
Constraint satisfaction techniques for diagnosing errors in
Design by Contract software ∗

Rafael Ceballos
Dpto. Lenguajes y Sistemas
Informáticos, U. de Sevilla
Avda. Reina Mercedes s/n,

CP 41012
Seville, Spain

Rafael Martı́nez Gasca
Dpto. Lenguajes y Sistemas
Informáticos, U. de Sevilla
Avda. Reina Mercedes s/n,

CP 41012
Seville, Spain

Diana Borrego
Dpto. Lenguajes y Sistemas
Informáticos, U. de Sevilla
Avda. Reina Mercedes s/n,

CP 41012
Seville, Spain

ABSTRACT
Design by Contract enables the development of more reliable
and robust software applications. In this paper, a method-
ology that diagnoses errors in software is proposed. This
is based on the combination of Design by Contract, Model-
based Diagnosis and Constraint Programming. Contracts
are specified by using assertions. These assertions together
with an abstraction of the source code are transformed into
constraints. The methodology detects if the contracts are
consistent, and if there are incompatibilities between con-
tracts and source code. The process is automatic and is
based on constraint programming.

Categories and Subject Descriptors
D.2.4 [Software/Program Verification]: Assertion check-
ers, Correctness proofs, Programming by contract; D.2.5
[Testing and Debugging]: Diagnostics; F.3.1 [Specifying
and Verifying and Reasoning about Programs]: As-
sertions Invariants Pre- and post-conditions

General Terms
Verification, Design by Contract, Diagnosis

1. INTRODUCTION
Design by Contract was proposed in [5]. This work speci-
fied that the major component of quality in software is the
ability to perform its job according to the specification. The
software quality is especially important in Object-Oriented
(OO) methodology because of the software reusability. In
a recent work, [1] it is showed that contracts are useful for
fault isolation. By using contracts, the fault isolation and
diagnosability is significantly improved.

∗This work has been funded by the Ministry of Science and
Technology of Spain (DPI2003-07146-C02-01) and the Eu-
ropean Regional Development Fund (ERDF/ FEDER).

In this work, a methodology for diagnosing software is pro-
posed, that is, for detecting and locating faults in programs.
The main idea is the transformation of the contracts and
source code into an abstract model based on constraints.
The methodology detects if the contracts are consistent, and
if there are incompatibilities between contracts and source
code.

CSP + Model Based Diagnosis

MAX
-
CSP

Contracts + Source Code

Abstraction

Logic Fundamentals

Automatic Identification

Bugs
Bugs

Test Cases

Contracts

Diagnosis

Source Code

Diagnosis

Figure 1: Diagnosis framework

2. DIAGNOSIS FRAMEWORK
Figure 1 shows the completed diagnosis process. The pro-
cess obtains an abstract model based on the source code,
contracts and test cases. The diagnosis of a program is a set
of infeasible assertion and/or erroneous statements. These
definitions specify the kind of errors that can be detected.

Definition 1. An infeasible assertion is a non-viable asser-
tion due to conflicts with previous assertions or statements.
The set of assertions of a contract are verified when a pro-
gram is executed. An infeasible assertion is a wrongly de-
signed assertion that cannot be satisfied and it stops the
program execution when it is not specified.

Definition 2. An erroneous statement is a statement or a
set of statements that are faults since they do not allow the

/**

 * @inv getBalance()>= 0

 * @inv getInterest >= 0

 */

public

interface
 Account {

 /**

 * @pre income > 0

 * @post getBalance() >= 0

 */

public

void
 deposit (
double
 income);

/**

 * @pre withdrawal > 0

 * @post ge
tBalance() ==

 * getBalance()@pre
-
 withdrawal

 */

public

void
 withdraw (
double
 withdrawal);

/**

 * @pre interest >= 0

 * @post getInterest() == interest

 */

public

void
 setInterest (
double
 interest);

public

dou
ble
 getInterest ();

public

double
 getBalance ();

}

public

class
 AccountImp
implements
 Account {

private

double
 interest;

private

double
 balance;

public
 AccountImp()

{

 this
.balance =
0
;

 }

public

void
 deposit (
double
 in
come) {

this
.balance =
this
.balance
-
 income;

 }

public

void
 withdraw (
double
 withdrawal) {

this
.balance =
this
.balance
-
 withdrawal;

 }

public

double
 getBalance() {

return

this
.balance;

 }

public

double
 getInte
rest() {

return

this
.interest;

}

public

void
 setInterest(
double
 interest) {

this
.interest = interest;

 }

}

Figure 2: Interface Account and class AccountImp source code

correct results to be obtained. The errors under consider-
ation are minor variations of the correct program, such as
errors in loop conditions or errors in assignment statements.
This paper does not consider errors detected in compilation
time (such as syntax errors), nor dynamic errors (such as
exceptions, memory access violations, infinite loops, etc).

The following sections explain the phases of the diagnosis
process.

3. ABSTRACT MODEL GENERATION
In model-based diagnosis approaches, a model of the system
components enables detecting, identifying and isolating the
reason of an unexpected behaviour of a system. In a Object-
Oriented program the methods of different objects are linked
in order to obtain the specified behaviour. Each method of
a object can be considered as a component, which generates
a specified result. The pretreatment of the source code and
program contracts enables obtaining an abstract model of a
program. This abstract model allows to diagnose errors in
programs. The following subsections shows the process for
generating abstract model.

3.1 Determining basic blocks
Every OO program is a set of classes. In order to automate
the diagnosis of a program it is necessary to divide the sys-
tem into subsystems. Each program classes is transformed
into a set of basic blocks. These basic blocks (BB) can be:
blocks of invariants (IB), blocks of static class fields (SB),
blocks of object attributes (OB), and blocks of object or
class methods (MB). A IB includes the set of invariants of
a class. A SB includes the set of static field declarations
and static code blocks of a class, and a OB includes the
set of object field declarations of a class. A MB is the set
of all the statements and assertions (such as preconditions,
postconditions or loop invariants) included in the method.

Each program class can be transformed into a set of basic
blocks (BBs) equivalent to the Classi. When a program is
executed, the microprocessor links the basic blocks. The
order of these blocks can be represented as a Control Flow
Graph (CFG). The CFG is a directed graph that represents
the control structure of a program. A CFG is a set of sequen-
tial blocks and decision statements. A Path is the sequence
of statements of the CFG that is executed. The following
sections will use the basic blocks of an executed path in
order to obtain the constrains of the abstract model.

3.2 SSA form
The order of the constraints is not important for solving
a CSP. But when a program is executed the order of the
assertions and statements is very important. It is necessary
to maintain this order in the abstract model. The program
under analysis is translated into a static single assignment
(SSA) form. This step maintains the execution sequence
when the program is translated into constraints. In SSA
form, only one assignment is made to each variable in the
whole program. For example the code x=a*c; ...x=x+3;...
{Post:x =...} is changed to x1=a*c; ...x2=x1+3;... {Post:x2
=...}.

3.3 Program transformation
The abstract model is a set of constraints which simulate the
behaviour of the contracts (assertions) and the source code
(statements) of a program. Our approach uses the function
A2C (assertion to constraints) for transforming an assertion
into constraints. The transformation of the source code to
constraints appears in previous work [3]. The process is
based on the transformation of each statement of the path.
The main ideas of the transformation are:

• Indivisible blocks:

Assignments: {Ident := Exp}
The assignment statement is transformed into the fol-

Table 1: The modified toy problem model
PC : PD :
S1 : int x = a * c (AB(S1) ∨ (x == a * c))∧
S2 : int y = b * d (AB(S2) ∨ (y == b * d))∧
S3 : int z = c + e (AB(S3) ∨ (z == c + e))∧
S4 : int f = x + y (AB(S4) ∨ (f == x + y))∧
S5 : int g = y + z (AB(S5) ∨ (g == y + z))
TC : Inputs : {a = 3, b = 2, c = 2, d = 3, e= 3}

Outputs : {f = 12, g = 12}
Test Code: S1 .. S5

lowing equality constraint: {Ident = Exp}. If the as-
signment statement is not a part of the minimal diag-
nosis then the equality between the assigned variable
and the assigned expression must be satisfied.

Method calls and return statements: For each method
call, the constraints defined in the precondition and
postcondition of the method are added. If we find
a recursive method call, this internal method call is
supposed to be correct in order to obtain the formal
verification of the recursive calls.

• Conditional blocks: {if (cond) {IfBlock} else {ElseBlock}}
There are two possible paths in a conditional state-
ment depending on the inputs of the condition. The
constraints of a conditional statement include the con-
dition and the inner statements of the selected path(only
one of the two possible paths is executed).

• Loop blocks: {while (cond) {BlockLoop}}
In a loop, the number of cycles depends on the inputs.
Each cycle is transformed into a conditional statement.
The structure of a loop is simulated as a set of nested
conditional statements. If the invariant of the loop
exists, the diagnosis process is more precise.

3.4 Test cases
Testing techniques enables the selection of those observa-
tions which are the most significant for detecting bugs in a
program. A Test case (TC) is a set of inputs (class fields,
parameters or variables), execution preconditions, and ex-
pected outcomes, which are developed for a particular ob-
jective, such as to exercise a particular program path or to
verify compliance with a specific requirement. The values
of a test case must satisfy the DbC specification. In our ap-
proach when a program is executed by using a test case, the
information of the executed basic blocks is stored. This in-
formation is necessary for the diagnosis of the system, since
it contains which are the statements of the executed path.

4. DIAGNOSIS PROBLEM
A diagnosis is a hypothesis for how a program must change
in order to obtain a correct behavior. The definition of diag-
nosis, in Model Based Diagnosis (MDB), is built up from the
notion of abnormal [4]: AB(c) is a boolean variable which
holds when a component c of the system is abnormal. For
example, an adder component is not abnormal if the output
of the adder is the sum of its inputs. A diagnosis specifies
whether each component of a system is abnormal or not. In
order to clarify the diagnosis process, some definitions must
be established.

Definition 3. System model(SM) is a tuple {PC, PD, TC}
where: PC are the program components, that is, the finite
set of statements and asserts of a program; PD is the pro-
gram description, that is, the set of constraints (abstract
model, AM) obtained of the PC, PD = AM(PC); and TC is
a test case.

Definition 4. Diagnosis: Let D ⊆ PC, D is a diagnosis if
PD’ ∪ TC is satisfiable, where PD’ = PD(PC − D).

The goal of diagnosis is to identify, and refine, the set of
diagnoses consistent with the test case.

Definition 5. Minimal Diagnosis is a diagnosis D that for
no proper subset D’ of D is D’ a diagnosis. The minimal
diagnoses imply to modify the smallest number of program
statements or assertions.

The rules described in the section 3 enables implementing
the function AM(Abstract Model) which generates the PD
of a program. Table 1 shows the PD of the toy problem
program, this is derived from the standard toy problem used
in the diagnosis community [4]. The program can not reach
the correct output because the third statement is a adder
instead of a multiplier.

In order to obtain the minimal diagnosis it is generated
a Maximal Constraint Satisfaction Problem (Max-CSP). A
Max-CSP is a CSP with a goal function. The objective is
to find an assignment of the AB variables that satisfies the
maximum number of the PD constraints: Goal Function =
Max(N i : AB(i) = false). A constraints solver will generate
the different solutions of the Max-CSP. The diagnosis pro-
cess by using a Max-CSP is shown previous work [2]. For
example, by using a Max-CSP, the minimal diagnoses in the
toy program will be: {{S3}, {S5}, {S1, S2}, {S2, S4}}.

5. DIAGNOSING PROGRAMS
In order to clarify the methodology the class AccountImp
is used. This class implements the interface Account that
simulates a bank account. It is possible to deposit money
and to withdraw money. Figure 2 shows the source code
and contracts. The method deposit has a bug, in that it
decreases the account balance. In the first phase, assertions
are checked in two different ways: without test cases and
with test cases. In the second phase the source code with
assertions is checked by using test cases.

5.1 Diagnosis of assertions without test cases
Two kinds of checks are proposed at this point: 1) a Max-
CSP with all the invariants of each class, in order to check
if all the invariants of a class can be satisfied together; and
2) a Max-CSP with the assertions of the methods and the
invariants, in order to check if the precondition and post-
condition of a method is feasible with the invariants of a
class. The solutions of these Max-CSP problems enable the
verification of the feasibility of assertions.

5.2 Diagnosis of assertions by using test cases
It is possible to obtain more information about the viabil-
ity of the method assertions by applying test cases to the
sequence {invariants + precondition + postcondition + in-
variants } in each method.

Table 2: Diagnosis of the method Withdraw
Inputs: {balance@pre = 0, withdrawal > 0}

TC Outputs: {balance = 0}
Test code: Method Withdraw

Inv. (AB(Inv) ∨ (balance@pre >= 0))
PD Pre. (AB(Pre) ∨ (withdrawal > 0))

Post. (AB(Post) ∨ (balance =
balance@pre - withdrawal))

Inv. (AB(Inv) ∨ (balance >= 0))

Example. Table 2 shows the PD for the method withdraw
verification. The test case specified that the initial balance
must be 0 units and, when a positive amount is withdrawn,
the balance must preserve the value 0. The balance must be
equal or greater than zero when the method finishes, but if
this invariant is satisfied it implies that the precondition and
the postcondition could not be satisfied together. The post-
condition implies that balance = balance@pre - withdrawal,
that is, 0 − withdrawal > 0, and this is impossible if the
withdrawal is positive. The problem resides in the precon-
dition, since this precondition is not strong enough to stop
the program execution when the withdrawal is not equal or
greater than the balance of the account.

5.3 Diagnosis of source code and assertions
The diagnosis of a program is the set of those statements
which include the errors. We are looking for the minimal
diagnosis, that is, it is necessary, by using a Max-CSP, to
maximize the number of satisfied constraints of the PD. The
constraint obtained by the assertions must be satisfied, be-
cause these constraints give us information about the correct
behaviour. The diagnosis process result depends on the the
final situation of the program:

Situation 1 : If the program ended up with a failed asser-
tion, and did not reach the end as specified in the test case,
the problem can be a strict assertion (the assertion is very
restrictive) or one or more erroneous statements before the
assertion. In order to determine the cause of the problem,
the program should be executed again without the asser-
tion, in order to deduce if the program can finish without
the assertion. If this happens, the assertion is very strict. If
the program does not finish, the problem is due to the code
up to the point of the assertion.

Situation 2 : If the program ends, but the result is not the
one specified by the test case, then the problem can be a
wrong statement, or an assertion which is not sufficiently
restrictive (this enables executing statements which obtain
an incorrect result). If the problem is a wrong statement, the
resolution of the Max-CSP problem provides the minimal
diagnosis that includes the bugs. If the problem is due to
a weak assertion then a deeper study of the assertions is
necessary.

Example. Table 3 shows an account with an initial bal-
ance of 300 units. Two sequential operations are applied: a
withdrawal of capital of 300 units, and a deposit of the same
quantity. The constraint solver determines that the error is
caused by the statement included in the method deposit. If
the method is examined closely, it can be seen that there is

Table 3: Diagnosis of the class AccountImp
Inputs: {balance@pre = 300, withdrawal =

300, income = 300}
TC Outputs: {balance = 300}

Test code: S1: account.withdraw(withdrawal)
S2: account.deposit(income)

Inv. balance0 >= 0
Pre. withdrawal > 0
Code (AB(S1) ∨ (balance1 =

balance0 - withdrawal))
Post. balance1 = balance0 - withdrawal

PD Inv. balance1 >= 0
Inv. balance1 >= 0
Pre. income > 0
Code (AB(S2) ∨ (balance2 =

balance1 - income))
Post. balance2 >= 0
Inv. balance2 >= 0

a subtraction instead of an addition. The postcondition of
this method is too weak, and did not detect this problem.

6. CONCLUSION AND FUTURE WORK
In order to automate the diagnosis of software with con-
tracts, the combination of techniques from different subjects
is proposed, such as Constraint Programming, Model-Based
Diagnosis, and Design by Contract. This paper is an im-
provement of previous work [3], and incorporates a more
precise way to diagnose software since more characteristics
of Design by Contract are incorporated. The methodology
detects if the contracts are consistent, and if there are in-
compatibilities between contracts and source code. A more
complex diagnosis process is being developed in order to
obtain a more precise minimal diagnosis. We are extend-
ing the methodology to include all the characteristics of an
Object-Oriented language, such as inheritance, exceptions
and concurrence.

7. REFERENCES
[1] L. Briand, Y. Labiche, and H. Sun. Investigating the

use of analysis contracts to support fault isolation in
object-oriented code. In International Symposium on
Software Testing and Analysis, Roma, Italy, 2002.

[2] R. Ceballos, C. del Valle, M. T. Gómez-López, and
R. M. Gasca. CSP aplicados a la diagnosis basada en
modelos. Revista Iberoamericana de Inteligencia
Artificial, 20:137–150, 2003.

[3] R. Ceballos, R. M. Gasca, C. D. Valle, and F. D. L.
Rosa. A constraint programming approach for software
diagnosis. In AADEBUG, pages 187–196, Ghent,
Belgium, September 2003.

[4] J. de Kleer, A. Mackworth, and R. Reiter.
Characterizing diagnoses and systems. Artificial
Intelligence, 2-3(56):197–222, 1992.

[5] B. Meyer. Applying design by contract. IEEE
Computer, 25(10):40–51, October 1992.

