles [1, 2]. Indeed, the first versiéfPassport was vulnerable to
a man-in-the-middle attack, and the current version is saexure against that as it
could be; vulnerabilities were also found in one of the arédiLiberty protocols (but
not a browser-based one) and in permitted SAML instantiat{d5, 6]. Earlier attacks
on Passport were found in [9, 19]. They are mostly weakneasfdbe environment, not
of the protocol itself. Some of them apply to all browserdzhpgrotocols, and one has to
keep in mind that this is a pretty vulnerable environmenpadrticular, online password
guessing always works for remote wallets, fake wallet stsese a danger, and the
protocol cannot get more secure than the underlying operatistem and the browser.
A brief security proof sketch for BBAE can be found in the prehary version [13],
but for a far less rigorous definition of BBAE. While one of ariginal motivations of
the current detailed definition was to enable a more rigopyasf, we have not done
this so far.

9 Names, Keys, and Certificates

We now recommend how to use identifiers (hames) of users ands)&eys, and cer-
tificates of wallets in the most important scenarios. Outrabsarbitrary authentication
under an arbitrary namezmeyy leaves that open, and so do concrete SAML responses,
which have an arbitrary issuemmey, and optional XML signatures. We concentrate
on the general consumer scenario with many wallets andndgistn sites. Addition-
ally, a wallet can usedp to first look up whether it has a closer relationship with the
destination site, e.g., a joint secret key, for more efficanhentication.

Form-filling caseThe most usual case for initial e-commerce does not requttesati-
cation, because it replaces current forms that the useirfilléthout confirmation, e.g.,

18



with demographics and preferences. Even shipping addrasskepayment information
belong to this case, because the payment information ifieekriith existing payment
systems. Then no wallet name and authentication are negegssaa really anonymous
response, a local wallet should choose a nonceiase,y, and make no signature.

Real identityFor authenticity under a nanié;; with prior meaning, e.g., a legal name
or an email address, this name must be verified in registratiathenticity cannot get
better than this verification, and all parties trusted by stidation site to confirm this
name must be honest. (This is the same tradeoff betweenityemud convenience as
with PKIs; it has nothing to do with whether only a passworéishanged in regis-
tration or a public key.) Users with a local wallet have to ggiublic keypk of the
wallet certified forid;;. The local wallet thus becomes a leaf in a tree of certificatio
authorities for a specific, externally managed name spaketrenit may only confirm
one or a few names.

Long-term rolelf a wallet generates a role namele for repeated use (e.g., with a cer-
tain group of enterprises), but without verified prior memnor with the explicit desire
to keep this role unlinkable to other roles, it generatesva meme. (SAML explicitly
allows this.) This is like SPKI/SDSI compared with classiP&ls. A remote wallet
holder can issue responses foie under its own fixed nameamey, and with a fixed
key pk without endangering unlinkability if its user communitydsge enough to offer
anonymity. If the wallet is local and the role should realeydmlinkable, it should gen-
erate a fresh nameame,.;. and keypk,.,;. for this role. For XML signatures, the wallet
can include this key in the KeyValue element when first usingth a destination site.
The namerole should be considered to be in a name space governed loy pk,.;c,
respectively. Then only the wallet that issuede must be trusted for authenticity in
this role.

To distinguish these cases precisely for the destinatien she should apply au-
thentication context definitions similar to [10] to indivdl attributes in a response.
For instance, one could represent the Passport case mgdtadit the user ID is a sin-
gle long-term role, that names and payment information matédeen verified, while
control (but not ownership) of the email address has bedfiadtr

10 Conclusion and Outlook

We have shown that browser-based attribute exchange amdtkegesimpler single
signon, although a type of three-party authenticationjireg new protocols and poses
new challenges for secure design. We presented a new pt@&Béd- which, for the
first time, combines all important privacy properties thah e achieved under the
design constraints. Its efficiency is essentially the sasnaf @ather browser-based pro-
tocols.

A general trend in the protocol design for influential stamdaand products in this
area is a multi-layered approach: One starts with a veryrg¢neessage format, then
extends and refines it, then designs a small core protocltheam extends that again.

® The wallet may useédy also as its naméssuer; this simplifies the use of X509 certificates.
New XML tokens as certificates can be more flexible.

19



SAML already takes this approach to a certain extent. Lybadds about one layer of
extension between each layer of SAML. The WS-Federatiopgsals take this ap-
proach even further. The attractiveness for quick stangatidn is obvious. However,
the challenges for finally getting secure protocols aredaFdrst there is the simple
practical issue that “general processing constraintsspread over all layers, and both
a security analyst and a later implementer may miss someeaf thr get them wrong.
Secondly, the initial general message formats have noséaantics, and even the core
protocols are not always full protocols. Hence from a ségymint of view, the stan-
dards cannot currently be considered modular, becausashkafier for which one can
specify and prove usual security goals is typically the biglone. It will be a challenge
to the security-research community to adapt to this trend.

Acknowledgements

We have benefited from discussions with many colleaguesriticplar Kathy Bohrer,
Peter Buhler, Peter Capek, Chris Giblin, Thomas Grof3, Hedttinton, John Hind,
Stephen Levy, Matthias Schunter, and Jay Unger, and witheDantz.

References

1. M. Abadi, R. Needham: Prudent Engineering Practice fop@graphic Protocols; IEEE
Transactions on Software Engineering 22/1 (1996) 6—15

2. R. Anderson, R. Needham: Robustness Principles for W@y Protocols; Crypto 95,
Springer-Verlag, Berlin 1995, 236-247

3. K.Bohrer, X. Liu, D. Kesdogan, E. Schonberg, M. Singh, 8agagen: Personal Information
Management and Distribution; 4th Intern. Conf. on Eledc@pmmerce Research (ICECR-
4), Dallas, 2001

4. D. Chaum: Security without Identification: Transactiors@ms to make Big Brother Obso-
lete; Communications of the ACM 28/10 (1985) 1030-1044

5. J. Camenisch, E. Van Herreweghen: Design and Impleniemtaf the Idemix Anony-
mous Credential System; 9th ACM Conference on Computer amdn@unications Security
(CCs), 2002, 21-30

6. Thomas Grol3: Security Analysis of the SAML Single SigrBoawser/Artifact Profile; 19th
Annual Computer Security Applications Conference (ACSAD3), IEEE Computer Soci-
ety Press, December 2003

7. IBM Consumer Wallet; White Paper, 1999 (first release )199Rttp://www-
3.ibm.com/software/webservers/commerce/paymengivatf

8. IBM: Enterprise Security Architecture using IBM TivolieSurity Solutions; April 2002,
http://www.redbooks.ibm.com/abstracts/sg246014.html

9. D. P. Kormann, A. D. Rubin: Risks of the Passport Singlen&igProtocol; Computer Net-
works 33 (2000) 51-58

10. Liberty Alliance Project: Liberty Phase 2 Final Speeifions, November 2003,
http://www.projectliberty.org/specs/lap-phase2-fingl (v1.0 July 2002).
11. Microsoft Corporation: .NET Passport documentatienparticular Technical Overview,

Sept. 2001, and SDK 2.1 Documentation (started 1999); /hMtpw.passport.com and
http://msdn.microsoft.com/downloads

20



12.

13.

14.

15.

16.

17.

18.

19.

20.

21.
22.

23.

Passlogix: v-Go Single Signon; White Paper, 2000 (firgtlease 1999),
http://www.passlogix.com/media/pdfs/usalsiecurity. pdf

B. Pfitzmann, M. Waidner: BBAE - A General Protocol for ®ser-based
Attribute Exchange; IBM Research Report RZ 3455 (#93800) /0992,
http://www.zurich.ibm.com/security/publications/Z30

B. Pfitzmann, M. Waidner: Privacy in Browser-Based Atite Exchange; ACM Workshop
on Privacy in the Electronic Society (WPES) 2002, ACM Pre333 52—-62

B. Pfitzmann, M. Waidner: Analysis of Liberty Single-8ém with Enabled Clients; IEEE
Internet Computing 7(6) 2003, 38—44

Roboform: Free Web Form Filler and Password Manager;t fiedease 1999,
http://www.siber.com/roboform/.

Security Assertion Markup Language (SAML); OASIS Stmdd Nov. 2002,
http://www.oasis-open.org/committees/security/docs/

Shibboleth-Architecture Draft vO05; May 2002 (vO1 in 200
http://middleware.internet2.edu/shibboleth/docdtdrdaernet2-shibboleth-arch-v05.pdf
M.  Slemko: Microsoft Passport to Trouble; Rev. 1.18, Now001
http://alive.znep.com/ marcs/passport/

BEA, IBM, Microsoft, RSA Security, VeriSign: WS-Fedéom: Passive Requestor Profile;
Draft, Version 1.0, July 2003, http://www-106.ibm.com/dmperworks/webservices/
HTTP Over TLS; Internet RFC 2818, 2000

XML-Signature Syntax and Processing; W3C Recommeomati Feb. 2002,
http://www.w3.0rg/TR/xmldsig-core/

Zeroknowledge: Freedom Personal Firewall; first releas 1999,
http://www.freedom.net/products/firewall/index.html

21



