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Abstract. An overview is given of a number of recent developments
in SAT and SAT Modulo Theories (SMT). In particular, based on our
framework of Abstract DPLL and Abstract DPLL modulo Theories, we
explain our DPLL(T) approach to SMT.
Experimental results and future projects are discussed within Barcelog-
icTools, a set of logic-based tools developed by our research group in
Barcelona. At the 2005 SMT competition, BarcelogicTools won all four
categories it participated in (out of the seven existing categories).

1 Introduction

Nowadays, SAT solvers and their extensions are becoming the tool of choice
for attacking more and more different problems in areas such as Electronic De-
sign Automation, Verification, Artificial Intelligence, or Operations Research.
Most state-of-the-art SAT solvers [MMZ+01,GN02,ES03,Rya04] today are based
on the Davis-Putnam-Logemann-Loveland (DPLL) procedure [DP60,DLL62].
These DPLL-based SAT solvers have spectacularly improved in the last years,
due to better implementation techniques and conceptual enhancements such as
backjumping, conflict-driven lemma learning ([MSS99]), and restarts. These ad-
vances make it possible to decide the satisfiability of industrial SAT problems
with tens of thousands of variables and millions of clauses.

Because of their success, both the DPLL procedure and its enhancements
have been adapted for handling satisfiability problems in logics that are more
expressive than propositional logic. For example, some properties of timed au-
tomata are naturally expressed in difference logic, where formulas contain atoms
of the form a − b ≤ k, which are interpreted with respect to a background the-
ory T of the integers, rationals or reals [Alu99]. Similarly, for the verification
of pipelined microprocessors it is convenient to consider a logic of Equality with
Uninterpreted Functions (EUF), where the background theory T specifies a con-
gruence [BD94]. To mention just one other example, the conditions arising from
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program verification usually involve arrays, lists and other data structures, so it
becomes very natural to consider satisfiability problems modulo the theory T of
these data structures. In such applications, problems may contain thousands of
clauses like

p ∨ ¬q ∨ a=f(b − c) ∨ read(s, f(b − c) )=d ∨ a − g(c) ≤7

containing purely propositional atoms as well as atoms over (combined) theories.
This is known as the Satisfiability Modulo Theories (SMT) problem for a theory
T : given a formula F , determine whether F is T -satisfiable, i.e., whether there
exists a model of T that is also a model of F . A library of benchmarks for SMT
called SMT-LIB is maintained at http://combination.cs.uiowa.edu/smtlib/
and a formal standard for its syntax exists [RT03].

In this paper, based on our framework of Abstract DPLL (Section 2) and Ab-
stract DPLL modulo Theories (Section 3), we explain our DPLL(T) approach to
SMT (Section 4). We describe two variants of DPLL(T ), depending on whether
theory propagation is done exhaustively or not. DPLL(T ) is based on a gen-
eral DPLL(X) engine, whose parameter X can be instantiated with specialized
solvers Solver

T
for given theories T , thus producing a system DPLL(T ). Once

the DPLL(X) engine has been implemented, this approach becomes extremely
flexible: new theories can be dealt with by simply plugging in new theory solvers.
These solvers must only be able to deal with conjunctions of theory literals and
conform to a minimal and simple set of additional requirements. We describe how
DPLL(X) and Solver

T
cooperate, and the architecture of DPLL(T ) for several

theories that are widely used in industrial verification problems.
Section 5 describes BarcelogicTools, a set of logic-based tools developed by

our research group in Barcelona, including, in particular, a state-of-the-art SAT
solver, a DPLL(X) engine, and a number of theory solvers. Results show that our
DPLL(T ) systems in BarcelogicTools significantly outperform the other state-
of-the-art tools, frequently in several orders of magnitude, and moreover scale
up very well. In fact, at the 2005 SMT competition, BarcelogicTools won all
four categories it participated in (out of seven categories that existed in total;
search SMT Competition on the web). Finally, some future extensions of the
BarcelogicTools project are discussed.

2 Abstract DPLL in the propositional case

Let P be a fixed finite set of propositional symbols. If p ∈ P , then p and ¬p

are literals of P . The negation of a literal l, written ¬l, denotes ¬p if l is p, and
p if l is ¬p. A clause is a disjunction of literals l1 ∨ . . . ∨ ln. A unit clause is
a clause consisting of a single literal. A (finite, non-empty, CNF) formula is a
conjunction of one or more clauses C1∧. . .∧Cn. When it leads to no ambiguities,
we sometimes also write such a formula in set notation {C1, . . . , Cn} or simply
replace ∧ connectives by commas.

A (partial truth) assignment M is a set of literals such that {p,¬p} ⊆ M

for no p. A literal l is true in M if l ∈ M , it is false in M if ¬l ∈ M , and l is



undefined in M otherwise. M is total over P if no literal of P is undefined in
M . A clause C is true in M if at least one of its literals is in M . It is false in M

if all its literals are false in M , and it is undefined in M otherwise. A formula
F is true in M , or satisfied by M , denoted M |= F , if all its clauses are true
in M . In that case, M is called a model of F . If F has no models then it is
called unsatisfiable. If F and F ′ are formulas, we write F |= F ′ if F ′ is true in
all models of F . Then we say that F ′ is entailed by F , or is a logical consequence
of F . If F |= F ′ and F ′ |= F , we say that F and F ′ are logically equivalent.

In what follows, (possibly subscripted or primed) lowercase l always denote
literals. Similarly C and D always denote clauses, F and G denote formulas, and
M and N are assignments. If C is a clause l1 ∨ . . . ∨ ln, we sometimes write ¬C

to denote the formula ¬l1 ∧ . . . ∧ ¬ln.

2.1 The Classical DPLL Procedure

Here a DPLL procedure is modelled by a transition relation over states (check
[NOT05] for details). A state is either FailState or a pair M || F , where F is
a finite set of clauses and M is a sequence of literals that is seen as a partial
interpretation. Some literals l in M will be annotated as being decision literals;
these are the ones added to M by the Decide rule given below, and are sometimes
written ld. The transition relation is defined by means of rules. The following
simple Classical DPLL system is given here mainly for explanatory and historical
reasons.

Definition 1. The Classical DPLL system Cl consists of the five rules:

UnitPropagate :

M || F, C ∨ l =⇒ M l || F, C ∨ l if

{

M |= ¬C

l is undefined in M

PureLiteral :

M || F =⇒ M l || F if







l occurs in some clause of F

¬l occurs in no clause of F

l is undefined in M

Decide :

M || F =⇒ M ld || F if

{

l or ¬l occurs in a clause of F

l is undefined in M

Fail :

M || F, C =⇒ FailState if

{

M |= ¬C

M contains no decision literals

Backtrack :

M ld N || F, C =⇒ M ¬l || F, C if

{

M ld N |= ¬C

N contains no decision literals



One can use the transition system Cl for deciding the satisfiability of an input
CNF F by simply generating an arbitrary derivation ∅ || F =⇒Cl . . . =⇒Cl Sn,
where Sn is a final state with respect to Cl. Such derivations are always finite,
and (i) F is unsatisfiable if, and only if, the final state Sn is FailState, and (ii)
if Sn is of the form M || F then M is a model of F .

These rules speak for themselves, providing a classical depth-first search with
backtracking, where the Decide rule represents a case split: an undefined literal l

is chosen from F , and added to M . The literal is annotated as a decision literal,
to denote that, if M l cannot be extended to a model of F , then (by Backtrack)
still the other possibility M ¬l must be explored. In the following, if M is a
sequence of the form M0 l1 M1 . . . lk Mk, where the li are all the decision literals
in M , then the literals of each li Mi are said to belong to decision level i.

Example 2. In the following derivation, to improve readability we have denoted
atoms by natural numbers, negation by overlining, and written decision literals
in bold font:

∅ || 1∨2, 2∨3, 1∨3∨4, 2∨3∨4, 1∨4 =⇒Cl (Decide)
1 || 1∨2, 2∨3, 1∨3∨4, 2∨3∨4, 1∨4 =⇒Cl (UnitPropagate)

1 2 || 1∨2, 2∨3, 1∨3∨4, 2∨3∨4, 1∨4 =⇒Cl (UnitPropagate)
1 2 3 || 1∨2, 2∨3, 1∨3∨4, 2∨3∨4, 1∨4 =⇒Cl (UnitPropagate)

1 2 3 4 || 1∨2, 2∨3, 1∨3∨4, 2∨3∨4, 1∨4 =⇒Cl (Backtrack)
1 || 1∨2, 2∨3, 1∨3∨4, 2∨3∨4, 1∨4 =⇒Cl (UnitPropagate)

1 4 || 1∨2, 2∨3, 1∨3∨4, 2∨3∨4, 1∨4 =⇒Cl (Decide)
1 4 3 || 1∨2, 2∨3, 1∨3∨4, 2∨3∨4, 1∨4 =⇒Cl (UnitPropagate)

1 4 3 2 || 1∨2, 2∨3, 1∨3∨4, 2∨3∨4, 1∨4 Final state:
model found. ut

The Davis-Putnam procedure [DP60] was originally presented as a two-phase
proof-procedure for first-order logic. The unsatisfiability of a formula was to be
proved by first generating a suitable set of ground instances which then, in the
second phase, were shown to be propositionally unsatisfiable.

Subsequent improvements, such as the Davis-Logemann-Loveland procedure
of [DLL62], mostly focused on the propositional phase. What most authors nowa-
days call the DPLL Procedure is a satisfiability procedure for propositional logic
based on this propositional phase. Originally, this procedure amounted to the
depth-first search algorithm with backtracking modeled by our Classical DPLL
system.

2.2 Modern DPLL Procedures

The major modern DPLL-based SAT solvers do not implement the Classical
DPLL system. For example, due to efficiency reasons the pure literal rule is
normally only used as a preprocessing step, and hence we will not consider this
rule in the following. Moreover, instead of Backtrack a more general Backjump

rule is considered, of which Backtrack is a particular case.



Definition 3. The Basic DPLL system is the four-rule transition system B

consisting of UnitPropagate, Decide, Fail, and the following Backjump rule:

Backjump :

M ld N || F, C =⇒ M l′ || F, C if























M ld N |= ¬C, and there is
some clause C ′ ∨ l′ such that:

F,C |= C ′ ∨ l′ and M |= ¬C ′,

l′ is undefined in M , and
l′ or ¬l′ occurs in F or in M ld N

We call the clause C ′ ∨ l′ in Backjump a backjump clause.

Example 4. The aim of this Backjump rule is to generalize backtracking by a
better analysis of why the so-called conflicting clause C is false. Standard back-
tracking reverses the last decision, and adds it as a unit to the previous decision
level. Backjumping frequently allows one to add a new unit literal to a decision
level that is lower than the previous level. Consider:

∅ || 1∨2, 3∨4, 5∨6, 6∨5∨2 =⇒B (Decide)
1 || 1∨2, 3∨4, 5∨6, 6∨5∨2 =⇒B (UnitPropagate)

1 2 || 1∨2, 3∨4, 5∨6, 6∨5∨2 =⇒B (Decide)
1 2 3 || 1∨2, 3∨4, 5∨6, 6∨5∨2 =⇒B (UnitPropagate)

1 2 3 4 || 1∨2, 3∨4, 5∨6, 6∨5∨2 =⇒B (Decide)
1 2 3 4 5 || 1∨2, 3∨4, 5∨6, 6∨5∨2 =⇒B (UnitPropagate)

1 2 3 4 5 6 || 1∨2, 3∨4, 5∨6, 6∨5∨2 =⇒B (Backjump)
1 2 5 || 1∨2, 3∨4, 5∨6, 6∨5∨2

Before the Backjump step, the clause 6∨5∨2 is conflicting: it is false in 1 2 3 4 5 6.
The reason for its falsity is the unit propagation 2 of the decision 1, together
with the decision 5 and its unit propagation 6. Therefore, one can infer that the
decision 1 (and its unit propagation 2) is incompatible with the decision 5. This
is why the Backjump rule moves to the state 1 2 5.

Note that an application of Backtrack instead of Backjump would have given
a state with first component 1 2 3 4 5, even though the decision level 3 4 is
unrelated with the reasons for the falsity of 6∨5∨2. Moreover, intuitively, the
search state 1 2 5 reached after Backjump is more advanced than 1 2 3 4 5. This
notion of “being more advanced” is formalized in Theorem 12 below. ut

The Backjump rule makes progress in the search by reverting to a strictly
lower decision level, but with the additional information given by the literal l′

that is added to that level. Indeed, as it is proved below, the four rules of the
Basic DPLL system (UnitPropagate, Decide, Fail, and Backjump) suffice for com-
pleteness. But in most modern DPLL implementations, in addition the backjump
clause C ′∨ l′ is added to the clause set as a learned clause (conflict-driven clause
learning). In Example 4, learning the clause 1∨5 will allow the application of
UnitPropagate to any state whose assignment contains either 1 or 5. Hence, it will
prevent any conflict caused by having both 1 and 5 in M . Indeed, reaching such



similar conflicts frequently happens in industrial problems having some regular
structure, and learning such lemmas has been shown to be very effective. Since
a lemma is aimed at preventing future similar conflicts, when such conflicts are
not very likely to be found again the lemma can be removed. In practice this is
usually done if the activity of a lemma (e.g., the number of times it becomes a
unit or a conflicting clause) has become low [ES03]. In order to model lemma
learning and removal we consider the following system.

Definition 5. The rules of Learn and Forget are the following ones:

Learn :

M || F =⇒ M || F, C if

{

all atoms of C occur in F

F |= C

Forget :
M || F, C =⇒ M || F if

{

F |= C

In any application step of these two rules, the clause C is said to be learned and
forgotten, respectively.

Example 6. Assume a strategy that is followed in most state-of-the-art SAT
solvers: (i) Decide is applied only if no other Basic DPLL rule is applicable, and
(ii) after each application of Backjump, the backjump clause is learned. Consider
a state of the form M || F , where, among other clauses, F contains:

9∨6∨7∨8 8∨7∨5 6∨8∨4 4∨1 4∨5∨2 5∨7∨3 1∨2∨3

and M is of the form: . . . 6 . . . 7 . . .9 8 5 4 1 2 3. It is easy to observe how
by six applications of UnitPropagate this state has been reached after the last
decision 9. For example, 8 is implied by 9, 6, and 7, due to the leftmost clause
9∨6∨7∨8. The DPLL implementation stores the ordered sequence of propagated
literals, each one of them together with the clause that caused it. In this state
M || F , the clause 1∨2∨3 is conflicting, since M contains 1, 2 and 3. Now one
can trace back the reasons for this conflicting clause. For example, the DPLL
implementation knows that 3 was implied by 5 and 7, due to the clause 5∨7∨3.
The literal 5 was in turn implied by 8 and 7, and so on. In this way, working
backwards from the conflicting clause, and in the reverse order in which each
literal was propagated, one can build a conflict graph:

6

8

4

5

2

1

3

9

7



In the graph that is shown, the building process was stopped when the current
decision literal 9 was reached, and hence 9 and the nodes belonging to earlier
decision levels (in this example, literals 6 and 7) have no incoming arrows. For
finding a backjump clause, it suffices to cut the graph into two parts. The first
part must contain at least the literals with no incoming arrows. The second
part must contain at least the literals with no outgoing arrows, i.e., the negated
literals of the conflicting clause (in our example, 1, 2 and 3). It is not hard to
see that in such a cut no model of F can satisfy all the literals whose outgoing
edges are cut.

For instance, consider the cut indicated by the dotted line, where the literals
with cut outgoing edges are 8, 7, and 6. Indeed, from these three literals by
unit propagation using five clauses of F one can infer the negated literals of
the conflicting clause. Hence, one can infer from F that 8, 7, and 6 cannot be
simultaneously true, i.e., one can infer the clause 8∨7∨6. In this case, it is an
adequate backjump clause, that is, the clause C ′ ∨ l′ in the definition of the
Backjump rule, where the literal 8 plays the role of l′. Indeed, it allows one to
backjump to the decision level of 7, adding 8 to it. After that, under our strategy
the clause 8∨7∨6 has to be learned, in order to explain, in future conflicts, the
presence of 8 as a propagation from 6 and 7.

Such a cut produces an adequate backjump clause provided that only one of
the literals with cut outgoing edges belongs to the current decision level. Then,
this literal is called a Unique Implication Point (UIP) and it can play the role of
l′ in the backjump clause. It is not hard to argue that there is always at least one
UIP, namely the current decision literal (which is 9 in our example). In practice
one does not actually build the graph; it suffices to work backwards from the
conflicting clause, maintaining only a frontier list of literals yet to be expanded,
until reaching the first UIP (in our example, 8) [MSS99,ZMMM01,GN02]. This
can also be seen as a resolution process, until reaching a clause with only one
literal of the current decision level (in our example, the literal 8 in the clause
8∨7∨6). In our example, the clause 8∨7∨6 is obtained by resolution by resolving
on the conflicting clause the literals 3, 2, 1, 4 and 5, i.e., in the reverse order they
were propagated, with the clauses that caused their propagation:

8∨7∨5

6∨8∨4

4∨1

4∨5∨2

5∨7∨3 1∨2∨3

5∨7∨1∨2

4∨5∨7∨1

4∨5∨7

6∨8∨5∨7

8∨7∨6

Some provers such as Siege also learn some of the intermediate clauses in such
resolution derivations [Rya04]. ut

State-of-the art SAT-solvers [MMZ+01,GN02,ES03,Rya04] essentially apply
Abstract DPLL with Learning using efficient implementation techniques for
UnitPropagate (e.g., watching two literals for unit propagation [MMZ+01]), and



heuristics for selecting the decision literal when applying the Decide rule. In ad-
dition, modern DPLL implementations restart the DPLL procedure whenever
the search is not making enough progress according to some measure. The ra-
tionale behind this idea is that upon each restart, the newly learned lemmas
will lead the heuristics for Decide to behave differently, and hopefully cause the
procedure to explore the search space in a more compact way.

The combination of learning and restarts has been shown to be powerful not
only in practice, but also from the theoretical point of view. Essentially, any
Basic DPLL derivation to FailState is equivalent to tree-like refutation by reso-
lution. But for some classes of problems tree-like proofs are always exponentially
larger than the smallest general, i.e., DAG-like, resolution ones [BEGJ00]. The
good news is that DPLL with learning and restarts becomes again equivalent to
general resolution with respect to such notions of proof complexity [BKS03].

Definition 7. The DPLL system with learning and restarts, denoted by L, con-
sists of the four transition rules of the Basic DPLL system, the Learn and Forget

rules and the following Restart rule:

M || F =⇒ ∅ || F

2.3 Correctness of Modern DPLL Systems

Deciding the satisfiability of an input formula F will be done by generating
an arbitrary derivation of the form ∅ || F =⇒L . . . =⇒L Sn such that Sn

is final with respect to the Basic DPLL system (note that one cannot aim at
reaching final states with respect to the DPLL system with learning, since, e.g.,
tautologies like p ∨ ¬p can be learned or forgotten in all states but FailState).

Building such derivations is practical because for all rules their applicability is
easy to check, and such derivations are always finite if one never applies infinitely
many consecutive Learn and Forget steps, and Restart is applied with increasing
periodicity. Then, one always reaches a state Sn that is final with respect to the
Basic DPLL system, and a final state is moreover easily recognizable as such,
because it is either FailState or else it is of the form M || F where all literals of
F are defined in M and there is no conflicting clause. Then, moreover, (i) F is
unsatisfiable if, and only if, Sn is FailState, and (ii) if Sn is of the form M || F ′

then M is a model of F .
The following three lemmas are the key to proving these results (see [NOT05]

for details). The first one states some easy invariants that are preserved under
rule application. Proving the second one essentially involves the construction of
an adequate backjump clause for showing that Backjump applies, which is less
simple. From these two lemmas, the third one, stating properties of final states,
is not hard to obtain.

Lemma 8. Assume ∅ || F =⇒∗

L M || G . Then G is logically equivalent to F .
If M is of the form M0 l1 M1 . . . ln Mn, where l1, . . . , ln are all the decision
literals of M , then F, l1, . . . , li |= Mi for all i in 0 . . . n.



Lemma 9. Assume that ∅ || F =⇒∗

L M || F ′ and that M |= ¬C for some clause
C in F ′. Then either Fail or Backjump applies to M || F ′.

Lemma 10. If ∅ || F =⇒∗

L S, and S is final with respect to Basic DPLL,
then S is either FailState, or it is of the form M || F ′, where
(i) all literals of F ′ are defined in M , and
(ii) there is no clause C in F ′ such that M |= ¬C, and
(iii) M is a model of F .

Theorem 11. If ∅ || F =⇒∗

L S where S is final w.r.t. Basic DPLL, then

1. S is FailState if, and only if, F is unsatisfiable.

2. If S is of the form M || F ′ then M is a model of F .

Proof. For Property 1, if S is FailState it is because there is some state M || F ′

such that ∅ || F =⇒∗

L M || F ′ =⇒L FailState. By the definition of the Fail rule,
there is no decision literal in M and there is a clause C in F ′ such that M |= ¬C.
Since F and F ′ are equivalent by Lemma 8, we have that F |= C. However, if
M |= ¬C, by Lemma 8 then also F |= ¬C, which implies that F is unsatisfiable.
For the right-to-left implication, if S is not FailState it has to be of the form
M || F ′. But then, by Lemma 10, M is a model of F and hence F is satisfiable.
For Property 2, if S is M || F ′ then, again by Lemma 10, M is a model of F . ut

The soundness and completeness results of Theorem 11 can be applied if one
can ensure that a final state with respect to Basic DPLL is eventually reached.
This is usually done in practice by periodically increasing the minimal number
of Basic DPLL steps between each pair of restart steps. Also, one should not
apply infinitely many consecutive Learn and Forget steps (for example, learning
and forgetting the same clause all the time), a condition that is weak and easily
enforced. In fact, Learn is typically only applied together with Backjump in order
to learn the corresponding backjump clause. This is formalized below.

Theorem 12. Any derivation ∅ || F =⇒ S1 =⇒ . . . by the transition system
L extended with the Restart rule is finite if (i) it contains only finitely many
consecutive Learn and Forget steps, and (ii) between every two Restart steps there
are more steps by Basic DPLL than between the previous two Restart steps.

Proof. (See [NOT05] for details.) The four basic rules can be shown terminating
by a well-founded ordering Â that considers only the first component M of
states of the form M || F . The ordering is lexicographic. It considers M more
advanced than M ′ (i.e., M ′ Â M) if M has more literals at decision level 0
than M ′, or both have the same number of literals at level 0 and M has more
literals at level 1, etc. If D is an infinite derivation fulfilling the requirements,
then in a subderivation of D without Restart steps, at each step either this first
component decreases with respect to Â (by the Basic DPLL steps) or it remains
equal (by the Learn and Forget steps). Therefore, since there are no infinitely
many consecutive Learn and Forget steps, there must be infinitely many Restart

steps in D. Also, if between two states there is at least one Basic DPLL step,



these states do not have the same first component. Therefore, if N denotes the
(fixed, finite) number of different first components of states that exist for the
given finite set of symbols, there are no subderivations with more than N Basic
DPLL steps between two Restart steps. This contradicts the fact that there are
inifinitely many Restart steps if Restart has increasing periodicity. in D. ut

3 Abstract DPLL Modulo Theories

Here we consider the same definitions and notations given in Section 2 except
that here the set P over which formulas are built is a fixed finite set of ground
(i.e., variable-free) first-order atoms (instead of propositional symbols).

In addition to these propositional notions, a theory T is a set of closed first-
order formulas that is satisfiable in the first-order sense.

A formula F is T -satisfiable or T -consistent if F ∧T is satisfiable in the first-
order sense. Otherwise, it is called T -unsatisfiable or T -inconsistent. As before, a
partial assignment M will also be seen as a conjunction and hence as a formula.
If M is a T -consistent partial assignment and F is a formula such that M |= F ,
i.e., M is a (propositional) model of F , then we say that M is a T -model of F .
The SMT problem for a theory T is the problem of determining, given a formula
F , whether F is T -satisfiable, or, equivalently, whether F has a T -model. Note
that, as usual in SMT, here we only consider the SMT problem for ground (and
hence quantifier-free) CNF formulas F . Also note that F may contain constants
that are free in T , which, as far as satisfiability is concerned, can equivalently
be seen as existential variables. We will consider here only theories T such that
the T -satisfiability of conjunctions of such ground literals is decidable, and a
decision procedure for doing so is called a T -solver. If F and G are formulas,
then F entails G in T , written F |=T G, if F ∧¬G is T -inconsistent. If F |=T G

and G |=T F , we say that F and G are T -equivalent.

3.1 An informal presentation of SMT procedures

In the so-called eager approach to SMT, the input formula is translated in a
single satisfiability-preserving step into a propositional CNF formula which is
then checked by a SAT solver for satisfiability (see, e.g., [BGV01,BV02,Str02]).
Sophisticated ad-hoc translations have been developed for several theories, but
still, on many practical problems the translation process or the SAT solver run
out of time or memory (see [dMR04]), and the alternative techniques explained
below are usually orders of magnitude faster.

As an alternative to the eager approach, one can use a T -solver for decid-
ing the satisfiability of conjunctions of theory literals. Then, a decision pro-
cedure for SMT is easily obtained by converting the formula into disjunctive
normal form (DNF) and using the T -solver for checking whether there is at least
one conjunction which is satisfiable. However, the exponential blowup due to
the conversion into DNF makes this approach too inefficient. Therefore, a large



amount of recent research involves the combination of the strengths of special-
ized T -solvers with the strengths of state-of-the-art SAT solvers for dealing with
the boolean structure of the formulas. One such an approach, which has been
widely used in the last few years is usually referred to as the lazy approach
[ACG00,FORS01,ABC+02,BDS02,dMR02,FJOS03,ACGM04], [BCLZ04]. It ini-
tially considers each atom occurring in a formula F to be checked for satisfiability
simply as a propositional symbol, i.e., it “forgets” about the theory T . Then it
sends the formula to a SAT solver. If the SAT solver reports propositional unsat-
isfiability, then F is also T -unsatisfiable. If the SAT solver returns a propositional
model of F , then this model (a conjunction of literals) is checked by a T -solver.
If it is found T -satisfiable then it is a T -model of F . Otherwise, the T -solver
builds a ground clause, called a theory lemma, a clause C such that ∅ |=T C,
precluding that model. This lemma is added to F and the SAT solver is started
again. This process is repeated until the SAT solver finds a T -satisfiable model
or returns unsatisfiable.

Example 13. Assume we are deciding the satisfiability of a large EUF formula,
i.e., the background theory T is equality, and assume that the model M found
by the SAT solver contains, among many others, the literals: b = c, f(b) = c,
a 6= g(b), and g(f(c)) = a. Then the T -solver detects that M is not a T -model,
since b = c ∧ f(b) = c ∧ g(f(c)) = a |=T a = g(b). Therefore, the
lazy procedure has to be restarted after the corresponding theory lemma has
been added to the clause set. In principle, one can take as theory lemma simply
the negation of M , that is, the disjunction of the negations of all the literals in
M . However, this clause may therefore have thousands of literals, and the lazy
approach will behave much more efficiently if the T -solver is able to generate a
small explanation of the T -inconsistency of M , which in this example could be
the clause b 6=c ∨ f(b) 6=c ∨ g(f(c)) 6=a ∨ a=g(b). ut

The lazy approach is quite flexible: it can easily combine any SAT solver with
any T -solver. Moreover, if the SAT solver used by the lazy SMT procedure is
based on DPLL, several refinements exist that make it much more efficient:
Incremental T-solver. The T -consistency of the model can be checked incre-
mentally, while the model is being built by the DPLL procedure, i.e., without
delaying the check until a propositional model has been found. This can save a
large amount of useless work. Currently, most SMT implementations work with
incremental T-solvers. The idea was already mentioned in [ABC+02] under the
name of early pruning and in [Bar03] under the name of eager notification.
On-line SAT solver. When a T -inconsistency is detected by the incremental
T-solver, one can ask the DPLL procedure simply to backtrack to the last point
where the assignment was still T -consistent, instead of restarting the search
from scratch. If the current DPLL state is of the form M l M ′ || F , and M

is the maximal T -consistent prefix of M l M ′, then the DPLL procedure can,
for instance, backjump to M¬l || F . On-line SAT solvers (in combination with
incremental T-solvers) are nowadays common in SMT implementations.
Theory propagation. In the approach presented so far, the T -solver provides
information only after a T -inconsistent partial assignment has been generated.



In this sense, the T -solver is used only to validate the search a posteriori, not to
guide it a priori. In order to overcome this limitation, the T -solver can also be
used in a given DPLL state M || F to detect literals l ocurring in F such that
M |=T l, allowing the DPLL procedure to move to the state M l || F . This is
called theory propagation. It was first mentioned in [ACG00] under the name of
forward checking simplification; however, it was believed to be very expensive.
Since T -solvers were not designed to support it, it was simply implemented
by sending ¬l to the T -solver, and, if this made the model T -inconsistent, then
inferring l. The real effectiveness of theory propagation has become demonstrated
in our DPLL(T ) approach [GHN+04,NO05b], using efficient T -solvers for it.
Exhaustive Theory Propagation. For some theories it even pays off, for every
state M || F , to eagerly detect and propagate all literals l ocurring in F such that
M |=T l [NO05b]. Then, in every state M || F the model M will be T -consistent,
and hence the T-solver will never detect any T-inconsistencies. Similarly, theory
lemma learning becomes useless if exhaustive theory propagation is applied,
because any unit propagation from a theory lemma will already be immediately
obtained as a theory propagation. For some logics, such as, e.g., Difference Logic,
exhaustive theory propagation can give several orders of magnitude of speedup
(see Section 5).

3.2 Abstract DPLL Modulo Theories

In this section we formalize the different enhancements of the lazy approach
to Satisfiability Modulo Theories. This will be done by adapting the abstract
DPLL framework for the propositional case presented in the previous section.
Here Learn, Forget and Backjump are slightly modified in order to work modulo
theories: in these rules, entailment between formulas now becomes entailment in
T :

Definition 14. The rules T -Learn, T -Forget and T -Backjump are:

T -Learn :

M || F =⇒ M || F, C if

{

every atom of C occurs in F or in M

F |=T C

T -Forget :

M || F, C =⇒ M || F if
{

F |=T C

T -Backjump :

M ld N || F, C =⇒ M l′ || F, C if























M ld N |= ¬C, and there is
some clause C ′ ∨ l′ such that:

F,C |=T C ′ ∨ l′ and M |= ¬C ′,

l′ is undefined in M , and
l′ or ¬l′ occurs in F or in M ld N



Modeling the naive lazy approach. Each time a state M || F is reached that
is final with respect to Decide, Fail, UnitPropagate, and T -Backjump, i.e., final
in a similar sense as in the previous section, M can be T -consistent or not. If
it is, then M is indeed a T -model of F . If it is not, then there exists a subset
{l1, . . . , ln} of M such that ∅ |=T ¬l1∨. . .∨¬ln. By one T -Learn step, this theory
lemma ¬l1∨. . .∨¬ln can be learned and then Restart can be applied. If these theory
lemmas are never removed by the T -Forget rule, this stategy is terminating under
the same restrictions as stated in the previous section on T -Learn, T -Forget, and
Restart, and it is also sound and complete: the initial formula is T -unsatisfiable
iff, the final state is FailState, and otherwise a T -model has been found.
Modeling the lazy approach with an incremental T -solver. Assume the
incremental T -solver detects that a (not necessarily final) state M || F has been
reached such that M is T -inconsistent. Then, as in the naive lazy approach,
there exists a subset {l1, . . . , ln} of M such that ∅ |=T ¬l1∨. . .∨¬ln. This theory
lemma is then learned, reaching the state M || F, ¬l1∨. . .∨¬ln. As in the previous
case, then Restart can be applied and the same results apply.
Modeling the lazy approach with an incremental T -solver and an on-
line SAT solver. As in the previous case, if a T -inconsistency is detected a state
M || F, ¬l1∨. . .∨¬ln is reached. But now instead of completely restarting, the
procedure repairs the T -inconsistency of the partial model by exploiting the fact
that ¬l1∨. . .∨¬ln is a conflicting clause. Then, as before, if there is no decision
literal in M then Fail applies, and otherwise T -Backjump applies. Even if always
immediately after backjumping the theory lemma is forgotten, the termination,
soundness and completeness results hold.
Modeling the previous refinements and theory propagation. This re-
quires the following additional rule:

Definition 15. The Theory Propagate rule is:

M || F =⇒ M l || F if







M |=T l

l or ¬l occurs in F

l is undefined in M

The purpose of this rule is to prune the search by assigning a truth value to
literals that are T -entailed by M . Below we prove that the results of termination,
soundness, and completeness mentioned for the previous three lazy approaches
also hold in combination with arbitrary applications of this rule.

Modeling the previous refinements and exhaustive theory prop-
agation. Exhaustive theory propagation is modeled simply by assuming that
Theory Propagate is applied eagerly. As a particular case of the previous refine-
ment (arbirary applications of Theory Propagate), the aforementioned results
remain true.

3.3 Correctness of Abstract DPLL Modulo Theories

Definition 16. The Basic DPLL Modulo Theories system consists of the rules
Decide, Fail, UnitPropagate, and T -Backjump.



The Full DPLL system Modulo Theories, denoted by FT, consists of the Ba-
sic DPLL Modulo Theories rules and the rules of Theory Propagate, T -Learn,
T -Forget, and Restart.

The proofs of the following results are structured in the same way as the
ones given in Section 2.3 for the propositional case (see [NOT05] for details).
As before, a decision procedure is any derivation by the given rules using a
terminating strategy, and again we consider as final states, apart from FailState,
the ones of the form M || F that are final with respect to the four rules of Basic
DPLL Modulo Theories, but now in addition we require that the model M is
T -consistent. We provide here only one additional property, showing that such
final states can be effectively computed:

Property 17. If ∅ || F =⇒∗

FT M || F ′ and M is T -inconsistent, then either there
is a conflicting clause in M || F ′, or else T -Learn applies to M || F ′, generating a
conflicting clause.

Theorem 18.

1. If ∅ || F =⇒∗

FT FailState then F is T -unsatisfiable.

2. If ∅ || F =⇒∗

FT S where S is final with respect to Basic DPLL modulo
theories and M is T -consistent, then M is a T -model of F .

Theorem 19 (Termination). Any derivation ∅ || F =⇒FT S1 =⇒FT . . . by
the Full DPLL system modulo theories is finite, if it contains only finitely many
consecutive T -Learn and T -Forget steps, and between every two Restart steps,
either there are more steps by Basic DPLL Modulo Theories than between the
previous two Restart steps, or else a new clause has been learned that is never
forgotten in D.

4 The DPLL(T) approach

In this section we shortly describe the DPLL(T ) approach for SAT Modulo The-
ories [GHN+04,NO05b]. It is based on a general DPLL engine, called DPLL(X),
that is not dependent on any particular theory T . Instead, it is parameterized by
a solver for a theory T of interest. A system DPLL(T ) for deciding the satisfia-
bility of CNF formulas in a theory T is produced by instantiating the parameter
X with a module Solver

T
that can handle conjunctions of literals in T . The basic

idea is similar to the CLP (X) scheme for constraint logic programming: provide
a clean and modular, but at the same time efficient, integration of specialized
theory solvers within a general-purpose engine, in our case one based on DPLL.

The concrete DPLL(T ) scheme and its architecture and implementation pre-
sented here combine the advantages of the eager and lazy approaches to SMT.
On the one hand, experiments for several different theories reveal that, as soon as
the theory predicates start playing a significant role in the formula, our DPLL(T )
approach outperforms all others. On the other hand, DPLL(T ) has the flexibility



of the lazy approaches: more general logics can be dealt with by simply plugging
in other solvers into our general DPLL(X) engine, provided that these solvers
conform to a minimal interface.

Here we describe two versions of the DPLL(T ) approach, namely with and
without exhaustive theory propagation. For the first case, in [NO05b] an effi-
cient exhaustive solver for difference logic is described. For some other logics,
such as the logic of Equality with Uninterpreted Functions (EUF, see Exam-
ple 13), exhaustive theory propagation is not the best DPLL(T ) approach. Our
experiments with EUF revealed that detecting exhaustively all negative equality
consequences is very expensive, whereas all positive equalities can be propagated
efficiently by means of a congruence closure algorithm [DST80]. In [NO03] a mod-
ern incremental, backtrackable congruence closure algorithm for this purpose is
described, and progressively more efficient ways of retrieving explanations in this
context are described in [dMRS04,ST05,NO05c].

4.1 DPLL(T ) with exhaustive theory propagation

For the initial setup of DPLL(T ), Solver
T

reads the input CNF, stores the list
of all literals occurring in it, and hands it over to DPLL(X), who treats it as a
purely propositional CNF. After that, DPLL(T ) implements the rules as follows:

• At each state M || F , both DPLL(X) and Solver
T

are aware of the current
M . Each time DPLL(X) communicates to Solver

T
that a literal l is added

to M , (e.g., due to UnitPropagate or to Decide), Solver
T

answers with the
list of all literals of the input formula that are new T -consequences. Then,
for each one of these consequences, Theory Propagate is immediately applied
by DPLL(X). Note that hence M never becomes T -inconsistent.

• If Theory Propagate is not applicable, then UnitPropagate is eagerly applied
by DPLL(X) (this is implemented using the two-watched-literals scheme).

• DPLL(X) applies Fail or T -Backjump if a conflicting clause is detected.
T -Backjump works as explained in Example 6, but there is a difference: a
literal l at a node in the graph can now also be due to an application of
Theory Propagate. Hence, building the graph requires that Solver

T
must be

able to recover a (preferrably small) subset of literals of M that T -entailed l.
This is done by the Explain(l) operation provided by Solver

T
. It is the same

operation as for providing explanations in the lazy approach, cf. Example 13.
• Immediately after each T -Backjump application, the T -Learn rule is applied

for learning the backjump clause. This clause is always a T -consequence of
the current formula. As explained in Subsection 3.1 for exhaustive theory
propagation, theory lemmas (clauses C such that ∅ |=T C) are not learned,
since this is useless.

• After each backjump has taken place in DPLL(X), it tells Solver
T

how
many literals of the partial interpretation have been unassigned, which allows
Solver

T
to undo them.

• In our current implementation, DPLL(X) applies Restart when certain sys-
tem parameters reach some prescribed limits, such as the number of conflicts
or lemmas, the number of new units derived, etc.



• In our current implementation, T -Forget is applied by DPLL(X) after each
restart (and only then), removing at least half of the lemmas according to
their activity (number of times involved in a conflict since last restart). The
500 newest lemmas are not removed.

• DPLL(X) applies Decide only if none of Theory Propagate, UnitPropagate,
Fail or T -Backjump is applicable. We currently use a heuristic for chosing
the decision literal as in BerkMin [GN02].

4.2 DPLL(T ) with non-exhaustive theory propagation

• Each time DPLL(X) adds a literal l to M , Solver
T

either indicates that M

has become T -inconsistent, or, otherwise, it returns a (possibly incomplete)
list of T -consequences to which Theory Propagate is immediately applied
by DPLL(X) (as in the exhaustive case). T -inconsistencies are treated by
DPLL(X) as described in Subsection 3.2 for modeling with an on-line SAT
solver: if there is a subset {l1, . . . , ln} of M that becomes T -inconsistent by
adding l to it, the corresponding theory lemma ¬l1∨. . .∨¬ln ∨¬l is learned,
and used as a backjump clause in a T -Backjump step.

• As before, if Theory Propagate is not applicable, then UnitPropagate is eagerly
applied by DPLL(X), and Fail or T -Backjump are applied if a conflicting
clause C is detected. After each T -Backjump application, Solver

T
is notified

for unassigning literals, and T -Learn is applied for learning the backjump
clause. Also Decide (only lazily) and Restart are applied as before.

• T -Forget is also applied as in the exhaustive case, but in this case among the
(less active) lemmas that are removed there are also theory lemmas.

5 The BarcelogicTools

In this section we describe BarcelogicTools, a set of logic-based tools developed
by our research group in Barcelona. The development of the BarcelogicTools is
funded by the Spanish Ministry of Education and Science (TIN2004-03382), as
well as by several private sources. The intended applications of BarcelogicTools
range from hardware and software verification to industrial combinatorial opti-
mization problems (planning, scheduling). Most of the tools are built around a
state-of-the-art SAT solver, and there is also a DPLL(X) engine and a number
of theory solvers that can be combined forming different DPLL(T ) systems.

5.1 SMT inside BarcelogicTools

Currently, BarcelogicTools supports difference logic over the integers or the re-
als, equality with uninterpreted function symbols (EUF) and the interpreted
functions symbols predecessor and successor, or combinations of these theories.
More theory solvers for, e.g., linear integer and real arithmetic, the theory of
arrays, and bit vectors are under development.

The system is written in C. Apart from the parser and the CNF translator,
three are the main components of the system.



1. Its DPLL(X) engine has some 3500 lines of source code. It is based on
the DPLL procedure and implements state-of-the-art techniques such as the
two-watched literal scheme, 1UIP learning scheme and VSIDS-like decision
heuristics, but does not present any significant novelty wrt. state-of-the-art
SAT solvers.

2. The solver for EUF (some 4000 lines) is an extension of a congruence clo-
sure algorithm. Apart from determining the satisfiability of a given set of
equalities and disequalities E, it can detect that some literals in the origi-
nal formula are entailed by E. In addition, for each such literal the solver
can compute a small subset of E of which the literal is already a logical
consequence. More details can be found at [NO03,NO05c].

3. The solver for difference logic (1400 lines) can be seen an extension of a
shortest-path algorithm aimed at determining, given a consistent set of dif-
ference constraints S, all literals in the original formula that are logically
entailed by S. For each of these consequences, the solver can compute a min-
imal (wrt set inclusion) subset of S from which the literal is also entailed.
For further details see [NO05b].

The effectivity of our approach was shown at the 2005 SMT Competition
[BdMS05]. A large collection of benchmarks (around 1300) coming from diverse
areas such software and hardware verification, bounded model checking, finite
model finding, or scheduling were classified, according to the underlying theory
or to some syntactic restrictions, into the 7 divisions of which the competition
consisted. For each division, around 50 benchmarks were randomly chosen and
given to each entrant with a time limit of 10 minutes per benchmark.

One single version of BarcelogicTools, our DPLL(T) implementation as de-
scribed in Section 4, entered (and won) all four divisions for which it had a theory
solver: EUF, IDL and RDL (integer and real difference logic), and UFIDL (com-
bining EUF and IDL). The same Among the competitors were well-known SMT
solvers like SVC [BDL96], CVC [BDS02], CVC-Lite [BB04], MathSAT [BBA+05]
and the very recent successors of ICS [FORS01], called Yices (by Leonardo de
Moura) and Simplics (by Dutertre and de Moura). For each division, the results
of the best three systems are given in the following table, where Time is the
total time for the solved problems:

top-3 systems # Problems solved Time (secs.)
BarcelogicTools 39 1758.2

EUF (50 problems): Yices 37 1801.4
MathSAT 33 2186.2
BarcelogicTools 41 940.8

RDL (50 pbms.): Yices 37 1868.0
MathSAT 37 2608.0
BarcelogicTools 47 1131.2

IDL (51 pbms.): Yices 47 1883.2
MathSAT 46 1295.4
BarcelogicTools 45 305.2

UFIDL (49 pbms.): Yices 36 1989.8
MathSAT 22 1055.5



5.2 Ad-Hoc Theory Combination and UFIDL

Perhaps the most remarkable results obtained by BarcelogicTools in the SMT
Competition are the ones for the UFIDL division, where problems contain both
uninterpreted functions and difference logic atoms, interpreted with respect to
a background theory T of the integers. That is, atoms can be equalities s = t,
or atoms of the form s − t ≤ k, where s and t are ground terms built over
uninterpreted symbols, and k is a concrete integer (apart from ≤, also > may
appear).

Many general results exist for the modular combination of decision proce-
dures, à la Shostak, or à la Nelson-Oppen [Sho84,NO79]. But we believe that
for certain classes of problems it is better to apply a more ad-hoc combination
of theories. One particular example appears to be this combination of EUF and
IDL.

Our procedure proceeds as follows. It first checks whether the input formula
contains some ordering predicate (≤ or <).

– If this is the case, first all function symbols are removed by means of Ack-
ermann’s reduction [Ack54]: for each pair of occurrences in the formula of
terms of the form f(s1, . . . , sn) and f(t1, . . . , tn), a monotonicity clause

s1 = t1 ∧ . . . ∧ sn = tn −→ f(s1, . . . , sn) = f(t1, . . . , tn)
is added. After that, the equality predicate can be encoded as an equivalence
relation (i.e., not any more as a congruence relation). This can be done by
simply considering s = t as a difference logic atom (e.g., as s ≤ t ∧ t ≤ s),
and hence only a theory solver for difference logic needs to be used.

– If the input formula contains no ordering predicates ≤ or <, an EUF solver
using the congruence closure algorithm of [NO03] is used. Its extension with
integer offsets for dealing with the symbols predecessor and successor (also
described in [NO03]) allows for expressing literals of the form s − t = k as
equalities s = t + k.

Even if there are no ordering predicates, if the number of function symbols
is reasonably small it is sometimes still useful to add the monotonicity clauses
of Ackermann’s transformation. The reason is that it allows one to detect some
propagations of negative equalities that would remain undetected in the non-
exhaustive theory propagation approach used by BarcelogicTools for EUF. More
precisely, it is not detected in general that f(a) 6= f(b) implies a 6= b, which will
be detected in the presence of the monotonicity clause a 6= b ∨ f(a) = f(b).

5.3 The role of Theory propagation in BarcelogicTools

In our experience, the overhead produced by theory propagation is usually com-
pensated by a significant reduction of the search space. In [GHN+04] we already
gave extensive experimental results showing its effectivity inside our DPLL(T )
approach for EUF logic, and in [NO05b] a large amount of experiments are dis-
cussed for difference logic, with additional emphasis on the good scaling proper-
ties. Hence it is not surprising that new SMT solvers such as Yices and MathSAT



also apply theory propagation. In fact, the most recent versions of MathSAT in-
clude exactly our congruence closure algorithms with theory propagation and
Explain [NO03,NO05c] for its EUF solver.

In the following two figures, BarcelogicTools with and without theory propa-
gation is compared in terms of runtime (in seconds) and number of decisions on a
typical real-world difference logic suite (fisher6-mutex) consisting of 20 problems
of increasing size.
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The figures show the typical behaviour on the larger problems: both the
runtime and the number of decisions are orders of magnitude smaller in the
version with theory propagation. In both cases the DPLL(X) engine used was
exactly the same, although in the exhaustive theory case some parts of the code
never applied (e.g., theory lemma learning).

Of course, theory propagation may not pay off in certain specific problems
where the theory plays an insignificant role, i.e., where reasoning is done almost
entirely at the boolean level. Such situations can be detected on the fly by
computing the percentage of conflicts which are produced in part due to theory
propagation. If this number is very low, theory propagation can be switched off
automatically in order to speed up the computation.

5.4 Comparison of BarcelogicTools with the Eager Approach

For completeness, we finally compare DPLL(T ) with UCLID, the best-known
tool implementing the eager translation approach to SMT [LS04]. Three typical
series of benchmarks of difference logic are considered, coming from different
methods for pipelined processor verification given in [MS05a,MS05b]. Results of
runtimes in seconds (with one hour timeout) are given using Siege [Rya04] as
the final SAT solver for UCLID, since it gave the best results.

UCLID DPLL(T) UCLID DPLL(T) UCLID DPLL(T)

6 stage 258 1 3596 5 19 1
7 stage 835 3 >3600 8 58 1
8 stage 3160 15 >3600 18 226 1
9 stage >3600 23 >3600 18 664 1
10 stage >3600 54 >3600 29 >3600 2



6 Conclusions

We have shown that the Abstract DPLL formalism introduced here can be very
useful for understanding and formally reasoning about a large variety of DPLL-
based procedures for SAT and SMT.

In particular, we have used it here for describing two variants of a new,
efficient, and modular approach for SMT, called DPLL(T ). New theories can
be dealt with by DPLL(T ) by simply plugging in new theory solvers, which
must only be able to deal with conjunctions of theory literals and conform to a
minimal and simple set of additional requirements.

Current work inside the BarcelogicTools concerns the development of more
theory solvers, for, e.g., linear integer and real arithmetic, the theory of arrays,
and bit vectors, as well as the development of other logic-related tools.

Also, a new DPLL(X1, . . . ,Xn) engine is being developed for automatically
dealing with the combination of theories, i.e., essentially standard theory solvers
for theories T1, . . . , Tn can be used for obtaining a system DPLL(T1, . . . , Tn). We
aim at an approach for doing this in a way similar to the one of [BBC+05], but
where part of the equality reasoning takes place inside the DPLL(X1, . . . ,Xn)
engine.
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