
Cache Performance of SAT Solvers: A Case
Study for Efficient Implementation of

Algorithms

Lintao Zhang and Sharad Malik

Department of Electrical Engineering,
Princeton University, Princeton NJ 08544, USA

{lintaoz,sharad}@ee.princeton.edu

Abstract. We experimentally evaluate the cache performance of dif-
ferent SAT solvers as a case study for efficient implementation of SAT
algorithms. We evaluate several different BCP mechanisms and show
their respective run time and cache performances on selected benchmark
instances. From the experiments we conclude that cache friendly data
structure is a key element for efficient implementation of SAT solvers.
We also show empirical cache miss rates of several modern SAT solvers
based on the Davis-Logemann-Loveland algorithm with learning and
non-chronological backtracking. We conclude that recently developed
SAT solvers are much more cache friendly in data structures and al-
gorithm implementations compared with their predecessors.

1 Introduction

Boolean Satisfiability (SAT) solvers are beginning to grow out of academic cu-
riosity to become a viable industrial strength reasoning and deduction engine
for production tools [4]. As the algorithms of SAT solving mature, the imple-
mentation issues begin to show their importance as proven by the recent devel-
opment of solvers such as Chaff [12] and BerkMin [7]. Similar to earlier SAT
solvers such as GRASP [11], relsat [1] and sato [21], these solvers are based
on the Davis-Logemann-Loveland algorithm [6] and incorporate learning and
non-chronological backtracking proposed by [11] and [1]. By combining efficient
design and implementation together with careful tuning of the heuristics, these
new solvers are often orders of magnitude faster than their predecessors.

Even though it is widely acknowledged that the recent SAT solvers gain
considerable speed up due to careful design and implementation, there are few
quantitative analysis to support the argument. As SAT solver design becomes
more and more sophisticated, more detailed information about the solving pro-
cess are needed to squeeze the last bit of efficiency out of the SAT solvers because
a small speed up of the engine could translate to days of savings for industrial
tools in the field. In order to optimize the SAT solvers, it is necessary to have
quantitative analysis results on various aspects of the SAT solving process.

In this paper, we try to analyze one aspect of the SAT solvers, namely cache
performance of BCP operation, to illustrate the importance of careful design of



data structures and algorithms. It is well known that for current computer archi-
tecture, memory hierarchy plays extremely important role on the performances of
the computer systems. Algorithms designed with cache in mind can gain consid-
erable speedup over non-cache aware implementations as demonstrated by many
authors (e.g. [9, 19]). The importance of cache performance for SAT solvers is
first discussed by the authors of SAT solver Chaff [12]. However, no empirical
data is available to support the discussion. In this paper, we use a cache analysis
tool to quantitatively illustrate the gains achieved by careful designed algorithms
and data structures.

The paper is organized as follows. In Section 2, we describe several mecha-
nisms to perform Boolean Constraint Propagation and their implications on the
performance of the SAT solver. We evaluate the cache performances of these
mechanisms under the same solver framework to illustrate the importance of
algorithm design. In section 3, we evaluate the cache performances of several
different SAT solvers that are based on the same DLL with learning principle.
Experiments show that these solvers vary greatly in their cache performance.
Finally we draw our conclusion in Section 4.

2 Cache Performance of Different BCP mechanisms

The Davis-Logemann-Loveland procedure [6] for SAT solving is a branch and
search algorithm. One of the main operations of such a procedure is Boolean
Constraint Propagation (BCP). After a variable is assigned, the solver needs to
propagate the effect of the assignment and find the unit and conflicting clauses
that may occur as a consequence of the variable assignment. Conflicting clauses
make the solver backtrack from current search space, while unit clauses imply free
variables. The process of iteratively assigning values to variables implied by unit
clauses until no unit clause exists is called the Boolean Constraint Propagation
(BCP).

During a typical SAT solving process, BCP usually takes the most significant
part of the total run time. Therefore, BCP algorithms usually dictate the data
structure of the clause database and the overall organization of the solver. The
implementation of BCP is most essential to the efficiency of the overall imple-
mentation of the SAT solvers1. In this section, we discuss some popular BCP
algorithms and empirically show their implications on the overall efficiency of
the SAT solver.

A simple and intuitive implementation for BCP is to keep counters for each
clause. This scheme is attributed to Crawford and Auton [5] by [20]. Similar
schemes are subsequently employed in many solvers such as GRASP [11], rel-
sat [1], satz [10] etc. Counter-based BCP has several variations. The simplest
counter-based algorithm can be found in solvers such as GRASP [11]. In this
scheme, each clause keeps two counters, one for the number of value 1 literals in
the clause and one for the number of value 0 literals. Each clause also keeps the
1 In this paper we are only concerned with implementation issues. Improvements in

algorithm are often more important, but that’s not what we are discussing here.



count of total number of literals in it. Each variable has two lists that contain all
the clauses where the variable appears as a positive and negative literal respec-
tively. When a variable is assigned a value, all of the clauses that contain the
literals of this variable will have their two counters updated. The data structure
of this scheme is like the following:

struct Clause {
int literal_array [];
int num_total_literal;
int num_value_1_literal_counter;
int num_value_0_literal_counter;

};
struct Variable {

int value;
Clause pos_occurrence_array [];
Clause neg_occurrence_array [];

};
struct ClauseDatabase {

int num_clauses;
Clause clause_array [];
int num_variables;
Variable variable_array [];

};

After the variable assignment, there are three cases for a clause with updated
counter: if the value 0 count equals to the total number of literals, then the
clause is a conflicting clause. If the value 0 count is one less than the total
number of literals in the clause and the value 1 count is 0, then the clause is
a unit clause. Otherwise, the clause is neither conflicting nor unit, we do not
need to do anything. If a clause is found to be a unit clause, the solver has to
traverse the entire array of the literals in that clause to find the free (unassigned)
literal to imply. Given a Boolean formula that has m clauses and n variables,
assuming on average each clause has l literals, then in the formula each variable
on average occurs lm/n times. Using this BCP mechanism, whenever a variable
gets assigned, on the average lm/n counters need to be updated. Since in this
scheme each clause contains two counters, we will call this BCP scheme the
2-Counter Scheme.

An alternative implementation can use only one counter for each clause.
The counter would be the number of non-zero literals in the clause. The data
structure for the clause in this scheme is:

struct Clause {
int num_total_literals;
int literal_array [];
int num_value_non_0_literal_counter;

};



Notice that the number of total literals in a clause do not change during the
search. We can save the storage for it by using some tricks to mark the end of
the literal array. For example, we can set the highest bit of the last element in
the array to 1 to indicate the end of the array.

In this scheme, when a variable is assigned a value, we only need to update
(reduce by 1) all the counters of clauses that contain the value 0 literal of this
variable. There is no need to update clauses that contain the value 1 literal of
this variable because the counters (number of non-zero literal) do not change.
After the assignment, if a clause’s non-zero counter is equal to 0, then the clause
is conflicting. If it is 1, the solver needs to traverse the literal array to find the one
non-zero literal. There are two cases: if the non-zero literal is a free (unassigned)
literal, then the clause is a unit clause and the literal is implied; otherwise it
must already evaluate to 1 and the clause is satisfied, so we need to do nothing.

This scheme essentially cuts the number of clauses that need to be updated
by half. Whenever a variable gets assigned, on the average only lm/2n counters
need to be updated. However, it does need to traverse clauses more often than
the first scheme. If a clause has one literal evaluating to 1 and all the rest evaluate
to 0, the previous BCP scheme will know that the clause is already satisfied and
no traversal is necessary. In this scheme, the solver still needs to traverse the
clause literals because it does not know whether the literal evaluates to 1 or is
unassigned. Because in this scheme each clause contains only one counter, we
will call it the 1-Counter Scheme.

Notice that in the data structure described above, the counters associated
with each clause are stored within the clause structure. This is actually not
good from cache performance point of view. When a variable is assigned, many
counters need to be updated. If the counters are located far from each other in
the memory, the updates may cause a lot of cache misses. Therefore, to improve
the data locality, the counters should be located as close as possible with each
other in the memory. It is possible to allocate a separate continuous memory
space to store the counters. In that case, the data structure becomes:

struct Clause {
int literal_array [];
int num_total_literal;

};
struct ClauseDatabase {

int num_clauses;
Clause clause_array [];
int clause_non_0_counter_array [];
int num_variables;
Variable variable_array [];

};

In this way, we move the counters for non-zero literals in each clause into a
array in the ClauseDatabase structure. We will call this alternative data struc-
ture to implement the 1-Counter Scheme as the Compact 1-Counter Scheme.



From a software engineering point of view, the compact 1-Counter Scheme is
not a good idea because it destroy the nice object oriented structure of a clause.
However, as we will see in the experimental results, this practice improves the
overall efficiency of the solver greatly. For large software projects, these kinds of
“hack” should be avoided in most cases because of the maintenance issues. But
for small kernel engines like a SAT solver, such hacks can often be tolerated to
improve performance.

Counter-based BCP mechanisms are easy to understand and implement, but
they are not the most efficient ones. Modern SAT solvers usually incorporate
learning [11, 1] in the search process. Learned clauses often contain many lit-
erals. Therefore, the average clause length l is quite large during the solving
process, thus making a counter-based BCP engine relatively slow. Moreover,
when backtracking from a conflict, the solver needs to undo the counter assign-
ments for the variables unassigned during the backtracking. Each undo for a
variable assignment will update lm/n or lm/2n counters on average depending
on the schemes employed.

In [12], the authors proposed a BCP algorithm called 2-literal watching
that tries to address these two problems2. For each clause 2-literal watching
scheme keeps track of two special literals called watched literals. Each vari-
able has two lists containing pointers to all the watched literals corresponding
to it in either phases. We denote the lists for variable v as pos_watched(v)
and neg_watched(v). Initially the watched literals are free. When a variable
v is assigned value 1, for each literal p pointed to by a pointer in the list of
neg_watched(v), the solver will search for a literal l in the clause containing p
that is not 0. There are four cases that may occur during the search:

1. If there exists such a literal l and it is not the other watched literal, then
we remove pointer to p from neg_watched(v), and add pointer to l to the
watched list of the variable of l. We refer to this operation as moving the
watched literal, because in essence one of the watched pointers is moved from
its original position to the position of l.

2. If the only such l is the other watched literal and it is free, then the clause
is a unit clause, with the other watched literal being the unit literal.

3. If the only such l is the other watched literal and it evaluates to 1, then we
need to do nothing since the clause is satisfied.

4. If all literals in the clause is assigned value 0 and no such l exists, then the
clause is a conflicting clause.

2 Another BCP scheme, called head/tail list scheme [20], also claims to have improve-
ments upon counter-based BCP schemes. Unfortunately, there seems to be no refer-
ence implementation for this scheme. The best solver [7] that employs this scheme is
a closed-source solver, therefore, no implementation detail is available. Our in-house
developed code that use this scheme cannot validate the claim of it significantly
outperforming counter-based schemes. Therefore, we choose not to include the eval-
uation of this scheme in this paper because our code may not be representative of
the best implementations available.



Unlike counter-based BCP mechanisms, undoing a variable assignment during
backtrack in 2-literal watching scheme takes constant time [12]. As each clause
has only two watched literals, whenever a variable is assigned a value, on the
average the state of only m/n clauses needs to be updated assuming watched
literals are distributed evenly in either phases. However, each update (i.e. moving
the watched literal) is much more expensive than updating a counter as in the
counter-based scheme.

To evaluate the BCP mechanisms discussed here. We implemented all of
them under a same solver framework based on the SAT solver zchaff [22]. Zchaff
already has the data structure optimized for cache performance. Therefore, we
can argue that the data presented here is indicative of the characteristics of each
algorithms. In the original zchaff code, different BCP mechanisms may lead the
solver into different search paths because the variables may be implied in different
orders by different implication mechanisms. We modify the zchaff code such that
the solver will follow the same search path regardless of the implication method.
This modification incur a negligible amount of overhead. Also, because of the
modification, the search path are not the same as the default zchaff solver, which
is evaluated in the next section.

The instances we use for the evaluation are chosen from various application
domains with various sizes and run times to avoid biasing the result3. They
include instances from microprocessor verification [18] (2dlx), bounded model
checking (bmc [17], barrel6 [3]), SAT planning [8] (bw large.d), combinational
equivalence checking(c5315), DIMACS benchmarks (hanoi4), FPGA routing [14]
(too large) as well as a random 3-SAT instance with clause-variable ration of 4.2
(rand)4. Table 1 shows the statistics about the instances and the solving process
common to all of the deduction mechanisms. These statistics include the number
of variables, the number of original and learned clauses and literals as well as the
ratio of literals to clauses. We also show the number of implications (i.e. variable
assignment) needed to solve the problem. All of the experiments are carried out
on a Dell PowerEdge 1500sc computer with 1.13Ghz PIII CPU and 1G main
memory. The PIII CPU has a separated level-1 cache of 16K data cache and
16K instruction cache. The level-2 cache is a unified 512K cache. Both L1 and
L2 caches have 32byte cache line with 4-way set associativity.

We use valgrind [15], an open source cache simulation and memory debug-
ging tool, to perform the cache simulation. The simulated CPU is the same as
the CPU we run the SAT solver on. The simulation results are shown in Table 2.
In the table, we show the run time (not simulation time) to solve each instance,
number of instructions executed (in billions), number of data access (in billions)

3 Since the topic of this paper is implementation, which is of more interest to real world
applications than to algorithm researches, therefore, the benchmarks we choose are
mainly from real world instead of randomly generated. Due to the same reason we
use zchaff instead of a regular (no learning) DLL algorithm because most real world
applications use solvers similar to the algorithms used by zchaff.

4 The random 3-SAT instance has a clause to literal ratio less than 3 because dupli-
cated literals of the same variable in a clause are removed.



Instance Num. Orig Orig Orig Lrned Lrned Lrned Num.

Name Vars Cls Lits(k) Lits/Cls Cls Lits(k) Lits/Cls Impl(k)

2dlx cc mc ex bp f 4583 41704 118 2.83 13756 1180 85.78 3041

barrel6 2306 8931 25 2.76 34416 2489 72.32 12385

bmc-galileo-9 63624 326999 833 2.55 2372 80 33.94 4629

bw large.d 5886 122412 273 2.23 14899 399 26.75 11110

c5315 5399 15024 35 2.30 83002 7061 85.07 30174

hanoi4 718 4934 12 2.47 4578 259 56.47 364

rand 200 830 2 2.98 25326 500 19.73 1671

too largefs3w8v262 2946 50416 271 5.38 71772 2847 39.67 9466

Table 1. Statistics of the Instances Used to Evaluate BCP Mechanisms

and cache miss rates for data accesses. The cache misses for instructions are
usually negligible for SAT solvers and therefore are not shown in the table.

From the table we find that different implementations of the BCP mechanism
have significant impact on the runtime of the SAT solver. Compare the best
performing mechanism, i.e. the 2-literal watching scheme, with the worst scheme,
i.e. the 2-Counter scheme, we see that for some benchmarks there is a speed
difference of almost 20x. Comparing the 2-Counter Scheme and the 1-Counter
Scheme, we find that the 1-Counter scheme reduces memory access by a small
amount but the cache miss rates for the 1-Counter scheme is significantly smaller
than that of the 2-Counter scheme. This validate our suspicion that the counter
updates are the main sources of cache misses. By reducing the counter updates
by half, we reduce the cache miss rate by almost a half. Because the 1-Counter
Scheme needs more checks for unit clauses as compared with the 2-Counter
scheme, the total memory access is not reduced by as much. However, these
memory accesses do not cause many cache misses. Comparing the Compact 1-
Counter Scheme with the regular 1-Counter scheme, we find that even though the
number of the instructions executed and the data accesses are almost the same,
the locality of counter accesses improves the cache miss rates of the Compact 1-
Counter Scheme significantly. Therefore, the actual run time is also improved by
as much as 2x. This again validate our previous conjecture, i.e. counter updates
cause most of the cache misses. The 2-Literal Watching scheme performs best
among these schemes, with significant smaller number of instructions executed
as well as the lowest number of data accesses. Moreover, it has the lowest cache
miss rates.

3 Cache Performance of Different SAT Solvers

In the previous section, we evaluated several different BCP mechanisms and
showed their respective cache performances. In this section, we evaluate the
cache behavior of several existing SAT solvers. In the past, SAT solvers were often
designed as a validation for various algorithms proposed by academic researchers.



Instance RunTime 109 Instr. 109 Data L1 Data L2 Data

Name (s) Executed Accesses Miss Rate Miss Rate

2dlx cc mc ex bp f 20.09 10.24 4.78 13.54% 16.02%

barrel6 102.15 48.04 22.49 15.09% 16.61%

bmc-galileo-9 16.60 6.83 3.26 5.69% 56.87%

bw large.d 118.71 28.63 12.82 14.44% 47.16%

c5315 427.47 169.53 81.21 16.48% 23.39%

hanoi4 1.79 1.63 0.78 12.50% 1.16%

rand 1 96.28 39.20 18.36 19.76% 19.09%

too largefs3w8v262 730.49 171.81 79.58 20.34% 36.73%

(a) 2-Counter Scheme

2dlx cc mc ex bp f 14.47 8.43 4.26 8.76% 15.20%

barrel6 67.61 37.78 19.52 9.08% 15.98%

bmc-galileo-9 12.25 6.43 3.17 3.49% 56.57%

bw large.d 49.09 22.53 11.06 7.22% 28.87%

c5315 268.18 123.82 66.55 11.91% 21.28%

hanoi4 1.47 1.31 0.68 8.32% 1.59%

rand 1 46.73 23.70 13.20 13.22% 13.00%

too largefs3w8v262 329.31 103.99 57.29 13.45% 32.25%

(b) 1-Counter Scheme

2dlx cc mc ex bp f 12.74 8.12 4.31 5.86% 17.48%

barrel6 52.88 36.18 19.77 6.07% 13.69%

bmc-galileo-9 11.55 6.36 3.20 3.22% 55.21%

bw large.d 39.84 21.97 11.21 5.23% 27.32%

c5315 172.82 116.22 66.92 7.13% 18.10%

hanoi4 1.35 1.25 0.69 4.13% 2.42%

rand 1 22.67 21.81 13.22 6.33% 7.95%

too largefs3w8v262 141.19 96.29 57.48 8.29% 18.93%

(c) Compact 1-Counter Scheme

2dlx cc mc ex bp f 7.26 5.48 2.13 3.83% 14.52%

barrel6 30.35 21.83 8.31 3.79% 12.90%

bmc-galileo-9 8.12 5.90 2.68 2.16% 54.37%

bw large.d 25.36 17.10 6.97 3.44% 19.82%

c5315 66.70 45.20 17.78 4.27% 14.44%

hanoi4 0.87 0.79 0.31 3.25% 2.75%

rand 1 5.35 3.78 1.58 4.17% 7.66%

too largefs3w8v262 41.62 25.99 10.28 3.85% 22.83%

(d) 2 Literal Watching Scheme

Table 2. Memory Behavior of Different BCP Mechanisms



Therefore, little emphasis was placed on implementation issues. Recently, as SAT
solvers become more and more widely used as a viable deduction engine, more
and more emphasis has been placed on implementing them efficiently. Here,
we evaluate several SAT solvers that are based on the same principle proposed
by [11, 1].

The solvers being evaluated includes some of the most widely used SAT
solvers such as GRASP [11], relsat [1] and SATO [21]. We also included three
winners of the most recent SAT solver competition [16] on structured instances:
zchaff [22], BerkMin [7] and limmat [2]. JeruSAT [13] is a SAT solver that was de-
veloped most recently. These solvers are very similar in the algorithm employed.
For example, they all use unit clause implication in deduction and perform non-
chronological backtracking and learning. The major algorithmic difference of
them are decision strategies and clause deletion polices. Still, we want to point
out that cache performance is not the only indication of the overall quality of
the implementation because different algorithms employed may dictate different
memory behavior.

Due to different branching heuristics used, these solvers behave drastically
different on different benchmark instances. Therefore, it is unfair to compare
their actual performance by solving a small number of SAT instances. In order
to concentrate on the cache behavior of the solvers, we choose some difficult
SAT instances and let each solver run under valgrind for 1000 seconds5. We
make sure none of the solvers can solve any of the test instances during the
run time in order to focus on cache behaviors independent of the total run
time. Except for relsat, all other solvers use default parameters. We use option
-p0 on relsat to disable the time consuming preprocessing. The benchmarks
used includes SAT instances generated from bounded model checking [3] (barrel,
longmult), microprocessor verification [18] (9vliw, 5pipe), random 3-SAT (rand2)
and equivalence checking of xor chains (x1 40). The statistics of the benchmarks
we use are shown in the first two columns of Table 3.

The results of cache miss rates for different solvers are listed in Table 3.
From the table we find that earlier SAT solvers such as GRASP, relsat and
SATO performs poorly in memory behavior. The solvers would be somewhat
around 3x slower than the new contenders such as Chaff and BerkMin solely
due to the high cache misses. One of the reasons for the high cache miss rates
of GRASP and relsat is due to their use of counter-based BCP mechanism. But
compare their cache miss rates with the best that can be achieved by counter-
based BCP mechanisms shown in previous section, we find that they are still
under par even considering their BCP mechanisms6. SATO use the same BCP
mechanism as BerkMin, but BerkMin seems to be much better optimized in cache
performance. One benchmark SATO performs well is the xor chain verification
instance x1 40. The reason is because this is a very small instance and SATO has

5 Programs running under valgrind are around 30 times slower than on the native
machine.

6 The benchmarks used are not exactly the same for these two experiments, but the
numbers should be representative of their respective behavior.



Instance Num. Num. GRASP SATO relsat
Name Variables Clauses D L1% D L2% D L1% D L2% D L1% D L2%

x1 40 118 314 23.72 75.22 1.72 0.00 1.73 0.01

rand 2 400 1680 25.05 60.38 36.79 0.57 11.14 0.12

longmult12 5974 18645 20.86 57.69 19.32 41.68 13.24 19.78

barrel9 8903 36606 21.22 51.73 21.62 55.55 15.73 19.14

9vliw bp mc 20093 179492 22.43 88.58 40.49 42.85 14.58 55.34

5pipe 9471 195452 31.14 81.74 36.22 4.22 15.38 33.39

Instance zchaff BerkMin Limmat JeruSAT
Name D L1% D L2% D L1% D L2% D L1% D L2% D L1% D L2%

x1 40 3.32 26.32 7.17 17.14 6.05 64.45 4.31 2.35

rand 2 6.58 23.46 7.63 11.25 5.83 44.83 5.66 14.90

longmult12 6.46 18.17 7.87 20.80 5.77 40.31 5.61 61.47

barrel9 6.62 33.43 10.98 32.04 7.58 34.39 5.55 54.22

9vliw bp mc 9.48 54.37 3.69 9.44 5.68 53.98 7.04 51.95

5pipe 6.14 21.54 5.31 18.51 6.45 46.12 6.49 42.66

Table 3. Memory Behavior of Different SAT Solvers

Instance Num. Num. zchaff BerkMin Limmat
Name Variables Clauses D L1% D L2% D L1% D L2% D L1% D L2%

2dlx 224920 3596385 11.47 91.22 7.38 69.12 6.00 74.01

pipe 64262 2291120 10.49 54.37 8.42 61.95 5.60 51.12

Table 4. Cache Performance of the Best SAT Solvers on Challenging Benchmarks

a very aggressive clause deletion heuristic. Therefore, SATO can fit the clause
database into the level-1 cache while other solvers cannot due to their more
tolerant clause deletion policies. The same reason explains the low cache miss
rates for relsat on x1 40 and both SATO and relsat’s low L2 miss rates for rand 2.
The newer SAT solvers such as zchaff, BerkMin, limmat and JeruSAT all have
relatively good cache behavior. Part of the reason for this is due to their better
BCP mechanisms, but better design and implementation also contribute to their
low cache miss rates.

As a final experiment we show the cache performance of zchaff, BerkMin
and Limmat: three state-of-the-art SAT solver’s cache performance on two very
large and challenging benchmarks. The benchmarks are obtained from Miroslav
Velev’s microprocessor verification problem [18]. They come from fvp-unsat-
3.0 (pipe 64 16) and SSS-Liveness-SAT-1.1 (2dlx cc ex bp f bug3) suite respec-
tively. These represent the cache performance of most challenging SAT instances
on the best SAT solvers available. We run each instance under valgrind for
10000 seconds. The results are shown in Table 4.



From Table 4 we find that as the formulas become very large, both level-1 and
level-2 cache miss rates for the solvers increase considerably. Among these three
solvers, zchaff is the oldest one while limmat is the newest. From these limited
experimental results it seems that the cache performances of the SAT solvers
are still improving incrementally on carefully designed SAT solvers, whether on
purpose or coincidentally. In current (and future) generation of microprocessors,
the speed difference of main memory (on the mother board) and L2 cache (on
die) tends to be large. Therefore, L2 miss penalty is quite high. From these
results we find that there are still a lot of space for improvements for future
efficient implementation of SAT solvers.

4 Conclusion

In this paper, we investigate the memory behavior of several different BCP mech-
anisms for Boolean Satisfiability Solvers. We find that different implementation
of BCP can significantly affect the memory behavior and overall efficiency of the
SAT solvers. From the experiments we conclude that cache friendly data struc-
ture is a key element for efficient implementation of SAT solvers. We also show
empirical cache miss rate data of several modern SAT solvers based on the Davis-
Logemann-Loveland algorithm with learning. We find that recently developed
SAT solvers are much more cache friendly compared with their predecessors. We
use this as a case study to illustrate the importance of algorithm implementa-
tion. Efficient implementation (not necessarily limited to cache behavior) is key
to the success of a modern SAT solver and should not be overlooked.

References

1. Roberto J. Jr. Bayardo and Robert C. Schrag. Using CSP look-back techniques to
solve real-world SAT instances. In Proceedings of the Fourteenth National Confer-
ence on Artificial Intelligence (AAAI’97), pages 203–208, 1997.

2. Armin Biere. Limmat sat solver. http://www.inf.ethz.ch/personal/biere/projects/limmat/,
2002.

3. Armin Biere, Alessandro Cimatti, Edmund M. Clarke, and Y. Zhu. Symbolic Model
Checking without BDDs. In Proceedings of Tools and Algorithms for the Analysis
and Construction of Systems (TACAS’99), number 1579 in LNCS, 1999.

4. Per Bjesse, Tim Leonard, and Abdel Mokkedem. Finding bugs in an alpha micro-
processor using satisfiability solvers. In Proceedings of 13th Conference on Com-
puter Aided Verification(CAV’01), 2001.

5. J. M. Crawford and L. D. Auton. Experimental results on the crossover point
in satisfiability problems. In Proceedings of the Eleventh National Conference on
Artificial Intelligence (AAAI’93), pages 21–27, 1993.

6. Martin Davis, George Logemann, and Donald Loveland. A machine program for
theorem proving. Communications of the ACM, 5(7):394–397, July 1962.

7. E. Goldberg and Y. Novikov. BerkMin: A fast and robust SAT-solver. In Design,
Automation, and Test in Europe (DATE ’02), pages 142–149, March 2002.

8. H. A. Kautz and B. Selman. Planning as satisfiability. In Proceedings of the Tenth
European Conference on Artificial Intelligence (ECAI’92), pages 359–363, 1992.



9. A. LaMarca and R.E. Ladner. The influence of caches on the performance of heaps.
ACM Journal of Experimental Algorithmics, 1, 1996.

10. Chu-Min Li and Anbulagan. Heuristics based on unit propagation for satisfiabil-
ity problems. In Proceedings of the Fifteenth International Joint Conference on
Artificial Intelligence (IJCAI’97), pages 366–371, Nagoya, Japan, August 23–29
1997.

11. João P. Marques-Silva and Karem A. Sakallah. GRASP - A New Search Algo-
rithm for Satisfiability. In Proceedings of IEEE/ACM International Conference on
Computer-Aided Design, pages 220–227, November 1996.

12. Matthew W. Moskewicz, Conor F. Madigan, Ying Zhao, Lintao Zhang, and Sharad
Malik. Chaff: Engineering an Efficient SAT Solver. In Proceedings of the 38th
Design Automation Conference (DAC’01), June 2001.

13. Alexander Nadel. Jerusat sat solver. http://www.geocities.com/alikn78/, 2002.
14. G. Nam, K. A. Sakallah, and R. A. Rutenbar. Satisfiability-based layout revisited:

Routing complex fpgas via search-based boolean sat. In Proceedings of Interna-
tional Symposium on FPGAs, Feburary 1999.

15. Julian Seward. Valgrind memory deubugger and cache simulator.
http://developer.kde.org/ sewardj/, 2002.

16. Laurent Simon, Daniel Le Berre, and Edward A. Hirsch.
Sat 2002 solver competition report. Available at
http://www.satlive.org/SATCompetition/onlinereport.pdf, 2002.

17. Ofer Strichman. Tuning sat checkers for bounded model-checking. In Proceedings
of Computer Aided Verification, 2000 (CAV’00), 2000.

18. M.N. Velev and R.E. Bryant. Effective use of boolean satisfiability procedures in
the formal verification of superscalar and vliw microprocessors. In Proceedings of
the 38th Design Automation Conference (DAC ’01), pages 226–231, June 2001.

19. L. Xiao, X. Zhang, and S. A. Kubricht. ‘improving memory performance of sorting
algorithms”. ACM Journal of Experimental Algorithmics, 5:1–23, 2000.

20. H. Zhang and M. E. Stickel. An efficient algorithm for unit propagation. In
Proceedings of the Fourth International Symposium on Artificial Intelligence and
Mathematics (AI-MATH’96), Fort Lauderdale (Florida USA), 1996.

21. Hantao Zhang. SATO: an efficient propositional prover. In Proceedings of the
International Conference on Automated Deduction (CADE’97), volume 1249 of
LNAI, pages 272–275, 1997.

22. Lintao Zhang. Zchaff sat solver. http://www.ee.princeton.edu/ chaff/zchaff.php,
2000.


