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This document is a survey of the fundamentals of what we’ve covered in the
course up to this point.

The information in this document was culled from a variety of sources: meet-
ings with Professor Lieberherr, research papers we’ve been given to read in class,
Wikipedia, . . . .

version 1.0 (10/10/2006) - wbg

Made a bunch of changes based on Professor Lieberherr’s comments.

version 0.5 (10/08/2006) - wbg

First write-up, csp information, precise, maxmean, and appmean.

1 What is CSP?

Constraint Satisfiability Problems are problems that are formed by a series of
constraints which must be satisfied by an assignment formed of variables set to
values.

Our class so far has been concerned with the section of the tree in figure 1

where the values are discrete (i.e. all whole numbers), the domain of values is
boolean, and the rank of the constraints is 3.

We talked briefly about CSP problems that are discrete where the domain
of values is not boolean. One such example of this is Sudoku. We spent some
time taking Sudoku and translating the problem so that it was discrete and the
domain of values was boolean.

I’ll go through the section of the tree we’re primarily concerned with.

1.1 Boolean

Boolean CSP is any CSP problem where the domain of values is boolean. For
any variable in the CSP, you can set it to either true (1) or false (0).

1.1.1 SAT

SAT is a subset of CSP problems where:
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Figure 1: Sketch of CSP family

1. the constraints are formed by literals that are connected by logical or, and

2. the constraints are connected by logical and, and

3. the domain of values is 0, 1

The following terms are used when talking about SAT:

• formula - A specific instance of a CSP problem. A formula consists of a
series of clauses.

• clause - A formula S is formed of clauses that are connected by logical
and. clauses refer specifically to SAT whereas constraints refer to any
CSP. For SAT, these two terms are interchangeable.

• literal - Clauses are formed of literals. A literal has a variable and is
either positive or negative.

• interpretation - An interpretation is a list of variable to value assign-
ments that solves the CSP.

• rank - Rank refers to the number of literals in a clause. For example:
Or( x1 x2 x3 ) rank 3
Or( x1 ) rank 1
Or( x y ) rank 2

• weight - Sometimes the clauses we’re working with have a weight associ-
ated with them. For example:
Or3( x1 x2 x3 ) : 10 weight 10
Or1( x1 ) : 5 weight 5
Or2( x y ) : 2 weight 2
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Intuitively, a clause with a weight w is equivalent to having w of that
clause in the formula of weight 1.

• 3-SAT - A 3-SAT problem is a SAT problem where the clauses are re-
stricted to Rank 3 or less.

Some papers use the term “3-SAT” to refer to SAT problems where clauses
are of Rank 3, though some papers refer to this as Exact-3-SAT.

SAT problems are usually shown using Conjunctive Normal Form (CNF).
Examples of SAT in CNF:

X1 or X2 or !X13 or X4 or X10 AND

X21 or X22 or X23 AND

!X32 AND

X14 or !X33 AND ...

Wikipedia adds that all of the following formulas are valid CNF:

A or B

!A or (B or C)

(A or B) or (!B or C or !D) or (D or E)

(!B or C)

The following are NOT valid CNF:

!(B or C)

(A and B) or C

A and (B or (D and E))

In class, we’ve been using syntax like this:

Or( x1 x2 !x3 ) and

Or( x2 ) and

Or( x1 !x3 )

or syntax like this where we explicitly specify the type of the constraints:

Or3( x1 x2 !x3 ) and

Or1( x2 ) and

Or2( x1 !x3 )

2-SAT and 3-SAT are SAT problems of rank 2 and rank 3 respectively.
Any problem can be reduced to a 3-SAT problem by adding new variables.
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1.1.2 One-in-three

In the one-in-three CSP problem, only one literal in a clause can be set to 1:

x1 + x2 + x3 = 1

x1 + x5 + x6 = 1

x2 + x8 = 1

...

In order to maintain the equality, only one of the literals in each clause can
be equal to 1—the others have to be equal to 0. For example, if x1 and x2 were
equal to 1, then we would have this:

x1=x2=1, x3=x5=x6=x8=0

x1 + x2 + x3 = 1 unsatisfied

x1 + x5 + x6 = 1 satisfied

x2 + x8 = 1 satisfied

...

In class, we’ve been using syntax for specifying one-in-three problems that
looks like this:

OneInThree( x1 x2 x3 )

OneInThree( x1 x5 x6 )

OneInTwo( x2 x8 )

where the + and the = 1 are implied.

2 SAT Solving

SAT is the prototypical NP-complete problem. However, we can approximate
solutions that satisfy the maximum number of clauses in polynomial time.

Terminology:

• MAXSAT - A MAXSAT algorithm produces an interpretation that sat-
isfies the maximum number of clauses in a SAT formula.

If the clauses have weight, then a MAX algorithm produces an interpreta-
tion that has the maximum weight of satisfied clauses in the SAT formula.

Similarly, a MAXCSP algorithm produces an interpretation that satisfies
the maximum number of constraints in a CSP formula.

• MAX-3-SAT - A MAX algorithm that operates on a 3-SAT problem.

• MAXMEAN - The MAXMEAN algorithm

• variable ordering - For each variable, we pick an assignment that max-
imizes the potential solution.

Now we’ll go through the algorithms we’ve used so far.
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2.1 Homework 2: Precise

Precise is a recursive algorithm that finds the maximum interpretation (i.e.
satisfying the maximum weight) of a given formula F.

Precise will return an interpretation I that satisfies the maximum weight of
the clauses in f.

The intuition for Precise is:

P(f)

if f has at least one unassigned variable x

P(f[x=1])

P(f[x=0])

However, this version of Precise will traverse the entire search tree of 2n

steps.
For Homework 2, we used a version of Precise that prunes sections of the

tree that we discover aren’t worth traversing.

Input: formula F, interpretation I, weight of unsatisfied clauses WUC

Output: interpretation I and weight of unsatisfied clauses WUC

Before calling Precise the first time, do these setup steps:

I = random assignment for all variables

WUC = total weight of unsatisfied clauses in F using I

Then call Precise:

I, WUC = Precise(F, I, WUC)

function Precise(F, I, WUC) returns I, WUC:

if F is empty (everything is satisfied or unsatisfied):

return I, WUC

v = variable in F

F’ = F[v=1]

I’ = I[v=1]

WUC’ = total weight of unsatisfied clauses in F’

if WUC’ < WUC:

I’, WUC’ = Precise(F’, I’, WUC’)

I = I’

WUC = WUC’

F’ = F[v=0]

I’ = I[v=0]

WUC’ = number of unsatisfied clauses in F’
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if WUC’ < WUC:

I’, WUC’ = Precise(F’, I’, WUC’)

I = I’

WUC = WUC’

return I, WUC:
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2.2 Homework 2: MAXMEAN

MAXMEAN is defined in the paper Partial Satisfiability SAT II. I reprint it
here, but you should refer to the original paper for specifics.

Note the invariants mean
−1(S) = mean0(S) and meann+1(S) = meann(S).

max_assignment := 0

loop

compute k such that:

mean_k(S) = max (0 <= k’ <= n) of mean_k’(S)

for all variables x in S do:

if mean_k-1(S[x=1]) > mean_k(S[x=0]):

J[x] := 1, k := k-1, S := S[x=1]

else:

J[x] := 0, S := S[x=0]

h := SATISFIED(S, J)

if h > max_assignment:

max_assignment = h

else:

exit loop

end;

where:

• max assignment is the best assignment we’ve found so far of variables
to values.

• J[x] is variable x in assignment J .

• SATISFIED(S, J) is the number of satisfied clauses in formula S using
assignment J .

• meank(S) is the average fraction of satisfied clauses in S among all as-
signments having exactly k ones.

Formally, meank(S) is calculated as:

meann

k (
−→

t ) =

m∑

i=1

tRi
SAT N

k (Ri)

where:

– Ri is a relation R

– tRi
is the fraction of the clauses in S that are of relation R.

–
−→

t is the vector of tRi
.

7



SAT N

k
(Ri) is calculated as:

SAT n

k
(R) =

r(R)∑

s=0

qs(R)
(k)s(n − k)r(R)−s

(n)r(R)

MAXMEAN uses the lines:

if mean[k-1](S[x=1]) > mean[k](S[x=0]):

x = 1

else:

x = 0

to make the decision as to whether to set x to 0 or 1. This is called value
ordering.
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2.3 Homework 3: APPMEAN

We can approximate meann

k
(where 0 <= k <= n) using appmeanx (where

0 <= x <= 1).

appmeank(
−→

t ) =

m∑

i=1

tRi
appSATx(Ri) (1)

appSATx(R) =

r(R)∑

s=0

qs(R)x5(1 − x)r(R)−s (2)

The parts are similar to meank(S) and appmeank(S).
x = k/n.
Intuitively, the computations for meank have the same structure appmeanx

where they’re both computing a sum of operations on Ri and tRi
.
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