
Summary of research on modularizing Demeter class
dictionaries

Or the story of how my eyes were bigger than my stomach

Will Guaraldi and Karl Lieberherr
{guaraldi,lieber}@ccs.neu.edu

College of Computer and Information Science
Northeastern University

360 Huntington Avenue 202 WVH
Boston, Massachusetts 02115 USA

ABSTRACT
For the Spring 2007 semester, I worked on a research project
focusing on ways to modularize Demeter class dictionaries.
This paper summarizes my research in this area.

Note that this paper is less of a formal technical report and
more of a loosely organized collection of observations, re-
search discoveries, and thoughts on possible future direc-
tions. This paper serves as a summary of the research I did
as well as a possible springboard for someone else to continue
research in this area.

This paper assumes you are familiar with DJ [5], Demeter
[3], DemeterJ [4], DAJ [2], class dictionaries, class graphs,
and strategies.

Keywords
Demeter, class dictionaries, modularizing class dictionaries

1. FIXME - TODO
START FIXME

This paper is a �rst draft and some of the parts need a lot of
attention in terms of the actual writing. The content itself
is ok, though it would be helpful to have examples of some
of the things that are talked about in the sections regarding
research. For example, it'd be interesting to have examples
of ADD and GEN rather than merely state what they are
and move on.

I'm guessing this paper needs another day of work or so.

END FIXME

2. MOTIVATIONS

The original motivation I had for researching modularizing
Demeter class dictionaries came from working on a project
at the end of the Fall 2006 semester of CSG260: Advanced
Software Engineering. We built a veri�er that took CSP
input �les in a variety of formats and a solver output �le
and veri�ed that the solution the solver came up with solved
the CSP.

The CSP input �le and the output �le formats were already
speci�ed in class dictionaries and used by other projects. We
wanted to use the existing class dictionary �les in our veri�er
allowing us to parse the input �les they were parsing. We
wanted to write a single class dictionary �le that included
or imported all the other class dictionary �les treating them
as libraries.

DemeterJ (and friends) have no ability to import/include
class dictionaries. We could have created a class dictionary
�le the contents of which were all the other class dictionary
�les except there were naming con�icts between the class
dictionaries.

Instead what we had to do was create a separate Deme-
terJ project for each class dictionary �le we wanted to work
with. Each project had to be in a separate Java class pack-
age because of namespace collisions between the class dictio-
nary �les. Furthermore because we had a very di�erent Java
package structure than what the other groups were working
with, we had to make changes to their class dictionary �les
to work in our system. We had to add the behavior code
that was speci�c to our project into each of these Deme-
terJ projects (which was a lot of duplication). The end
result is that we essentially had local versions of the code
the other groups were producing that had changes unique
to our project and any time they made changes we'd have
to manually merge those changes into our local versions.

Ideally we would have been able to create a single class dic-
tionary �le that imported the other class dictionary �les in
di�erent name spaces all within a single DemeterJ project
and de�ned our behavior in our behavior �les based on our
class dictionary.

The second motivational anecdote was that Ahmed was work-
ing on a class dictionary for an XML-based CSP input �le.
This was for an undergraduate software development class.



Over a couple of weeks the class made changes to the in-
put format making it easier to work with. Every time they
made a change to the format, Ahmed would go through great
pains to adjust his class dictionary which was 135 lines long
and growing. He suggested that it would have been easier if
he could break the monolithic class dictionary into a series
of smaller class dictionaries focusing on speci�c bits of the
XML-based CSP format.

Lastly, Theo was thinking about updating a class dictio-
nary of the Java grammar from version Java 1.1 to Java
1.5. However the size of the class dictionary for the Java 1.1
grammar was huge and it looked much easier to start from
scratch than �gure out what changes needed to be made to
the monolithic class dictionary �le.

It's important to notice that class dictionaries are only one
piece of adaptive-programming. Class dictionaries don't ex-
ist in a vacuum�they're often accompanied by behavior �les
and strategies which refer to the structure speci�ed by the
class dictionary. Because of this, modularization of class dic-
tionaries isn't simply a mission to �nd a way to include and
refer to other �les; modularization also a�ects the behav-
ior written against the structure. Modularizing class dic-
tionaries walks a �ne line between splitting up structure
documents (XML Schema, XML DTDs, ...) and modules
in programming languages (SML, ...).

These motivating anecdotes suggest the following possible
list of requirements from a class dictionary modularization
approach.

1. It should allow us to break up class dictionary �les into
a series of �les.

2. Classes from imported or included class dictionaries
need unique names so that classes with the same name
from two di�erent imported class dictionaries don't
clash. This could be done with name spaces or α-
conversion. Additionally, since classes are referred to
in behavior �les and strategies any transformation of
class names needs to be deterministic as well as unique.

3. It might be useful to be able to extend classes that are
imported/included from another class dictionary.

4. Importing/including class dictionaries can't break strate-
gies and behavior �les.

5. We'll need to verify that the constraints for strategies
and class dictionaries are maintained.

3. CONSTRAINTS
3.1 Class dictionaries
When modularizing class dictionaries, we need to make sure
we're not violating any of the constraints for class dictio-
naries. These constraints are speci�ed in the DemeterJ user
manual [4].

1. inductiveness axiom - Classes in the class dictio-
nary can't be inherently circular. DemeterJ creates a
parser that takes a stream of characters and generates

an object graph based on the class dictionary. If the
class dictionary is not inductive, then the parser won't
work right.

2. cycle-free axiom - Classes can't inherit from them-
self.

3. unique label axiom - Classes can't have more than
one edge with the same label.

4. alternatives - Alternatives of classes have to be classes�
they can't be strings or other terminals.

5. class names - Class names must start with a capital
letter.

Since class dictionaries are speci�ed with LL(1) grammars,
the new class dictionary that's a result of modularization
must also be LL(1).

3.2 Strategies
When working out modularization possibilities with class
dictionaries, it's important to think about how this a�ects
strategies.

1. uniqueness - If the strategy speci�es a unique Path-
Set in the class dictionary that speci�es graph A, then
it must specify a unique PathSet in the class dictionary
that results from modularization.

2. FIXME - others?

Demeter Interfaces allow you to specify constraints on strate-
gies [9]. I'll talk more about Demeter Interfaces later.

4. RESEARCH
4.1 XML Schema
XML Schema �les can import other schema �les into name
spaces [7]. This allows creation of �libraries� of types that
are reusable.

You can declare complexTypes that are extensions of types
de�ned in the same schema �le or di�erent schema �les.
Extensions can additionally extend or restrict the parent
type.

If we adopted this behavior, then we could treat every class
dictionary as a separate module. XML Schema speci�es
structure and there's no associated behavior�so we'd have
to deal with that somehow. We could include the strate-
gies and behavior �les with the class dictionary in the idea
of a �module�. If we wanted to use classes from another
module, we'd import that module into the current module
in a speci�ed namespace and refer to the classes using the
namespace.

For example, we create a class dictionary of bus routes for
a city. The strategies for this class dictionary would specify
pathsets for �nding the locations for a speci�c busroute. We
want to look at all the bus routes for all the cities on the
east coast. As such we create a class dictionary to model



cities. It imports the bus route class dictionary into the br
namespace and refers to the classes in the bus route class
dictionary that way. Additionally, the city class dictionary
has a strategy that gets a list of all the bus routes with from
Nation to br:Location.

One interesting thing to mention here is that DAJ uses
ANTLR for parsing. ANTLR can do grammar inheritance
[1]. It's possible that DAJ (DemeterJ uses JavaCC) could
do a pre-processing step that pulls all the class dictionary
�les into a super grammar and uses ANTLR's grammar in-
heritance. This idea was never �eshed out to see if it was
useful or not.

4.2 Demeter Interfaces
Demeter Interfaces [9] provides an interface abstraction layer
between the structure of the program (class dictionary/class
graph) and the behavior of the program (strategies, traver-
sals, and behavior �les). Demeter Interfaces allow you to
change the structure with a compile-time check as to whether
the structure satis�es the constraints of the interface.

To implement an interface you have to create a class dictio-
nary and then map things in the interface to things in the
class dictionary. There are two primary cases of mappings:

1. use <cd-class> as <interface-class>
This maps a class in the class dictionary to a class in
the interface. For example:
use Variable as Thing

2. use <cd-strategy-fragment> as <interface-class>
This maps the targets of a PathSet in the class dictio-
nary to a class in the interface. For example:
use (-> *, lhs, Variable) as DThing

Note that number 1 is a short-hand case for number 2. Num-
ber 1 could also be speci�ed as:

use (-> *, *, Variable) as Thing

which reads as �to Variable through any edge�.

Demeter Interfaces solves some of the issues in that it al-
lows us to change the structure without going through and
changing all the behavior. It also allows us to specify ad-
ditional constraints for our strategies which help to verify
they are doing and continue to do what we expect them to
do.

4.3 SML
SML allows you to put types and functions into modules
and then use those modules in other modules. You specify
which modules are part of your program in the sources.cm
�le [6].

Modules consist of structures and signatures. Signatures
specify what's exposed to the outside world and also act as
an interface. You write code against the signature and as
long as a structure implements the signature, it can be used
as an implementation of the signature.

Demeter Interfaces would nicely �t in with SML signatures.
The piece that's missing is that DemeterJ (and friends) can't
use multiple class dictionaries in a single project. One way
to handle this is to build a CM-like system where a DemeterJ
project has a project �le that speci�es all the class dictio-
naries that belong in the project. Class dictionaries could
refer to one another using a module name (perhaps derived
from the �le name of the class dictionary).

This would allow us to split class dictionaries into multi-
ple pieces, specify which class dictionaries belong to a single
project, allow for uniqueness of classes (they're in their in-
dividual name spaces), and write behavior and strategies
against an interface abstraction of the structure.

DemeterJ (and friends) generate Java code from the class
dictionaries, behavior �les, and strategies. It's not clear
how this generation of classes would work in the presence of
a module system where modules are their own namespaces.
Would each module become a separate Java package? Would
class dictionaries all be in the same package? There are
engineering issues with both of these approaches.

4.4 Class graph transformations
Instead of focusing on modularizing class dictionaries start-
ing with how to split up the �les, it's useful to think about
modularization in terms of transformations on class graphs
and class graph composition. The paper Object-extending
Class Transformations [8] talks about transforming class
graphs to handle evolution of software over the course of
the software's lifecycle.

Two of the transformations are particularly interesting. We
could do composition of class graphs by weekly-extended
GEN and ADD. ADD adds new vertices and edges with-
out changing anything else about the graph. GEN reroutes
construction edges (also known as is-a edges) from classes
to superclasses.

Aspects are very similar to this. We could use these transfor-
mations much like we use aspects by transforming the base
class graph to add cross-cutting concerns that are nicely
centralized into one place.

Having said that, I think this doesn't �t my intentions. Also,
the paper talks about class graphs and as such doesn't get
into the issues of namespace clashes between graphs or the
e�ects of transforming class graphs on strategies and behav-
ior �les.

4.5 Other things to look at
It's probably worth-while to look at LINQ, XML DTDs,
SGML (DocBook), and anything else that might have an
interesting modularization system.

5. CONCLUSIONS
I spent a good portion of the semester trying to work out
how to think about modularization of class dictionaries given
that class dictionaries are in one sense a textual representa-
tion of a class graph and in another sense they're a speci�-
cation of types that are used in behavior �les and strategies.
Two thirds of the way into the semester, I switched missions



and worked on a paper mapping Demeter concepts to XML
Schema and XPath 2.0.

As such I didn't get far enough into the project to get to any
conclusions other than that this is a more complex problem
than I thought it was when I started. I think if I were to con-
tinue on this project, I'd seriously think about working out a
similar system for modularization that XML Schema has. I
think the two are very similar in the sense that XML Schema
is a language for specifying schemas which are hierarchical
documents composed of a series of types. Similarly, class
dictionaries are textual speci�cations for class graphs which
are composed of objects which in some sense are types.

6. REFERENCES
[1] ANTLR project. http://www.antlr.org/ .

[2] DAJ. http://daj.sourceforge.net/ .

[3] Demeter project.
http://www.ccs.neu.edu/research/demeter/ .

[4] DemeterJ.
http://www.ccs.neu.edu/research/demeter/software/
DemeterJ/ .

[5] DJ. http://www.ccs.neu.edu/research/demeter/DJ/ .

[6] SML/NJ user manual.
http://www.smlnj.org/doc/index.html .

[7] D. C. Fallside and P. Walmsley. XML schema part 0:
Primer second edition.
http://www.w3.org/TR/2004/REC-xmlschema-0-
20041028/, October
2004.

[8] K. J. Lieberherr, W. L. Hürsch, and C. Xiao.
Object-extending class transformations. Formal Aspects
of Computing, (6):391�416, 1994. Also available as
Technical Report NU-CCS-91-8, Northeastern
University.

[9] T. Skotiniotis, J. Palm, and K. J. Lieberherr. Demeter
interfaces: Adaptive programming without surprises. In
European Conference on Object-Oriented Programming,
pages 477�500, Nantes, France, 2006. Springer Verlag
Lecture Notes.


