

Algorithms for
Propositional Satisfiability Solving

Anbulagan
Anbulagan@nicta.com.au

http://users.rsise.anu.edu.au/~anbu/

Logic and Computation Program, NICTA

CSL, RSISE, Australian National University

Presented at DSL, SITACS, University of Wollongong, 16-17 January 2007

16-17 January 2007 Anbulagan 1

Roadmap

• SAT Resources

• Introduction to SAT
• Real-world problems

• Basic notation and definitions

• Problems in CNF formula

• Phase transition

• Algorithms for SAT solving
• DP and DPLL procedure

• Complete methods: Look-ahead based DPLL and CDCL-based DPLL

• Stochastic methods: GSAT, Random Walk, Clause Weighting SLS

16-17 January 2007 Anbulagan 2

SAT Resources - 1

• Conferences
• Main: SAT

• Others: IJCAI, AAAI, ECAI, PRICAI, CP, IJCAR, CP-AI-OR

• Applications: DAC, ICCAD, ICAPS

• Journals
• Main: JSAT

• Others: AIJ, JAIR, JAR, DAM, Constraint

• Competitions
• Since 2002

• Website: www.satcompetition.org

16-17 January 2007 Anbulagan 3

International SAT Competition

 Annual competition since 2002
 In 2005, there are 9 gold, 9 silver and 9 bronze medals
 More than 50 SAT solvers entered the contest
 1657 problems used: random, crafted and industrial
 2 stages competition: (20 mins in 1st stage, 100 or 200 mins in 2nd stage)
 Announcement at 2005 International Conference SAT Conference, in St.

Andrews, UK, June 21st, 2005.
 No competition in 2006 but there was a SAT-Race for solving only the

industrial problems.

 Next competition starts soon.
 Solver submission deadline is 31 January 2007.

16-17 January 2007 Anbulagan 4

SAT Resources - 2

• Benchmark Data
• www.satlib.org

• More information about SAT
• www.satlive.org

• SAT Solvers
• Most of the solvers can be downloaded from the Internet

• www.satcompetition.org

• Authors website

16-17 January 2007 Anbulagan 5

SAT Resources - 3

• Challenges
• Selman et. al. : IJCAI 1997
• “Ten Challenges in Propositional Reasoning and Search”

• Kautz and Selman : CP 2003
• “Ten Challenges Redux: Recent Progress in Propositional

Reasoning and Search”

16-17 January 2007 Anbulagan 6

Problems - Traffic Management

16-17 January 2007 Anbulagan 7

Problems - Nurses Rostering

Many real world problems can be expressed as a list of constraints.

Answer is assignment to variables that satisfy all the constraints.

Example:

• Scheduling people to work in shifts at a hospital.
– Some people do not work at night.

– No one can work more than H hours a week.

– Some pairs of people cannot be on the same shift.

– Is there assignment of people to shifts that satisfy all constraints?

16-17 January 2007 Anbulagan 8

Problems - Games

Sudoku

N-Queens

1234

3412

2143

4321

Q4

Q3

Q2

Q1

Constraint:
There is no same number in the
same row, column, or region.

Constraint:
In chess, a queen can move
horizontally, vertically, or
diagonally.

16-17 January 2007 Anbulagan 9

Problems - Games

Sudoku

N-Queens

1234

3412

2143

4321

Q4

Q3

Q2

Q1

Constraint:
There is no same number in the
same row, column, or region.

Constraint:
In chess, a queen can move
horizontally, vertically, or
diagonally.

16-17 January 2007 Anbulagan 10

A Simple Problem: Student-Courses

A student would like to decide on which subjects he should
take for the next session. He has the following
requirements:
– He would like to take Math or drop Biology.

– He would like to take Biology or Algorithms.

– He does not want to take Math and Algorithms together.

Which subjects this student can take?

 F = (X ∨ ¬Y)∧(Y ∨ Z)∧(¬X ∨ ¬Z)

16-17 January 2007 Anbulagan 11

Binary Tree of the Student-Courses Problem

There are 2 possible solutions:

– He could take Math and Biology together. (X=T, Y=T, Z= ⊥)

– He could only take Algorithms. (X= ⊥, Y= ⊥, Z=T)

16-17 January 2007 Anbulagan 12

Practical Applications of SAT

• AI Planning and Scheduling

• Bioinformatics

• Bounded Model Checking

• Data Cleaning

• Diagnosis

• Electronic Design Automation and Verification

• FPGA routing

• Knowledge Discovery

• Security: cryptographic key search

• Software Verification

• Theorem Proving

16-17 January 2007 Anbulagan 13

Propositional Logic

x ≡ y, x ∼ yx = yx ⇔ yx iff y

x → y, x ⊃ yx ≤ yx ⇒ yx implies y

x | y, x or yx + yx ∨ yx or y

x & y, x . yxyx ∧ yx and y

−x, ∼xx
_

¬xnot x
T1Ttrue
F0⊥false

OtherBooleanStandardEnglish

16-17 January 2007 Anbulagan 14

Semantics of Boolean Operators

 ⊥

 T

 T

 T

x ∨ y

 T

 T

 ⊥

 T

x ⇒ y

⊥

⊥

T

T

x

 T ⊥ T⊥

 ⊥ ⊥ TT

 ⊥ ⊥ ⊥⊥

 T T ⊥T

x ⇔ yx ∧ y¬x y

N.B.:

x∨y = ¬(¬x∧¬y)
x⇒y = (¬x∨y)
x⇔y = (x⇒y)∧(y⇒x)

16-17 January 2007 Anbulagan 15

Basic Notation & Definitions

A SAT problem consists of

• Formula F: a conjunction of clauses using AND (∧) operator

• A set of Boolean variables {x1 , x2 , ….., xn}

• Literal: xi is a positive literal of variable xi , and ¬xi is its negation

• Clause: a disjunction of literals using OR (∨) operator

• Unit Clause: a clause containing a single literal

• Binary Clause: a clause that contains two literals

• Empty Clause: a clause without any literal

• Pure Literal: a variable appearing only negatively or positively

 F = (x1∨ x2∨ x3)∧(x4∨¬x5)∧(¬x2∨ x4∨ x5)∧(¬x3)

16-17 January 2007 Anbulagan 16

Basic Notation & Definitions

Solution for a given SAT problem

• Satisfiable (SAT):
• There is at least an assignment of values {true, false} to the

variables of the formula where all its clauses are satisfiable.

• Only one model

• Many models: find one quickly or find all

• Unsatisfiable (UNSAT):
• There is no model found

• MAX-SAT: satisfy maximum clauses

Solution of a SAT formula is when a solver can prove whether the formula is
satisfiable (SAT) or unsatisfiable (UNSAT).

16-17 January 2007 Anbulagan 17

SAT Problems - Definition

Input: A formula F in Conjunctive Normal Form (CNF)

Output: F is satisfiable by a consistent assignment of
truth value to variables or F is unsatisfiable.

Example of a CNF formula:
 F = (x1∨ x2∨ x3)∧(x4∨¬x5)∧(¬x2∨ x6∨ x7)

The first NP-Complete problem [Cook, 1971]

16-17 January 2007 Anbulagan 18

SAT Problems - Random Versus Structured

Random Problems: generated using a random problem generator.
 The random SAT formula Fk(n, m)
• Given a set V of n Boolean variables {x1, x2, x3, …, xn}, m clauses of

length k are generated randomly. Each clause is produced by randomly
choosing k variables from V and negating each with probability 0.5.

• Fixed clause lengths formula
• Mitchell et al., 1992

Structured Problems:
• Structures: symmetries, variable dependencies, clustering
• Generated from real-world problems
• Crafted problems

Random+Structured Problems:
• QWH = quasigroup with holes
• bQWH = balanced quasigroup with holes
• Problem generator is available

16-17 January 2007 Anbulagan 19

Simple Random Problem

c 1
p cnf 5 20
 -1 -2 -3 0
 1 -3 -4 0
 -1 -3 5 0
 3 4 -5 0
 -1 2 -5 0
 -2 -3 -5 0
 1 -2 -3 0
 1 -3 4 0
 1 -3 -5 0
 -2 3 -5 0
 2 -4 -5 0
 -1 -2 -4 0
 2 -3 4 0
 -3 -4 -5 0
 -2 4 5 0
 -3 -4 5 0
 -1 3 -5 0
 2 -3 5 0
 1 2 -3 0
 -2 3 5 0

- Random 3-SAT problem with
 5 variables and 20 clauses
- generated using random SAT
 problem generator.

16-17 January 2007 Anbulagan 20

Structured Problem: par8-1-c.cnf

c parXX-Y-c denotes a parity problem on XX bits.
c Y is simply the instance number. c means that the instance has been

simplified
p cnf 64 254
 -2 1 0
 -3 -2 0
 -3 -2 -1 0
 3 2 -1 0
 -3 2 1 0
 3 -2 1 0
 -4 2 0
 -5 -4 0
 -5 -4 -2 0
 5 4 -2 0
 -5 4 2 0
 5 -4 2 0
 …..
 …..

16-17 January 2007 Anbulagan 21

Structured Problem: Bounded Model Checking

c The instance bmc-ibm-6.cnf, IBM, 1997
c 6.6 MB data
p cnf 51639 368352
-1 7 0 i.e. ((not x1) or x7)
-1 6 0 and ((not x1) or x6)
-1 5 0 and … etc
-1 -4 0
-1 3 0
-1 2 0
-1 -8 0
………
10224 -10043 0
10224 -10044 0
10008 10009 10010 10011 10012 10013 10014 10015 10016 10017 10018 10019 10020 10021 10022

10023 10024 10025 10026 10027 10028 10029 10030 10031 10032 10033 10034 10035 10036
10037 10086 10087 10088 10089 10090 10091 10092 10093 10094 10095 10096 10097 10098
10099 10100 10101 10102 10103 10104 10105 10106 10107 10108 10109 10189 -55 -54 -53 52 51
50 10043 10044 -10224 0 // a constraint with 64 literals at line 72054

10083 -10157 0
10083 -10227 0
10083 -10228 0
10157 10227 10228 -10083 0

16-17 January 2007 Anbulagan 22

Structured Problem: Bounded Model Checking

At the end of the file

7 -260 0
1072 1070 0
-15 -14 -13 -12 -11 -10 0
-15 -14 -13 -12 -11 10 0
-15 -14 -13 -12 11 -10 0
-15 -14 -13 -12 11 10 0
-7 -6 -5 -4 -3 -2 0
-7 -6 -5 -4 -3 2 0
-7 -6 -5 -4 3 -2 0
-7 -6 -5 -4 3 2 0
185 0

Note that: 251639 is a very big number !!!

 2100 = 1,267,650,000,000,000,000,000,000,000,000

Dew_Satz SAT solver (Anbulagan, 2005) solves this instance in 36 seconds.

16-17 January 2007 Anbulagan 23

Phase Transition in Random Problems

• Also called threshold phenomenon
• A phenomenon in which satisfiability problems suddenly change from

easy (100% SAT) to hard (100% UNSAT) as abruptly as water
freezing into ice.

• r1=0; r2=1; r3≅4.258;
• r = ratio number of clauses to number of variables (clause density).
• rα = critical value for formula with fixed clause lengths α.
• The critical value divides the space of SAT formulas into 3 regions,

such as:
• Under-constraint region: almost all the formulas are satisfiable and easy

to solve.
• Hard-constraint region: the region of 50% satisfiable formulas and hard

to solve.
• Over-constraint region: almost all the formulas are unsatisfiable and

easy to solve.

16-17 January 2007 Anbulagan 24

Phase Transition: n=60:20:160

16-17 January 2007 Anbulagan 25

Phase Transition and Difficulty Level: n=200

16-17 January 2007 Anbulagan 26

How to Solve the Problems

Complete method: guarantee to obtain a solution
Based on DPLL procedure [Davis et. al., 1962]

Enhanced by look-ahead: Satz, Dew_Satz, kcnfs, march_dl, …
Enhanched by CDCL: GRASP, RELSAT, Chaff, zChaff, MiniSat, Siege,

Berkmin, Jerusat, Tinisat, …

Stochastic method: no guarantee to obtain a solution
Stochastic Local Search:

Random Walk: WalkSAT, AdaptNovelty+, g2wsat, R+AdaptNovelty+, …
Clause Weighting: SAPS, PAWS, DDFW, R+DDFW+

Evolutionary algorithms
Neural networks
etc…

Hybrid approach

16-17 January 2007 Anbulagan 27

Complete Method: Davis Putnam Procedure

• The original procedure (DP) used a resolution rule, leading to
potentially exponential use of space. [Davis & Putnam, 1960]

• Davis, Logemann and Loveland replaced the resolution rule
with a splitting rule. The new procedure is know as the DPLL
or DPL procedure. [Davis et al., 1962]

• Despite its age, still one of the most popular and successful
complete methods. Basic framework for many modern SAT
solvers.

• Exponential time is still a problem.

16-17 January 2007 Anbulagan 28

DP Procedure

Procedure DP(F)
for I = 1 to NumberofVariableIn(F)

choose variable x ∈ VAR(F)
Resolvants = Ø
forall (C1,C2) such that

C1 ∈ F, C2 ∈ F, x ∈ C1, ¬x ∈ C2
Resolvants = Resolvants ∪ resolve(C1,C2)
// don’t generate tautological resolvants.

Cx = {C: C ∈ F and x ∈ C}
F = F - Cx

 F = F ∪ Resolvants
// x is not in any clause in Resolvants. So now x is not in F.

if F = Ø return UNSATISFIABLE
else return SATISFIABLE

16-17 January 2007 Anbulagan 29

Resolution for SAT example

(x1∨x2∨x3)∧(x2∨¬x3∨¬x6)∧(¬x2∨x5)
 ⇓

 (x1∨x3∨x5)∧(¬x3∨¬x6∨x5)
 ⇓

 (x1∨x5∨¬x6)

⇒ SAT

16-17 January 2007 Anbulagan 30

Resolution for UNSAT example

(x1∨x2)∧(x1∨¬x2)∧(¬x1∨x2)∧(¬x1∨¬x2)
 ⇓

 (x2)∧(x2∨¬x2)∧(¬x2∨x2)∧(¬x2)
 ⇓
 Ø

⇒ UNSAT

16-17 January 2007 Anbulagan 31

Resolution for UNSAT example

(x1∨x2)∧(x1∨¬x2)∧(¬x1∨x3)∧(¬x1∨¬x3)
 ⇓

 (x1)∧(¬x1∨x3)∧(¬x1∨¬x3)
 ⇓
 (x3)∧(¬x3)

 ⇓
 Ø

⇒ UNSAT

16-17 January 2007 Anbulagan 32

DPLL Procedure

Procedure DPLL(F)
(Sat) if F = Ø then “SAT”
(Empty) if F contains the empty clause then“UNSAT”
(Unit Pr) if F has unit clause {u}, then DPLL(F {u/true})
(Pure) if F has pure literal p, then DPLL(F {p/true})
(Split) if DPLL(F {l/true}) is satisfiable then “SAT”

 else DPLL(F {l/false})

Unit Propagation (UP) is also called Boolean Constraint
Propagation (BCP). It is used to detect unit clauses and
conflict clauses.

16-17 January 2007 Anbulagan 33

DPLL: Basic Notation & Definitions

• Branching variable: a variable that can have 2 sub-branches

• Free variable: a variable without any value

• Contradiction / dead-end / conflict: an empty clause is found

• Backtracking: An algorithmic technique to find solutions by
trying one of several choices. If the choice proves incorrect,
computation backtracks or restarts at the point of choice and
tries another choice.

16-17 January 2007 Anbulagan 34

Search Tree of DPLL Procedure

• Binary Search Tree

• Large search tree size ⇔
 Hard problem

• The hardness of a random
 SAT problem is independent
 from the SAT Solver used.

• Depth first search with
 backtracking

16-17 January 2007 Anbulagan 35

DPLL Tree of Student-Courses Problem

16-17 January 2007 Anbulagan 36

DPLL Performance: Original vs. Variants

• The worst case complexity of the algorithm in our experience is O(2n/21.83-1.70),
based on UNSAT problems.

• This is an improvement!… Notice that for example,

2100 = 1,267,650,000,000,000,000,000,000,000,000

for n=100 #nodes

DPLL (1962): O(2n/5) = 1,048,576

Satz (1997): O(2n/20.63+0.44) = 39

Satz215 (1999): O(2n/21.04-1.01) = 13

Kcnfs (2003): O(2n/21.10-1.35) = 10

Opt_Satz (2003): O(2n/21.83-1.70) = 7

• look-ahead-enhanced DPLL based SAT solver can reliably solve problems
with up to 700 variables.

16-17 January 2007 Anbulagan 37

Heuristics for DPLL Procedure

Objective: to reduce search tree size by choosing a best
branching variable at each node of the search tree.

Central issue:
 How to select the next best branching variable?

16-17 January 2007 Anbulagan 38

Branching Heuristics in DPLL Procedure

• Simple
• use simple heuristics for branching variable selection
• Based on a literal or a variable occurrences counting

• Sophisticated
• use sophisticated heuristics for branching variable selection.
• Need more resources and efforts.

16-17 January 2007 Anbulagan 39

Simple Branching Heuristics

• MOMS (Maximum Occurrences in Minimum Sized clauses) heuristics: pick the
literal that occurs most often in the minimum size clauses.
– Maximum binary occurrences
– too simplistic
– CSAT [Dubois et. al, 1993]

• Jeroslow-Wang’s heuristics [Jeroslow & Wang, 1990; Hooker & Vinay, 1995]:
estimate the contribution of each literal l to satisfying the clause set and pick
the best

score(l) = ∑ 2-|c|

 c∈F & l∈c

 for each clause c the literal l appears in 2-|c| is added where |c| is
the number of literals in c.

16-17 January 2007 Anbulagan 40

Sophisticated Branching Heuristics

• Look-ahead-based DPLL

• Unit Propagation Look-Ahead(UPLA) heuristics
• Satz [Li & Anbulagan, 1997]

• Backbone Search heuristics
• kcnfs [Dequen, 2003]

• Dynamic Variable Filtering(DVF) heuristics
• ssc34 and ssc355 [Anbulagan, 2004]

• LAS+NVO

• LAS+NVO+DEW heuristics
• Dew_Satz [Anbulagan & Slaney, 2005]

16-17 January 2007 Anbulagan 41

Satz - Complete SAT Solver

• No physical modification on variables and clauses

• An efficient backtracking management

• Count the number of clauses at each node

• Using UPLA Heuristic for detecting contradictions earlier.

• Resolvents resolution as pre-processing (3-Resolution)

• Open for the integration of new ideas

16-17 January 2007 Anbulagan 42

UPLA Heuristics

• UPLA = Unit Propagation Look-Ahead

• Goal: to find the best branching variable by performing UPLA.

• UPLA was one of the main improvements to the DPLL
procedure, after more than 3 decades.

• Paper: “Heuristics based on Unit Propagation for Satisfiability
Problems” [Li and Anbulagan, IJCAI-1997].

16-17 January 2007 Anbulagan 43

Predicate PROP in UPLA of Satz

Let PROP be a binary predicate such that PROP(x,i) is true
iff x is a variable that occurs both positively and
negatively in binary clauses and occurs in at least i
binary clauses in F, and let T be an integer, then
PROPz(x) is defined to be the first of the three predicates
PROP(x,4), PROP(x,3), true (in this order) whose
denotational semantics contains more than T variables.

T is fixed to 10 in Satz.

16-17 January 2007 Anbulagan 44

UPLA-based Branching Variable Selection

16-17 January 2007 Anbulagan 45

LAS+NVO Heuristics
• LAS = look-ahead Saturation
• NVO = Neighbourhood Variables

Ordering
• The idea of integrating LAS: do UPLA

process until the sub-formulae at each
node becomes non-reducible. Then
execute MOMS heuristic to choose a
best branching variable.

• Result: Success in finding a best
branching variable at each node and
reduce significantly the number of
branching nodes.

• The idea of integrating NVO: attempt
to limit the number of free variables
examined by exploring next only the
neighbourhood variables of the
current assigned variable.

16-17 January 2007 Anbulagan 46

Empirical Results on Security problem (cnf-r3*)

 Runtime (seconds) Search tree size (nodes)

ssc355ssc34satz215ssc355ssc34satz215#Cls# VarsProbs.

2.713.37 624 0 0 2095435963939040b4-k1.2

2.413.00 348 0 0 1179035817414752b4-k1.1

1.642.25 600 0 0 3827927503676896b3-k1.2

1.511.89 448 0 0 3164726778283680b3-k1.1

1.091.19 1254 0 0 18157617960414752b2-k1.2

0.881.05 792 0 0 12806117857152608b2-k1.1

 53174>360015003002 N/A 8891152608b1-k1.2

124 71 2966355112652008485 8966 21536b1-k1.1

ssc34 uses LAS, while ssc355 uses LAS+NVO

16-17 January 2007 Anbulagan 47

Empirical Results on Random 3-SAT Problem

Mean search tree size of
each DPLL procedure as a
function of nb. of
variables for hard random
3-SAT problems at ratio
4.25 (1000 problems are
solved at each point)

16-17 January 2007 Anbulagan 48

Empirical Results on Random 3-SAT Problem

Mean search tree size of
each DPLL procedure as a
function of number of
variables for hard random
unsatisfiable 3-SAT
problems at ratio 4.25

16-17 January 2007 Anbulagan 49

Empirical Results on Random 3-SAT Problem

• On hard random 3-SAT problems with 350 variables (300
problems are solved), mean search tree size of:
• Satz215: 36156 branching nodes
• kcnfs: 24669 branching nodes
• ssc34: 15507 branching nodes
• ssc355: 13675 branching nodes

• Search tree size of ssc355 is 164% and 80% smaller,
respectively than those for Satz215 and kcnfs.

16-17 January 2007 Anbulagan 50

More Reasoning & Less Searching

• Problem : v350c1488g255 (unsatisfiable)

Branch. Nodes Runtime (s)
 ssc355 65,784 189
 kcnfs 93,655 40
 Satz215 123,735 61
 OKsolver 275,159 438
 MiniSat 25,456,254 1660
 Siege n/a > 9000
 zChaff n/a > 9000
 Tinisat n/a > 9000

• Number of Branching Nodes versus Runtime
• More reasoning at each node increases the runtime cost.

16-17 January 2007 Anbulagan 51

LA+Backbone Variable Detection Heuristics

• Backbone variable is a variable which is assigned
the same value for all solutions to the SAT/CSP
problems.

• Such variables are also called frozen variables.

• Detection of backbone variables during LA process.

• The cnfs and kcnfs solvers implemented a pseudo-
backbone variables detection heuristic.

16-17 January 2007 Anbulagan 52

Backbone Variable: an example

(x1∨¬x2)∧
(x1∨¬x3)∧
(¬x1∨x7)∧
(¬x1∨x8)∧
(x4∨¬x7∨¬x8)∧
(¬x4∨x5∨x6) ∧
(x4∨x2∨x3)

Find the backbone variable(s)!

16-17 January 2007 Anbulagan 53

Backbone Variable: an example

(x1∨¬x2)∧
(x1∨¬x3)∧
(¬x1∨x7)∧
(¬x1∨x8)∧
(x4∨¬x7∨¬x8)∧
(¬x4∨x5∨x6) ∧
(x4∨x2∨x3)

Find the backbone variable(s)!

The answer is x4

16-17 January 2007 Anbulagan 54

Comparison Results

16-17 January 2007 Anbulagan 55

LAS+NVO+DEW Heuristics

The basic idea of integrating DEW (dynamic
equivalency weighting):

 Whenever the binary equivalency clause
(xi ⇔xj), which is equivalent to 2 CNF
clauses (¬xi ∨ xj) and (xi ∨ ¬xj), occurs
in the formula at a node, Satz needs to
perform look-ahead on xi, ¬xi, xj, and ¬xj.

As result, variables xi and xj will be associated
the same weight.

Clearly, the look-aheads on xj and ¬xj are
redundant, so we avoid them by assigning
the implied literal xj (¬xj’s) the weight of its
parent literal xi (¬xi’s), and then by
avoiding look-ahead on literals with weight
zero.

By doing so, we save two look-aheads.

16-17 January 2007 Anbulagan 56

EqSatz

• Based on Satz
• Enhanced with equivalency reasoning during search process.
• Substitute the equivalent literals during the search in order to

reduce the number of active variables in the current formula.
• Example: given the clause (xi ⇔xj), we can substitute xj by xi.

16-17 January 2007 Anbulagan 57

Equivalency: Reasoning vs. Weighting

On 32-bit Parity Learning problem

The first solver which solved all the instances.

16-17 January 2007 Anbulagan 58

Equivalency: Reasoning vs. Weighting

On BMC and circuit-related problems

16-17 January 2007 Anbulagan 59

Results on Hard Random k-SAT Problems

16-17 January 2007 Anbulagan 60

PSatz

• Parallelization for reduce the problem solving time

• Using dynamic load balancing mechanism based on the
work stealing techniques.

• Significant improvement.

• Paper by [Jurkowiak, Li and Utard, 2005]

16-17 January 2007 Anbulagan 61

MaxSatz

• MAX-SAT is an optimisation variant of SAT

• For over-constraint problems

• MAX-SAT is a special case of weighted MAX-SAT where
all clauses have weight one.

• The goal: to find a variable assignment that satisfies a
maximal number of clauses of a given CNF formula.

• Paper by [Li, Manya and Planes, 2006]

16-17 January 2007 Anbulagan 62

Algorithms for SAT Solving

CDCL-based DPLL

16-17 January 2007 Anbulagan 63

Backjumping

• Idea: when a branch fails,
• Reveal the sub-assignment causing the contradiction

(conflict set)
• Backtrack to the most recent branching point in the

conflict set

• A conflict set is constructed from the conflict clause by
tracking backwards the unit-implications causing it and by
keeping the branching literals.

• When a branching point fails, a conflict set is obtained by
resolving the two conflict sets of the two branches.

• May avoid a lot of redundant search.

16-17 January 2007 Anbulagan 64

Backjumping: an example

(¬x1∨x2)∧
(¬x1∨x3 ∨x9)∧
(¬x2∨¬x3∨x4)∧
(¬x4∨x5∨x1 0)∧
(¬x4∨x6∨x1 1)∧
(¬x5∨¬x6)∧
(x1∨x7∨¬x1 2)∧
(x1∨x8)∧
(¬x7∨¬x8∨¬x1 3) ∧

…..

16-17 January 2007 Anbulagan 65

Backjumping: an example

(¬x1∨x2)∧
(¬x1∨x3 ∨x9)∧
(¬x2∨¬x3∨x4)∧
(¬x4∨x5∨x1 0)∧
(¬x4∨x6∨x1 1)∧
(¬x5∨¬x6)∧
(x1∨x7∨¬x1 2)∧
(x1∨x8)∧
(¬x7∨¬x8∨¬x1 3) ∧
…..
{…,¬x9 ,¬x1 0 ,¬x1 1 ,x1 2 ,x1 3 , …} (initial assignment)

16-17 January 2007 Anbulagan 66

Backjumping: an example

(¬x1∨x2)∧
(¬x1∨x3 ∨x9)∧
(¬x2∨¬x3∨x4)∧
(¬x4∨x5∨x1 0)∧
(¬x4∨x6∨x1 1)∧
(¬x5∨¬x6)∧
(x1∨x7∨¬x1 2)∧ removed
(x1∨x8)∧ removed
(¬x7∨¬x8∨¬x1 3) ∧
…..
{…,¬x9 ,¬x1 0 ,¬x1 1 ,x1 2 ,x1 3 , …, x1 } (branch on x1)
(unit x2 ,x3)

16-17 January 2007 Anbulagan 67

Backjumping: an example

(¬x1∨x2)∧ removed
(¬x1∨x3 ∨x9)∧ removed
(¬x2∨¬x3∨x4)∧
(¬x4∨x5∨x1 0)∧
(¬x4∨x6∨x1 1)∧
(¬x5∨¬x6)∧
(x1∨x7∨¬x1 2)∧ removed
(x1∨x8)∧ removed
(¬x7∨¬x8∨¬x1 3) ∧
…..
{…,¬x9 ,¬x1 0 ,¬x1 1 ,x1 2 ,x1 3 , …, x1 ,x2 ,x3 }
(unit x4)

16-17 January 2007 Anbulagan 68

Backjumping: an example

(¬x1∨x2)∧ removed
(¬x1∨x3 ∨x9)∧ removed
(¬x2∨¬x3∨x4)∧ removed
(¬x4∨x5∨x1 0)∧
(¬x4∨x6∨x1 1)∧
(¬x5∨¬x6)∧
(x1∨x7∨¬x1 2)∧ removed
(x1∨x8)∧ removed
(¬x7∨¬x8∨¬x1 3) ∧
…..
{…,¬x9 ,¬x1 0 ,¬x1 1 ,x1 2 ,x1 3 , …, x1 ,x2 ,x3 ,x4 }
(unit x5 ,x6)

16-17 January 2007 Anbulagan 69

Backjumping: an example

(¬x1∨x2)∧ removed
(¬x1∨x3 ∨x9)∧ removed
(¬x2∨¬x3∨x4)∧ removed
(¬x4∨x5∨x1 0)∧ removed
(¬x4∨x6∨x1 1)∧ removed
(¬x5∨¬x6)∧ conflict
(x1∨x7∨¬x1 2)∧ removed
(x1∨x8)∧ removed
(¬x7∨¬x8∨¬x1 3) ∧
…..
{…,¬x9 ,¬x1 0 ,¬x1 1 ,x1 2 ,x1 3 , …, x1 ,x2 ,x3 ,x4 ,x5 ,x6 }

Conflict set: {¬x9 ,¬x1 0 ,¬x1 1 ,x1 } ⇒ backtrack to x1

16-17 January 2007 Anbulagan 70

Backjumping: an example

(¬x1∨x2)∧ removed
(¬x1∨x3 ∨x9)∧ removed
(¬x2∨¬x3∨x4)∧
(¬x4∨x5∨x1 0)∧
(¬x4∨x6∨x1 1)∧
(¬x5∨¬x6)∧
(x1∨x7∨¬x1 2)∧
(x1∨x8)∧
(¬x7∨¬x8∨¬x1 3) ∧
…..
{…,¬x9 ,¬x1 0 ,¬x1 1 ,x1 2 ,x1 3 , …, ¬x1 } (branch on ¬x1)
(unit x7 ,x8)

16-17 January 2007 Anbulagan 71

Backjumping: an example

(¬x1∨x2)∧ removed
(¬x1∨x3 ∨x9)∧ removed
(¬x2∨¬x3∨x4)∧
(¬x4∨x5∨x1 0)∧
(¬x4∨x6∨x1 1)∧
(¬x5∨¬x6)∧
(x1∨x7∨¬x1 2)∧ removed
(x1∨x8)∧ removed
(¬x7∨¬x8∨¬x1 3) ∧ conflict
…..
{…,¬x9 ,¬x1 0 ,¬x1 1 ,x1 2 ,x1 3 , …, ¬x1 ,x7 ,x8 }

Conflict set: {x1 2 ,x1 3 ,¬x1 }

16-17 January 2007 Anbulagan 72

Backjumping: an example

(¬x1∨x2)∧ removed
(¬x1∨x3 ∨x9)∧ removed
(¬x2∨¬x3∨x4)∧
(¬x4∨x5∨x1 0)∧
(¬x4∨x6∨x1 1)∧
(¬x5∨¬x6)∧
(x1∨x7∨¬x1 2)∧ removed
(x1∨x8)∧ removed
(¬x7∨¬x8∨¬x1 3) ∧ conflict

Conflict set: {x1 2 ,x1 3 ,¬x1 } ∨ {¬x9 ,¬x1 0 ,¬x1 1 ,x1 }
⇒ {¬x9 ,¬x1 0 ,¬x1 1 ,x1 2 ,x1 3 } ⇒ backtrack to x1 3

16-17 January 2007 Anbulagan 73

Look-Ahead vs. Look-Back

16-17 January 2007 Anbulagan 74

Learning

• Idea: when a conflict set C is revealed, then ¬C can be
added to the clause set
• DPLL will never again generate an assignment containing C.

• May avoid a lot of redundant search.

• Problem: may cause a blow up in space
• Techniques to control learning and to drop learned clauses

when necessary.

• Learning is very effective in pruning the search space for
structured problems.

16-17 January 2007 Anbulagan 75

Learning: an example

(¬x1∨x2)∧ removed
(¬x1∨x3 ∨x9)∧ removed
(¬x2∨¬x3∨x4)∧ removed
(¬x4∨x5∨x1 0)∧ removed
(¬x4∨x6∨x1 1)∧ removed
(¬x5∨¬x6)∧ conflict
(x1∨x7∨¬x1 2)∧ removed
(x1∨x8)∧ removed
(¬x7∨¬x8∨¬x1 3) ∧
…..
(x9∨x1 0∨x1 1∨¬x1) learned clause

Conflict set: {¬x9 ,¬x1 0 ,¬x1 1 ,x1 }
Learn: (x9∨x1 0∨x1 1∨¬x1)

16-17 January 2007 Anbulagan 76

Pseudocode of MiniSat

16-17 January 2007 Anbulagan 77

Decision Heuristic in CDCL-based Solvers

• VSIDS = Variable State Independent Decaying Sum
• It keeps a score for each phase of a variable. Initially, the scores are the

number of occurrences of a literal in the initial formula. VSIDS increases
the score of a variable by a constant whenever an added clause contains
the variable. Moreover, as the search progresses, periodically all scores
are divided by a constant number.VSIDS will choose a free variable with
the highest score to branch.

• Used in zChaff
• An improved version is used in MiniSat where variable activities are

decayed 5% after each conflict.

• VMTF = Variable Move To Front
• The initial order of the list is sorted by the occurrence of the variables in

the formula. Every time a new clause is learnt and then added to the
database, a constant number of the variables from the clause are moved
to the front of the list. The list is resorted according to the occurrence of
variables in clauses database every time that the restart occurs.

• Used in Siege

16-17 January 2007 Anbulagan 78

Restart Policy in CDCL-based Solvers

• Abandon the current search space and restart a new one after
exceeding certain conditions, such as number of backtracks.

• Increase the backtrack cutoff value by a constant amount to
allow solving unsatisfiable formula.

• The clauses learned prior to the restart are considered in the
new search. They will help to prune the search space.

• The effect of restarts on the efficiency of clause learning
[Huang, 2007]

16-17 January 2007 Anbulagan 79

Watched Literals Mechanism

• For efficient unit propagation and backtrack processes

• Using 2-literal watching in each clause

• The Quest for Efficient Boolean Satisfiability Solver
[Zhang and Malik, 2002]

16-17 January 2007 Anbulagan 80

Results of SAT-Race 2006

16-17 January 2007 Anbulagan 81

Stochastic Methods: motivation

• DPLL can reliably solve hard random problems with up
to 700 variables.

• … but problems commonly arising in practice often
need 100000s - millions of variables.

• We might need “anytime answers” which can provide
a “best guess” at any point we stop the algorithm.

• SLS Algorithms:
• GSAT
• Random Walk: WalkSAT, AdaptNovelty+, g2wsat
• Clause Weighting: SAPS, PAWS, DDFW, DDFW+

• Other approach: SP (Survey Propagation)

16-17 January 2007 Anbulagan 82

Local Optima and Global Optimum in SLS

global optimum

local optima

solution space

ob
je

ct
iv

e
fu

nc
tio

n
va

lu
e

16-17 January 2007 Anbulagan 83

Flipping Coins: The “Greedy” Algorithm

• This algorithm is due to Koutsopias and Papadimitriou

• Main idea: flip variables till you can no longer increase the
number of satisfied clauses.

 Procedure greedy(F)
 T = random (F) // random assignment

 repeat until no improvement possible
 T = T with variable flipped that increases

 the number of satisfied clauses
 end

16-17 January 2007 Anbulagan 84

The GSAT Procedure

• This algorithm is due to Selman, Levesque and Mitchell
• Adds restarts to the simple “greedy” algorithm, and also allows

sideways flips.

 Procedure GSAT(F, MAX_TRIES, MAX_FLIPS)
for i=1 to MAX_TRIES // these are the restarts

 T = random(F) // random assignment
 for j=1 to MAX_FLIPS // to ensure termination

 if T satisfies F then return T
 Flip any variable in T that results in greatest increase

 in number of satisfied clauses
 // it does not matter if the number does not increase.
 // This are the sideways flips

 end
end
return “No satisfying assignment found”

End GSAT

16-17 January 2007 Anbulagan 85

The WALKSAT Procedure

• The procedure is due to Selman, Kautz and Cohen

Procedure WalkSAT(F, MAX_TRIES, MAX_FLIPS, VSH)
for i=1 to MAX_TRIES // these are the restarts

 T = random(F) // random assignment
 for j=1 to MAX_FLIPS // to ensure termination

 if T satisfies F then return T.
 choose unsatisfied clause C ∈ F at random.

 choose a variable x ∈ C according to VSH.
 T = T with variable x flipped.

 end
end
return “No satisfying assignment found”

End WalkSAT

16-17 January 2007 Anbulagan 86

AdaptNovelty+

• WalkSAT variants depend on the setting of their noise
parameter.

• Noise parameter: to control the degree of greediness in the
variable selection process. It takes value between zero and one.

• AdaptNovelty+ is for adaptively tuning the noise level based on
the detection of stagnation.

16-17 January 2007 Anbulagan 87

Dynamic Local Search: The basic idea

• Use clause weighting mechanism
• Increase weights on unsatisfied clauses in local minima in

such a way that further improvement steps become possible

• Adjust weights periodically when no further improvement steps
are available in the local neighborhood

16-17 January 2007 Anbulagan 88

Dynamic Local Search: A brief history

• Breakout Method [Morris, 1993]
• Weighted GSAT [Selman and Kautz, 1993]
• Learning short-term clause weights for GSAT [Frank, 1997]
• Discrete Lagrangian Method (DLM) [Wah and Shang, 1997]
• Smoothed Descent and Flood [Schuurmans and Southey, 2000]
• Scaling and Probabilistic Smoothing (SAPS) [Hutter, Tompkins,

and Hoos, 2002]
• Pure Additive Weighting Scheme (PAWS) [Thornton et al., 2004]
• Divide and Distribute Fixed Weight (DDFW) [Ishtaiwi et al., 2005]
• Adaptive DDFW (DDFW+) [Ishtaiwi et al., 2006]

16-17 January 2007 Anbulagan 89

DDFW+

• Adaptive DDFW

• No parameter tuning

• Dynamically alters the total amount of weight that DDFW
distributes according to the degree of stagnation in the
search.

• The weight initialization value is set at 2 and could be
altered during the search between 2 and 3.

• R+DDFW+ is the current best SLS solver for solving
random and structured problems

16-17 January 2007 Anbulagan 90

DDFW+

Search for improving flips
(Repeat until MaxFlips or Sol. Found)

If Found flip
YesDistribute Weights

For all clauses
Winit = 2

No

If Flips > Literals

Reset Weights
WSAT = 2
WUNSAT = 3

No Yes

Taken from Abdul Sattar’s presentation slide at CP’06

16-17 January 2007 Anbulagan 91

R+DDFW+

Search for improving flips
(Repeat until MaxFlips or Sol. Found)

If Found flip
YesDistribute Weights

For all clauses
Winit = 2

No

If Flips > Literals

Reset Weights
WSAT = 2
WUNSAT = 3

No Yes

3-Resolution

Taken from Abdul Sattar’s presentation slide at CP’06

16-17 January 2007 Anbulagan 92

Comparison Results of SLS on Random Problems

16-17 January 2007 Anbulagan 93

Comparison Results of SLS on Ferry Planning Problems

16-17 January 2007 Anbulagan 94

Old Resolution meets Modern SLS

 Adding restricted resolution as a preprocessor

 See [Anbulagan et al., 2005]

(x1 ∨ x2 ∨ x3)∧

(¬x1 ∨ x2 ∨ x4) =

(x2 ∨ x3 ∨ ¬x4)

16-17 January 2007 Anbulagan 95

From 2005 International SAT Competition

R+AdaptNovelty+ won the Gold Medal.

Joint work with IIIS-Griffith University

Solves 209 of 285 random SAT problems.

The 2nd and 3rd place are g2wsat (178) and
VW (170).

The 2004 winner, AdaptNovelty+ could only
solve 119 problems

16-17 January 2007 Anbulagan 96

Boosting SLS using Resolution

 Old resolution meets modern SLS
 [Anbulagan et al., AAAI-2005]

 Limited by using only the 3-Resolution preprocessor.

16-17 January 2007 Anbulagan 97

Resolution-based Preprocessors

 3-Resolution [Li and Anbulagan, CP-1997]: computes resolvents for
all pairs of clauses of length ≤ 3

 2-SIMPLIFY [Brafman, IJCAI-2001]: constructs an implication graph
from all binary clauses of a problem instance and uses a restricted
variant of hyper-resolution.

 HyPre [Bacchus and Winter, SAT-2003]: reasons with binary
clauses and do full hyper-resolution.

 NiVER [Subbarayan and Pradhan, SAT-2004]: Non increasing
Variable Elimination Resolution.

 SatELite [Eén and Biere, SAT-2005]: improved NiVER with a
variable elimination by substitution rule.

16-17 January 2007 Anbulagan 98

Problems

 Hard random 3-SAT (3sat), 10 instances, SAT2005

 Quasigroup existence (qg), 10 instances, SATLIB

 10 Real-world domains
 All interval series (ais), 6 instances, SATLIB

 BMC-IBM (bmc), 3 instances, SATLIB

 BW planning (bw), 4 instances, SATLIB

 Job-shop scheduling e*ddr* (edd), 6 instances, SATLIB

 Ferry planning (fer), 5 instances, SAT2005

 Logistics planning (log), 4 instances, SATLIB

 Parity learning par16* (par), 5 instances, SATLIB

 “single stuck-at” (ssa), 4 instances, SATLIB

 Cryptographic problem (vmpc), 5 instances, SAT2005

 Models generated from Alloy (vpn), 2 instances, SAT2005

 Problem instance size
 The smallest (ais6) contains 61 variables and 581 clauses

 The largest (vpn-1962) contains 267,766 variables and 1,002,957 clauses

16-17 January 2007 Anbulagan 99

The Impact of Preprocessor

Variables Reduction

16-17 January 2007 Anbulagan 100

The Impact of Preprocessor

Clauses Reduction

16-17 January 2007 Anbulagan 101

The Impact of Preprocessor

Literals Reduction

16-17 January 2007 Anbulagan 102

The Impact of Preprocessor

Preprocessing Time

16-17 January 2007 Anbulagan 103

SLS Solvers

 Random-Walk:
 AdaptNovelty+ [Hoos, AAAI-2002]: enhancing Novelty+ with adaptive

noise mechanism.

 g2wsat [Li and Huang, SAT-2005]: deterministically picks the best
promising decreasing variable to flip.

 Clause Weighting:
 PAWS10 : PAWS [Thornton et al., AAAI-2004] with smooth parameter

fixed to 10

 RSAPS: reactive version of SAPS [Hutter et al., CP-2002]

16-17 January 2007 Anbulagan 104

Empirical Study

 12 classes of problems: random, quasigroup, real-world
 64 problem instances

 5 resolution-based preprocessors

 4 SLS solvers: random walk vs. clause weighting

 The total of 153,600 runs
 100 runs for each instance

 128,000 runs on preprocessed instances

 25,600 runs on original instances

 Time limit for each run is 1200 seconds for random, ferry, and
cryptographic problems and 600 seconds for the other ones.

 On Linux Pentium IV computer with 3.00GHz CPU and 1GB RAM

16-17 January 2007 Anbulagan 105

Empirical Results

16-17 January 2007 Anbulagan 106

RTDs on Structured Problems

16-17 January 2007 Anbulagan 107

Multiple Preprocessing and Preprocessor Ordering

16-17 January 2007 Anbulagan 108

Boosting DPLL using Resolution-based
Preprocessing

16-17 January 2007 Anbulagan 109

Empirical Results on Parity and Planning

4540.023,9495.190.541532/24524/50463Niv+Hyp+2Sim+3Res
1,2780.0600.080.431793/21099/433693Res+2Sim+Niv

4190.0410.280.691299/69894/149728Sat+2Sim
1,5650.05n/a>150000.051945/27992/570492Sim

9090.03n/a>150000.441299/28246/66432Sat
00.01n/a>150000.021544/28578/58619Niv

5630.04n/a>150000.291915/40743/82551Hyp
8270.03n/a>150000.131955/28976/590173Res
7100.03n/a>15000n/a1977/29041/59135Origferry10_ks99a

n/a>1500018,230,74612,8620.26848/5154/18565Sat+2Sim
n/a>150007,744,9863,5630.38849/5333/19052Sat+3Res
n/a>150007,744,9863,5520.35850/5286/189583Res+Sat
n/a>1500025,092,75614,0030.101290/5297/154813Res+Niv
n/a>1500010,036,1546,0990.341333/5810/16503Niv+3Res
n/a>1500010,036,1465,7410.111331/5567/160263Res+Hyp
n/a>1500017,712,9979,0010.361331/6055/16999Hyp+3Res
n/a>1500018,230,74612,8200.21849/5160/18581Sat
n/a>1500010,036,15410,4250.082385/7433/197623Res
n/a>15000n/a>15000n/a3176/10313/27645Origpar32-4

#ConflictStime#BackTStime
MiniSatDew_SatzPtime#Var/#Cls/#LitsPrep.Instance

16-17 January 2007 Anbulagan 110

Empirical Results on BMC

1330.10106.3713110457/71128/229499Sat+2Sim
10.0618.8413012404/77805/249192Sat+3Res
10.0624.4813012356/75709/246367Sat+Niv

1090.1027.825669091/61789/203593Sat+Hyp
10.0676.9412912408/76025/247622Sat

5026.64n/a>15000n/a663443/3065529/7845396OrigBMC-alpha-25449

1,9370.7661068612001/100114/253071Niv+Hyp+3Res
6,2192.37n/a>150004.5015176/109121/364968Sat

10,2436.77n/a>150002.7732606/160555/4193413Res
8,7024.46n/a>150000.6927813/168440/476976Niv
1,5130.74n/a>150009212205/87082/228241Hyp

11,8878.41n/a>15000n/a39598/194778/515536OrigBMC-IBM-12
#ConflictStime#BackTStime

MiniSatDew_SatzPtime#Var/#Cls/#LitsPrep.Instance

561,529804n/a>150005217470/129245/375444Sat+2Sim
510,705571n/a>150005316837/98726/305057Sat+2Sim+3Res

618,853946n/a>150004823657/117795/380389Sat+3Res
1,294,5902,137n/a>150004922983/108603/351369Sat+Niv
4,916,9818,753n/a>150005613235/88976/263053Sat+Hyp

820,0431,266n/a>150004723657/112343/364874Sat
587,7555,409n/a>15000n/a1080015/3054591/7395935OrigBMC-alpha-4408

16-17 January 2007 Anbulagan 111

Empirical Results on FPGA Routing

bart (21 SAT)

14

8

#Solved

109,771,200

1,536,966

#BackT

homer (15 UNSAT) 143,719,16622,1832,66215

119,782,4667,2031821

#ConflictStimeStime#Solved

MiniSatDew_SatzInstance

13,8311.00300,6058220.541723/9420/30986Sha+Sat
13,5430.91349,8423790.291941/10276/29671Sha+Niv

n/a>15,000200.050.411764/8349/26138Sha+Hyp
7,676,4592,45810.040.461764/7702/24400Sha+3Res

6,6120.40120,2971140.311879/9419/26188Sha+2Sim

13,9271.101,451,5671,3060.341905/10527/29129Sha+Hyp
18,2731.41405,0593620.371907/8793/25027Sha+3Res
22,9501.83350,6103690.281999/10340/29988Sha

57,302,58211,4486,982,4251,4430.08400/4180/15200Sat
n/a>15,00019,958,400941n/a440/4220/8800Orighomer-20

150,83819.12170.050.391750/7892/24682Sha+2Sim
684,27211500.100.531728/8254/30422Sha+Sat
53,6835.4660.050.381781/8358/26759Sha+Niv

775,63919890.060.371825/8407/27003Sha
n/a>15,00000.020.06413/2892/11469Sat
n/a>15,00000n/a428/2907/7929Origbart-28

#ConflictStime#BackTStime

MiniSatDew_SatzPtime#Var/#Cls/#LitsPrep.Instance

16-17 January 2007 Anbulagan 112

Multiple Preprocessing and Preprocessor Ordering

#BackT

290,8711290.291486/18956/394292Sim+Niv+ 2Sim+Niv

6,066,2413,1970.271518/18988/394332Sim+Niv+2Sim

8,216,1007,3550.481486/23258/480332Sim+Niv+ 2Sim+Niv+2Sim

n/a>15,0000.081518/27554/565652Sim+Nivferry10_ks99a

3,94950.541532/24524/50463Niv+Hyp+2Sim+3Res
1,172,9649070.561793/20597/423653Res+2Sim+Niv+Hyp

17,778,48311,3450.491532/25229/51873Niv+3Res+2Sim+Hyp

n/a>15,0000.431518/32206/658062Sim+Niv+Hyp+3Resferry10_ks99a

n/a>15,00058.3811107/99673/2694053Res+Niv+Hyp

n/a>15,00089.5610038/82632/2218903Res+Hyp+Niv

610685.8112001/100114/253071Niv+Hyp+3Res

n/a>15,00096.1110805/83643/204679Hyp+3Res+NivBMC-IBM-12

StimePtime#Var/#Cls/#LitsPrep.Instance

Using Dew_Satz

16-17 January 2007 Anbulagan 113

Preprocessing + DPLL

16-17 January 2007 Anbulagan 114

Conclusion: on SAT Algorithms

 Complete method
 LA-based DPLL

 CDCL-based DPLL

 Incomplete method (SLS)
 Random Walk

 DLS (clause weighting SLS)

 Resolution+SLS

 Resolution + SLS

16-17 January 2007 Anbulagan 115

Conclusion: on Complete SAT Algorithms

3 classes of SAT solvers in terms of their capability for solving
problems:

• High performance on random problems
• Kcnfs
• Based on look-ahead

• High performance on most of structured problems
• zChaff, Jerusat, Berkmin, Siege, MiniSat, Tinisat, etc…
• Based on CDCL

• Good performance on random & high performance on some
classes of structured problems
• Satz, Dew_Satz, march_dl, etc…
• Based on look-ahead

16-17 January 2007 Anbulagan 116

Conclusion: SAT Algorithms Performance Comparison

Incomplete SAT solversComplete SAT solvers Algo

Prob

better than
RW on 70%

better than
CW on
30%

better than
DPLL on
70%

better than
CDCL on
30%

structured
real-world

10000 vars
with 0% sr
(RSAPS)

10000 vars
with 68% sr
(g2wsat)

10 - 40
times
slower than
DPLL

Can reach
700 vars

random

Clause
Weighting

Random
Walk

CDCLDPLL

R+DDFW+ is the current best SLS solver for both random and realistic problems

16-17 January 2007 Anbulagan 117

 Questions……….

