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Overview

• Interfaces
Technical view of interfaces

• Development
Development with interfaces

• Practice
Worked examples

Interfaces between components in software, whether at the function API level or 
executable component level, define and constrain the possible relationships within the 
software and the behaviour of its parts. This talk takes a broad view of development 
based on defining and understanding software interfaces, focusing on concepts and 
practices appropriate for C, C++, Java, CORBA and COM development.
It is often the case that developers slap an interface onto an implementation as an 
afterthought. Such an approach stems from the view that an interface does not 
actually "do anything", and therefore procedural code is more significant both in 
terms of its effect and bulk. Hence less effort is invested by developers in writing the 
interface.
Although an interface indeed requires much less code to express it than an associated 
implementation, this is perhaps inversely proportional to its relative significance. The 
interface is the point of agreement between a component supplier and consumer, and 
should therefore be well considered, complete, comprehensible and stable. Such a 
state of affairs cannot be reached through casual coding. Bugs in an implementation 
may be irritating, but they are failures of a component to satisfy an interface, and they 
can be fixed without adversely impacting clients. Modifications to poorly designed 
interfaces, however, will break clients that have been written against (and worked 
around) them; such changes will be seen as causing problems rather than fixing them.



Interfaces
Interfaces are about psychological chunking.

David Ungar

Object orientation offers us a convenient, if somewhat oversimplified, view of what 
an interface is, in the sense that it is the publicly accessible set of features on an 
object. Component-based development – in the sense of COM, CORBA, JavaBeans, 
etc – goes further, explicitly formalising the concept as a class-like construct that 
bridges to a more rigorously black box definition of implementation than OO 
languages offer.
However, the term interface is heavily overloaded, and the metaphor it represents is in 
many places throughout software: graphical user interface, device interface, function 
interface, class interface, etc. In some ways the current trend towards component-
based development (CBD) has hijacked the term, restricting it to mean only a 
platform independent construct associated with a deployable unit of code.
More generally an interface represents a boundary between two elements, and 
describes the interaction across it. The focus here is on interfaces between parts of a 
program as opposed to many of the other uses of the term interface.
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Boundaries

• Architecture captures the arrangement of 
structural elements in a system

From its gross structure to its detail
• Interfaces represent partitions

and introduce separations
Intent from realisation
Conceptual from concrete
User from author

It is possible to home in on a definition of software architecture by framing the 
questions that must be asked of it [Dyson1998]:

An architecture is something that answers the following three questions:
1. What are the structural elements of the system, what are their roles, and how 

do we share responsibility between them?
2. What is the nature of communication between these elements?
3. What is the overriding style or philosophy that guides the answers to these 

two questions?
Architecture is recursive and in-depth, so it is not just about the big blocks: takes in 
the structure and style from imposing load bearing pillars and elegant sweeping 
arches to the architraves and door handles. In this sense it mirrors development (or 
vice-versa), which must be concerned with production and process at all levels of 
detail.
Architecture may be considered the result of a conscious design process, or simply a 
post hoc description of a system configuration. Thus, in spite of its etymology 
(architect is derived from the ancient Greek for chief builder), architecture can be 
accidental rather than intentional.
In establishing a structure, boundaries are defined and there is a separation of inside 
from outside. This boundary is an interface, and the metaphor extends to software 
with a separation of executable constructs on either side of a software interface.
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Partitioning

• Quality and qualities of separation
Coupling describes interconnectedness
Cohesion describes intraconnectedness

• Separation introduces connections
A structure of components and connectors

In managing complexity, partitioning a system allows work to be understood, 
managed, and executed, and offers a scalability and security greater than a single 
individual's mind at a point in time (i.e. gives a project a higher truck number, as 
observed by Don Olson and Neil Harrison [Rising1998]).
Such a partitioning should be controlled rather than arbitrary, and guided by well 
understood principles. This is where interfaces as elements of design become 
significant; they form durable technical and political boundaries. They describe the 
nature of interaction, i.e. of the connection, between different components in a 
system. Coupling and cohesion are properties that can be observed of any 
partitioning.
Note that the definition of component used in the context of Component-Based 
Development (CBD) [Szyperski1998] is a specialisation of the more general term 
used here. CBD uses the term more strictly to mean identifiable, executable unit of 
deployment, i.e. COM, CORBA and the Java technologies.
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Protocols

• Connection implies communication
• Interfaces name and express usage models

Play a role in communicating meaning within a 
system as well as encapsulating its parts
Conformance to a published interface
implies particular behaviour

However, an interface does not simply set up static barriers in a system. Interfaces are 
permeable, allowing flow of concepts – information and behaviour – across the 
boundary. They establish and name models of usage. They represent the protocol used 
to connect components together.
With any flow there is possibility of leakage, and this is true of interfaces. Interfaces 
offer a separation of checkable usage from implementation, often with the intent of 
encapsulating the implementation. However, unless care is taken, details of the 
implementation can seep (or gush) through the interface, whether as pointers to 
private state or usage that is clearly coupled to the otherwise private representation.
Interface communicate meaning in a system and therefore they should be clear and 
expressive. A counterexample of expressiveness is the constructor for Java's 
FileWriter class which requires a boolean to indicate whether or not a file 
should be opened for appending. The use of such flags is inexpressive. A more 
appropriate interface would be to offer named class Factory Methods [Gamma+1995] 
openForAppending and openForWriting.
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Mechanisms

• Common approach to defining interfaces is 
to focus on a class's public operations

• Focusing on the interface alone leads to 
further decoupling

Using interface in Java or IDL
Using interface classes in
C++, with only public pure
virtual functions are defined

The conventional notion is that an interface is the public section of a class. This is 
what clients of its instances depend on, and in effect all they can call. Inheritance 
introduces the idea of accumulation of interface, typically in step with accumulation 
of implementation.
If the client wishes to depend on interface alone rather than implementation detail, 
some form of interface decoupling is needed. If they specifically require runtime 
polymorphism, reduced compile time dependencies, and dynamically allocated 
objects, this is provided directly in COM and CORBA; alternative mechanisms are 
not available. In Java an interface can be defined explicitly. In C++ an interface 
class [Carroll+1995] can express the common capability of derived classes, i.e. a class 
to represent the contract and many derived classes to fulfil it and express the 
implementation detail. This class has no data and the only ordinary member functions 
are declared public and pure virtual. If it is used as a mix-in class – albeit a 
mix-in that provides protocol only – virtual inheritance should be considered to 
avoid repeated inheritance issues.
Where an interface class represents the usage type, or some aspect of the usage, of an 
object, the concrete class instantiated for the interface user represents a creation type
[Barton+1994]. This distinction can be made clearer, and the dependencies reduced in 
a system, by enforcing such a model of use: the interface class is used only for 
manipulation and the only time the name of the concrete class appears is at the point 
of creation, i.e. in a new expression, which may itself be encapsulated within a 
factory object.
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Beyond Class

Scoping and packaging

Operator overloading

Template generic requirements

Function-based APIs

Non-public class operations

Markers and external frameworks

Interfaces are more than a concept based 
only on public operations of a class...

Software interfaces go much further than class interfaces. In C an interface is 
considered to be the type and functions deployed in a header file. In IDLs the 
definition of interface seems self explanatory, but must also take into account file 
partitioning. Java has explicit interfaces as well as classes, which have their own 
public, package and familial interfaces. For C++, the Interface Principle [Sutter2000] 
defines a class as a slightly more extended family :

For a class X, all function, including free functions, that both (a) "mention" X, and 
(b) are "supplied with" X are logically part of X, because they form part of the 
interface of X.

This takes into account Koenig Lookup which give namespaces stronger semantic 
connotations than simply a name collision avoidance mechanism. The fact that class 
interfaces extend outside the interface is further reinforced by styles statements made 
in [Stroustrup1997] and [Meyers2000].
In Java the existence of reflection provides again a different view of interfaces and 
conformance. The common use of marker interfaces, such as Remote and 
Serializable, demonstrates again how class behaviour can exist outside the class 
definition. The same is true in any framework, but it is the distinction is made in sharp 
relief with marker interfaces because they are empty, tagging a type for a capability. 
It is the helper classes in the framework that provide the full capability based on 
inspection of the type.
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Design by Contract

• An interface defines an agreement between 
a component supplier and its users

Goes further than simply defining signatures to 
include guarantees on behaviour

Interface 
Contract

consumer

supplier

contract

Component 
Client

Component 
Implementation

«interface»
Component 

Interface

Type systems provide part of the story when it comes to establishing interface usage, 
but at best they can provide no more than compile time confidence in the structure; in 
many systems there is plenty left to hit the fan at runtime if interface usage is well 
formed but otherwise incorrect. A contractual view establishes further limits on an 
interface by defining the legal requirements on the behaviour of operations.
Most methods concern themselves with only the functional requirements of a system, 
i.e. what the system must do. Such requirements offer a high degree of traceability 
through the lifecycle. However, it is often the case that there are a number of non-
functional requirements that are as important to a system, i.e. how a system does what 
it does. Such requirements include quality of service, failure strategies, use of specific 
technologies, etc.  These can be harder to quantify and test for in a design, but are 
nonetheless often of great importance. For instance, the non-functional behaviour of a 
distributed system cannot merely be dismissed as an implementation detail. In C++'s 
standard library many generic functions have complexity constraints placed upon 
them.
Where quality of service requirements are significant, these must clearly be a part of 
the contract. However, they are difficult to explicitly capture in code, as non-
functional concerns tend to cut across the component nature of a system. As with 
other forms of contractual requirement, quality of service provided can exceed, but 
not fall short of, the quality of service required.
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Substitutability

• A measure of goodness of fit between 
interface and implementation

Interfaces offer uniform treatment of 
similarities between implementations
Conformance to interfaces by implementations

Express coordinate ideas in similar form
This principle, that of parallel construction, requires that expressions similar 
in context and function be outwardly similar. The likeness of form enables the 
reader to recognise more readily the likeness of content and function.

Strunk and White [Strunk+1979]

The Liskov Substitution Principle (LSP) [Liskov1987, Coplien1992] is often cited as 
giving more detailed guidance on the use of inheritance. It make a clear separation 
between type – an interface described in terms of the behaviour of operations – and 
class – the realisation of the behaviour in programmatic detail – before establishing 
the criteria for a subtyping relationships in terms of conformant behaviour:

A type hierarchy is composed of subtypes and supertypes. The intuitive idea of a 
subtype is one whose objects provide all the behavior of objects of another type 
(the supertype) plus something extra. What is wanted here is something like the 
following substitution property: If for each object o1 of type S there is an object o2
of type T such that for all programs P defined in terms of T, the behavior of P is 
unchanged when o1 is substituted for o2, then S is a subtype of T.

LSP is normally presented as an inheritance guideline, but taking a step back we can 
see that it need not be so narrow: It is a relationship about types and not 
implementations, i.e. subtyping and not subclassing. LSP relies on polymorphism; the 
concept of structural relationship, such as conventional inheritance, need not enter 
into it. Deserving of its name, polymorphism manifests itself in many forms 
[Cardelli+1985].
In C++, substitutability can be found through conversions, overloading, derivation, 
mutability and generics; Java does not have quite the same reach with conversions, 
overloading or generics, but supports reflection, offering a different substitutability 
mechanism in turn.
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Choice

• An interface should represent reasonable 
goals and present reasonable choices

• Additional options and features can lead to 
confusion rather than clarity

Overachieving interfaces are
weaker and more complex
not stronger and simpler

The belief that "less is more" seems to be heeded more in the breach than in the 
observance. It seems a common enough piece of advice from which we can learn and 
shape our software [Strunk+1979]:

[Rule] 17. Omit needless words
Vigorous writing is concise. A sentence should contain no unnecessary words, a 
paragraph no unnecessary sentences, for the same reason that a drawing should 
have no unnecessary lines and a machine no unnecessary parts. This requires not 
that the writer make all his sentences short, or that he avoid all detail and treat his 
subjects only in outline, but that every word tell.
Many expressions in common use violate this principle.

Consistency in interfaces is important in meeting expectation and presenting 
reasonable choices; C++'s basic_string and vector functions at and 
operator[] break this principle. They differ in their bounds checking: at does, 
and throws an exception if necessary, and operator[] does not. To use anything 
other than the intuitive and idiomatic subscript operator takes a conscious effort, one 
that must in this case be accompanied by a willingness to not write correct code –
"I'm using this because I have chosen to write code that will go out of bounds"!
A misguided quest for completeness often leads to unmanageable kitchen sink 
interfaces that lack focus, e.g. C++'s basic_string template class. Design for 
"flexibility" without goals leads to complex interfaces that perpetuate the goal-less 
design decisions, e.g. C++'s allocator model.



Development
To achieve simplicity paradoxically 
requires an enormous amount of effort.

John Pawson [Pawson1996]

In establishing the partitions that create a structure we can take a more useful view 
than simply stating that the design must satisfy the user requirements ([Petroski1992] 
quoting The Structural Engineer, the official journal of the British Institution of 
Structural Engineers):

Structural engineering is the science and art of designing and making, with 
economy and elegance, buildings, bridges, frameworks, and other similar 
structures so that they can safely resist the forces to which they may be subjected.

This provides a useful starting point from which to view development of software 
systems. In software, the principles and practices of development sometimes seem to 
be as flexible as the medium of software itself... and sometimes just as rigid.
Whilst design should not be an end in itself, it is something that will assist in any 
construction, large or small [Strunk+1979].

[Reminder] 3. Work from a suitable design
Before beginning to compose something, gauge the nature and extent of the 
enterprise and work from a suitable design. Design informs even the simplest 
structure, whether of brick and steel or of prose. You raise a pup tent from one sort 
of vision, a cathedral from another. This does not mean that you must sit with a 
blueprint always in front of you, merely that you had best anticipate what you are 
getting into.
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Design

• Design is a creational and intentional act
Conception and construction of a structure on 
purpose for a purpose

• Interfaces provide a connection between the 
conceptual and the concrete

Design is synthesis as opposed to analysis. In truth, much of what is considered to be 
analysis in software development is design, and a separation of implementation from 
design (or vice-versa) is also a false division [Lea1998]:

Sometimes, describing software is the same as constructing it.
Design embraces a more profound endeavour than simply elaborating a simple model 
of the problem into a complex one, and then coding (Winograd and Flores quoted in 
[Lea1998]):

The most successful designs are not those that try to fully model the domain in 
which they operate, but those that are "in alignment" with the fundamental 
structure of that domain, and that allow for modification and evolution to generate 
new structural coupling.

Such a structural view is intertwined with a process [Coplien1999]:
Design is the activity of aligning the structure of the application analysis with the 
available structures of the solution domain.

Thus, where architecture is a description of system structure, regardless of intention 
(i.e. all systems have architecture, whether deliberate or not), design describes an 
intentional activity. The word intentional has two meanings, both of which relate to 
the view of design presented here: performed by or expressing intention, i.e. 
deliberate; of or relating to intention or purpose.
Design has many foci, including dealing with conceptual interfaces in a problem, 
describing the relationships between conceptual parts, and actual interfaces in a 
solution, delimiting the constructed parts.
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Models

• A model is an abstraction from a point of 
view for a purpose

But don't confuse the map with the territory
• Interfaces embody purpose and usage

The designer and the user each
have conceptual models
Modelarity is degree of
alignment between
different views

Just as we can view a model as a bridge between the problem and solution domains 
[Jackson1995], we can have separate models of the problem domain from models of 
the solution. [Norman1989] further differentiates the relationship between the 
solution domain and the user's interaction with it:

The design model is the designer's conceptual model. The user's model is the 
mental model developed through interaction with the system. The system image
results from the physical structure that has been built (including documentation, 
instructions, and labels). The designer expects the user's model to be identical to 
the design model. But the designer doesn't talk directly with the user – all 
communication takes place through the system image. If the system image does not 
make the design model clear and consistent, then the user will end up with the 
wrong mental model.

If a model gives you an understanding of the problem, try to put as much of that 
understanding into the solution as possible. Don't go all programmatic! For example, 
property style programming (typified by getters and setters) devalues the meaning of 
a system; it becomes weakly defined rather than generally defined. There can be a 
tendency to design interfaces that have just enough encapsulation [Box+1999], 
leading to structification of objects [Taligent1994]. As an unquestioned habit it leads 
to such ridiculous methods as setSpouse on a Person object and setBalance on an 
Account object, which ignore the vocabulary, behaviour and constraints of the 
original domain to no good effect.
Modelarity can be considered a measure of the correspondence between different 
views, e.g. problem and solution, designer and user. At the same time, one must not 
mistake the map for the territory.
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Constraints

• Constraints bound the meaningful 
behaviour of a system

Intended degrees of freedom
• Constraints can be liberating

Ensuring what's true is true and
what's not is not frees rather than
binds a developer

Design should observe and preserve constraints. A system that weakens them has the 
illusion of being more flexible, but in truth is simply vaguer and less committed, 
opening up more gaps in which bugs can breed.
A simple example of constraint preservation is the use of const in C++ to clearly 
indicate to compiler and human alike something plays the role of a query function or 
query only data. The preservation of such a constraint makes the system richer. In 
Java a more inductive approach based on naming conventions, e.g. the JavaBeans 
get* convention, immutable value objects, and final are used to achieve a similar 
effect.
For another example, let us say that it has been established that a relationship between 
two objects is mandatory, i.e. one-to-one, then implementation in Java using an object 
reference or in C++ using a pointer allows the possibility of a null, i.e. one-to-zero-or-
one. It is the responsibility of the developer to ensure that nulls are recognised as 
meaningless and handled appropriately, rather than to assume correct usage of a 
cluster of classes. Also, where does such a relationship come from? If it can never be 
null, this means a valid object cannot be created without being given a non-null 
relationship at creation. This effect manifests itself in Java and C++ in the 
constructors provided. If this cannot be achieved, is the constraint in the problem 
domain correct? Or must it be loosened and enforced another way in the software?
One temptation in C++ is to attempt to use references to enforce non-nullness. 
However, these convey a very different meaning to C++ programmers – and indeed 
C++ compilers – and so more is lost than is gained by such an approach.
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Affordances

• An interface affords particular usage
An interface represents intended use, but it does 
not necessarily mean it will be used that way

• Constraints and affordances
should match up

The intended and actual degrees
of freedom should be similar
Minimise the possibility of
incorrect use

Affordances describe possible as opposed to intended usage [Norman1989]:
The term affordance refers to the perceived and actual properties of the thing, 
primarily those fundamental properties that determine just how the thing could 
possibly be used. A chair affords ("is for") support and, therefore, affords sitting. A 
chair can also be carried. Glass is for seeing through, and for breaking.... 
Affordances provide strong clues to the operations of things. Plates are for 
pushing. Knobs are for turning. Slots are for inserting things into. Balls are for 
throwing or bouncing. When affordances are taken advantage of, the user knows 
what to do just by looking: no picture, label, or instruction is required. Complex 
things may require explanation, but simple things should not. When simple things 
need pictures, labels, or instructions, the design has failed.

In essence, where possible, constraints should be communicated through affordances 
and affordances should align with constraints. Any mismatch creates an opportunity 
for misunderstanding and misuse.
For instance, a sign of weakness in a class interface design is that its users are 
required to remember lots of particular and subtle conditions of use: "function a must 
be called before function b, unless condition c is true, in which case function d
followed by e, etc". Such interfaces suggest that the design is incomplete because the 
user of the class is doing most of the work that should be captured by a good design. 
Their code is repetitive; writing it is error prone. The problem of intermediate states 
and subtle sequential dependencies is a common problem in interface design.
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Legislation and Litigation

• Contracts can be expressed formally
Using preconditions and postconditions to 
define boundaries of correct behaviour

• Contracts can be expressed by example
A more empirical approach, often based on 
specification by example
and unit tests

The signature level of an interface can be captured in many languages, but the full 
semantics of the contract are less clear. Pre and postconditions offer one way of 
reasoning about abstract behaviour [Meyer1997]:

• A precondition defines the conditions that must be met by the caller requesting 
an operation. For instance, the permitted ranges of arguments, the required state 
of the object, etc. If these conditions are not met, the operation cannot be 
expected to perform its task correctly.

• A postcondition defines the conditions that must be met by an operation 
assuming that the precondition has been met; it is the supplier's half of 
obligations in the contract.

They establish a theory of correct behaviour of a system. The enforcement can range 
from a fully robust, supplier checked approach based on exceptions to nothing. 
assert is sometimes used in such cases, but suffers from such frequent misuse that 
its use should often be questioned. Documentation can be used to express contracts 
before the fact; after the fact, if no other enforcement is provided, violations lead to 
undefined behaviour (i.e. debugging).
An alternative perspective is to specify by correct usage, so that the interface's 
behaviour is expressed and checked through unit tests and sample code. This more 
empirical and inductive approach underpins iterative development strategies 
[Beck+1998, Beck2000, Fowler1999, Gamma+1999].
In effect these represent the two ends of the spectrum, with many developments – that 
make a choice – lying somewhere between the hardline theoretical and the empirical 
specification-by-example approaches.
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Dependencies

• Partition to minimise dependencies
Low coupling and high cohesion

• Coupling and cohesion are relative rather 
than absolute measures

Decoupling is with
respect to what?

One of the features that typifies any architecture driven approach is the management 
of dependencies in a design [Lakos1996]. Dependencies should be managed 
throughout the runtime, design time and construction time of a system. Coupling and 
cohesion define, respectively, inter-connectedness and intra-connectedness of 
components and their interfaces. It is these quantities that must be managed if an 
architecture is to be stable and resilient in the face of change, supporting natural 
growth and evolution, as well as out of the box fitness for purpose and buildability. 
Interfaces may be established with respect to levels of abstraction, rate of change, 
development skills, or organisational structure.
On the whole a designer should strive to minimise dependencies between elements of 
a system. This should not be at the cost of making elements uncohesive. They should 
be as loosely coupled as is meaningful, and this will lead to a more supple component 
structure. In turn this should lead to a more maintainable and stable system. Where 
something is stable it can be depended upon without concern.
A subtle, but nonetheless problematic, form of coupling comes in the form of cyclic 
dependencies, where one component depends, directly or indirectly, on the contents 
of another which in turn depends, directly or indirectly, on the first component.
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Stability

• Dependencies should be on more stable 
elements with the same rate of change

Put things together that change together
• Interfaces should be more stable

than their implementations
Either because of good design or
because of fear of change

One mark of success is how an architecture endures, how it responds to change, how 
it suggests change, how it is accepted by developers, and so on. Thus an architecture 
may also measured against change and the passage of time [Brand1994 , Dai+1999]. 
It is therefore tempting to program only in the future tense, adding complexity by 
building for possibilities that may never happen, but it is also tempting to program 
only in the here and now, ignoring the possibility of and processes for change, and 
therefore being surprised and unprepared when change occurs. Thus we can see an 
additional quality in an architecture [Coplien1999]:

A good architecture encapsulates change.
In addition to managing physical dependencies to minimise the effect of change, 
architects must also be aware of what can and cannot change easily: interfaces that 
are private to a component can be more volatile than those that are public, and 
therefore part of more durable (and accountable) contracts. This can be considered a 
distinction between public and published interfaces [Fowler1999]. [Martin1995] 
outlines a metric that can be used to gauge the relationship between abstractness and 
dependency, based on the principle that the more abstract something the more stable 
it should or must be, i.e. program to interface not an implementation [Gamma+1995].
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People and Technology

• Partitioning is not simply about abstraction
Additional forces create partitions with respect 
to organisational and technical boundaries

• Interfaces have social and economic effects
Interfaces define development roles
Complexity management is
dependent on stakeholders
and investment

Carolyn Morris defines a framework, in the most general sense, as "a skeleton on 
which a model of work is built", and this is no more true than it is in software. In 
addition to the conventional idea of a code framework as a half finished application, 
we can have conceptual frameworks. For the developer an architecture is such a 
framework. It partitions the system both with respect to its code structure but also 
with respect to responsibilities for developers. This has implications for organisations 
when it is realised that an organisation also defines a model for communication. This 
leads to patterns such as Conway's Law [Coplien1995] where organisation follows 
architecture and vice-versa.
Therefore interfaces in a system will determine to a great degree how it is built, and in 
terms of how developers organise around the tasks of development and each other. 
This dynamic aspect extends beyond the initial idealism of green field development to 
influence how a system responds and adapts over its lifetime. Regardless of whether 
or not the architecture is explicitly articulated, it will affect how effectively 
developers can modify a system, how easily such change can be managed, and how 
long a system will live before outgrowing either its utility or its worth.
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Context Sensitivity

• Solution structure is sensitive to details of 
purpose and context

Problem and solution feed forward and back
• Context free design is meaningless

No universal or independent
model of design
Context can challenge and
invalidate assumptions

Design is not simply a feed forward process where an analysis is fed, a handle turned, 
and a suitable implementation spat out. There are those who maintain such a view, 
but close inspection of what they define as analysis reveals it to be synthesis: 
construction detail and compromises relevant only to the solution and not an 
understanding of the problem. The belief that a problem has a solution is also at the 
root of this misconception; this is not school, and there are typically many solutions to 
any given problem. The developer participates in a complex set of decisions and is 
not merely a cog in the works or a hands-off analyst.
The degree to which a language or technology specifically supports certain 
mechanisms will have an impact not only on the way that programmers will think 
about a problem, but also on the way that a system should be designed. The 
realisation that there is a two way flow between architecture and implementation is in 
many ways not surprising, but is at odds with purist schools of thought that maintain a 
system may be fully designed in the abstract, independently of its deployment 
technology and engineering model.
On the compromise of design, David Pye is quoted in [Petroski1992]:

It follows that all designs for use are arbitrary. The designer or his client has to 
choose in what degree and where there shall be failure. Thus the shape of all 
design things is the product of arbitrary choice. If you vary the terms of your 
compromise—say, more speed, more heat, less safety, more discomfort, lower first 
cost—then you vary the shape of the thing designed. It is quite impossible for any 
design to be 'the logical outcome of the requirements' simply because, the 
requirements being in conflict, their logical outcome is an impossibility.
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Re-entrancy

• Event notification from a component object 
to its clients handled through callbacks

Client may then call in to component object

servantclient
register callback

callback on event
call in

Sequencing 
and validity of 
intermediate 
states is not 
easily captured 
with pre- and 
postcondition 
contract model

How are events propagated out through an interface to interested parties? The 
callback model allows clients to register an interest in specific – or all – events. 
Typically inward calling interfaces in event driven environments are associated with 
one or more outward interfaces. The Observer pattern [Gamma+1995] details the 
basic callback form for one to many dependencies; Model/View/Controller 
[Buschmann+1996] represents a more strategic pattern built on these principles.
The common contract model, based on pre and postconditions, works well for 
conventional call-return procedural control flow. Limitations are, however, revealed 
when describing asynchronous callback architectures [Szyperski1998].
Where the flow of control is downward and explicit, pre and postconditions can be 
asserted about discrete and coherent states of an object. Where callbacks occur from a 
component to a client in response to an event within the component, it is typically the 
case that the client will then query or manipulate the component during the callback 
(the pull model of notification). It is possible that intermediate states in the 
component may be revealed (the converse is also true of the caller if a callback occurs 
during registration).
Sometimes a simpler and more visible approach is to capture the constraints through 
dynamic rather than static models. Sequence and state models are better used to 
bound correct behaviour in the presence of callbacks by defining legal sequences of 
actions. This can be seen, to some degree, to represent a conflict between static and 
dynamic models of a system. An alternative view accommodates re-entrancy, and 
also validity in concurrent execution contexts, by extension of the basic pre and 
postcondition contract model. Operation invariants, in the form of guarantee and rely
conditions [D'Souza+1999], make assertions about the intermediate states of an 
operation, thereby guaranteeing the conditions under which a callback may occur and 
on what it may depend.
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Concurrency as a Context

• Synchronisation is required to ensure 
consistent and coherent state

• Property-style programming is inappropriate
E.g. MIDL properties, OMG IDL attributes, set
and get operation pairs, etc.

servantclient 1 client 2

Property style programming, whether through the use of attributes (e.g. OMG IDL's 
attribute) or simple operations relating to attribute-like values (e.g. paired get
and set operations) often leads to sequences of operations which assume that an object 
remains in the state the caller last left it. Without explicit locking this cannot be 
guaranteed, and the absence of some kind of synchronisation might lead to surprising 
behaviour.
Note that attempting to generalise concurrent programming practices from sequential 
programming is the wrong way: sequential programming is a limited case of 
concurrent programming, and not vice-versa. This means that techniques such 
command/query separation and programming by contract [Meyer1997] do not 
automatically translate as is into a new context.
[Mannion1999] attempts to argue that in Java class clients should use 
synchronized explicitly in their code, i.e. it is not the class supplier's 
responsibility to resolve concurrency issues, it is the class user's. Whilst such 
devolution certainly leads to more complex and more error prone client code, with 
notable loss of transparency and some efficiency, the crunch comes when it is realised 
that it is not simply a matter of style preference to reject universal use of this 
approach: there are common cases when it simply does not work.
Enforcing the separation works in simple cases where object communication is direct 
(i.e. the reference used to communicate with an object is actually a reference to that 
object) and reliable (e.g. not distributed); in the presence of proxies [Gamma+1995], 
such as used in RMI, the use of synchronized blocks fails: the synchronisation is 
on the proxy object and not the target object.
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Distribution as a Context

• Concurrency is implicit
• Operation invocations are no longer trivial

Communication can dominate computation
Partial failure is almost inevitable

servantclient

Cost of communication

Concurrency and distribution introduce design contexts unfamiliar to many 
developers, and ones fraught with subtleties. If the consequences of decoupled 
execution are not fully appreciated (i.e. the developer must genuinely grok them 
rather than pay lip service to them), the subtle design context becomes a subtle 
debugging context.
Operation invocations are assumed, in most designs, to be instantaneous and reliable. 
In a distributed system the process of delivering invocations across a network requires 
extensive middleware support, meaning that the connection domain [Jackson1995] 
can dominate the behaviour of the system.
In addition to all of the issues raised with concurrency, there is additional cost 
involved in remote operation calls. When sketched out on a sequence diagram, 
sequences of property gets and sets suffer the 'sawtooth' effect, spending more time in 
communication than they do in performing useful work. The ratio of communication 
to computation is a key consideration in distributed computing.
The scope for failure is even greater in a distributed system than in a local concurrent 
system. Consider a failure during a sequence of queries of a server object by a client: 
the client is left with an incoherent and partial view of a server object if an invocation 
fails during a sequence of queries; likewise, and perhaps more damaging, is the event 
of failure during a sequence of modifications which may leave a server object in an 
incoherent state.
All of these issues extend the issues raised by concurrency. For large and complex 
operation sequences involving the use of many objects, a transaction processor (e.g. 
OMG's OTS, Java's JTS, Microsoft's MTS) is appropriate; for small common 
operations on a single object, a TP is overkill.
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Idioms

• Idioms are language, language model, or 
technology specific patterns

Common conventions of style and usage
Dependency on or originating from specific 
features of a technology

Idioms are what the locals speak. In this case techniques applied by the users in a 
programming language culture and common execution contexts. They help to 
stabilise language usage and create a common vocabulary of techniques, constraining 
the potentially infinite possibilities of a language grammar and semantics. One of the 
classic works on idioms is James Coplien's book on advanced C++ [Coplien1992]. 
More recently Kent Beck documented many Smalltalk patterns [Beck1997]. Idioms 
can be considered low level patterns, being indigenous to a particular language, 
language paradigm (e.g. procedural as opposed to functional), or technology (e.g. 
distribution).
Some idioms, such as those for procedural control flow, can be transferred easily 
across languages. Others depend on features of a language model and are simply 
inapplicable when translated: strong and statically checked type system (e.g. C++ and 
Java) versus a looser, dynamically checked one (e.g. Smalltalk and Lisp); reference 
counting mechanisms for C++ are made inappropriate in Java and Smalltalk by the 
presence of automatic garbage collection.
Sometimes idioms need to be imported from one language to another, breaking a 
language culture out of a local minima. Idiom imports can offer greater expressive 
power by offering solutions which have not otherwise been considered part of the 
received style of the target language.
However, it is important to understand that this is anything but a generalisation and 
the forces must be considered carefully. Many implementation and interface design 
practices are often bound to an implied context rather than being truly general. For 
example, concurrency invalidates practices appropriate for sequential code.



Practice
The history of all hitherto existing 
society is the history of class struggle.

Karl Marx

It has been said that "in theory there is no difference between theory and practice, but 
in practice there is". Applying a set of principles and practices is the natural 
complement to presenting them. This section looks at two worked examples that 
demonstrate some of the ideas presented so far.
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Clock

• Example...
A simple clock class that can handle
queries and modal setting of time

• Forces...
Representation hiding
Thread safety
Expressiveness
Encapsulation of behaviour

A simple clock example in C++ can illustrate detailed design with a focus on 
interface and the issues affecting interface, such as concurrency and dependency 
management, can affect the exterior and interior design of a class. It is by no means 
either a rocket science or realistic application class, but it serves to illustrate valid 
interface-based decisions.
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Cheshire Cat

• How can the representation of the class be 
fully decoupled from clients?

• Remove everything until there is
nothing left but the smile...

Fully hidden representation
Same definition for
different implementations
Fewer build dependencies

class clock
{ ...
private:

struct body;
body *self;

};

Cheshire Cat [Murray1993] is one of the oldest recognised C++ idioms (also known 
as the Pimpl idiom [Sutter2000]). It was found originally in the Glockenspiel class 
libraries. C++'s model for encapsulation ensures that, from a written source 
perspective, clients of a class are not – and cannot become – dependent on its internal 
representation. However, although they cannot access the private section it is still 
visible in the source code. This can create compilation and binary dependencies: the 
types of its data members may differ and the sizeof an object may change.
In addition, it exposes some of the implementation to the user who may be able to 
second guess the workings of the class, or gain access by more malicious means (e.g. 
insert their own friend declaration or #define private public). As well as 
being open to such terrorist action, it may be undesirable to distribute the exposed 
internal workings of a product, e.g. where the same header file is distributed for 
different releases or platform versions of a product.
The solution is to wrap up an opaque type within a class, using only a pointer to the 
forward declared representation type. This removes the body from the class 
definition, leaving only the 'smile'. The full definition of this private type is provided 
in the relevant implementation source file where the member function definitions can 
access it.
This idiom for representation hiding works well for concrete classes and supports 
binary compatibility. If there is further abstraction required, such as the clock 
representation could be one of many different forms, the encapsulation hides any 
further generalisation to Bridge [Gamma+1995].
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Combined Function

class clock
{
public:

struct time
{

short hours;
short minutes;

};
time now() const;
clock &set(

short hours,
short minutes);...};

class clock
{
public:

short hours() const;
short minutes() const;
clock &hours(short);
clock &minutes(short);
...

};

Sequential... Concurrent...

Property style programming can make 
the use of a class awkward and unsafe...
Grouping functions and data together 
gives a more coherent and efficient view

The overriding principle in concurrent operation design is to aim for complete, 
transactional and stateless operations, i.e. operations that do not rely on sequence or 
implicit state held between calls that is not actually part of an object's logical state. 
This means that the emphasis should be in capturing common usage sequences as 
atomic rather than individual attribute access.
Not only does this make interfaces implicitly safer with respect to concurrency, but it 
also makes them more self descriptive: rather than being presented with a bucket of 
attributes, the user is presented with a meaningful vocabulary for using objects 
through that interface. The result is that it is easier to program to such interfaces than 
larger and less cohesive kitchen sink interfaces.
The first fragment shows an interface with what might be considered a good primitive 
interface. The next fragment shows alternative applications of the Combined Function 
idiom to make it an appropriate design for concurrency; it is also appropriate for 
distribution and exception safety.
Although the examples do not mix command and query semantics in a single 
function, such combinations are an inevitable consequence of simplifying and shoring 
up the safety of concurrent programming. This does not mean that command/query 
separation is incorrect, just that it is a practice bound to a context, just as Combined 
Function is. However, unquestioning adherence to a single viewpoint [Meyer1997, 
Mannion1999] can lead to interfaces that are awkward and unsafe, defeating the 
original objective.
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Whole Value

class hour
{
public:

explicit hour(int);
int value() const;

private:
int hour_of_day;

};
class minute {...};
class time
{
public:

time(hour, minute);...
};

class clock
{
public:

time now() const;
clock &set(

hour, minute);...
};
...
clock system;...
time now = system.now();
system.set(

hour(12),
minute(30));

It is tempting, and indeed common, to represent value quantities in a program in the 
most fundamental units possible, e.g. durations as integers. However, this fails to 
communicate the understanding of the problem and its quantities into the solution and 
shows a poor use of the type system.
The loss of meaning and checking can be recovered by applying the Whole Value 
pattern [Cunningham1995] (also known as Quantity [Fowler1997]). In this, distinct 
types are used to correspond to domain value types. This affords greater annotation in 
the code and improved checking by the compiler, as illustrated in the example above. 
It also provides a location for appropriate range checking to enforce constraints.
In C++ the distinction from fundamental types is further supported by ensuring that 
there are no implicit conversions. For many whole value types it is intended that they 
should be distinct from their fundamental unit type and should not cause any 
ambiguous conversions. For this, use explicit to inhibit converting constructors. 
Note that the temptation should be resisted to offer overloads that allow alternative 
argument orderings: these are not reasonable choices, the interface trying to please all 
the people all of the time instead of sticking to one clear and cohesive model of use.
A raw Whole Value can be expressed as a using function/constructor style notation, 
which reduces the number of named temporaries cluttering code and increases the 
code's expressiveness and richness of meaning.
Whole Value is similar to dimensional analysis in the physical sciences, and a 
variation of Whole Value can be generalised for this purpose using templates 
[Barton+1994].
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Objects for States
displaying

time

setting
hours

setting
minutes

setting time

change mode cancel

increment

increment
change mode

change mode

mode

setting
time

clock

displaying
time

hours
minutes

change mode
increment
cancel

setting
hours

setting
minutes

Many objects have state on which their behaviour is based. The values of such state 
can sometimes be grouped into significant modes, each of which corresponds to a 
different set of behaviours, i.e. methods may behave significantly different in each 
one. These modes (or states) can be modelled using a variety of notations, including 
the Harel statechart notation used in UML. The modes and transitions between them 
constitute an object's lifecycle. Clearly, this approach does not apply to stateless 
objects.
How should such a lifecycle be implemented for an object? In some cases it is 
appropriate to take the approach of using a flag to represent the state. However, in all 
but the simplest cases this leads to a lot of conditional code: functions become 
dominated by large switch or if statements. This is error prone and obscure – it 
becomes hard to add new states, or to comprehend the behaviour in a particular state.
The Objects for States pattern [Gamma+1995], perhaps more commonly – but 
misleadingly – known as the State pattern, offers a solution based on a direct
correspondence between the state model and a class model.
The context object, with which the client communicates, aggregates an object that is 
used to represent the behaviour in one of its states. Calls on the context are forwarded 
to the state object; responsibility for implementing behaviour in a particular state is 
therefore delegated. Transitions between states can be managed either by the 
behavioural objects themselves, or by a centralised mechanism, such as a table 
lookup.
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Cat Anatomy

class clock
{
public:

void change_mode();
void increment();
void cancel();...

private:
struct body;
body *self;

};

struct clock::body
{

class mode;
class displaying_time;
class setting_time;
class setting_hours;
class setting_minutes;

int hours, minutes;
mode *current;

};

Cheshire Cat has been used to fully 
factor the representation out of the 
main class definition...

The definition of the body includes not only the 
data held for each instance, but also the definition 
of any types required for the implementation

There are many ways of implementing the mode hierarchy for an Objects for States 
configuration. It is just this motivation that suggests whichever route is taken should 
affect the class user as little as possible. Cheshire Cat has already provided the most 
appropriate way of hiding the representation of the class, and the Cheshire Cat body 
also provides the best location to house the declarations of the classes to be used in 
the mode hierarchy: away from the user. Now any changes to the state model will not 
affect the user.
The fully encapsulated route also means that all the types used for object can access 
each other, so there is no need for friend relationships, as is often the case with 
C++ implementations of this pattern, e.g. [Gamma+1995].
Another consequence of this approach is the clear separation of an object's aspects 
into corresponding types:

• Identity is represented by the main clock class, which sports the main interface 
through which the user interacts.

• State (or, less ambiguously, data) is held in clock::body.
• Behaviour is represented polymorphically within the class hierarchy rooted in 
clock::body::mode.

Thus scope and access are used to reflect the structure of the problem, establishing 
interfaces on the inside as well as the outside of the main class.
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Hidden Interface Class

void clock::increment()
{

self->current->increment(self);
}
class clock::body::mode
{ ...

virtual void increment(body *) = 0;...
};
void clock::body::setting_hours::increment(body *self)
{

++self->hours;
}

Even though the mode hierarchy is already private from the clock class, many of 
the details can be further hidden behind an Interface Class [Carroll+1995] to simplify 
the view from the main object and expose no more detail than is strictly necessary.
How does an object in the mode class hierarchy know about the main object it is 
supposed to be operating on? There are two basic approaches to this:

• Each mode object holds a back pointer to the main object (or rather its body) with 
which it is associated. This means that each main object needs to either 
preallocate an object for each mode, or allocate each mode object when it is 
required, presumably deallocating it when it is done with it.

• When they are required to execute a function, mode objects are passed the body 
to operate on as an argument. Stateless objects can be shared, which eliminates 
the need for subtle allocation strategies. The simplest route to sharing is to define 
a static instance per concrete mode class. It is tempting to go to town on the 
design and apply Singleton [Gamma+1995], but in truth this is rarely the right 
solution; in this case it is definitely overkill.

One remaining issue is how to deal with state transitions. The responsibility can be 
taken by the main class itself, either explicitly or by using a state transition table. 
Alternatively, each state determines the next state – again either hardwired or looked 
up – and either makes the transition itself or returns the suggested next state as a 
result.
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Queue

• Example...
A queue class to buffer work between 
producers and consumers in different threads

• Forces...
Thread safety
Exception safety
Ease of use
Evolving requirements

To further demonstrate interface-based principles, consider a queue class. The 
purpose of the queue is to buffer tasks supplied by one or more producers to 
consumers that then execute the tasks. All the producers and consumers are executing 
in different threads, requiring thread safe access of the queue. The control model is 
push–pull, i.e. the producer pushes tasks into the queue and the consumer pulls them 
from it.
Some of the design is a matter of refinement, but other changes are the result of 
shifting requirements intended to demonstrate how design decisions may be taken 
differently.
The queue is implemented as a concrete class in C++, queue. This should not be 
confused with std::queue in the standard, which can be used as part of the 
underlying implementation.
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Command Interface Class

• A request can be encapsulated as an object
An interface class provided with the queue is 
implemented for specific tasks

class task
{
public:

virtual void execute(receiver *) = 0;...
};

class specific_task : public task
{
public:

virtual void execute(receiver *);...
};

Interface abstracts 
contract of behavioural 
callback objects

Concrete derived class 
provides behaviour and 
state necessary for 
callback

How can the selection of functionality be decoupled from its execution, so a producer 
can select and deliver a task to be executed independently by a consumer?
C++ supports a much richer set of features than simply C-style function pointer 
callbacks, which are rigid and not necessarily very type safe. In this case it is the 
Command pattern [Gamma+1995] that is appropriate. It explicitly objectifies the 
concept of method call as object:

Encapsulate a request as an object, thereby letting you parameterize clients with 
different requests, queue or log requests, and support undoable operations.

The task is represented by an Interface Class, task, and derived classes realise the 
detail – data and function – required for particular tasks. This can be generalised 
further by using Function Objects and Adapters, but that is left as an exercise for the 
reader.
One issue that must be resolved is that of lifetime and ownership: the producer creates 
the command object, but who deletes it? Common best practice schemes, such as 
Creator as Sole Owner [Cargill1996], do not work: this would mean that the 
consumer had to send back the task once completed. For brevity and simplicity (of 
exposition, as opposed to final system) it will be assumed that the consumer deletes 
tasks once they have executed. A refinement to this would be the use of reference 
counted smart pointers [Boost, Coplien1992].
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Basic Locking

class mutex
{
public:

void lock();
void unlock();...

};

class queue
{
public:

void enqueue(task *);
task *dequeue();...

};

mutex guard;
queue tasks;...
guard.lock();
tasks.enqueue(new_task);
guard.unlock();

Common synchronisation primitive
Sequential object

Acquire lock and begin critical section

Release lock and end critical section
Serialised and safe action

In the presence of multiple threads, synchronisation of access to data is vital. A 
number of primitives are typically available on a threading system. These primitives 
are best wrapped up in classes, rather than used in their raw API form.
Mutexes and semaphores may be locked and unlocked, bracing a section of code 
termed the critical section. The execution of this code must appear to be executed 
atomically with respect to other threads, ie. although it may technically be pre-
empted, it is not re-entered until completed by a given thread.  This term is not to be 
confused with the Win32 CRITICAL_SECTION, which is simply a degenerate form 
of mutex.
Mutexes offer mutual exclusion in terms of a single thread, ie. the thread that locks it 
must be the thread that unlocks it. Binary semaphores are not quite so structured.  It is 
system dependent as to whether or not a mutex is re-entrant, i.e. whether or not a 
locked mutex may be relocked by the locker. Some systems, such as Solaris, offer 
locks that allow multiple-reader/single-writer access.  These are more structured than 
the other primitives. They may be faked up using condition variables or events and 
mutexes, or pairs of counted semaphores. Win32 events are effectively "smart 
blocking flags". Condition variables are like events, but they auto-lock a mutex.
The scope or reach of these primitives may be within a single process address space, 
or may be system wide for synchronisation across processes.
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{
locker critical(guard);
usage code

}

:mutexclient

«create»
lock

unlock

:locker

«destroy»

Execute Around Object

• Places control with a helper object
Lifetime of helper encloses usage

In C++ a constructor is called on creation of an object for the sole purpose of 
initialising it, i.e. it describes the "boot sequence" for an object. Conversely a 
destructor is automatically called at the end of an object's life to finalise or clean it up, 
i.e. to shut it down in an orderly fashion. Importantly, in C++ the calling of a 
destructor is deterministic: the life of a local stack variable is tied to its enclosing 
scope; the life of an object allocated dynamically using the new operator comes to an 
end by an explicit call to delete.
The former property, that of tying lifetime to scope, is what underpins the Execute 
Around Object pattern. A helper object is declared with a reference to the target 
object whose member functions must be paired around use. The helper object calls 
back in to the target object on creation to acquire or initialise the resource. In its 
destructor it automatically calls back to release or finalise the target's resource.
Such helper objects are good examples of the fine-grained helper objects that can 
simplify an overall implementation, as opposed to the coarse-grain abstractions 
apparent in the business model or user interface of a system.
The Execute Around Object pattern is found at the heart of the misnamed Resource 
Acquisition is Initialization idiom [Stroustrup1997]; misnamed because the essence of 
what makes this pattern work is the destructor. In many cases, resource acquisition 
occurs independently of the Execute Around Object, as in the case of memory 
acquisition. Perhaps Resource Release is Finalization would be a better name for the 
resource-based applications of Execute Around Object.



The control structure pairing can be generalised to apply to the target resource object 
itself. The queue class now supports its own lock and unlock functions, making 
it more cohesive.
The appropriate generalisation for this is to use templates rather than tying the classes 
together in a more committed inheritance hierarchy:

template<class lockee>
locker<lockee>::locker(lockee &to_lock)
: target(to_lock)

{
target.lock();

}

template<class lockee>
locker<lockee>::~locker()
{

target.unlock();
}
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Lockable Object

class queue
{
public:

void lock() const;
void unlock() const;
void enqueue(task *);
task *dequeue();
size_t size() const;...

};

template<class lockee>
class locker
{
public:

locker(lockee &);
~locker();

private:
lockee &target;

};

void enqueue(queue *tasks, task *new_task)
{

locker<queue> guarded(*tasks);
tasks->enqueue(new_task);

}

1
1.1

2

3 3.1
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Locking Function Adapter
locked(tasks)->enqueue(new_task);
template<class lockee>
tmp_locker<lockee> locked(lockee *target)
{

return tmp_locker<lockee>(target);
}

template<class lockee>
class tmp_locker
{
public:

explicit tmp_locker(lockee *);
~tmp_locker();
lockee *operator->();

private:
lockee *target;
bool is_locked;

};

Set up target but do not lock yet

Unlock if locked

Lock when target dereferenced 
and used through member 
access operator

Locking is handled 
by returning proxy

Simplified expression-
and statement-level 
locking

Where single function calls are to be locked, the use of a temporary Execute Around 
Object is clumsy. It is possible to offer a function that performs the locking and 
unlocking for a single function call. In the example shown a function, named 
locked, is responsible for acquiring a lock from its argument and returning it so that 
it may now be dereferenced safely. However, the usage is outside the execution of 
locked so how is the resource unlocked? The solution returns a proxy from 
locked rather than a raw pointer:

template<class lockee>
class tmp_locker
{
public:

explicit tmp_locker(lockee *to_lock)
: target(to_lock), is_locked(false) {}

~tmp_locker()
{

if(is_locked)
target->unlock();

}
lockee *operator->()
{

target->lock();
is_locked = true;
return target;

}
private:

lockee *target;
bool is_locked;

};
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Execute Around Pointer

template<class lockee>
class locking_ptr
{
public:

tmp_locker<lockee> operator->() const
{

return tmp_locker<lockee>(target);
}...

private:
lockee *target;

};

locking_ptr<queue> ptr(tasks);...
ptr->enqueue(new_task);

Smart pointers 
provide the 
simplest 
approach for 
users

Member access 
operator 
returns locking 
proxy – calls to 
member access 
operator are 
chained

However, although improved in convenience, the locking function is hardly 
transparent. A smart pointer can be used to build on the temporary acquisition 
concept. In the example shown, locking_ptr overloads operator-> to return a 
tmp_locker that also overloads operator-> and performs the actual locking. 
This idiom works because calls to operator-> are automatically chained by the 
compiler until a raw pointer type is returned. Note that one consequence of the 
language and this design is that operator* is not meaningfully supported.
The locking behaviour can easily be disabled for single threaded applications, 
requiring only modifications to tmp_locker to make it a pass-through object, a 
recompile, and a relink.
Programmers should be careful about attempting to access the same object twice in a 
statement using locking_ptrs: this will cause deadlock if the synchronisation 
mechanism is not re-entrant.
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Self-Locking Function

class queue
{
public:

void enqueue(task *new_task)
{

locker<mutex> critical(guard);
contents.push(new_task);

}...
private:

mutable mutex guard;
std::queue<task *> contents;

};

Refined resource class

Member function now has 
guarded semantics
The whole member 
function is now effectively 
a critical section

Synchronisation primitive 
now embedded within the 
resource class

If single function calls – i.e. single calls to enqueue or dequeue – are the norm, an 
alternative approach simplifies the interface considerably from the perspective of the 
user. The affordances and constraints are brought more comfortably into line, making 
the interface more encapsulated (with respect to usage) and safer.
For objects that are known to be shared, and where operations are normally used in 
isolation – rather than typically being used for a sequence of operations – it often 
makes sense to provide the locking as part of the automatic behaviour, i.e. when a 
public function is called it locks an internal synchronisation object.  Objects of such a 
class are said to be monitors or, in Ada 95 parlance, they are protected. In Java the 
same facility is implemented using synchronized methods.
Classes with internally locked public functions simplify programming from the 
class user's point of view. The class author must be careful not to call other public 
member functions from within the class if the synchronisation object is not re-entrant. 
Similarly, the class author must respect the fact that C++ supports class level rather 
than object level encapsulation; it is possible for an object to access the private 
members of another object of the same class and accidentally bypass the synchronised 
interface ordinary class users would use.
A typical locked function will have the object locked for the whole scope of the 
function. However, this need not always be the case and the lock scope should be as 
small as possible, i.e. any local variables should be declared and initialised before the 
section, and any further calculations and returns after.
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Batch Function

• How can multiple tasks be enqueued or 
dequeued together without interruption?

Provide a self locking function that operates on 
sequences rather than just a single item

class queue
{
public:

template<typename task_iterator>
void enqueue(task_iterator begin, task_iterator end);

template<typename task_iterator>
void dequeue(task_iterator begin, task_iterator end);...

};

Internally locked functions support thread safe single calls, but there is no guarantee 
that multiple calls from one thread will not be interleaved with calls from other 
threads. There is also the issue that repeated locking and unlocking of an object is 
costly.
If common usage of the queue requires that many tasks should be enqueued and 
dequeued atomically, the self locking model can be extended to cope with this. 
Additionally providing a Batch Function that handles multiple items effectively 
provides a flattening of a loop into a repeated data structure, and ensures that 
execution will be correctly locked.
This presents a safe and cohesive interface. It can be decoupled from the actual 
representation of the sequence by using the Iterator Range idiom found in STL. For 
enqueue the iterators are required to be at least Input Iterators. For dequeue they 
are required to be at least Output Iterators.
This means that not only is the user free to use their own chosen containers, but that 
no inclusion of container details is necessary in the queue header file, keeping the 
physical aspect of the interface clean.
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Composite Command
class composite_task : public task
{
public:

virtual void execute(receiver *);...
private:

vector<task *> sequence;
};

task *new_task =
new composite_task(begin, end);...

tasks.enqueue(new_task);...
task *to_do = tasks.dequeue();
to_do->execute(target);

Composite command class 
allows many commands to 
be grouped together and 
treated as one

Insert individual 
commands into sequence

Individual commands 
executed together in 
sequence

One issue that internally locked interfaces raise is how to group multiple actions 
together without interleaving. For instance, given the queue class shown previously, 
how can a sequence of task objects that must be executed together be placed in a 
queue? A Batch Function allows multiple enqueuing and dequeuing, but the number 
dequeued together need not be the number enqueued together.
Multiple actions that need to be grouped together, either as a result of scripting or for 
transactional reasons, can be implemented using the Composite pattern 
[Gamma+1995] with the Command pattern. Composite is a structural pattern that 
deals with the issue of recursive composition of Whole–Part hierarchies 
[Buschmann+1996] in which all components are treated uniformly. In this example it 
means that a composite command may contain any command objects, including other 
composite commands.
The most common composite command would be a sequence, although a concurrent 
construct is possible where a thread is launched for each command.
The detail of the execution for a sequence would be as follows:

void composite_task::execute(receiver *target)
{

for(size_t index = 0; index < sequence.size(); ++index)
sequence[index]->execute(target);

}

This can be made more idiomatic by applying standard algorithms and function 
objects.



44

Execute Around Function

• Places control within the resource
Usage is passed to the resource for execution

tasks.apply(
usage code encapsulated
as an object

);

:queueclient

«create»

apply
:usage

lock

unlock

call back
use

Execute Around Function (also known as Execute Around Method [Beck1997]) offers 
an alternative to the external management of a resource as well as a more 
sophisticated view of internal management. The code that must be enclosed by the 
two calls to the resource is itself passed to the resource itself for execution: The code 
may be encapsulated as a Command object [Gamma+1995]. The resource then 
executes the necessary actions before and after calling the code itself. This guarantees 
exception safety around resource-based tasks and atomicity of grouped operations.
There is a strong similarity with both Template Method and the double dispatch of 
Visitor [Gamma+1995] in this pattern. Interestingly, the control and object structure 
is effectively the inverse of that in Execute Around Object.
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Function Object

• How can the usage code be passed in?
Represent usage as a function object 

class queue
{
public:

template<typename unary_function>
void apply(unary_function callback)
{

locker<queue> critical(guard);
callback(this);

}...
};

A specialisation of the Command pattern in C++ is the Function Object or Functor
idiom [Coplien1992], where an object's type supports function call syntax, i.e. 
overloading operator(). The style of generic programming makes use of operator 
overloading and templates to make the distinction between use of a function object or 
function pointer transparent:

void nibble(cookie &);
pointer_to_unary_function<cookie &, void> nibbler(nibble);
...
container<cookie> jar;
jar.apply(nibble);
jar.apply(nibbler);

When implementing an Execute Around Function in C++ there is often a case for 
overloading the function with respect to const-ness:

class queue
{
public:

template<typename unary_function>
void apply(unary_function callback);

template<typename function>
void apply(unary_function callback) const;

...
};
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Callback Target

• What should the callback object actually 
call back on?

Should it be on publicly
available functions?
If not, should the interface
be privately inherited or
detached and on the body?

• Dependent on polymorphism
and decoupling requirements

There is still a question as to what the callback target should be. In the previous 
example it was assumed that the current object would be the target. But does this 
mean that the interface the callback occurs on is public to other users? If this is the 
case, it means that in theory any public user can execute critical functions and avoid 
locking. If, on the other hand, all such functions are self locking, there are efficiency 
and deadlock considerations when the callback executes them, effectively relocking 
an object that is already locked.
An alternative is to publish the usable interface as a separate Interface Class, and 
privately inherit it. This means that the this pointer will be correctly converted to 
the private base class on the callback, but that no public user can use it directly. The 
constraints on this are that, because of runtime polymorphism, member templates 
cannot be used for any of the functions. It also means that there may be name clashes 
if the class also publishes self locking functions for common usage.
Yet another alternative is to introduce a Handle/Body split [Coplien1992, 
Gamma+1995] and have the callback interface on the body. This introduces a 
decoupling that was not there before, but also means that there is more object 
management involved than before.
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Summary

• Interfaces represents connection vocabulary 
and units of obligation in a system

Interfaces establish terms of reference
Sometimes a truer expression of intent and 
understanding than classes

• Interfaces play a part in system structure
Identification and preservation of constraints
Management and reduction of dependencies

A focus on interfaces is implicit in many approaches to software development, 
whether function-based APIs, object orientation, component-based development, or 
distributed computing. However, understanding interface-based development (IBD) 
as a concept in its own right, making it an explicit approach demonstrates why many 
attempts at these other styles fall at the first hurdle: reusability, plug and play 
components, etc all remain mythical creatures until IBD is one of a number of key 
pillars in place in a development culture.
Interfaces are first class citizens in development, not an afterthought to be tacked onto 
an implementation. With interfaces comes the concept of aggressive dependency 
management, identification of constraints and their communication and preservation 
through affordances. Constraints and dependencies; semantics and connections; 
meaning and structure – these represent the distillation of essential design practice, 
and interfaces are part of the mix.
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