
Federated Identity-Management Protocols
–Where User Authentication Protocols May Go–

Birgit Pfitzmann and Michael Waidner

IBM Zurich Research Lab
{bpf,wmi}@zurich.ibm.com

To appear in LNCS, Springer-Verlag.
c© Springer-Verlag Berlin Heidelberg 2004.

Abstract. For authentication, one answer to the workshop question “where have
all the protocols gone?” is “into federated identity management”. At least this
is what many influential industrial players are currently striving for. The best-
known examples are Microsoft Passport, the Liberty Alliance’s proposals, and
WS-Federation. While there have been many political discussions about Passport,
in particular its privacy, and some technical studies of operational risks, there is
almost no public literature about the actual protocols and their security.
We start with an overview of the driving factors in this space, the security prop-
erties desirable and achievable under the given design constraints, and the proto-
cols proposed so far. We present a new protocol, BBAE, with better privacy and
scalability, i.e., absence of single points of control, than prior proposals. We also
discuss particular difficulties of rigorously treating a protocol that can be a profile
in current standardization efforts.1

1 Introduction

While cryptography and security research has devised security protocols for a wide
range of functionality, such as payment systems and fair exchange, the majority of se-
curity protocols used in real networks and products only aimat user authentication
and secure channel establishment. Research has also produced many good protocols
achieving these goals; they are even the main focus of the useof formal methods in se-
curity. Nevertheless, a surprising number of new such protocols are continuously being
designed in practice, and typically not by adopting well-investigated proposals. While
lack of knowledge and a marketing-driven desire for noveltycertainly play a role, new
applications truly have new requirements, and it seems to require researchers to extend
the existing basic ideas appropriately to these new requirements.

Federated identity management is a case in point. The high-level goal of enterprises
is to simplify user management in an increasingly dynamic world. In particular, they
want to benefit from user registration done in other places for their own user manage-
ment. The market demand is mostly for business-to-businessscenarios, less than the
much-discussed initial scenario of Microsoft Passport where one enterprise essentially
authenticates the world population. Current demand is evenmostly for simplifications
within one enterprise, and the next steps are scenarios likeaccess control for employ-
ees of supply-chain partners and customer-relationship management in a federation of
travel agencies, airlines, and hotels.

1 This paper reflects the view of the authors, which is not necessarily shared by IBM.



The main requirement on current federated identity-management protocols is to
work if the user agent is only a standard browser. This is called browser-basedor
zero-footprint. The reason is that a large percentage of potential users hasproved to
be unwilling to download specific software. Further, the solutions should work without
active content, because many users turn that off for security reasons. Optimally, they
should even work without cookies for the same reason; however, not all solutions do,
and it is definitely accepted to take advantage of cookies if abrowser returns them.
Enterprises even require that the solution can bebrowser-stateless. This means that the
user uses multiple browsers on different machines, up to working only from Internet
cafes. While the latter is not advisable for security, nobody is forced to use Internet
cafes at least in developed countries, and we simply accept this requirement.

In research terms, this amounts to three-party authentication, possibly under
pseudonyms, combined with an exchange of user attributes. We call the third party
wallet and the recipient of the authentication and attributesdestination site. However,
no state-of-the-art protocol applies because they all assume special user agents. In par-
ticular, a user agent in three-party authentication typically uses a newly generated or
received cryptographic key, while a standard browser will not do this. We have to work
with browser redirects and other standard HTTP constructs only. More precisely, HTTP,
HTML, and secure SSL/TLS channels triggered by HTTPS addresses are assumed.
Normal authentication protocols are known to be very prone to design errors, and the
browser constraint can only make things worse. Hence we believe that detailed security
considerations for such protocols will become very important. Further, the transfer of
additional attributes and the possibly quasi-automatic usage adds privacy as an impor-
tant dimension.

In this paper, we start with an overview of the security and privacy properties desir-
able and achievable under the zero-footprint and browser-stateless constraints, and the
protocols proposed so far. We then present a new protocol, BBAE, with better privacy
and scalability, i.e., absence of single points of control,than prior proposals. Between
this workshop and these proceedings, scalability has been addressed in similar ways in
standards proposals, while similar privacy is still not achieved.

We designed BBAE to be suitable as a profile in existing standardization efforts
such as SAML, Liberty or WS-Federation, as this is the best chance of adoption. While
this paper contains a more precise and mathematical definition of BBAE, this point of
view had two consequences: First, a few parameters are used in specific ways to fit
a particular standard. Secondly, the definition is more modular than usual in research
definitions of security protocols. All current standardization efforts aim for such modu-
larity, e.g., independence of underlying transport protocols, cryptographic mechanisms,
and policies, and even relative independence of concrete message formats and mes-
sage flows, the so-called profiles. (We discuss this tendencya bit more in the outlook.)
Concretely, we have specified this version of BBAE completely as a SAML profile,
i.e., with SAML message formats and general constraints. This specification was pro-
totyped by Stephen Levy in the IBM Privacy Services prototype (for an earlier version
see [3]). At the time of this workshop, SAML was the only choice, containing the only
message standard with general attributes. The only real restriction by this choice was in
the inclusion of privacy policies, see below. In the meantime, we also specified BBAE

2



as a WS-Federation Passive Requestor profile with very minorchanges together with
Daniel Lutz, ETH Zurich, who also prototyped that version. The existence of these
profile specifications should not be misunderstood as IBM input to standardization.

A particular reason to present profiles of standards like SAML more formally is
that each participant has several names in such profiles, e.g., in the certificate in an
underlying SSL channel, in the certificate for an XML signature, and in metadata; in
text representations it is hard to say precisely which name is used where. Additionally,
there can be several channel and protocol identifiers.

Two other challenges in precisely describing a browser-based protocol are indepen-
dent of a relation to standards: One has to describe the user and the browser. We are not
aware of prior protocol definitions that include user rules.Providing them is important
for a later security analysis, because in a zero-footprint,browser-stateless protocol the
user is an important protocol principal, and security can only be defined with respect
to certain user actions and shown under certain assumptionsabout the user behavior.
It is vital for implementations and documentation of such protocols to be aware of this
semantics of the users actions. We even recommend to standardize the corresponding
user syntax, i.e., the graphical user interface, to a large extent.

2 Existing Proposals and Design Goals

Figure 1 gives an overview of browser-based federated identity-management protocols.
The first such protocol was Microsoft Passport. It is not published, but guessable from
existing publications [11, 9]. The only open standard so faris SAML [17]. Shibboleth
[18] is a more elaborated SAML application to a university federation. The Liberty
Alliance, also building on SAML, makes public proposals without an open standard-
ization process [10]. WS-Federation belongs to a larger web-services roadmap by IBM
and Microsoft; its passive requestor profile is the browser-based case [20]. BBAE is
our proposal of this paper; it precedes Liberty 2 and WS-Federation. WebSEAL is a
product from the enterprise space [8], its 2002 version is shown for comparison with
standardization efforts. The round icons are browser-based protocols. For comparison,
the square icons show other protocol classes for web authentication and attribute ex-
change, but not zero-footprint and browser-stateless. “Form filler” denotes local wallet
products like [7, 16, 12, 23] and more recently browser personalization. “Proxy wallets”
denotes similar products working as remote proxies. As theysee the user’s entire web
traffic, they are much worse for privacy than the protocol class discussed here where the
wallets only participate in authentication and attribute exchange. “PKI” means public-
key infrastructure, and “idemix” (Identity Mixer) is an IBMprototype of unlinkable
credentials [5].

Vertically we show to what extent a singlecontrol pointis inherent in the protocol
design. We call the oppositescalablebecause a single control point may be acceptable
in one enterprise or a small federation, but not beyond. Control points occur for differ-
ent reasons in protocols: the wallet addressing may be fixed,at least per installation, as
in Passport; all wallets may have to trust each other; there may be no room for certifi-
cate chains in messages; or there may be a symmetric-key distribution center that can
impersonate all other parties. A common cookie domain, as proposed by Liberty, is at

3



�

������

�����	��
�

��
����


����

���������


����	������ �����	������

�����


�������

�������

�������

��

	��

���������
�� ����

�����!

�"������"

�

�#$

��

%%��

��&�

�� 

�

��������'

����������

��!�

(�����


%�(
�� )��
��

�����������

*������������������
�

����������	��


����	���

����	�	�	��

��&�

�
�

����������$�)��+

��)������

���

Fig. 1. Overview of browser-based protocols and some related techniques.

least dangerous. However, we accept the lack of a fully specified set-up phase as long
as such a phase could be added.

Horizontally, we first show whether only single signon is offered or multiple user
attributescan be exchanged. We joined this with theprivacydimension because multi-
ple attributes without privacy are simply a very long identity. Privacy on this protocol
layer means that all information exchange can be governed bypolicy, and arbitrary
policies are possible. In other words, no information is exchanged automatically. We
include here that users are not forced to give attributes to third-party wallets, i.e., they
can choose between the zero-footprint version andlocal walletsin the same protocol.
One exception from privacy seems unavoidable for browser-based protocols: A wallet
learns the identities of the destination sites that a user authenticates to. Detailed privacy
goals and which protocol features enable them are discussedin [14]. Note that privacy
in the overall system additionally requires a well-designed policy-management system
and privacy on lower layers.

The “C” in some icons means that attributes may be certified, i.e., confirmed by the
wallet or other parties. In most protocols certified attributes allow less privacy than un-
certified ones (such as the user’s book preferences). Combining certified attributes and
strong anonymity is impossible with browser-based protocols. Where one needs that,
one has to give up the zero-footprint restriction and upgrade to cryptographic unlink-
able credentials [4], here exemplified by idemix [5].

Looking at browser-based protocols (round icons) only, andomitting the shaded
“SAML msg” icon, which denotes that SAML already defines message formats for this
case, but no protocols yet, one sees that no other protocol addresses full privacy, and no
protocol prior to BBAE addressed attribute exchange for thefully federated case.

4



3 Overview of the BBAE Protocol

In this section, we present a browser-based attribute-exchange protocol, BBAE.

3.1 Message Flow

Figure 2 shows the message flow of the longest execution path of the BBAE protocol,
and when no error occurs. Steps 0 and 13 show that the user is assumed to browse at
the destination site before the protocol and to get some application-level response after
the protocol. Steps 1-2 locate the wallet, Steps 3-4 redirect the browser to it, Step 5
authenticates the user to the wallet, Steps 6-10 transport the actual request and response
on a backchannel, where Step 8 allows the real-time release of attributes, and Steps 11-
12 redirect the browser back to the destination site with a handle that links this browser
to the response. The figure contains all the exchanged parameters with hopefully self-

������� ��		�
��
���
��
��

�
���

����

�

��������������������

���������������		�
�����������

�����
������		�
�������������
�

�

��	���
�������
�	�����
�����

���������
�
����		�
�����
�

 �����
�
 �������

!��"������������
�
����		�

����

�
 �����

�
 �������

#����
$��
��
������ ��	�����%�
�&
��������$����	'

(��)�����
�����
�
 ����� �	�
����

*����+���
���������
���� 
�������� �	�
����

,�����-������������� ��������
��
� �	�
��� ���

�
 �
���

�
����� 

	�
�����

.�����	/
0����	�����������������
�
 �������� ���������
��

1�
���
�
����0

��������$����	

2���
�
3
�-���/�
4������

5���4	�
��-��
����0
3
�-�*������
�����������

�
�

����������
��������
�
 �	�
����

����"������������
��������
�
 �	�
����

����)��
�����--	��
��

2���
�
���-����
4��	�
���

Fig. 2. BBAE protocol with abstract parameters. Steps with dashed lines are only needed in cer-
tain cases. The boxes denote secure channels.

5



explanatory names (adr denotes addresses anddsid a session identifier), except that all
messages also contain a protocol identifier and a message number within the protocol.
If not stated otherwise, these identifiers are not protectedexcept by the secure channels.

The submodules used are defined in Section 4, the detailed protocol steps in Section
5, and Section 6 gives additional explanations when and why these steps are necessary.

3.2 Notation

We use a straight font forconstants, including constant sets, functions, and
submodules, and italics forvariables. Assignment by possibly probabilistic functions is
written←. An input in to an asynchronous submodulemodule is writtenmodule!(in)
and an outputout from it module?(out). Most of these submodules are distributed, i.e.,
they get inputs and make outputs for several participants ofthe main protocol. Simple
sending of a message is shown as —m → or← m— between participants; concretely
it stands for HTTP messages.

4 Required Submodules and Set-up

Browser-based protocols, at least if one keeps close to standardization, use several sub-
modules whose implementation is left open. Some submodulesrequire that certain data
is exchanged in advance; this corresponds to constraints ontheir global initial states.
In this section, we describe these submodules and constraints. BBAE does not require
parameter exchange except for its submodules, and in the concrete version this only
means SSL server certificates and XML signature capabilities. This makes BBAE eas-
ier to bootstrap than all prior proposals. Negotiation of common submodules among
multiple possible ones is not part of the subsequent protocol description. Further, we
do not present details of how a user’s authentication information, attributes, and privacy
policies are managed over time.

4.1 Browser Channels

Every wallet and every destination site must be able to maintain secure channels with
standard browsers. We define this to mean that message confidentiality and integrity
hold with respect to the same principals for all messages sent over the channel. The eas-
iest implementation is SSL/TLS channels, triggered by HTTPS addresses [21]. Servers
that release SSL channels after each HTTP response may use another secure implemen-
tation, but should have at least one zero-footprint version.

Submodule “secchan”. We denote the submodule assecchan and the possible actions
as follows:

Browser Server

1 secchan!(new, adr) → secchan?(new, cid , adr)
2 secchan?(accepted, cid , adr , id) ← secchan!(accept, cid , id)
3 secchan!(send, cid ,m) → secchan?(receive, cid ,m)
4 secchan?(receive, cid ,m ′) ← secchan!(send, cid ,m ′)

6



Line 1 shows that the browser initiates a secure channel to anaddressadr ∈ URLHost.
This set denotes the set of URL host names, withlocalhost ∈ URLHost. Recall that “!”
denotes that this is an input to an asynchronous module. The server is notified with a
channel identifiercid . Line 2 shows that the server may accept the channel and identify
itself under an identityid . We denote anonymity byid = ε. The browser is notified of
the acceptance and ofid andcid . Then both parties may send. This is shown in Lines
3-4 with messagesm andm′.

The abstract message

redirectS(adr , path, query)

models a redirect (HTTP 302 or 303) to https://adr /path?querystring, where
querystring is an encoding of the abstractquery . Its consequences are that the browser
establishes a secure channel to the addressadr and then sendspath andquery over
that channel [21]. Modeling the channel establishment within the redirect explicitly is
important for a security analysis.

Certificates needed.In BBAE, wallets must be identified in secure browser sessions.
Concretely, they need SSL/TLS certificates acceptable to browsers. Abstractly, we re-
quire that each walletW has an identityidW such that, ifW usesid := idW in Line
2, a correct browser gets the outputsecchan?(accepted, cid , adr , idW ). Nobody else
must be able to achieve this, i.e., to impersonate the walletunderidW .

User involvement.Browsers must reliably present secure channels and the partner iden-
tity id to their users. The typical implementation is browser iconsfor windows with
secure channels and the possibility to look up certificates.Wallets may support this by
personalizing the window content. We denote the outputs a user receives, and inputs
that he makes, by

secchan?(receive, id , m′); 2

secchan!(send, id , m).

4.2 Backchannel Sessions

We also use secure channels between wallets and destinationsites. We model these
secure channels by the same modulesecchan as the browser channels, because they will
typically also be SSL/TLS. However, as no party is a browser here, this implementation
is easier to change. Again the initiating party need not identify itself; hence the in- and
outputs are exactly as above. Destination sites must typically be identified; otherwise
they only obtain the attributes that the users’ privacy policies permit for anonymous
recipients. LetidD be the identity under which destination siteD can securely identify
itself in secure channels, in the same sense as for wallet identities idW above. If a real
organization has several such identities, we treat it as several destination sites because
the identity choice can be made before a BBAE execution.

2 We only model that the user sees the partner identityid , not a channel identifier, because
he will not notice if a channel is interrupted. Usually, however, he can distinguish different
channels with one partner by different windows.

7



4.3 Response Authentication

A wallet must typically authenticate responses for a destination site. With SAML mes-
sages, this means XML signature capabilities [22]. They comprise both digital sig-
natures in the cryptographic sense and authentication codes and allow many types of
certification and key distribution. We discuss typical usages in Section 9. Generally, we
write such authentication as a function

m′ ← auth(id , m, strength)

for authenticating a messagem under an identityid with a certain strength, and

(id , m, strength)← test(m′)

for verifying a received message and extracting an identityid , a payloadm, and
a strength. We denote failure by(id , m) = (ε, ε) and the unauthenticated case by
strength = ε andm′ = (id , m). We assume that a domainStrengths for the parame-
tersstrength is given; for implementations without this notion we defineStrengths to
have one element only. The Liberty Alliance made detailed proposals [10]. The func-
tions denote authentication including all necessary exchange and verification of keys
and certificates.

4.4 User Registration

A userU must register with at least one wallet. Later,WalletsU denotes the set of
wallets thatU registered with, andUsersW the set of user identities registered at a
walletW .

Installation or address.Let localW ∈ Bool denote whether a walletW is local. (This
can be fixed for all users ofW .) If W is local, it must be installed; this should be com-
bined with a local firewall that only allows local access to this wallet. If W is remote,
the user obtains a contact addressadrW ∈ URLHost of it (else letadrW := ε). This
address must be fixed for all users ofW unless a user consented to a different privacy
policy. We assume a fixed pathBBAEpath by which these addresses are extended to
address the wallet services.

User authentication module “uauth”. The user and the wallet set up a method for later
user authentication via a browser. We explicitly model passwords, in order to analyze
the security of the zero-footprint and browser-stateless case. Users who do not insist
on these properties may set up higher-quality authentication in particular with remote
wallets. The overall method must comprise means to protect the user from fake-wallet
attacks, because the browser arrives at the wallet (or an adversary) by redirection from
an untrusted site. This means at least user education about verifying the wallet certifi-
cate.3 We denote the submodule asuauth and the possible actions as follows:

3 A dangerous feature in Passport and Liberty is “inline single signon”, where the wallet uses a
part of the destination site’s window, because it disables such methods.

8



User Wallet

1 uauth?(start, idW ) ← uauth!(start, cid)
2 uauth!(do, idW , login) → uauth?(done, cid , idU )

Line 1 denotes that the wallet initializes user authentication over a secure channel with
identifiercid . Thus the moduleuauth uses the modulesecchan. At the user, this leads
to an output that asks for authentication. This output contains the wallet’s identityidW

that the browser obtained in the set-up of channelcid . With current concrete imple-
mentations this happens automatically by the browser window. The user inputs login
informationlogin into the same window (Line 2), and the wallet derives a user identity
idU ∈ UsersW ∪ {ε}, whereε denotes failure.

Exchanged parameters.After registration of userU at walletW , the user knows an
identity idW that the wallet can use for secure browser channels (compareSection 4.1),
and the wallet knows an identityidU of the user.4 Further, they share login informa-
tion loginU ,W . We have to assume that the entropy ofloginU ,W is large enough and
the protocoluauth good enough that, as long asU only uses correct browsers, an at-
tacker cannot achieve thatW obtains an outputuauth?(done, cid , idU ) for a channel
cid where the attacker is the other principal. Note that this assumption is not always
fulfilled in practice; then every browser-based protocol fails.

4.5 Attributes and Privacy Policies

Vocabulary.If a wallet and a destination site interact, they need a common vocab-
ulary for user attributes. We simplify this as setsAttribute Names and Attributes

of attribute names and name-value pairs. Elements ofAttribute Names may contain
further information, e.g., whether an attribute is mandatory in the answer or what
degree of certainty or even liability of this attribute is needed. SimilarlyAttributes

may contain such degrees of certainty. With SAML this would be easier if the at-
tribute names could be of arbitrary types, not only strings.We assume a function
auth strength : Attributes∗ → Strengths that computes the necessary authentication
strength for a list of attributes with their desired degree of certainty.

Privacy exchange language.Wallets and destination sites need a common privacy lan-
guage because user attributes can typically only be forwarded for certain purposes
and with certain obligations to the recipient. We assume fixed setsPromises and
Restrictions for this. For simplicity, we letPromises comprise all additional information
a destination site adds about itself, e.g., certified group memberships.

Privacy evaluation functions.Wallets need an internal privacy-management system
(see, e.g., [3]). The languagesPromises andRestrictions will typically be derived from
the internal policy language by additional bindings to actual attribute names and by ele-
ments that characterize policies as promises or restrictions. The internal privacy policies

4 If the nameidU is used for anything beyond recognition ofU by W , it is considered an
attribute and treated in Section 4.5, with examples in Section 9. Different roles thatU wants to
play with destination sites, but manage in one wallet, also belong to those sections. A person
wishing to interact in different, unlinked roles with one wallet is treated as multiple users.

9



may be three-valued, i.e., the set of decisions is{allow, deny, askme}. Hereallow and
deny characterize situations where the user knows what he wants,while askme is for
situations that the user does not want to think about before.Such an approach corre-
sponds well to user studies that people do not want to start with abstract concepts like
policies, but with examples. For the evaluation of privacy policies in a wallet, we there-
fore assume a function

(att ,nameW , restr , rtr)← priv eval(DB , idU , idD , att n, prom).

The inputs are the wallet’s current datastoreDB including privacy policies, the iden-
tity idU of a registered user, the identityidD of a destination site, a listatt n ∈
Attribute Names∗, and promisesprom ∈ Promises by idD . The outputs are

– a list att ∈ (Attributes × {allow, askme})∗ containing the potentially permitted
answers toatt n,

– a namenameW under which the wallet should authenticate the attributes (see Sec-
tion 9),

– their restrictionsrestr ∈ Restrictions,
– andrtr ∈ Bool denoting if a real-time release is necessary.

The evaluation function may have special properties like setting att := () if a requested
mandatory attribute is denied.

Users also take privacy decisions, in particular for attributes wherepriv eval outputs
askme. To show what parameters the user needs and decides on, we write this as a
function for each userU ,

(att ′,name ′
W

, restr ′)← priv evalU (idD , att ,nameW , restr∗, ctxt).

This defines that the user sees the identityidD of the destination site, a proposed at-
tribute list att and namenameW as output bypriv eval with restrictionsrestr∗, and
has a contextctxt in which this data request occurs. For instance,U may release more
attributes toD when buying something than when only browsing. The wallet should de-
rive overall restrictionsrestr∗ as a suitable combination of the promises and the original
restrictions,

restr∗ ← priv combine(restr , prom).

The user possibly modifies the attributes (in particular resolves theaskme decisions),
the name, and the restrictions.

Figure 3 shows how a wallet can present a privacy decision to the user. Where the
wallet knows the attribute, it distinguishes the policy decisionsallow (green, vertical
stripes) andaskme (red, diagonal stripes). In the example the name and shipping address
are pre-authorized, while the ID number is not. The privacy restrictions are initially
hidden under the button “Show privacy”. The user might delete the ID number and not
add an income because the fields are not mandatory. If they were, he might cancel. We
define that registering for BBAE covers consent byU for W to use the BBAE protocol
at all. The privacy policy must also govern all storage and usage of received information
by W , but we need no notation for this because it concerns actionsafter the protocol.

10



Your partner, idD, would like the following data about you:

Name

Shipping address

National ID number

Your income

Reto Schmid

Seestrasse 1, 
CH-8800 Zürich

1111 2222 3333

 

Show privacy Cancel

Red : You may not want to send this
: They won't continue without this

Submit

Fig. 3.Simple example form for a user privacy decision (for the real-time release, Step 8).

Unless the policy allows otherwise all values thatW receives in a BBAE execution
must be deleted at the end of this execution.

Concrete user attributes and privacy policies.The user deposits attributes together with
privacy policies, or consents to the use of already present attributes according to certain
privacy policies. We denote the data set associated with user U in walletW byDBU ,W .

Attribute verifications.If the wallet is to confirm certain attributes beyond just storing
them for the user, it has to verify them. For names, this is discussed in Section 9.

4.6 Miscellaneous Submodules

Nonces.We also need nonce generation, written

n← nonce gen,

where we omit the dependency on a security parameterk. It must have the usual cryp-
tographic properties, and is implemented most easily as generation of ak-bit random
string. SAML uses typed nonces (artifacts), but we do not distinguish such types here.

Destination site addresses.Each destination siteD chooses two addresses
adrD , ret adrD ∈ URLHostPath. They must be fixed for all executions of the BBAE
protocol, at least in a certain time period.

Session administration.For a destination siteD , we need a setSIDD of current BBAE
session identifiers, initially empty. It is important to define howD links the three parts
of a BBAE execution that have no common channels from its point of view, Step 0-3,
Step 6-10, and Steps 12-13. A similar set in wallets can remain implicit.

Location query form.Each destination siteD needs a location query form

form ← loc formD(ctxt)

for Step 1, in case it has to ask a user in person for the addressof his wallet. It can be
a function ofD ’s context. An example form is shown in Figure 4. The mandatory parts
are at least one “no” or “cancel”, a radio buttonlocal ∈ Bool where the text “it is local”

11



representstrue and “my wallet holder is” representsfalse, and a text fieldadr after the
latter button. These mandatory parts enable a consistent user experience over multiple
destination sites and allow local proxies to handle location forms instead of the user.
We represent the user’s choices for the mandatory fields as a triple

(ok , local , adr ) ∈ Bool× Bool× (URLHost ∪ {ε}),

whereok = true if no “no” or “cancel” was chosen and the buttonslocal were enabled,
andadr = ε if the address field is empty or not inURLHost. The user should be able
to verify whether a formform has the mandatory parts, written as

ok ′ := verify form(form)

with ok ′ ∈ Bool. The user will decide whether he agrees to start BBAE and which
wallet to use depending on his context. We write this

(ok , W )← decideBBAEU (ctxtU )

with W ∈WalletsU ∪ {ε} and(ok = false⇒ W = ε).

We would like to know something about you.
How can we find out?

No, I don't want to tell anything
I have a user name/password with you
I have a wallet and

... it is local

... my wallet holder is

You can see who we are and our privacy policy.

Submit Cancel

Fig. 4. Example form for a wallet location query (Step 1)

Request derivation.For Step 7, the destination siteD has to construct an attribute-name
list att n ∈ Attribute Names∗ that it asks for and promisesprom ∈ Promises that it
can make. This will be based onD ’s context, e.g., whetherU is buying something from
D or trying to access employee-only web pages. We write it as

(att n, prom)← make requestD(ctxtD).

5 BBAE Step by Step

We now define the individual steps of BBAE, including parameter generation and tests.
In contrast to Figure 2, which showed the error-free case, wenow use different vari-
ables for values that can be different under attack, e.g.,adrW at the browser in Steps 2
and 4. We only do this per participant; variables of different participants are implicitly

12



qualified with the participant name. Further, some variables get shorter names than in
the figure for readability in protocol tables.

In addition to the participants’ long-term parameters, letctxtD andctxtU denote
the contexts ofD andU in which the current BBAE execution starts.

5.1 Find Appropriate Wallet

The wallet-finding phase, Steps 1-2, provides the destination siteD with the host part
adrW of the wallet address for the subsequent redirection, whereadrW = localhost

for local wallets. Possibilities for omitting this step arediscussed in Section 6. The only
general protocol version is thatD asks the user for the wallet location. Thus these steps
are (compare Section 4.6 for more explanations):

UserU Destination siteD

1a dsid ← nonce gen;
ctxtdsid := ctxtD

1b if verify form(form) = false abort; ←form— form := loc formD(ctxtdsid )
2a (ok , W )← decideBBAEU (ctxtU );
2b l := localW ; a := adrW —(ok , l, a)→ if ok = false abort;

if l = true

then adrdsid := localhost

elseadrdsid := a

In Step 1a,D generates a session identifierdsid (“D ’s session id”) for this execution
of the BBAE protocol. It is used as an index for storing the context and the obtained
address. The best way forD to link Steps 0 to 3 is to already use a secure channel, but
we do not prescribe this because it only influences availability. Similarly, U is only sure
about its contextctxtU if a secure channel is already used, but no serious damage can
result if not.

5.2 Redirect to Wallet

In Steps 3-4, the destination siteD redirects the browser to the obtained address. This
is a secure redirect as defined in Section 4.1, and the addressis extended with the fixed
path from Section 4.4. The query string transports the destination site’s backchannel
address and session identifier. Thus Step 3 works as follows:

Browser Destination siteD

3a a′ := adrdsid ;
path := BBAEpath;
SIDD := SIDD ∪ {dsid}

3b ← redirectS(a′, path , query)— query := (adrD , dsid)

The browser reacts by establishing a secure channel and sending the path and query-
string over it. We call the channel identifierbwid for browser-wallet id. A message with
path = BBAEpath triggers a BBAE execution at the wallet. As we only specify BBAE
here, not the dispatching, we only abort if the path is wrong.The wallet chooses a local
session identifierwsid (“W ’s session id”) if BBAE really starts.

13



Browser WalletW

4a secchan!(new, a′) → secchan?(new, bwid , a′)
4b secchan?(accepted, bwid , a′, idw) ← secchan!(accept, bwid , idW )
4c secchan!(send, bwid , (path , query)) → secchan?(receive, bwid , (path , query))
4d if path 6= BBAEpath abort;

wsid ← nonce gen;
(awsid , dsidwsid ) := query ;
if this failsor awsid 6∈ URLHostPath abort

The notationidw indicates that this is a wallet identity, but not yet known tobe that of
a specific walletW known asidW to U .

5.3 Authenticate User

After successful execution of Step 4, the wallet authenticates a user over the established
secure channel. With the notation from Section 4.4, Step 5 isdefined as follows:

UserU WalletW

5a uauth?(start, idw); ← uauth!(start, bwid)
if idw 6= idW abort

5b uauth!(do, idW , loginU ,W ) → uauth?(done, bwid , iduwsid );
if iduwsid = ε abort

In Step 5a,idw is the identity that the browser obtained in Step 4b. The userremembers
from Step 2a which walletW he wanted to use and aborts if the secure channel is with
an identity other thanidW .5 In Step 5b, the user sends login information, and the wallet
derives a registered identity or aborts.

5.4 Request

The wallet sets up a backchannel by contacting the destination site at the address ob-
tained in Step 4d, and transmits the destination site’s session identifier. In the concrete
version, this is done in the query string of the HTTPS requestthat triggers the SSL/TLS
channel. The wallet also transmits a fresh noncehandlewsid that is mainly needed to
link Steps 9 and 12. This is due to a SAML idiosyncrasy. In SAML, this nonce is called
an artifact.

WalletW Destination siteD

6a secchan!(new, awsid ) → secchan?(new, wdid , adrD );
6b secchan?(accepted,wdid , awsid , iddwsid ) ← secchan!(accept,wdid , idD)
6c handlewsid ← nonce gen

6d secchan!(send,wdid , (dsidwsid , handlewsid )) → secchan!(receive,wdid , m);
(dsid , handledsid ) := m;
if this failsor dsid 6∈ SIDD abort

5 Recall that unless we have a secure channel already, there isno unambiguous link to Step 2a
for the user, but only availability is affected if the user assumes another walletW ′ here.

14



The destination siteD only reacts (at least with Step-6 behavior) if the addressawsid is
adrD , as denoted implicitly in Step 6a; then it identifies itself underidD . If a message
then arrives over this channel, its first parameter must be the session identifierdsid
of a current BBAE execution. ThenD can usedsid to retrieve information from this
protocol execution. It first derives what attributes it wants to ask for, and then sends the
request together with the received noncehandledsid over the secure channel.

WalletW Destination siteD

7a (att n, prom)← make requestD(ctxtdsid )
7b secchan!(receive,wdid , (att n, ← secchan!(send, wdid , (att n,

7b prom, handle d)) prom, handledsid ))
7c if handle d 6= handlewsid abort

In the SAML version, the message in Step 7b is a SAML request containing exactly one
SAML attribute query, andhandledsid is the artifact in that. The wallet aborts if this is
not the handle it expects on the channelwdid . The wallet may now markhandlewsid as
used so that Step 7c will abort if repeated as a backup security measure.

5.5 Deriving a Response

If Step 7c was passed, the wallet tries to derive a response. It first uses the privacy eval-
uation function from Section 4.5; it has all the necessary inputs in the current BBAE
execution. Then, if necessary, it continues with a real-time release as explained in Sec-
tion 4.5.

UserU WalletW

8a (att ,nameW , restr , rtr)← priv eval(DB ,

iduwsid , iddwsid , att n, prom)
8b if rtr then

restr∗ ← priv combine(restr , prom);
secchan?(receive, idW , (idd , att , ← secchan!(send, bwid , (iddwsid , att ,

nameW , restr∗)) nameW , restr∗))
8c (att ′,name ′

W , restr ′)← priv evalU (
idd , att ,nameW , restr∗, ctxtU )

8d secchan!(send, idW , (att ′,name ′

W , → secchan?(receive, bwid , (att ′,name ′

W ,

restr ′)) restr ′))
else(att ′,name ′

W , restr ′) := (att ,
nameW , restr )

The wallet uses the attributesatt ′ and restrictionsrestr ′ as the main part of its response
to the destination site. It adds the nameiddwsid of the destination site as a measure
against man-in-the-middle attacks and the noncehandlewsid . It authenticates these ele-
ments undername ′

W
with the appropriate strength. (Recall Section 4.5 and thattypical

choices of this name are discussed in Section 9.) Similar to Step 6, we include a new
fresh noncehandle ′

wsid
in case Steps 7 and 9 will be repeated. The destination site

makes the natural verifications. If it decides not to repeat Step 7, it tells the wallet the
return addressret adrD for the browser.

15



WalletW Destination siteD

9a str ← auth strength(att ′);
sig ← auth(name ′

W , (att ′, restr ′ ,

iddwsid , handlewsid ), str );
handle ′

wsid ← nonce gen

9b secchan!(send,wdid , (sig , handle ′

wsid )) → secchan?(receive,wdid , (sig, handle ′

dsid ))
9c (nameW , m, str )← test(m′);

if (nameW , m) = (ε, ε) abort;
(att , restr , idd , handle∗) := m;
if this failsor idd 6= idD

or handle∗ 6= handledsid abort;
10 secchan?(receive,wdid , ret adr) ← secchan!(send,wdid , ret adrD );

SIDD := SIDD \ {dsid}

We did not formalize howD decides if it wants to repeat Step 7, e.g., because it is not
satisfied with the attributes, and howhandle ′ then becomeshandle . All other decisions
thatD bases on the attributes have no consequence in BBAE and are thus not formalized
either, butD must delete attributes if it cannot fulfill the restrictionsfor them. The
channelwdid can now be released.

In the SAML version, Step 9 is a POST of a SAML response, wherehandlewsid is a
SAML artifact included as SAML subject confirmation,iddwsid is the SAML recipient
element,name ′

W
the issuer element, and the strengthstr is only implicit in the presence

or absence of an XML signature and its type.

5.6 Redirect Back

If the wallet obtains a Step-10 message, it redirects the browser back to the destination
site withhandlewsid as a parameter. The redirect is sent within the secure channel with
the identifierbwid , and the redirect must also trigger a secure channel.

Browser WalletW

11 (ra, path) := ret adr ;
secchan?(receive, bwid , ← secchan!(send, bwid ,

(redirectS(ra, path , handlewsid ))) (redirectS(ra , path , handlewsid )))

This has the following effect:

Browser Destination siteD

12a secchan!(new, ra) → secchan?(new, bdid , ra)
12b secchan?(accepted, bdid , ra, idD ) ← secchan!(accept, bdid , idD)
12c secchan!(send, bdid , (path , handlewsid )) → secchan?(receive, bdid , (path , handleb))
12d find dsid with handledsid = handleb

ThatD inputsidD for this channel helps the user keep track of the channel after the
BBAE protocol.D useshandleb to retrieve the corresponding session identifierdsid

and thus also the contextctxtdsid and the response from Step 9 of the protocol execution
with dsid . This finishes the BBAE protocol. TypicallyD will internally redirect the
browser to its original target URL, stored inctxtdsid , with parameters from the response.

16



6 Optimizing the Number of Steps

In this section, we sketch why we believe the steps in BBAE areoptimal for the general
case, and in which cases steps can be omitted. As in the entirepaper, we consider the
situation where the user is initially browsing at the destination site. A portal scenario,
where the user starts at the wallet and addresses destination sites via special links, only
starts with Step 4.

The two redirects, Steps 3-4 and 11-12, are common to all known browser-based
protocols. They seem unavoidable if the user and the browserare unknown at the desti-
nation site and the browser contains no user-related information.

Steps 1-2, i.e., asking the user for the wallet location, is optional in BBAE. It is
necessary in the browser-stateless case, i.e., when neither the destination site nor the
browser knows anything about the user. It is also needed if a user has several wallets
without clear separation of responsibilities that could beevaluated automatically. Mul-
tiple unlinked wallets are, e.g., Microsoft’s proposal forhandling multiple roles; only
in Passport they are all at the same address. With a standard browser and free choice of
wallets, and without an overall cookie domain, the steps arealso needed at least once
per user and destination-site domain. For the other cases, implementers may choose any
state-of-the-art techniques of state keeping, such as cookies or browser extensions. The
steps then either disappear completely into Step 0, or do notgo to the user.

Step 5 is clearly needed if no prior secure channel is available. Further, reusing an
existing channel can be dangerous if only cookies are used for session maintenance
and in the mobility scenario; compare attacks on Passport [19]. Step 5 cannot be joined
into the real-time release (Step 8) if that becomes necessary, although one can postpone
it until after Step 7: Before the real-time release, a remotewallet must know whose
attributes it is looking up, and every wallet must authenticate its user before showing
privacy-critical attributes on his or her screen for releasing.

The backchannel (Steps 6-10) can be omitted if both request and response are short
enough to fit into a URL. As a protocol extension, the destination site could indicate
this in Step 3, i.e., immediately add a request there and evenomit the addressadrD if it
does not expect a long response. However, if one adheres to the HTTP recommendation
of at most 255 bytes, this does not often work except in small federations with a-priori
exchanged symmetric keys, because signatures and certificates are too long. An alter-
native to backchannels for long data are POSTs. However, this requires user interaction
between Step 3 and 4 and between Step 11 and 12, or active content for cross-domain
posting, which is not zero-footprint. The inconvenience ofuser interaction can only be
avoided by integrating it with something meaningful for theuser. We do not see such
a possibility for the first redirection. The second one can beintegrated with the real-
time release where that is present, but this greatly reducesflexibility, e.g., for multi-step
interaction and for making privacy choices also for future similar requests. Hence we
believe a backchannel is the better solution. It may also often be faster.

Steps 6 and 10 are needed because we build the backchannel from the wallet side.
This is done to enable anonymous local wallets. Those can be addressed as “localhost”
by the destination site in Steps 3-4, but the destination site cannot build a backchannel
to them.

17



7 Multi-Wallet Extensions

Deriving a response between Steps 7 and 9 may involve a secondwallet that holds or
confirms certain attributes. We sketch the four main options. (No prior proposal contains
confirmed attributes.) If the second wallet has to confirm a long-term attribute for a
certain name, e.g., the year of birth, it can give the first wallet a confirmation token,
e.g., a SAML attribute assertion, with an appropriate validity period. This becomes an
attribute in the first wallet. If the confirmation must be fresh and the second wallet’s
policy allows release to the first wallet, the first wallet canfetch the confirmation on a
backchannel. For a real-time release at the second wallet, the first wallet must redirect
the browser to it. If the wallets are not linked, the first wallet only answers what it can
and the destination site has to restart the protocol, askingthe user for the appropriate
wallet for the remaining attributes.

8 Security

The main issue with a security protocol should be security. Nevertheless, all prior proto-
cols for federated identity management come with almost no published security justifi-
cation. (The most detailed one is that of SAML, but it is stillan attack-by-attack listing
of countermeasures taken, not an overall analysis.) Further, they do not visibly follow
robust-design principles [1, 2]. Indeed, the first version of Passport was vulnerable to
a man-in-the-middle attack, and the current version is not as secure against that as it
could be; vulnerabilities were also found in one of the original Liberty protocols (but
not a browser-based one) and in permitted SAML instantiations [15, 6]. Earlier attacks
on Passport were found in [9, 19]. They are mostly weaknessesof the environment, not
of the protocol itself. Some of them apply to all browser-based protocols, and one has to
keep in mind that this is a pretty vulnerable environment. Inparticular, online password
guessing always works for remote wallets, fake wallet screens are a danger, and the
protocol cannot get more secure than the underlying operating system and the browser.
A brief security proof sketch for BBAE can be found in the preliminary version [13],
but for a far less rigorous definition of BBAE. While one of ouroriginal motivations of
the current detailed definition was to enable a more rigorousproof, we have not done
this so far.

9 Names, Keys, and Certificates

We now recommend how to use identifiers (names) of users and names, keys, and cer-
tificates of wallets in the most important scenarios. Our abstract arbitrary authentication
under an arbitrary namenameW leaves that open, and so do concrete SAML responses,
which have an arbitrary issuernameW and optional XML signatures. We concentrate
on the general consumer scenario with many wallets and destination sites. Addition-
ally, a wallet can useidD to first look up whether it has a closer relationship with the
destination site, e.g., a joint secret key, for more efficient authentication.

Form-filling case.The most usual case for initial e-commerce does not require authenti-
cation, because it replaces current forms that the user fillsin without confirmation, e.g.,

18



with demographics and preferences. Even shipping addresses and payment information
belong to this case, because the payment information is verified with existing payment
systems. Then no wallet name and authentication are necessary. For a really anonymous
response, a local wallet should choose a nonce asnameW and make no signature.

Real identity.For authenticity under a nameid∗
U

with prior meaning, e.g., a legal name
or an email address, this name must be verified in registration. Authenticity cannot get
better than this verification, and all parties trusted by a destination site to confirm this
name must be honest. (This is the same tradeoff between security and convenience as
with PKIs; it has nothing to do with whether only a password isexchanged in regis-
tration or a public key.) Users with a local wallet have to geta public keypk of the
wallet certified forid∗

U
. The local wallet thus becomes a leaf in a tree of certification

authorities for a specific, externally managed name space, where it may only confirm
one or a few names.6

Long-term role.If a wallet generates a role namerole for repeated use (e.g., with a cer-
tain group of enterprises), but without verified prior meaning or with the explicit desire
to keep this role unlinkable to other roles, it generates a new name. (SAML explicitly
allows this.) This is like SPKI/SDSI compared with classical PKIs. A remote wallet
holder can issue responses forrole under its own fixed namenameW and with a fixed
keypk without endangering unlinkability if its user community islarge enough to offer
anonymity. If the wallet is local and the role should really be unlinkable, it should gen-
erate a fresh namenamerole and keypkrole for this role. For XML signatures, the wallet
can include this key in the KeyValue element when first using it with a destination site.
The namerole should be considered to be in a name space governed bypk or pkrole ,
respectively. Then only the wallet that issuedrole must be trusted for authenticity in
this role.

To distinguish these cases precisely for the destination site, one should apply au-
thentication context definitions similar to [10] to individual attributes in a response.
For instance, one could represent the Passport case by stating that the user ID is a sin-
gle long-term role, that names and payment information havenot been verified, while
control (but not ownership) of the email address has been verified.

10 Conclusion and Outlook

We have shown that browser-based attribute exchange and even the simpler single
signon, although a type of three-party authentication, requires new protocols and poses
new challenges for secure design. We presented a new protocol BBAE which, for the
first time, combines all important privacy properties that can be achieved under the
design constraints. Its efficiency is essentially the same as of other browser-based pro-
tocols.

A general trend in the protocol design for influential standards and products in this
area is a multi-layered approach: One starts with a very general message format, then
extends and refines it, then designs a small core protocol, and then extends that again.

6 The wallet may useidU also as its nameissuer ; this simplifies the use of X509 certificates.
New XML tokens as certificates can be more flexible.

19



SAML already takes this approach to a certain extent. Liberty adds about one layer of
extension between each layer of SAML. The WS-Federation proposals take this ap-
proach even further. The attractiveness for quick standardization is obvious. However,
the challenges for finally getting secure protocols are large: First there is the simple
practical issue that “general processing constraints” arespread over all layers, and both
a security analyst and a later implementer may miss some of them or get them wrong.
Secondly, the initial general message formats have no clearsemantics, and even the core
protocols are not always full protocols. Hence from a security point of view, the stan-
dards cannot currently be considered modular, because the first layer for which one can
specify and prove usual security goals is typically the highest one. It will be a challenge
to the security-research community to adapt to this trend.

Acknowledgements

We have benefited from discussions with many colleagues, in particular Kathy Bohrer,
Peter Buhler, Peter Capek, Chris Giblin, Thomas Groß, Heather Hinton, John Hind,
Stephen Levy, Matthias Schunter, and Jay Unger, and with Daniel Lutz.

References

1. M. Abadi, R. Needham: Prudent Engineering Practice for Cryptographic Protocols; IEEE
Transactions on Software Engineering 22/1 (1996) 6–15

2. R. Anderson, R. Needham: Robustness Principles for Public Key Protocols; Crypto 95,
Springer-Verlag, Berlin 1995, 236–247

3. K. Bohrer, X. Liu, D. Kesdogan, E. Schonberg, M. Singh, S. Spraragen: Personal Information
Management and Distribution; 4th Intern. Conf. on Electronic Commerce Research (ICECR-
4), Dallas, 2001

4. D. Chaum: Security without Identification: Transaction Systems to make Big Brother Obso-
lete; Communications of the ACM 28/10 (1985) 1030–1044

5. J. Camenisch, E. Van Herreweghen: Design and Implementation of the Idemix Anony-
mous Credential System; 9th ACM Conference on Computer and Communications Security
(CCS), 2002, 21–30

6. Thomas Groß: Security Analysis of the SAML Single Sign-onBrowser/Artifact Profile; 19th
Annual Computer Security Applications Conference (ACSAC 2003), IEEE Computer Soci-
ety Press, December 2003

7. IBM Consumer Wallet; White Paper, 1999 (first release 1997), http://www-
3.ibm.com/software/webservers/commerce/payment/wallet.pdf

8. IBM: Enterprise Security Architecture using IBM Tivoli Security Solutions; April 2002,
http://www.redbooks.ibm.com/abstracts/sg246014.html

9. D. P. Kormann, A. D. Rubin: Risks of the Passport Single Signon Protocol; Computer Net-
works 33 (2000) 51–58

10. Liberty Alliance Project: Liberty Phase 2 Final Specifications, November 2003,
http://www.projectliberty.org/specs/lap-phase2-final.zip (v1.0 July 2002).

11. Microsoft Corporation: .NET Passport documentation, in particular Technical Overview,
Sept. 2001, and SDK 2.1 Documentation (started 1999); http://www.passport.com and
http://msdn.microsoft.com/downloads

20



12. Passlogix: v-Go Single Signon; White Paper, 2000 (first release 1999),
http://www.passlogix.com/media/pdfs/usablesecurity.pdf

13. B. Pfitzmann, M. Waidner: BBAE – A General Protocol for Browser-based
Attribute Exchange; IBM Research Report RZ 3455 (#93800) 09/09/02,
http://www.zurich.ibm.com/security/publications/2002/

14. B. Pfitzmann, M. Waidner: Privacy in Browser-Based Attribute Exchange; ACM Workshop
on Privacy in the Electronic Society (WPES) 2002, ACM Press 2003, 52–62

15. B. Pfitzmann, M. Waidner: Analysis of Liberty Single-Signon with Enabled Clients; IEEE
Internet Computing 7(6) 2003, 38–44

16. Roboform: Free Web Form Filler and Password Manager; first release 1999,
http://www.siber.com/roboform/.

17. Security Assertion Markup Language (SAML); OASIS Standard, Nov. 2002,
http://www.oasis-open.org/committees/security/docs/

18. Shibboleth-Architecture Draft v05; May 2002 (v01 in 2001),
http://middleware.internet2.edu/shibboleth/docs/draft-internet2-shibboleth-arch-v05.pdf

19. M. Slemko: Microsoft Passport to Trouble; Rev. 1.18, Nov. 2001
http://alive.znep.com/ marcs/passport/

20. BEA, IBM, Microsoft, RSA Security, VeriSign: WS-Federation: Passive Requestor Profile;
Draft, Version 1.0, July 2003, http://www-106.ibm.com/developerworks/webservices/

21. HTTP Over TLS; Internet RFC 2818, 2000
22. XML-Signature Syntax and Processing; W3C Recommendation, Feb. 2002,

http://www.w3.org/TR/xmldsig-core/
23. Zeroknowledge: Freedom Personal Firewall; first release 1999,

http://www.freedom.net/products/firewall/index.html

21


