
SecureUML: A UML-Based Modeling Language for
Model-Driven Security?

Torsten Lodderstedt, David Basin, and Jürgen Doser

Institute for Computer Science, University of Freiburg, Germany
{tolo,basin,doser}@informatik.uni-freiburg.de

Abstract. We present a modeling language for the model-driven development
of secure, distributed systems based on the Unified Modeling Language (UML).
Our approach is based on role-based access control with additional support for
specifying authorization constraints. We show how UML can be used to spec-
ify information related to access control in the overall design of an application
and how this information can be used to automatically generate complete access
control infrastructures. Our approach can be used to improve productivity dur-
ing the development of secure distributed systems and the quality of the resulting
systems.

1 Introduction

Security plays a central role in the development and functioning of many large-scale
distributed software systems, like those for electronic commerce. However, an analy-
sis of today’s software development processes reveals that the careful engineering of
security into the overall system design is often neglected. Security features are typi-
cally built into an application in an ad-hoc manner or are only integrated later during
the system administration phase. There are several reasons for this. First, security is a
“horizontal” aspect of software development that affects nearly every component of an
application and its integration into the software development process is not well un-
derstood. Second, there is a lack of tools supporting security engineering. Third, the
integration of security into a system by hand is difficult and errors often arise due to
the lack of experience of the individual developers. These developers are generally not
security experts and they need concrete guidelines for constructing secure applications.
Overall, the post-hoc, low-level integration of security has a negative impact on the
quality of resulting applications.

We present a methodology for modeling access control policies and their integra-
tion into a model-driven software development process and show how this method-
ology can help avoid the kinds of problems mentioned above. Our methodology is
based onSecureUML, a modeling language designed to integrate information relevant
to access control into application models defined with the Unified Modeling Language
(UML) [9].

? This work has been supported by the German "Bundesministerium für Wirtschaft und Tech-
nologie" under the reference number IT-MM-01MS107. The authors are responsible for the
content of this publication.



The integration of security engineering into a model-driven software development
approach has the following advantages. To begin with, security requirements can be
formulated and integrated into system designs at a high level of abstraction. In this way,
it becomes possible to develop security aware applications that are designed with the
goal of preventing violations of a security policy. For example, a database query can
be designed so that users can only retrieve those data records that they are allowed
to access. Furthermore, the model information can be used to detect and to correct
design errors or to verify the correctness of the mapping between requirements and
their realization in a design. Moreover, access control infrastructures can be generated
from SecureUML models and thereby prevent errors during the realization of access
control policies and enable the technology independent development of secure systems.

The work described here is part of ongoing research to develop a complete model-
driven approach for developing secure e-commerce systems. While SecureUML cur-
rently focuses on access control, future research will extend the scope of the language
to cover other security aspects, like digital signatures.

A prerequisite for the approach taken here is the existence of a modeling language
with an extensible syntax, a sufficiently precise semantics, and CASE tool support.
UML fulfills these requirements. We show how a modeling language for specifying
access control policies can be defined as an extension of UML. Because of its visual
notation and the possibility to define designs at a high abstraction level, UML is well
suited for designing secure systems. Therefore, SecureUML enables even developers
without a strong security background to develop secure systems.

Our language is based on an extended model forrole-based access control(RBAC).
RBAC is a well-established access control model with widely-recognized advantages,
e.g. as explained in [10], and it is supported by a large number of software platforms.
However, RBAC lacks, in general, support for expressing access control conditions that
refer to the state of a system, e.g. the state of a protected resource, parameter values, date
or time. To cover such cases, we introduce the concept ofauthorization constraints. An
authorization constraint is a precondition for granting access to an operation. We define
such constraints using theObject Constraint Language(OCL).

SecureUML offers significant design flexibility because it combines the simplic-
ity of a graphical notation for RBAC with the power of logical constraints on models.
Simple policies can be expressed using role-based permissions and more complicated
requirements can be specified by adding authorization constraints. The resulting com-
bination is quite powerful; for example, it is possible to base access decisions on dy-
namically changing data like time or to support concepts like “object ownership”.

As a proof of concept we have implemented a prototypical generator for the compo-
nent architecture Enterprise JavaBeans (EJB) [11]. Our prototype demonstrates that it
is possible to generate security infrastructures for access control based on SecureUML
models, including role definitions, method permissions, user-role assignments and au-
thorization constraint implementations.

We proceed as follows: In Section 2, we explain the foundations of our work. This
includes the underlying access control model RBAC, the component architecture EJB,
the Unified Modeling Language and an introduction to the concept of model-driven
software development. We give an overview of SecureUML in Section 3 and explain



our metamodel and notation in Sections 4 and 5. In Section 6, we draw conclusions and
discuss related and future work.

2 Background

2.1 Role-Based Access Control

We use role-based access control (RBAC) as the underlying security model of our mod-
eling language. RBAC is a model for access control where users and their privileges
are decoupled by roles. This decoupling is not only conceptually useful, it also leads to
significantly compacter access control policy descriptions.

USERS ROLES OBSOPS

PRMS

(RH)
Role Hierarchy

(UA)
User

Assignment

(PA)
Permission
Assignment

Fig. 1.Role-Based Access Control

Figure 1 shows the data model we use as foundation of our modeling language. It
is based on the standard for RBAC as proposed in [4]. The model consists of five data
types: users (USERS), roles (ROLES), objects (OBS), operations (OPS) and permis-
sions (PRMS). A user1 is defined as a person or a software agent. Arole is a job or
function within an organization. It combines all privileges needed to fulfill the respec-
tive job or function. Privileges are expressed in terms of thepermissions assigned to
a role by entries to the relationPermission Assignment. A permission represents the
authorization to execute an operation on one or more protected objects or resources. An
object in this context is a system resource or a set of resources that are protected by the
security mechanism. Anoperation is an action on a protected object that can be initiated
by a system entity. The types of operations depend on the type of the protected objects.
In a file system, for example, there might be permissions to read, write or execute files.
The assignment of roles to users is defined by the relationUser Assignment. The re-
lation Role Hierarchy defines an inheritance relationship between roles. A relation r1
inherits r2 implies that all permissions of role r2 are also permissions of role r1.

RBAC is well suited as a foundation for the modeling of access control for several
reasons. The concept of role-based permissions is close to the domain vocabulary used
to define security in organizations. Therefore, it can ease the expression of requirements
relevant for access control during analysis as well as promote their realization in the de-
sign. Roles can be used to decouple the design of the application access control policy

1 To simplify the presentation, we omit a comprehensive model of users and groups.



and its administration. This opens the possibility of developing application access con-
trol policies in the context of a model-driven process. Finally, note that many modern
software platforms support the RBAC model. Thus, it will be possible to directly gener-
ate access control infrastructures for these platforms from application models expressed
with SecureUML.

2.2 Enterprise JavaBeans

We use Enterprise JavaBeans (EJB) as an example of a component architecture in our
prototype and in this paper. EJB is widely used in the industry for developing distributed
systems. It is an industry standard with strong security support, which is implemented
by a large number of application servers. Due to lack of space, we only describe the
basic concepts of EJB, focusing on access control. For more information we refer to the
EJB standard as defined in [11].

The access control model of EJB is RBAC, where the protected resources are the
methods accessible by the interfaces of an EJB. An access control policy is mainly
realized by usingdeclarative access control. This means that the access control policy is
configured in the so-called deployment descriptors of an EJB component. The security
subsystem of the EJB environment is responsible for enforcing this policy on behalf
of the components. The following example shows the definition of a permission that
authorizes the roleAdminRole to execute the methodwithdraw on the component
Account .

<method-permission>
<role-name> AdminRole </role-name>
<method>

<ejb-name> Account </ejb-name>
<method-intf> Remote</method-intf>
<method-name> withdraw </method-name>

</method>
</method-permission>

As illustrated by this example, such permissions are defined at the level of particular
methods. In general, for realistic applications the information needed to specify a com-
prehensive access control policy is quite voluminous. Therefore, there is the inherent
danger of inadmissible simplifications due to oversights or shortcuts taken by develop-
ers. Suppose a security policy grants a role the permission to access some methods of
an EJB. A correct realization would be to define onemethod-permission element with
onemethod element for each of these methods. To save time, a developer might define
just one method permission granting the role full access to all methods of the EJB. This
is likely to cause security holes as well as inconsistencies between a security policy and
its realization. We see the modeling of security policies at a higher abstraction level and
the automatic generation of the corresponding deployment descriptors as a promising
solution to this problem.

In addition to declarative access control, EJB offers the possibility of implementing
access control decisions within the business logic of components. This mechanism is
calledprogrammatic access control.



2.3 Unified Modeling Language

We use the Unified Modeling Language (UML) as the foundation of our work for sev-
eral reasons: UML is the de-facto standard for object-oriented modeling. Many model-
ing tools support UML and a great number of developers are familiar with the language.
Hence, our work enables these users to develop access control policies using an intu-
itive, graphical notation.

UML offers the possibility of extending the modeling language using well-defined
extensibility constructs that are packaged in a so-called UML Profile. In our work, we
usestereotypesto define new types of model elements andtagged valuesto introduce
additional attributes on metamodel types. UML also provides a metamodel and a logical
language, the Object Constraint Language (OCL), to define constraints on model ele-
ments. The SecureUML metamodel defines authorization constraints as a special kind
of UML constraint and uses OCL as the expression language. In this way, we are able
to utilize existing tools and concepts for the definition and analysis of constraints in the
context of access control.

2.4 Model-Driven Software Development

Model-driven software development is an approach where software systems are defined
using models and constructed, at least in part, automatically from these models. A sys-
tem can be modeled at different levels of abstraction or from different perspectives. The
syntax of every model is defined by a metamodel.

Systems for model-driven software development can be seen as a new generation
of visual programming languages. The metamodel defines the syntax of the modeling
languages, a model plays the role of the source code, and the generator replaces the
compiler. Using this approach, it is possible to generate automatically large amounts of
source code and other artifacts, e.g. deployment descriptors and make files, based on
relatively concise models. This improves the productivity of the development process
as well as the quality of the resulting systems. It is also a large step towards the platform
independent design of systems.

The Object Management Group(OMG) is working on a standard architecture for
model-driven software development calledModel Driven Architecture(MDA). Our lan-
guage conforms to the upcoming standard as described in [8]. We define a reference
model based on this proposal, which is shown in Figure 2 as a UML class diagram.

implementation

model

1..*

1

1..*

platformmetamodel

10..* 1

+instance

0..* 10..*

+reference

10..*
1

notation

1

+concrete_syntax 1..*

1

Fig. 2.Reference model for model-driven systems



The types and relationships have the following meaning: Amodel represents a soft-
ware system at an appropriate level of abstraction or from a certain perspective. One or
moreimplementations are generated from a model. Ametamodel defines the syntax of
a class of models. Every metamodel refers to a particularplatform, called its reference
platform (reference). A platform is an execution environment for software systems, like
the Java platform. The semantics of a metamodel is defined through transformation
rules that map every language construct to constructs in the reference platform, e.g. that
a UML class is transformed to a Java class. There are one or more notations for every
metamodel. Anotation defines the concrete format used to represent models, which are
instances of the respective metamodel. There are textual as well as graphical notations.
A UML Profile is an example of a graphical notation to be used in a UML tool.

3 SecureUML Overview

In this section we give an overview of the goals and the structure of SecureUML. We
explain the metamodel and the notation in detail in Sections 4 and 5.

SecureUML is a modeling language that defines a vocabulary for annotating UML-
based models with information relevant to access control. It is based on the model for
RBAC as defined in Section 2.1, with additional support for specifying authorization
constraints. SecureUML defines a vocabulary for expressing different aspects of ac-
cess control, like roles, role permissions and user-role assignments. Due to its general
access-control model and extensibility, SecureUML is well suited for business analysis
as well as design models for different technologies. Our goal is to use this language as
part of another modeling language, called thehost language, to cover access control
aspects. In this way, different models at different abstraction levels can be annotated
with access control information using the same syntax and a compatible semantics.

The structure of the modeling language conforms to the reference model for model-
driven systems defined in Section 2.4. Themetamodeldefines the abstract syntax of the
language, i.e. the structure of a model representation that is independent of particular
notation. Ournotationused to enrich class models in UML is defined as aUML Profile.

To begin with, the semantics of the language is defined using informal transfor-
mation rules referring to the standard model given in Section 2.4, e.g. a role in the
model is transformed to a single entry of the setROLES. The usage of the standard
model for RBAC enables us to give SecureUML a general semantics independent of
any particular technology. Afterwards, when the language is included into a host lan-
guage, the semantics is refined. In our work, refinement means that the specification
of the language semantics is made more precise and is adapted to the vocabulary used
by the security platform of the host language, e.g. a role in the model is transformed
to a singledeployment descriptor element of typesecurity-role. Informal, imperative,
or declarative techniques could be used for the refinement. The resulting language is
called aSecureUML dialect.

Suppose, for example, we want to use SecureUML to annotate platform dependent
design models used to generate executable systems. In this case, the semantics can
be refined by using imperative generation rules that define the transformation of the
syntactical elements of the model to constructs of the target platform. In this context,



it is also possible to parameterize the language to meet the needs for the particular
environment using a so-calledresource type model(see below).

4 SecureUML Metamodel

ResourceSet

AuthorizationConstraint

User
ModelElement

(from UML)

0..*
+contains

0..*

+constrainedElement

/

Role

1..* 0..*1..* 0..*

RoleAssignment

Inheritance

Permission

0..* 1

ProtectedObject

1 0..*

PermissionAssignment

ActionType

0..*

+classification 1..*

ActionTypeAssignment

ResourceType

baseClass
0..*1 0..*

+context

10..*
0..1

Containment

0..*

0..1
Inheritance

0..*

Fig. 3.SecureUML Metamodel

The SecureUML metamodel, shown in Figure 3, is defined as an extension of the
UML metamodel. The concepts of RBAC are represented directly as metamodel types.
We introduce the new metamodel typesUser, Role andPermission as well as relations
between these types. Due to the design goal given in Section 3, protected resources
are represented in a different way. Instead of defining a dedicated metamodel type to
represent them, we allow every UML model element to take the role of a protected
resource. Additionally, we introduce the typeResourceSet, which represents a user
defined set of model elements used to define permissions or authorization constraints.

A Permission is a relation object connecting a role to aModelElement or a Re-
sourceSet. The semantics of a permission is defined by theActionType elements used
to classify the permission (see the associationActionTypeAssignment). Every Action-
Type represents a class of security relevant operations on a particular type of protected
resource. A method with the security relevant actionexecute or an attribute with
the actionschange andread are examples of this. In our modeling language, there
is a corresponding action type for every class of such actions. Action types may also
represent more conceptual classes of operations at a higher abstraction level. A class
may contain methods and attributes and we can attach a permission to the class with
an action typeread . This action type might represent the permission to invoke all side
effect free methods and to read the values of all attributes of this class. Action types
give the developer a vocabulary to express permissions at a level close to the domain
vocabulary.

The set of action types available in the language can be freely defined usingRe-
sourceType elements. AResourceType defines all action types available for a particular



metamodel type. The connection to the metamodel type is represented by the attribute
baseClass, which holds the name of a type or a stereotype. The set of resource types
and their action types, and the definition of their semantics on a particular platform,
define the resource type model for the platform.

An AuthorizationConstraint is a part of the access control policy of an application. It
expresses a precondition imposed on every call to an operation of a particular resource,
which usually depends on the dynamic state of the resource, the current call, or the
environment. Suppose, we want to define an access control condition stating that the
access to the methodmakeAppointment() on the classCalendar is limited to
business hours only. To achieve this goal, an authorization constraint is created whose
expression refers to the resource’s local time. In an operational view, a violation of such
a constraint might result in an exception signaling the denial of access.Authorization-
Constraint is derived from the UML core typeConstraint. Such a constraint is attached
either directly or indirectly, via a permission, to a particular model element representing
a protected resource2.

5 UML Profile for SecureUML

We illustrate the UML Profile using an example for EJB. We define a simple model-
ing language for EJB as the host language and present a small scheduler application
expressed in this language. We show how the host language is enhanced by a resource
type model for EJB and explain the semantics of the SecureUML language constructs
as well as the refined semantics for the projection to EJB.

5.1 Example: The SecureUML dialect for EJB

In our EJB modeling language, EJB components are modeled as UML classes with
the stereotype «ejb» (see Figure 5). An EJB class may contain methods and attributes.
A method in the model causes the generation of a business method stub for the EJB
component. Attributes are mapped to a member holding the state of the attribute and
two access methods get<AttributeName> and set<AttributeName>. The EJB standard
requires an EJB component to implement some default methods accessible for clients,
for instance, a "finder" method that finds instances by their primary key and methods
to delete instances. Since these methods must always be present in the EJB implemen-
tation, they can be omitted in the model and are generated automatically. We show in
our example how access control information can be expressed even for such “invisible”
methods.

We define three resource types and corresponding action types for EJB components,
methods and attributes. As shown in Figure 4, aResourceType is defined as a class with
the stereotype «secuml.resourceType» and anActionType is a class with the stereotype
«secuml.actionType» . All action types belonging to a resource type are embedded in
this type as nested classes. The semantics of the action types are given in the context of
their usage in the example.

2 The standard UML association betweenConstraint andModelElement is used to attach the
constraints.



EJB
<<secuml.resourceType>>

create
<<secuml.actionType>>

delete
<<secuml.actionType>>

read
<<secuml.actionType>>

update
<<secuml.actionType>>

Fig. 4. resource type definition for EJB components

The resource type model is included in every design model defined with the EJB
language. In this way, action types can directly be referenced by any permission in the
model.

5.2 Scheduler Example

The example application, shown in Figure 5, consists of two components:Calendar
andEntry . A calendar may contain several entries, each representing an appointment
with a start and end date and a location. Every entry is owned by a user whose name
is stored in the attributeowner . The additional constructs shown in the diagram are
used to express access control information. We cover all SecureUML constructs in the
following subsections.

EntryOwnerPerm

- actiontype : update
Ownership

<<secuml.constraint>>

BusinessHoursOnly
<<secuml.constraint>>

UserCalendarPerm

- actiontype : change

{call.current().principal.name
= owner}

{time.currentHour() > 8 and
time.currentHour() < 17}

CalendarView
<<secuml.resourceView>>

+ name : string

Calendar

+ name : string

+ createEntry()
+ updateEntry()
+ removeEntry()
+ findAllEntries()

<<ejb>>

<<secuml.context>>

User
<<secuml.role>>

<<secuml.permission>>

SuperUser
<<secuml.role>>

Entry

+ Location : string
+ Start : date
+ End : date
+ Owner : string

+ getEntryInfo()
+ setEntryInfo()

<<ejb>>

0..*

<<secuml.permission>>

<<secuml.permission>>

<<secuml.permission>>

SuperUserPerm

- actiontype : update
- actiontype1 : delete

UserEntryPerm

- actiontype : read

Fig. 5.Example: Secure Scheduler



5.3 Roles

A role is represented by a UML class with the stereotype «secuml.role». In our example,
the two rolesUser andSuperUser are modeled. In the projection to EJB, each role
model element is transformed to a role definition in the deployment descriptor as shown
in the following example code:

<security-role>
<role-name> User </role-name>

</security-role>

An inheritance relationship between roles is represented by a standard UML general-
ization relationship. This relation results in an entry for the relationRole Hierarchy in
the general semantics. In our example, the roleSuperUser is derived from the role
User . Since there is no direct representation of a role hierarchy in EJB, all permissions
generated for a super-role are also generated for its sub-roles.

5.4 Permissions

A permission is drawn as an association class with the stereotype «secuml.permission».
In the simplest case, the association is bound to a type representing one or more pro-
tected resources. An action type used to classify the permission is referenced as the type
of an attribute of the permission class. The name of this attribute is not interpreted. The
number of referenced action types is unlimited, but all action types must be compatible
with the type of the model element referenced by the permission. The necessary type
information is defined in the corresponding resource type. Each assigned action type
represents a set of permissions in terms of the reference platform. If multiple action
types are assigned to a model permission, the union of these sets is taken.

In the example shown in Figure 5, the permissionUserEntryPerm defines a per-
mission for the roleUser to access the EJBEntry with the action typeread . In the
transformation to the EJB security platform, this means that method permissions for all
side-effect free methods of the referenced EJB will be generated. These are the standard
finder methods, the read-methods of all attributes, and all methods explicitly marked as
side-effect free.3 In this example, six method-permission entries are generated in the
deployment descriptor.

<method-permission>
<role-name> User </role-name>
<method>

<ejb-name> Entry </ejb-name>
<method-intf> Home</method-intf>
<method-name> findByPrimaryKey </method-name>

</method>
...

</method-permission>

3 The standard UML-AttributeBehavioralFeature.isQuery is used for that purpose. In the
example model, the methodEntry.getEntryValue is marked as a query.



This example demonstrates the expressiveness of action types as well as the possi-
bility of expressing permissions for “invisible” methods. Although the finder method
findByPrimaryKey is not represented in the model, a corresponding permission is
generated since this method belongs to the class of side-effect free methods selected by
the action typeread .

Since it is syntactically impossible to address single attributes or methods using the
construct above, we complement action types withresource views. This is a realiza-
tion of the metamodel typeResourceSet that defines a subset of features of a particular
type. It is used as target of permissions as well as authorization constraints. A resource
view is modeled as a UML class with the stereotype «secuml.resourceView». The con-
text type is referenced using a dependency with stereotype «secuml.context». For every
feature of the context type contained in the set defined by the resource view there is a
feature contained in the resource view model element with the same signature. In our
example (see Figure 5), the resource viewCalendarView references the single at-
tributename of the typeCalendar . The permissionUserCalendarPerm defines
a permission for the roleUser on that attribute with the action typechange. In the
generated EJB infrastructure, this will result in a method permission granting the role
User the permission to execute the set-method of the attributename, i.e. the method
setName(String) .

5.5 Authorization Constraints

An authorization constraint is defined as a UML constraint with the stereotype «se-
cuml.constraint» as shown in Figure 5. We anticipate that the same authorization con-
straint is, in most cases, imposed on several or all methods of a type. Therefore, our no-
tation is optimized for such cases. Authorization constraints are expressed using OCL
where thecontextelement of the expression is omitted and is computed as follows. The
authorization constraint is bound to a type using a UML dependency. In terms of the
metamodel this means that all, or a subset of, the methods of the type are restricted by
the constraint. We call this the “affected methods” of the constraint. The UML notation
is transformed to an internal view by creating a single OCL constraint for every affected
method, including a correspondingcontextelement for that method (see below).

Authorization constraints have access to the application model as well as to the
respective platform model. The platform model defines an abstract API to access infor-
mation in the execution environment. We have defined types to access both the current
time and date and information from the security system, like the principal name and the
roles of a caller. These types are defined in a default model, which is part of every ap-
plication model. During the generation of authorization constraint expressions, all calls
to the abstract API are substituted by API calls of the concrete platform.4

Authorization constraints can be directly bound to a class or a resource view using
a UML dependency. In this case, we speak of a “class bound” constraint. Such an au-
thorization constraint represents preconditions for every method generated for the type
or the subset of methods defined by the resource view. An application is given in Fig-
ure 5 by the authorization constraintBusinessHoursOnly . It restricts the access to

4 We omit the platform model due to space restrictions.



all attributes and methods of the EJB componentEntry to legal business hours. The
expression

time.currentHour() > 8 and time.currentHour() < 17

is transformed to standard OCL preconditions for every affected method as shown be-
low for one of these methods:

context Entry::getEntryInfo():EntryInfo
pre : time.currentHour() > 8 and time.currentHour() < 17

An authorization constraint can also be bound to a permission. This form of autho-
rization constraints is designated as a “permission bound” constraint. Such a constraint
defines additional restrictions on this permission. Logically, the role permission and the
constraint are conjoined. The resulting condition is used as a precondition to all meth-
ods affected by the role permission. Figure 5 shows an example constraint bound to a
permission.

We want to restrict the access to all update methods onEntry objects to their
respective owners. We define the role permissionEntryOwnerPerm with the action
typeupdate and attach the constraintOwnership . The action typeupdate limits
the permission to all set-methods of attributes and all methods that are not side-effect
free. The constraintOwnership uses the platform model to access the name of the
current caller and compares it to the value of the attributeowner .

call.current().principal.name = owner

The permission and the authorization constraint are transformed to the following com-
bined precondition.

context Entry::setLocation(newValue: String ):void
pre : call.current().principal.isInRole("User") and

call.current().principal.name = owner

The role permission is transformed to an OCL expression validating the role using the
classcall of the platform model and is conjoined with the expression of the constraint
Ownership .

For both the analysis of the model and system generation, it is useful to construct
one predicate per protected resource formalizing the access control conditions defined
by all permissions or authorization constraints for that particular protected resource.
This overall access control predicate is defined as a OCL precondition built by the
following rule:

(permExpr1 or ... or permExprn) and constrExpr1 and ... and constrExprn

That is, all permission expressions are disjunctively combined. The resulting term is
conjoined with all class bound authorization constraints affecting the particular method.
The following example shows the complete access control precondition for the method
Entry::setEntryInfo that is affected by the permissionsEntryOwnerPerm ,
SuperUserPerm and the authorization constraintBusinessHoursOnly .

context Entry::setEntryInfo(EntryInfo):void
pre : (call.current().principal.isInRole("SuperUser") or



(call.current().principal.isInRole("User") and
call.current().principal.name = owner) and

(time.currentHour() > 8 and time.currentHour() < 17)

5.6 User-Role-Assignments

Smith
<<secuml.user>>

User
<<secuml.role>><<secuml.roleAssignment>>

Fig. 6.User-Role-Assignment

Users are represented as classes with the stereotype «secuml.user» as shown in Fig-
ure 6. The assignment of a role to a user is defined using a dependency relationship with
the stereotype «secuml.roleAssignment». Note that the EJB specification [11] does not
prescribe a standard format for assigning roles to users; therefore each EJB product
uses a proprietary syntax. Below, we give an example for the product BEA WebLogic
Server [1].

<security-role-assignment>
<role-name> User </role-name>
<principal-name> Smith </principal-name>

</security-role-assignment>

6 Conclusion

6.1 Discussion

We have presented SecureUML, a modeling language designed for integrating the spec-
ification of access control into application models. The language builds on the access
control model of RBAC with additional support for specifying authorization constraints.
We have shown how SecureUML can be used in the context of a model-driven software
development process to generate access control infrastructures. In this way, productivity
during the development and the quality of the resulting systems can be improved.

We have validated the concepts presented in this paper using a prototypical gener-
ator for EJB. With this prototype, it is possible to generate EJB applications with full
configured role-based access control, including role definitions, method permissions,
user-role assignments and authorization constraints. We used ArcStylerTM as a tool for
modeling and generation, which is an MDA compliant development environment for
component-based systems based on Rational RoseTM . We used the template-based gen-
erator of ArcStylerTM (see [5]) to implement our generation rules.

With our prototype, we developed case studies for a banking and a scheduling appli-
cation and the latter is used as example in this paper. Our experiments have shown the



feasability of expressing access control policies with UML in a manner that is concise
and precise. The information necessary to realize such a policy in an EJB infrastruc-
ture is at a lower level of abstraction and thus significantly more detailed. For example,
the generated access control policy for the scheduling application consists of about 220
lines of deployment descriptor source and 50 lines of Java code.

In particular, the concept of action types contributes to the problem solution. Per-
missions can be expressed in an intuitive vocabulary, like “a role is grantedreadaccess
to a component”. Furthermore, permissions are adapted dynamically to changes of the
object model due to the filter effect of action types. This reduces, in comparison to ex-
plicit sets like resource views, the possibility of inconsistencies between the application
model and the access control policy model.

We want to emphasize that due to its general access control model, SecureUML is
well suited for defining access control policies for every security architecture support-
ing role-based or programmatic access control. The language is adapted to a particular
security architecture by defining a corresponding resource type model that identifies
the model element types representing protected resource for this architecture and its
actions relevant to access control. Based on the resource type model, the semantics of
the language is refined in terms of the target architecture. In this paper we have shown
this approach on the example of the EJB security architecture.

Our work also shows that OCL is well suited for formalizing authorization con-
straints. OCL expressions can refer to all application model types and allow consider-
able flexibility in defining constraints. Since OCL is a first-order language, constraints
can be incorporated into a formal analysis of UML models (see [2]).

6.2 Related Work

In the area of security modeling with UML, Epstein and Sandhu propose in [3] a UML
based notation for access control. In contrast to our approach, they do not cover the
generation of secure systems from models. Apart from this, there are similarities, but
also differences, in the notation. In particular, their concept of aset handleris similar
to our resource view. In contrast, we complement resource views with action types.
These are used to define dynamic filters over sets of operations. Epstein and Sandhu
furthermore propose to define constraints for single roles or operations in an informal
notation. We use formal constraints expressed in OCL, which can be bound to a set of
operations or permissions.

Jürjens proposes in [7] a concept for specifying requirements on confidentiality and
integrity in analysis models based on UML. The underlying security models are Multi-
Level Security and Mandatory Access Control. In contrast, our work focuses on the
design phase and builds on RBAC as a security model.

In the area of models for RBAC, Jaeger proposes in [6] the introduction of con-
straints in RBAC that restrict the assignment relationship between roles and users. This
mechanism can be used to realize the concept of “separation of duty”. Such constraints
are also defined in [4]. Our authorization constraints are a complementary concept used
for restricting the execution of an operation in a system state dependent way. Further-
more, an authorization constraint as proposed in this paper is a UML modeling construct
and not an extension to the RBAC model in general.



6.3 Future Work

Currently our approach focuses on static design models, which are relatively close to
the implementation. It is worth considering whether the efficiency of the development
process of secure applications can be improved by annotating models at a higher level
of abstraction (e.g. analysis) or by annotating dynamic models, e.g. state machines.
Moreover, some critical questions concerning the development process are still open,
e.g. how are roles and permissions identified? Beyond that, the current prototype does
not yet demonstrate the platform independence of our concepts.

Future work will focus on modeling security requirements and design information
using dynamic UML models. Furthermore, the development process for secure sys-
tems starting with the initial analysis up to the complete secure system design will be
investigated. In this context, we will examine the possibility of propagating security
requirements between analysis and design models and ways to verify the compatibility
of requirements and design information given at different levels.

References

1. BEA Systems, Inc. Programming WebLogic Enterprise JavaBeans, 2002. http://
e-docs.bea.com/wls/docs61/pdf/ejb.pdf .

2. A. D. Brucker and B. Wolff. A Proposal for a Formal OCL Semantics in Isabelle/HOL. In
C. Muñoz, S. Tahar, and V. Carreño, editors,TPHOLs 2002, LNCS. Springer-Verlag, 2002.

3. P. Epstein and R. Sandhu. Towards a UML based approach to role engineering. InProceed-
ings of the fourth ACM workshop on Role-based access control, pages 135–143. ACM Press,
1999.

4. D. F. Ferraiolo, R. Sandhu, S. Gavrila, D. R. Kuhn, and R. Chandramouli. Proposed NIST
standard for role-based access control.ACM Transactions on Information and System Secu-
rity (TISSEC), 4(3):224–274, 2001.

5. Interactive Objects Software GmbH.ArcStyler Extensibility Guide, 2002. http://www.
io-software.com/as_support/docu/extensibility_guide.pdf .

6. T. Jaeger. On the increasing importance of constraints. InProceedings of the fourth ACM
workshop on Role-based access control, pages 33–42. ACM Press, 1999.

7. J. Jürjens. Towards development of secure systems using UMLsec. In H. Hussmann, editor,
Fundamental Approaches to Software Engineering, 4th International Conference, Proceed-
ings, LNCS, pages 187–200. Springer, 2001.

8. T. Koch, A. Uhl, and D. Weise. Model Driven Architecture. Technical report, Interac-
tive Objects Software GmbH, 2002.http://cgi.omg.org/cgi-bin/doc?ormsc/
02-01-04.pdf .

9. Object Management Group.OMG Unified Modeling Language Specification, Version 1.4,
2001.http://www.omg.org/technology/documents/formal/uml.htm .

10. R. S. Sandhu, E. J. Coyne, H. L. Feinstein, and C. E. Youman. Role-based access control
models.IEEE Computer, 29(2):38–47, 1996.

11. Sun Microsystems, Inc.Enterprise JavaBeans Specification, Version 2.0, 2001. http:
//java.sun.com/ejb/docs.html .


