
Monterey, California
I C A P S 2 0 0 5

Tutorial on Directed Model

Checking

Stefan Edelkamp

Tilman Mehler

Shahid Jabbar

University of Dortmund, GERMANY

University of Dortmund, GERMANY

University of Dortmund, GERMANY

IC
A

P
S

0
5

TU3

Stefan Edelkamp

Tilman Mehler

Shahid Jabbar

University of Dortmund, GERMANY

University of Dortmund, GERMANY

University of Dortmund, GERMANY

ICAPS 2005
Monterey, California, USA
June 6-10, 2005

CONFERENCE CO-CHAIRS:
Susanne Biundo

Karen Myers

Kanna Rajan

University of Ulm, GERMANY

SRI International, USA

NASA Ames Research Center, USA

Cover design: L.Castillo@decsai.ugr.es

Tutorial on Directed Model

Checking

Tutorial on Directed Model Checking

Table of contents
Preface 3

Presentation 5
Stefan Edelkamp, Tilman Mehler, Shahid Jabbar

http://icaps05.icaps-conference.org/

Tutorial on Directed Model Checking

Preface

The tutorial is concerned with error-guided and counter-example driven exploration
in model checking as an increasingly important technology used mainly in the area of
software validation, but with a growing impact on the AI planning community.

Heuristic guided search techniques have first been proposed in the area of AI where
they have been used quite successfully in solving complex planning and scheduling pro-
blems. On the other hand, Model Checking has evolved into one of the most successful
verification techniques. Examples range from mainstream applications such as protocol
validation, software model checking and embedded systems verification to exotic areas
such as business workflow analysis, scheduler synthesis. Model checking technology
has also been proven to be effective in automated test case generation.

The sheer size of the reachable state space of realistic models imposes tremendous
challenges on the algorithmics of model checking technology. Complete exploration of
the state space is often unfeasible and approximations are needed. Also, the error trails
reported by depth-first search model checkers are often exceedingly lengthy – in many
cases they consist of mutliple thousands of computation steps which greatly hampers
error interpretation. In the meantime, state space exploration is a central aspect of AI
planning, and the AI planning community has a long and impressive line of research in
developing and improving search algorithms over very large state spaces under a broad
range of assumptions.

We study directed search in explicit state model checking. evaluate the combination
of heuristic search with bit-state hashing, and partial-order reduction, just to name a
few. We discuss approaches to symbolic model checking by studying BDD versions of
traditional AI exploration algorithms. One important focus is the exploration with abs-
traction databases. While some approaches integrate AI planning methods into a model
checker, we will also study the possibility of using planners to perform model checking
directly. Simple protocols have been successfully tested as benchmarks in international
planning competitions.

The term ”Directed Model Checking”was coined by an paper on the application of
heuristic search in the symbolic model checker checker mucke. Earlier work mainly
included best-first search-like search strategies for accelerating the search for concrete
type of errors in the model cheker Murphi. Since then the interest on applying AI-based
search techniques grew and was applied in different domains: Java and C++ programs,
real-time systems, hardware circuits. In some cases ressearch produced or extended
verification tools with heuristic search capabilities. As a case study we will introduce to
the HSF-SPIN tool.

The goal of the tutorial is to bring together research interests in formal automatic
analysis and in guided search. Intended participants are researchers that are involved
in the development and analysis of systems with large state spaces. The tutorial will dis-
cuss in the algorithmic foundations as well as in the implementation of directed explicit
and symbolic model checking. The main focus is on the analysis of concurrent soft-
ware systems. Although seminar focus is to attract researchers, we invite people from
industry to participate in the seminar, as industrial interest in directed model checking
(either symbolic or explicit) is rising. Prior intimate knowledge of automata based explicit
state or symbolic model checking is not required.

The presentation slides cover most of the tutorial content. The print divides into units
of a few pages followed by a list of references. The sections are almost chronologically
sorted, with the exception that directed search is placed to the end of this notes, as
it may be optional for many attendees. The slides were produced mainly by Stefan
Edelkamp, while my PhD students Tilman Mehler and Shahid Jabbar were responsible
for additional material and for preparing example cases. Many thanks to Alberto Lluch-
Lafuente, who helped assembling the slides. He also came up with many of the ideas
that are presented in this tutorial. Further thanks go to Stefan Leue, who came up with
the idea of having a tutorial on this topic.

We all personally hope that you will enjoy the tutorial and invite all attendees to join
this research branch. As a further side remark there will be a Dagstuhl seminar with
this topic organized by Willem Visser, Stefan Leue, Alberto Lluch-Lafuente, and Stefan
Edelkamp in April 2006. We hope that we might see one or the other participant of this
tutorial there.

Instructors

Stefan Edelkamp, University of Dortmund, GERMANY

Tilman Mehler, University of Dortmund, GERMANY

Shahid Jabbar, University of Dortmund, GERMANY

Directed Model Checking

– Motivation –

Stefan Edelkamp

1 Motivation

Critical Role of Software: medicine, aviation, finance, transportation, space
technology and communication

Software Failure: financial and commercial disaster, human suffering and fatalities

Verifiable development: Software industry not yet ready for emerging standards

Research Aims:

• Develop intelligent, heuristically-directed model checking algorithms and
implement these algorithms in formally-based tools

• Lay foundation of a technique that will enable software engineers to design and
debug complex systems

• Verify that these systems behave predictably and correctly

Motivation 1

ICAPS 2005

Tutorial on Directed Model Checking 5

Verification Engineering

Systems are harder to verify than in earlier days

Design groups spend 50-70% of the design time on verification

Verification Engineering

• studies techniques to verify that a system is correct

• rapidly expanding as society’s expectation of system infallibility and reliance on
computer systems and communication devices increases

pan-European survey (Davy 2001) of electronic companies:

• verification is the single biggest problem in electronics design today

• incomplete verification of design by far greatest single cause of severe bugs

Motivation 2

IBM Research Center

“It is widely recognized that functional verification emerges as the bottleneck of the
design development cycle

This is due to a combination of several correlated factors:

1. exponential increase in design complexity

2. tighter time-to-market requirements

3. higher quality expectations

In parallel, verification means are not evolving at a matching pace.

The cost of the late discovery of buts is enormous, justifying the fact that, for a
typical microprocessor design project, up to half of the overall resources spent, are
devoted to its verification. “

Motivation 3

ICAPS 2005

6 Tutorial on Directed Model Checking

Model Checking

Traditional verification line simulation and testing inadequate

• hit-and-miss techniques, relying on the appropriate input being chosen that will
reveal errors in the system

• the greater the complexity, the less effective the techniques.

• simulation takes a week to verify a 500,000 gate chip design, while formal
verification can accomplish this task in 1/2 hour

Model checking is a cornerstone of verification engineering.

Amir Pneuli - 1996 ACM Turing Award Recipient

Motivation 4

Lightweight vs. Heavy-Duty Tools

Model Checking (MC):

“Automatic method for proving that an application satisfies its specification,
represented by a temporal-logic formula.”

MC is lightweight (Heitmeyer 1998)

Contrast: heavy-duty tool e.g. proof assistants require skilled use, which is a barrier
to their adoption by industry

Major hindrance to the adoption of formal methods: lack of work-force skills

Motivation 5

ICAPS 2005

Tutorial on Directed Model Checking 7

Research and Development of MC in Companies

Using or evaluating MC: IBM, Intel, Lucent, Telenokia, BMW, and Siemens

MC included Computer Aided Design (CAD) toolkits:

- CVE (Siemens) - NP-Tools (Prover Technology)
- Telelogic Tau (Telelogic) - RuleBase (IBM Research Lab)
- Design Insight (Chrysalis Symbolic Design) - FormalPro (Mentor Graphics)

Affirma FormalCheck (originally Lucent, now Cadence Design Techniques) costs
e.g. US$ 95,000

Most popular developed-in-academia model checkers in the public-domain: SPIN
(Holzman), SMV (McMillan)

Motivation 6

Working and Limits of Traditional MC

Working: evaluate the given property in every reachable state of the model, where
each state is stored explicitly

Problem: state space grows exponentially

Limits: simple protocols, circuits and algorithms

On-the-Fly Model Checkers:

1. verify states as they are reached

2. still exhaustive

3. virtually all specifications contain errors at least initially

4. perform in general better during system development

Motivation 7

ICAPS 2005

8 Tutorial on Directed Model Checking

Waterfall Model

The waterfall life cycle model:

Design

Maintenance

Implementation

Analysis

Testing

Engineering “Classic” Model Checking

“Modern” Model Checking

Motivation 8

Symbolic Model Checking

. . . can reduce the size of the state space very dramatically by verifying sets of
states

. . . use Binary Decision Diagrams to represent the state space.

Example: SMV, can verify specifications with up to 101300 reachable states
(Clarke, Grumberg, Long 1992)

Motivation 9

ICAPS 2005

Tutorial on Directed Model Checking 9

Directed Model Checking

Traditional explicit and symbolic model-checking research invloves an exhaustive
search of the state space

Notable exceptions:

• BDD-version of the A* algorithm: replace BFS search with heuristic search
(Edelkamp and Reffel 1998)

• Target enlargement heuristic used in chip design (Yang 1998)

These research lines form the starting point for this lecture

Motivation 10

Model Checking as a Debugger

Dilemma:

• Applying (traditional) model checking too early is inefficient
Typical runs are in the order of 15 min to overnight

• Applying (traditional) model checking too late is expensive

The later an error is discovered the more difficult it is to remove

The error may require a substantial part of the design to be redone

This research fills a void;

Serious and usable tool for software developers at the time they need it most: when
designing a complex systems

Motivation 11

ICAPS 2005

10 Tutorial on Directed Model Checking

Directed Model Checking

. . . novel and different in a number of important ways

• hones in on errors

• can be used early in the software live cycle

• can handle an incomplete description of the system because it searches in just
a portion of the state space

• avoids the problem of state explosion

Adapt heuristics to model checking enables model checker to be used

Cross discipline: Formal methods and AI technologies are integrated

Likely to be direction of future research (Buccafurri, Eiter, Gottlob and Leone 1997)

Motivation 12

References

[1] F. Buccafurri, T. Eiter, G. Gottlob, and N. Leone. Enhancing symbolic model checking by AI
thechniques. Technical Report 9701, IFIG, 1997.

[2] E. M. Clarke, O. Grumberg, and D. E. Long. Model checking and abstraction. In Symposium on
Principles of Programming Languages, pages 343–354, 1992.

[3] P. Davy. What’s wrong with design. Hyperactive Eldectronics Weekly Online, 2001.

[4] S. Edelkamp and F. Reffel. OBDDs in heuristic search. In KI: Advances in Artificial Intelligence,
LNAI, pages 81–92. Springer, 1998.

[5] C. Heitmeyer. On the need for practical formal methods. In A. Ravn and H. Rischel, editors,
Formal Techniques in Real-Time and Fault-Tolerant Systems, LNCS, pages 18–26. Springer,
1998.

[6] G. J. Holzmann. The SPIN Model Checker. Addison-Wesley, 2003.

[7] K. McMillan. Symbolic Model Checking. Kluwer Academic Press, 1993.

[8] C. H. Yang. Prioritized Model Checking. PhD thesis, Stanford University, 1998.

Motivation 13

ICAPS 2005

Tutorial on Directed Model Checking 11

Directed Model Checking

– Model Checking –

Stefan Edelkamp

1 Overview

• Design Phases

• Finite State Automata over Infinite Words

• Communicating Processes

• Labeled Transition Systems

• Composition of Processes

• Temporal Logics, in particular LTL

Overview 1

ICAPS 2005

12 Tutorial on Directed Model Checking

2 Design Phases

System designers and analysts have different expectations at different stages of the
system development process (Cobleigh et al. 2001)

Exploratory Mode: Usually applicable to earlier stages of the process, where errors
in the design are expected, one wishes to find errors as fast as possible.

Fault-finding Mode: One expects to obtain meaningful error trails in order to fix the
design error, while one is willing to tolerate somewhat longer execution times.

Correctness Mode: In a third mode, one is interested in checking the correctness of
the design.

Design Phases 2

Example: Plain Old Telephony System

Model POTS (Kamel, Leue) : generated with the visual modeling tool VIP.

• “first cut” implementation of a simple two-party call processing

• two user processes UserA and UserB representing the environment behavior
of the switch

• two phone handler processes PhoneHA and PhoneHB representing the
software instances that control the internal operation of the switch according to
signals (on-hook, off-hook, etc.) received from the environment

• full of faults of various kinds

SPIN model checker: model is actually capable of connecting two telephones.

Error: invariant violation

Design Phases 3

ICAPS 2005

Tutorial on Directed Model Checking 13

Error Trail Produced by SPIN
UserA UserB PhoneHA

off_hook

PhoneHB

off_hook

off_hook

on_hook dial_tone

dialdigit

on_hook

off_hook

dial_tone

dialdigit

busytone

dial_tone
off_hook

stop_ringtone

on_hook

off_hook

ringtone

conreq

connack

stopaudiblering disconnect

{wait}{conversation}{conversation}{conversation}

on_hook

... 440 further messages ...

Design Phases 4

Manually Generated Error Trail in POTS

UserA UserB PhoneHA

off_hook

PhoneHB

dial_tone

dialdigit

audiblering

offhook

dial_tone
off_hook

stop_ringtone

on_hook

off_hook

ringtone

conreq

connack

stopaudiblering disconnect

{wait}{conversation}{conversation}{conversation}

on_hook

Design Phases 5

ICAPS 2005

14 Tutorial on Directed Model Checking

3 Finite Automata

Finite-state automaton: tuple 〈S,Σ, T, S0, F 〉 where:

• S is a finite set of states;

• Σ is a finite alphabet;

• T ⊆ S ×Σ× S is the transition relation;

• S0 ⊆ S is the set of initial states;

• F ⊆ S is the set of final states.

A simple finite automaton represented graphically :

s0 s1

b

b

a

a

Finite Automata 6

Runs

Run of an automaton over an finite word v ∈ Σ∗: an alternating sequence of states
and letters s0

v1−→ . . .
vn−→ sn such that

• the first state is an initial state, that is, s0 ∈ S0, and

• moving from the i-th state si to the (i + 1)-st state si+1 upon reading the i-th
input letter vi is consistent with the transition relation, that is, for all 0 ≤ i ≤ n

we have (si, vi+1, si+1) ∈ T .

Run ρ over a word v accepting: ends in a final state

A accepts word v: exists an accepting run of A over v.

Language of the automaton L(A): set of all accepted words by an automaton A

Finite Automata 7

ICAPS 2005

Tutorial on Directed Model Checking 15

4 Finite Automata over Infinite Words

Concurrent systems often do not terminate⇒ automata over infinite words

Büchi Automata same syntax as finite automata, but their semantic is different

F : set of accepting states instead of final states
inf(ρ): set of states that appear infinitely often in a run ρ.

Run ρ of a Büchi automaton B over an infinite word accepting: some accepting
state appears infinitely often in ρ, that is, when inf(ρ) ∩ F �= ∅.

Language L(B) accepted by the Büchi automaton B: set of infinite words, over
which all runs of B are accepting.

Example interpreted as a Büchi automaton: set of all infinite words in which a letter
b appears infinitely often.

Finite Automata over Infinite Words 8

5 Communicating Processes

A finite process: tuple 〈S, E, T, S0, F, V 〉 where:

• S is a finite set of states;

• E is a finite set of transition labels;

• T ⊆ S × E × S is the transition relation;

• S0 ⊆ S is the set of initial states;

• F ⊆ S is the set of final states;

• V is a finite set of variables.

Variables: current state of process, numbers, message channels (FIFO queues)

Communicating Processes 9

ICAPS 2005

16 Tutorial on Directed Model Checking

Guards, Propositions and Predicates

Guards: boolean predicates over the set of variables that determine the
executability or enabledness of a transition in concrete system states.

Propositions and Predicates: Predicates over queues q: full(q), empty(q)

Other Predicates over Message Channels: head(q), capacity(q) and length(q)

AP: atomic boolean predicates over V ; consists of all possible boolean constants,
variables, relations between numerical expressions, and boolean queue predicates

Boolean predicates BP: If p is an atomic boolean proposition of AP then p is also in
BP. If p and q are predicates of BP so are ¬p, p ∨ q, p ∧ q, p→ q and p↔ q.

Every guard is a boolean predicate contained in BP

Communicating Processes 10

Executability

Asynchronous Receive (q?x) extract message from channel q and assigns it to the
variables in the tuple x; corresponding transition is not executable if the message
channel is empty, i.e. guard(q?x) ≡ ¬empty(q).

Asynchronous Send (q!m): insert a message m in channel q; not executable if the
channel is full, i.e. guard(q!m) ≡ ¬full(q).

Assignments (v ← r): change the value of a variable v, setting it to the new value r;
always executable

Communicating Processes 11

ICAPS 2005

Tutorial on Directed Model Checking 17

Finite Process for a Dining Philosopher

:

release

take right

take left

think

wait

eat

• S = {eat, wait, think}
• E = {take left, take right, release}
• T = {(think,take left,wait), (wait,take right,eat), (eat,release,think)}
• S0 = {think}
• F = ∅

Communicating Processes 12

Labeled Transition System

. . . global state transition graph, unfolding of above systems

A labeled finite transition system is a tuple 〈S, S0, T, AP, L〉 where:

• S is a finite set of states;

• S0 is the set of initial states;

• T is a finite set of transitions, where each transition t ∈ T is a partial function
t : S → S;

• AP is a finite set of atomic propositions;

• L is a labeling function S → 2AP .

t with t(s) = s′ in T ⇐⇒ (pc(s), t, pc(s′)) in set of transitions of the process
being unfolded

Communicating Processes 13

ICAPS 2005

18 Tutorial on Directed Model Checking

Asynchronous Composition of Processes

The asynchronous composition of n finite processes Pi = 〈Si, Ei, Ti, S
i
0, Fi, Vi〉,

1 ≤ i ≤ n is a finite process P = 〈S, E, T, S0, F, V 〉 such that:

• S =
n∏

i=1
Si; E =

n∏
i=1

(Ei ∪ ′−′);

• S0 =
n∏

i=1
Si
0;

• F =
n∏

i=1
Fi; V =

n⋃
i=1

Vi;

• T = {((s1, .., sn), (e1, .., en), (s′1, .., s′n)) | ∃j : 1 ≤ j ≤ n ∧ ej ∈
Ej ∧ (sj, ej, s

′
j) ∈ Tj ∧ ∀1≤i≤n,i�=j : si = s′i ∧ ei =′ −′}.

Communicating Processes 14

Asynchronous Composition of Philosophers

Convenient: n variables fi with 1 ≤ i ≤ n for the forks⇒ state space of the
asynchronous composition of two such processes:

(−, tr)

(tl,−)

(tl,−) (−, tl)

(−, tl)

(tr,−)

1t1t

1t0w0w1t

0e0t

(r,−) (−, r)

0t0e0w0w

t, w, e, tr, and tl are the resp. abbrev. for think, wait, eat, take left and take right.

The labeling of a state is the concatenation of the values of variables f0, pc0, f1 and
pc1, where boolean values true and false are respectively represented by 1 and 0.

Communicating Processes 15

ICAPS 2005

Tutorial on Directed Model Checking 19

Synchronous Composition of Processes

The synchronous composition of n finite processes Pi = 〈Si, Ei, Ti, S
i
0, Fi, Vi〉,

1 ≤ i ≤ n is a finite process P = 〈S, E, T, S0, F, V 〉 such that:

• S =
n∏

i=1
Si; E =

n∏
i=1

Ei;

• S0 =
n∏

i=1
Si
0;

• F =
n∏

i=1
Fi; V =

n⋃
i=1

Vi;

• T = {((s1, .., sn), (e1, ..en), (s′1, .., s′n)) | ∀i=1..n : ei ∈ Ei ∧ (si, ei, s
′
i) ∈ Ti}.

Communicating Processes 16

6 Temporal Logics

Reasoning about programs: sufficient to concentrate on in/output requirements.

Concurrent systems usually don’t terminate⇒ reasoning about ordering of events.

TL are a sort of modal logic specifically tailored to specify temporal requirements.

TL offer a way for specifying ordering of events without using time explicitly.

Temporal properties such as ”an event p must must always hold” or ”an event p is
always followed by an event q” can be expressed with these logics.

Several temporal logic formalisms exist: μ-calculus, CTL*, CTL and LTL, . . .
The more expressive a logic is the harder it is to check it.

Temporal Logics 17

ICAPS 2005

20 Tutorial on Directed Model Checking

Linear-time Temporal Logic

LTL formulae; describe properties of runs of a system, extend boolean logic with the
following set of temporal operators

Next Time (Xf): specifies that property f must hold in the next state of the run.

Eventually (Ff): requires that property f must hold in some future state of the run.

Always (Gf): used to express that property f must hold in every state of the run.

Until (fUg): requires that property g holds in some state of the run, and at every
preceding state property f must hold.

Release (fRg): specifies that property f holds up to and includes the first state
where property g holds, which is not required to occur.

Temporal Logics 18

Illustration

. . .ff fGf

. . .gg gfRg

. ff gfUg

. fFf

Xf f

g f, g

A possible run is depicted which satisfies the temporal formula.

r = s0
α0−→ s1

α1−→ . . .

ri = si
αi−→ si+1

αi+1−→ . . .

Model Checking Problem: Given modelM and LTL formula f checkM, s |= f for
every initial state s

Temporal Logics 19

ICAPS 2005

Tutorial on Directed Model Checking 21

LTL Semantics in Labeled Transition Systems

• M, s |= p ⇔ p ∈ L(s).

• M, s |= ¬f ⇔ M, s �|= f .

• M, s |= f ∨ g ⇔ M, s |= f orM, s |= g.

• M, s |= Xf ⇔ for every run r starting at s we haveM, r1 |= f .

• M, s |= Ff ⇔ for every run r starting at s there exists an i ≥ 0 such that
M, ri |= f .

• M, s |= Gf ⇔ for every run r starting at s and for all i ≥ 0 we have
M, ri |= f .

• M, s |= fUg ⇔ for every run r starting at s, there exists an i ≥ 0 such that
M, ri |= g and for all 0 ≤ j < i we haveM, rj |= f .

• M, s |= fRg ⇔ for every run r starting at s and for all j ≥ 0, if for every i < j

we haveM, ri �|= f impliesM, rj |= g.

Temporal Logics 20

Typical Specification Properties

Safety : Informally, safety properties express that, under certain conditions, an event
will never occur.

Invariant : LTL formula Gp expressing that p must hold in every state of the system

Example: Invariant G(pci = eat → ¬fi ∧ ¬fi⊕1)

What does it mean?

Does it hold?

Assertion: concrete case of invariance in which the the predicate is the conjunct of
two predicates: pci = s ∧ p for given i, s, and q

Temporal Logics 21

ICAPS 2005

22 Tutorial on Directed Model Checking

Liveness

Informally, liveness properties express that, under certain conditions, some event
will ultimately occur.

Example: GF(pci = eat) for the i− th philosopher

What does it mean?

Does it hold?

Response: Most frequently used, Gp → F q

Deadlocks: Deadlock absence is a temporal property that requires that there exists
no state from which no progress is possible.

Deadlock absence can be expressed in LTL with the formula GXtrue.

Temporal Logics 22

References

[1] J. R. Buchi. On a decision method in restricted second order arithmetic. In Conference on Logic,
Methodology, and Philosophy of Science, LNCS, pages 1–11. Stanfort University Press, 1962.

[2] E. M. Clarke, O. Grumberg, and D. A. Peled. Model Checking. MIT Press, 1999.

[3] J. M. Cobleigh, L. A. Clarke, and L. J. Osterweil. The right algorithm at the right time: Comparing
data flow analysis algorithms for finite state verification. In International Conference on Software
Engineering, pages 37–46, 2001.

[4] M. B. Dwyer, G. S. Avrunin, and J. C. Corbett. Patterns in property specifications for finite-state
verification. In International Conference on Software Engineering, 1999.

[5] G. J. Holzmann. The SPIN Model Checker. Addison-Wesley, 2003.

[6] M. Kamel and S. Leue. VIP: A visual editor and compiler for v-Promela. In Tools and Algorithms
for the Construction and Analysis of Systems, LNCS, pages 471–486. Springer, 2000.

Temporal Logics 23

ICAPS 2005

Tutorial on Directed Model Checking 23

Directed Model Checking

– Automata-Based MC –

Stefan Edelkamp

1 Overview

• Model Checking Procedure

• Intersection of Büchi Automata

• Checking Emptiness

• Nested Depth-First Search

• Snapshot and Correctness

• Improved Nested DFS

Overview 1

ICAPS 2005

24 Tutorial on Directed Model Checking

2 Automata-Based Model Checking

. . . common approach to the model checking problem (not LTL specific)

Transforming model and specification into Büchi automata:

• systems can be modeled by finite automata

• model automaton transformed into Büchi by considering all states as accepting

• (L)TL formulae can also be transformed into an equivalent Büchi automaton

• (contrary not always possible, since Büchi automata more expressive than LTL)

• combine automata to one that accepts the bad behaviors of the system

• checking correctness is reduced to checking emptiness of this automaton

Counterexamples; infinite accepting runs which are called accepting cycles.

Automata-Based Model Checking 2

Model Checking Procedure

Checking that a model represented by an automatonM satisfies its specification
represented by an automaton S:

verify if L(M) ⊆ L(S)

- “language accepted by the model is included in that of the specification”

- “set of behaviors of the model is accepted by the specification”

L(S) = Σω − L(S)⇒ L(M) ⊆ L(S) ⇐⇒ L(M) ∩ L(S) = ∅

- “model has no bad behavior”

Checking emptiness is in practice more efficient than checking inclusion.

Automata-Based Model Checking 3

ICAPS 2005

Tutorial on Directed Model Checking 25

Remarks

Büchi automata are closed under intersection and complementation⇒

- ∃ automaton that accepts L(S)

- ∃ automata that accepts L(M) ∩ L(S).

Theory :

- possible to complement Büchi automaton equivalent to LTL formula

but double-exponential in the size formulae (Safra 1998, Sistla 1983)

Practice: construct Büchi automaton for negation of LTL formula, avoiding
complementation

Automata-Based Model Checking 4

Computing the Intersection

Automaton that recognizes language of the intersection of a

- Büchi automatonM representing the model
M = 〈Σ, SM,ΔM, SM0 , FM〉 with SM = FM

- Büchi automaton N representing the negation of the specification
N = 〈Σ, SN ,ΔN , SN0 , FN〉

⇒M∩N ofM and N is a Büchi automaton 〈S,Σ,Δ, S0, F 〉, where:

• S = SM× SN ; S0 = SM0 × SN0 ;

• F = FM× FN = SM× FN ;

• Δ = {((sM, sN), a, (s′M, s′N)) | sM, s′M ∈ SM ∧ sN , s′N ∈
SN ∧ (sM, a, s′M) ∈ΔM ∧ (sN , a, s′N) ∈ΔN}

Automata-Based Model Checking 5

ICAPS 2005

26 Tutorial on Directed Model Checking

On-the-Fly Model Checking

. . . efficient way to perform model checking

. . . compute the global state transition graph during the construction of the
intersection.

Advantage: only that part of the state space is constructed that is needed in order
to check the desired property

Evident for error detection: not necessary to continue generating states

Automata-Based Model Checking 6

Example: Envy

LTL Property: G((pci�1 = eat)→ F(pci = eat)),

Model, Composition, Never claim and state space of intersection:

release
(−, r)(r,−)

(−, t)
(t,−)

1t1t

0e0t 0t0e

think

eat

take

t3 : ¬(pci = eat)t1 : true

t2 : pci�1 = eat ∧ ¬(pci = eat)

((t,−), t1)
((−, r), t1)

((r,−), t3)

((r,−), t2)

((−, t), t3)

((r,−), t1)

((−, t), t1)

0e0t
n0 na n0

na na

n0

n0

na

0e0e

1t1t 0e0t

1t1t

0t0e

((t,−), t3)

Infinite acc. run: (1t1t, n0)
((t,−),t1)−→ (0e0t, n0)

((r,−),t2)−→ (1t1t, na)
((t,−),t3)−→

(0e0t, na)
((r,−),t3)−→ (1t1t, na)⇒ language �= ∅, property does not hold

Automata-Based Model Checking 7

ICAPS 2005

Tutorial on Directed Model Checking 27

Checking Emptiness

Checking emptiness: check that automaton accepts no word

Accepting runs: ∼ strongly connected components (SCC),
reachable from initial state and contain at least one accepting state

∼ reachable cycle containing at least one accepting state

⇒ checking emptiness ⇐⇒ exists no such cycle

All SSCs of a graph: Tarjan’s algorithm

Accepting cycles: more efficiently by nested depth-first search (Holzmann)

Automata-Based Model Checking 8

Nested Depth-First Search

• explores the state space in a depth-first manner

• stores visited states in Visited list

• marks states which are on the current search stack

• invokes DFS2 for accepting states in postorder

procedure DFS1(s);
Stack.push(s); Visited.insert(s);
for each successor s′ of s do

if s′ �∈ Visited then DFS1(s′);
if accepting(s) then DFS2(s);
Stack.pop();

Automata-Based Model Checking 9

ICAPS 2005

28 Tutorial on Directed Model Checking

DFS2

• explores states already visited by DFS1 but not by any secondary search

• states visited by the second search are flagged

• if a state is found on the stack of first search, accepting cycle is found

procedure DFS2(s);
flagged(s)← true;
for each successor s′ of s do

if s′ ∈ Stack then return solution;
if not flagged(s′) then DFS2(s′);

Typical implementation: 2 bits per state, one for marking, one for flagging

Complexity : linear in the size of the intersected state transition graph

Automata-Based Model Checking 10

Snapshot of the Nested DFS

All successors of s have been explored by DFS1⇒ DFS2 started, since s is
accepting (assume s not flagged by second search).

s2 successor of s and all reachable states through s2 non-accepting⇒ DFS2 will
explore s2

Accepting state s1 reachable from s⇒ since s2 was explored by DFS1 after s⇒
second search has been started from it and all reachable states from it have been
flagged⇒ DFS2 started at s does not explore s1

s1

s2

s

. . .

. . .

Stack

s0

states reachable from s1

states reachable from s2

Automata-Based Model Checking 11

ICAPS 2005

Tutorial on Directed Model Checking 29

Correctness Nested DFS

Lemma q node not on any cycle⇒ DFS backtracks from q only after all nodes
reachable from q are backtracked from.

Theorem: Nested DFS returns counterex. for emptiness of B ⇐⇒ L(B) = ∅

Proof: Counterexample for state and acc. cycle⇒ L(B) �= ∅

Automata reports emptiness !⇒ L(B) = ∅

Flagged states all reached by DFS1; DFS2 starts at q and ∃ path to p on DFS1

stack !⇒ to be completed to cycle

!⇒ ∃ unflagged path from q to state in DFS1 stack

Automata-Based Model Checking 12

Proof ctd.

Assume ∀ path to state on DFS1 stack ∃ flagged state

q: first such state, r first flagged state reached from q
q′: acc. state that invokes DFS2, in which r is encountered

⇒ DFS2 starts from q′ earlier than from q

q′ reachable from q: ∃ cycle (q′, . . . , r, . . . , q, . . . , q′) not been found previously in
contradiction to q first state from which DFS2 fails

q′ not reachable from q: either q′ appears on a cycle such that q′ reachable from q
via r (contradiction to chosen case) - or -

q′ appears not on a cycle, s.t. backtrack from q earlier than backtrack from q′ and
DFS2 started from q prior to start from q (contradiction to ordering of DFS2)

Automata-Based Model Checking 13

ICAPS 2005

30 Tutorial on Directed Model Checking

Special Liveness Properties

Some liveness properties can be checked by a simple rechability algorithm (DFS).

⇒ nested DFS needed only when properties which never claim automaton contains
at least one SCC

Interpretation depends on the translation of LTL into Büchi automata

Never claim automaton for LTL formula G(p→ Gq)

n0 na

n1

p ∧ ¬q

p

¬q

true

true

System state violates property if there is a reachable state in the intersection such
that the never claim automaton is in its local accepting end state na

Automata-Based Model Checking 14

3 Improved Nested DFS

Observation: Cycle in the state transition graph of the intersection of the systemM
and the never claim automaton N is accepting if and only if the corresponding cycle
in N is accepting.

Projection: π maps global state to state in never claim

SCC non-accepting: none of its states is accepting, full-accepting; each cycle
formed by states of the SCC is accepting, partial-accepting: otherwise.

Idea: Partitioning the never claim into SCCs, apply DFS2 only in case of partially
accepting cycles

Analyze never claim beforehand.

Improved Nested DFS 15

ICAPS 2005

Tutorial on Directed Model Checking 31

Pseudo-Code

Procedure INDFS1(s);
Stack.push(s); Visited.insert(s)
if s ∈ Stack and full-acepting(π(s)) then return solution;
for each successor s′ of s do

if s′ �∈ Visited then INDFS1(s′);
if accepting(s) and partial-accepting(π(s)) then INDFS2(s);
Stack.pop();

procedure INDFS2(s);
flagged(s)← true;
for each successor s′ of s do

if s′ ∈ Stack then return solution;
if (not flagged(s)) and π(s) = π(s′) then INDFS2(s′);

Improved Nested DFS 16

Example

Different Cases in Improved-Nested-DFS

Search Tree

Never Claim

non-acceptingSearch Path

Cycle established
in 1st DFS

Cycle establised
in 2nd DFS

full-accepting

partial-accepting

Improved Nested DFS 17

ICAPS 2005

32 Tutorial on Directed Model Checking

References

[1] J. R. Buchi. On a decision method in restricted second order arithmetic. In Conference on Logic,
Methodology, and Philosophy of Science, LNCS, pages 1–11. Stanfort University Press, 1962.

[2] R. Gerth, D. Peled, M. Vardi, and P. Wolper. Simple on-the-fly automatic verification of linear
temporal logic. In International Symposium Protocol Specification Testing and Verification,
pages 3–18. Chapman & Hall, 1995.

[3] G. J. Holzmann, D. Peled, and M. Yannakakis. On nested depth first search. The SPIN
Verification System, pages 23–32, 1972.

[4] S. Safra. On the complexity of omega-automata. In Annual Symposium on Foundations of
Computer Science, pages 319–237. IEEE Computer Society, 1998.

[5] A. P. Sistla, M. Y. Vardi, and P. Wolper. The complementation problem for Buchi automata with
applications to temporal logic. Theoretical Computer Science, 49(2–3):217–237, 1983.

[6] P. Wolper. Temporal logic can be more expressive. Information and Control, 56:72–99, 1983.

Improved Nested DFS 18

Directed Model Checking

– Heuristics –

Stefan Edelkamp

ICAPS 2005

Tutorial on Directed Model Checking 33

1 Overview

• Error Detection

• Unknown Error States

• Invariants

• Deadlock

• Formula-based Estimate

• Known Error States

• Hamming Distance

• FSM Distance

• Trail Improvement

Overview 1

2 (Safety) Error Detection

Errors: Boolean predicate error(s) of the set BP saying state s violates the property
or not

System to be checked: asynchronous composition of n finite communicating
process Pi, with i = 1, . . . , n.

Pi = 〈Si, Ei, Ti, S
i
0, Fi, Vi〉: component process

S = 〈S, S0, T, AP, L〉: unfolding of the asynchronous composition if the Pis

Two kinds of heuristics:

• no error state has been found yet

• exploit information of a given error state

(Safety) Error Detection 2

ICAPS 2005

34 Tutorial on Directed Model Checking

3 Heuristics for Unknown Error States

Problem: define a function that estimates the distance from a given state to the
nearest error state, without knowing in advance if there exist such a state at all

Solution: property itself can be utilized to define a boolean predicate that
characterizes error states, and as basis for an estimate function

Special-proposed Heuristics: Deadlock detection

Formula-based Heuristic: exploits structure of property, given a state s and
predicate f , returns how close state is to an error

Heuristics for Unknown Error States 3

Invariant and Assertion Errors

Invariants: properties express that a certain proposition p will always hold

⇒ states violating an invariant Gp are those in which ¬p holds

⇒ Negation of p is the formula for invariant error states.

Assertions: special case of invariants that require that a boolean predicate must
always hold in a certain control state of a process of the system

⇒ Assertions are defined as the conjunction of a boolean predicate q and a
boolean expression pci = s

⇒ pci = s true only in global states where process Pi is in its local state s ∈ Si

⇒ states violating assertion Gpci = s ∧ q satisfy ¬(pci = s ∧ q).

Heuristics for Unknown Error States 4

ICAPS 2005

Tutorial on Directed Model Checking 35

Deadlocks

. . . global states in which no progress is possible⇒ each process is blocked

Problem: define a boolean predicate that characterizes a state as a deadlock state
which could at the same time be used as an input for the estimation function

s: global state of S ⇒
blocked locally(i, u, s) ≡ pci(s) = u ∧ ∧

(u,e,v)∈Ti

¬guard(e, s)

Let Bi ⊆ Si be the set of potentially blocking states within process Pi.

blocked(i,s) ≡ ∨

u∈Bi

blocked locally(i, u, s)

Deadlock: disjunction of blocked(i,s) for every process Pi, with i = 1, . . . , n

deadlock(S) =
∧

i=1,...,n

blocked(i, S)

Heuristics for Unknown Error States 5

Potentially Blocking

- some transitions are always executable, e.g. assignments
- conditional statements/communication operations are not always executable

Local state potentially blocking: has only potentially non-executable transitions

Example (dining philosophers):
- guard of take left / take right evaluate to true only if left/right fork is available
- transition release is always enabled since its guard is the predicate true

⇒ think and wait are potentially blocking states, since there is no outgoing
transition from these states whose guard is always evaluated to true

⇒ predicate blocked for philosopher i:

blocked(i, s) ≡ (pci(s) = think ∧ ¬fi(s)) ∨ (pci(s) = wait ∧ ¬fi⊕1(s))

Heuristics for Unknown Error States 6

ICAPS 2005

36 Tutorial on Directed Model Checking

Formula-Based Estimate

f : boolean predicate of BP that characterizes error states.

hf(s): estimate of number of transitions necessary until a global state s′ ∈ S is
reached where f holds, starting from s ∈ S

Function hf(s) recursively defined as follows:

• htrue(s) = 0, no transition is necessary since true holds in every state and,
therefore, also in s.

• hfalse(s) = ∞, evidently false can never become true.

• hv(s) = 0 (if v is true in s)

• hv(s) = 1 (if v is false) in s

Heuristics for Unknown Error States 7

• hpci=si
(s) = Di(pci(s), si), the minimum number of transitions required for

process Pi to reach its local state si

• h¬f(s) = hf(s), where hf is the dual of hf

• hf∨g(s) = min{hf(s), hg(s)}, at least on of f and g must become true

• hf∧g(s) = hf(s) + hg(s), both f and g must become true

• hx⊗y(s) = 1 (if x⊗ y already holds in state s),⊗ relational operator

• hx⊗y(s) = |x− y| (if x⊗ y does not hold in s), assuming that the transitions
of the system can only increment or decrement numerical variables

• hfull(q)(s) = capacity(q)− length(q)

• hempty(q)(s) = length(q)

Matrix Di pre-computed in O(|Si|3) time with the APSP algorithm of Floyd/Warshall

ICAPS 2005

Tutorial on Directed Model Checking 37

Dual

• htrue(s) = ∞; hfalse(s) = 0

• hv(s) = 1, if v is false in s; hv(s) = 0, if v is false in s.

• hpci=si
(s) = 1 (if pci = si); hpci=si

(s) = 0 (if pci �= si).

• h¬f(s) = hf(s).

• hf∨g(s) = hf(s) + hg(s); hf∧g(s) = min{hf(s), hg(s)}.
• hx⊗y(s) = 0 (if x⊗ y does not hold in state s).

• hx⊗y(s) = x− y (if x⊗ y holds in state s).

• hfull(q)(s) = 0 (if q is full in s); hfull(q)(s) = 1 (if q is not full in s).

• hempty(q)(s) = 1 (if q is empty in s).

• hempty(q)(s) = 0 (if q is not empty in s).

Heuristics for Unknown Error States 8

Example

((pc1(s) = think ∧ ¬f1) ∨ (pc1(s) = wait ∧ ¬f2))∧

((pc2(s) = think ∧ ¬f2) ∨ (pc2(s) = wait ∧ ¬f1))

(1,0)(1,2) (1,2)(0,1) (1,0)

∧

∧∧∧

∨

(2,1)

(1,1) (1,0)

(1,1) ∧ (1,1) (1,1)(1,1)

(1,0) (1,0) (1,0)

¬ ¬¬ ¬

f1f2f2f1

(0,1) (0,1) (0,1) (0,1)

pc2 = wpc2 = tpc1 = wpc1 = t

∨

The estimate is computed for the global states s1 = 1t1t and s2 = 0e0t

⇒ hf(s1) = 2, which is also the real distance.

⇒ hf(s2) = 1, wrong: real distance 3

Heuristics for Unknown Error States 9

ICAPS 2005

38 Tutorial on Directed Model Checking

Alternative Heuristics for Deadlocks

Active process estimate Ha(s): # number of non-blocked processes in s

Ha(s) =
∑

i∈{1,...,n}∧active(i,s)

1,

where active(i, s) is a flag that determines, whether or not a process Pi can
progress in global state s

active(i, s) ≡ ∨

(pci(s),e,v)∈Ti

guard(e),

Complexity: (assuming bounded outdegree): linear wrt # processes of the system

Example: ha(0e1t) is 1, the shortest distance to a deadlock state is 3

Range: 0,. . . ,# processes

Heuristics for Unknown Error States 10

4 Heuristics for Known Error States

Two options: focus at exactly the state that was found, focuses on equivalent error
states

Hamming Distance Heuristic s: global state as bit vector s = (s1, . . . , sk)

s′: error state we are searching for

Hamming distance Hd(s, s
′): bit-flips necessary to transform s into s′

Hd(s, s
′) =

k∑

i=1

|si − s′i|

Complexity: tlinear to the size of the binary enconding

Heuristics for Known Error States 11

ICAPS 2005

Tutorial on Directed Model Checking 39

FSM Distance Heuristic

. . . sum for each Pi of the distance between the local state of Pi in s and the local
state of Pi in s′:

Hm(s) =
n∑

i=1

Di(pci(s), pci(s
′))

Alternative:

- boolean predicate f as conjunction of predicates pci(s) = pci(s
′) for each

i = 1, . . . , n

- formula-based estimate such that ∀s ∈ S : hf(s) = Hm(s)

Theorem FSM Distance is monotone / consistent.

Heuristics for Known Error States 12

5 Trail Improvement

Exploratory mode: provide non-optimal counterexamples

Fault-finding mode: find shortest possible error trail.

A* : finds optimal or near to optimal counterexamples.

Idea: Profit from the information of the error trail found in the exploratory mode to
obtain shorter counterexample

Two approaches

Safety Trails: the goal is the error state

Liveness Trails: Seed state of the accepting cycle.

Trail Improvement 13

ICAPS 2005

40 Tutorial on Directed Model Checking

Improving Safety Trails

Extracted terminal state from provided counterexample to define Hamming distance
(exact error states) FSM distance (equivalent error states).

Safety error trail shortened by directed search:

S S

S′S′

s′′

s′

s′

s′′

s′

s′

s′′

s′

s′

DAC strategy : If shortening path to n-th state not possible (memory constraints)⇒
horten path from 1-st state to �n/2�-st, and path from �n/2�+1-st to the n-th state

Trail Improvement 14

Improving Liveness Trails

Liveness error trail shortened in two phases:

seed seed seed

In both cases: necessary to search for exact same state, and not for equivalent one

Trail Improvement 15

ICAPS 2005

Tutorial on Directed Model Checking 41

Example

Intersection of the envy never claim with four deadlock-free philosophers:

ettt tett ttet ttte

teteetet

na na na na

nana

tttt

na

ettt tett ttet ttte

teteetet

n0 n0 n0 n0

n0n0

tttt

n0

seed

Nested DFS: dashed path of length 4 + 4 A* with FSM: thick path of length 2 + 2
Trail Improvement 16

References

[1] S. Edelkamp, S. Leue, and A. Lluch-Lafuente. Directed explicit-state model checking in the
validation of communication protocols. International Journal on Software Tools for Technology
(STTT), 5(2-3):247–267, 2004.

[2] S. Edelkamp, S. Leue, and A. Lluch-Lafuente. Partial order reduction and trail improvement in
directed model checking. International Journal on Software Tools for Technology (STTT),
6(4):277–301, 2004.

[3] S. Edelkamp, A. Lluch-Lafuente, and S. Leue. Directed model-checking in HSF-SPIN. In
Workshop on Model Checking Software (SPIN), pages 57–79, 2001.

[4] S. Edelkamp, A. Lluch-Lafuente, and S. Leue. Protocol verification with heuristic search. In
AAAI-Spring Symposium on Model-based Validation of Intelligence, pages 75–83, 2001.

[5] S. Edelkamp and T. Mehler. Byte code distance heuristics and trail direction for model checking
Java programs. In Model Checking and Artificial Intelligence (MoChArt), pages 69–76, 2003.

[6] A. Lluch-Lafuente. Directed Search for the Verification of Communication Protocols. PhD thesis,
University of Freiburg, 2003.

Trail Improvement 17

ICAPS 2005

42 Tutorial on Directed Model Checking

Directed Model Checking

– HSF-SPIN –

Stefan Edelkamp

1 Overview of HSF-SPIN

Experimental model checker for empirical evaluation of different verification
strategies

Implementation Language: C/C++

Available from: Alberto Lluch-Lafuente, Shahid Jabbar, Stefan Edelkamp

Name: reveals its origins; inherits code from the heuristic search framework HSF
(Stefan Edelkamp) and model checker SPIN (Gerald Holzmann)

Modeling Language: HSF-SPIN and SPIN use the same language (Promela) for
specifying models, and the same format for counterexamples

Architecture: separation of the search algorithms from the problem being solved;
inherits implementation of several data structures and algorithms

Overview of HSF-SPIN 1

ICAPS 2005

Tutorial on Directed Model Checking 43

2 Structure of HSF-SPIN

Two phase verification process:

• The parser, generates a specific verifier for a given Promela model.

RepresentationSpecification

Compiler
& Linker

Directed
Verifier

Internal

HSF-SPIN
Sources

HSF-SPIN
Parser

Promela

Promela specification of the model and the correctness requirement are parsed
and translated into an internal representation.

• This internal representation is compiled and linked with additional source code
resulting in the specific directed verifier

Structure of HSF-SPIN 2

Modeling in HSF-SPIN

The modeling language accepted by HSF-SPIN is the same as in SPIN, namely
Promela

Promela allows to define parameterizable classes of finite processes.

A special process called init is usually started in the first state and instantiates the
processes of the system.

Communication in a Promela model is done via shared variables and message
channels.

Further documentation of the Promela specification language can be found in
SPIN’s web site
http://netlib.bell-labs.com/netlib/spin/whatispin.html

Structure of HSF-SPIN 3

ICAPS 2005

44 Tutorial on Directed Model Checking

Example

#define left forks[my_id]
#define right forks[(my_id+1)%N]
bool forks[N];

proctype philosopher(int my_id)
{
think: do

::left; /* try to get left fork */
wait: right; /* try to get right fork */
eat: atomic{left=true; right=true} /* release forks */

od
}

For the sake of brevity, we have avoided the definition of the init process, which just
instantiates each of the N philosophers.

Structure of HSF-SPIN 4

Features HSF-SPIN

For checking safety properties, one can apply

• depth-first search, breadth-first / Dijkstra shortest path search

• A* and greedy best-first search, IDA* and Hill Climbing

• Trail-directed search, interactive simulation

For checking liveness properties one can

• apply nested depth-first search

• shorten liveness error trails by applying a two-phase A*.

Structure of HSF-SPIN 5

ICAPS 2005

Tutorial on Directed Model Checking 45

Specification in HSF-SPIN

Property specification is done as in SPIN, i.e. by

• giving the never claim corresponding to an LTL formula

• using assertion statements within the Promela source

• explicitly expressing that one wants to check deadlock absence.

All provided heuristics can be applied

Ample set partial order reduction including different cycle conditions

Error Trails written in SPIN’s format to used by XSPIN for a graphical visualization,
can also reads an error trail to simulate and shorten it

Bitstate hashing compression is supported for IDA*

Structure of HSF-SPIN 6

The Verifier

• performs the verification process.

• takes as input a sequence of parameters that define the type of exploration to
be done

Components:

Search
Algorithm

Heuristic
Functions

Functions
Goal

Expansion
Function

Partial Order
ReductionState

CompressionTables
Memory

Core of verifier is the search algorithm

Structure of HSF-SPIN 7

ICAPS 2005

46 Tutorial on Directed Model Checking

State Representation

The internal representation of a state consists on two parts:

1. information necessary for the search algorithms: the estimate value for the state,
the cost of the current optimal path to the state, a link to the predecessor state and
information about the transition that lead to the state.

2. representation of the state of the system and is usually called state vector

Example:

State 0w1t1t

State 1t1t1t
current cost

estimate value

predecesor

transition

state vector

tl1

1

3

011 wait think think

forks[0..2]

pc0 pc1 pc2

Structure of HSF-SPIN 8

Protocol Class

Expansion function: takes the representation of a state as input and delivers a list
containing each successor state.

If partial order is active, only a subset of the successors is returned

Heuristic function: returns a positive integer value for a given state.

Goal functions: boolean function that determines whether a state is an error state or
not.

Several goal functions are implemented according to the kind of error: deadlock,
assertion or safety violation of an LTL property.

There is no such function for liveness errors, since liveness errors refer to paths and
not to states⇒ detected by the search algorithm itself

Structure of HSF-SPIN 9

ICAPS 2005

Tutorial on Directed Model Checking 47

Running HSF-SPIN

Verifier
HSF-SPIN Error Trail

(Textual)

Error Trail
(graphical)

Statistics
& Results

Parameters

SPIN /
XSPIN

Parameters:
-Ax: x=Search Algorithm
-Ex: x=Error to be checked
-Hx: x=Heuristic Function
-Wx: x=Weighting for h in A*

...

Structure of HSF-SPIN 10

Statistics

Printing Statistics...
State-vector 148 bytes, depth reached 42, errors: 1

103 states, stored
8 states, matched

111 transitions (transitions performed)
31 atomic steps
21 states, expanded

Range of heuristic was: [0..10]

Memory Statistics: [...]
Writing Trail
Wrote models/deadlock.philosophers.prm.trail

Length of trail is 42

Structure of HSF-SPIN 11

ICAPS 2005

48 Tutorial on Directed Model Checking

References

[1] S. Edelkamp, S. Leue, and A. Lluch-Lafuente. Directed explicit-state model checking in the
validation of communication protocols. International Journal on Software Tools for Technology
(STTT), 5(2-3):247–267, 2004.

[2] S. Edelkamp, A. Lluch-Lafuente, and S. Leue. Directed model-checking in HSF-SPIN. In
Workshop on Model Checking Software (SPIN), pages 57–79, 2001.

[3] S. Edelkamp, A. Lluch-Lafuente, and S. Leue. Protocol verification with heuristic search. In
AAAI-Spring Symposium on Model-based Validation of Intelligence, pages 75–83, 2001.

[4] S. Edelkamp and T. Mehler. Byte code distance heuristics and trail direction for model checking
Java programs. In Model Checking and Artificial Intelligence (MoChArt), pages 69–76, 2003.

[5] A. Lluch-Lafuente. Directed Search for the Verification of Communication Protocols. PhD thesis,
University of Freiburg, 2003.

Structure of HSF-SPIN 12

Directed Model Checking

– Symbolic Search –

Stefan Edelkamp

ICAPS 2005

Tutorial on Directed Model Checking 49

1 Overview

• Boolean encodings of sets of states

• Transitional Relation and Relational Product

• Binary decision diagrams

• Symbolic BFS

- bidirectional search

- forward set simplification

• Symbolic Dijkstra

• Symbolic A* (BDD-A*)

Overview 1

2 Characteristic Function

General assumption: Finite state description given in binary

The characteristic function ΦS(x) for a set of states S is a boolean function
mapping {0,1}n to {0,1}, s.t.

- ΦS(a) = 1, for all states s = (a)2 in S and

- ΦS(a) = 0, otherwise.

Characteristic function for two or more states:

Φ{s1}∪{s2}(x) = Φ{s1}(x) ∨ Φ{s2}(x)

Characteristic Function 2

ICAPS 2005

50 Tutorial on Directed Model Checking

Transition Relation

The transition relation has twice as many variables than the encoding of the board:

T (x, x′) = 1 ⇐⇒ x is the encoding of a given state and x′ is the encoding of a
successor position

Example Transition System: ©(00)
←→©(01)

←→©(10)
←→©(11)

Safety Error : x0 ∧ x1.

Transitions: (00)→ (01), (01)→ (00), (01)→ (10), (10)→ (01),
(10)→ (11), (11)→ (10).

Characteristic Function 3

3 Relational Product

Image I of state set From wrt. transition relation T :

I(x) = ∃x′ (T (x, x′) ∧ From(x′))

Disjunctive partitioning:

T (x, x′) =
∨

O∈O
TO(x, x′)⇒

I(x) =
∨

O∈O
(∃x′ TO(x, x′) ∧ From(x′))

(∃ and ∨ commute)

⇒ T (x, x′) is not required to be built monolithically

Relational Product 4

ICAPS 2005

Tutorial on Directed Model Checking 51

4 Binary Decision Diagrams

Ordered BDD for the boolean function f wrt. variable ordering π;

• an acyclic graph with one source and two sinks labeled with 0 and 1

• all other (internal) nodes are labeled with a boolean variable xi and have two
outgoing edges labeled with 0 and 1.

• on all paths the variables respect π

Reduced Ordered BDD - general assumption - is a BDD, where

• nodes with identical successors are omitted and

• isomorphic sub-BDDs are unique

Remark: π has exponential impact on BDD size

Binary Decision Diagrams 5

5 Symbolic BFS

Si: set of states reachable from initial state s in i steps, initialized by S0 = {s}.

Task : determine φSi
given both φSi−1

and T

φSi
(x) = ∃x′ (φSi−1

(x′) ∧ T (x′, x))

Read as: x belongs to Si if it has a predecessor x′ in set Si−1 and there is a
transition from x′ to x

On right hand side φ depends on x′ compared to x on the left hand side

⇒ substitute x with x′ in φSi
beforehand (textual replacement [x/x′])

Symbolic BFS 6

ICAPS 2005

52 Tutorial on Directed Model Checking

Pseudo-Code

Procedure Symbolic Breadth-First Search
Input: Transition system with relation T ,

Error formula G, start state s

Open← φ{s}
do

Succ← ∃x′ (Open(x′) ∧ T (x′, x))
Open← Succ

while (Open ∧ φG ≡ 0)

Symbolic BFS 7

Bidirectional Search

Backward Search: starts with error and iterates until it encounters initial state

• take advantage that T is relation

• iterate according to formula φBi
(x′) = ∃x (φBi−1

(x) ∧ T (x′, x))

Bidirectional BFS: forward and backward search are carried out concurrently

• forward search frontier Ff with F0 = {s}
• backward search frontier Bb with B0 = G

Two search frontiers meet⇒ found optimal solution of length f + b

Symbolic BFS 8

ICAPS 2005

Tutorial on Directed Model Checking 53

Pseudo-Code

Procedure Bidirectional Breadth-First Search
Input: Transition system with relation T ,

Error formula G, start state s

fOpen← φ{s}; bOpen← φG
do

if (forward)
Succ← ∃x′ (fOpen(x′) ∧ T (x′, x))
fOpen← Succ

else
Succ← ∃x (bOpen(x) ∧ T (x′, x))
bOpen← Succ

while (fOpen ∧ bOpen ≡ 0)

Symbolic BFS 9

Duplicate Elimination

. . . introduction of list Closed containing all states ever expanded

• common in single state exploration

• avoids duplicates

Ordinary memory structure: hash/transposition table

Symbolic search⇒ forward set simplification

Advantage: terminate search in case of complete validation

Symbolic BFS 10

ICAPS 2005

54 Tutorial on Directed Model Checking

Pseudo-Code

Procedure Forward Set Simplification
Input: Transition system with relation T ,

Error formula G, start state s

Closed← Open← φ{s}
do

Succ← ∃x′ (Open(x′) ∧ T (x′, x))
Open← Succ ∧ ¬ Closed
Closed← Closed ∨ Succ

while (Open ∧ φG ≡ 0)

Symbolic BFS 11

6 Symbolic Dijkstra

Weighted transition relation: T (w, x′, x) = 1 ⇐⇒ step from x′ to x has cost w

w ∈ {0, . . . , C} ⇒ f -values restricted to finite domain

Stages:

• Open initialized with (representation of) start state, value 0

• extract all states with Min minimal f -value, determine remaining queue Rest

• if no error is encountered, substitute variables in Min

• determine successor set Succ of Min

• attach new f -values to this set

• Open for next iteration = disjunct of Succ with the remaining queue Rest

Symbolic Dijkstra 12

ICAPS 2005

Tutorial on Directed Model Checking 55

Pseudo-Code

Procedure Symbolic Dijkstra

Open(f, x)← (f = 0) ∧ φs(x)

do
fmin = min{f | f ∧ Open �= ∅}
Min(x)← ∃f (Open ∧ f = fmin)

Rest(f, x)← Open ∧ ¬ Min
Succ(f, x)← ∃x′, w (Min(x′) ∧

T (w, x′, x) ∧ add(fmin, w, f))

Open← Rest ∨ Succ
while (Open ∧ φG ≡ 0)

Symbolic Dijkstra 13

7 Symbolic A*

New value of successor s of s′:
f(s) = g(s)+ h(s) = g(s′)+ w(s′, s)+ h(s) = f(s′)+ w(s′, s)− h(s′)+ h(s)

Estimator H: relation of tuples (value,state) = 1 ⇐⇒ h(state)=value

Example: h(00) = h(01) = 1, h(10) = h(11) = 0

x0

01 10

0 1

01
f0

x0

Arithmetics:
formula(h′, h, w, f ′, f) = ∃ t1, t2 add(t1, h′, f ′) ∧ add(t1, w, t2) ∧ add(h, t2, f)

Optimality and completeness: inherited from A*/IDA* (consistent estimate)

Symbolic A* 14

ICAPS 2005

56 Tutorial on Directed Model Checking

Pseudo-Code

Procedure BDD-A*

Open(f, x)← H(f, x) ∧ φS0(x)
do

fmin = min{f | f ∧ Open �= ∅}
Min(x)← ∃f (Open ∧ f = fmin)
Rest(f, x)← Open ∧ ¬ Min
Succ(f, x)← ∃w, x′ (Min(x′) ∧ T (w, x′, x) ∧
∃h′ (H(h′, x′) ∧ ∃h (H(h, x) ∧
formula(h′, h, w, fmin, f))))

Open← Rest ∨ Succ
while (Open ∧ φG ≡ 0)

Symbolic A* 15

Example

• minterm x0x1 with f = h = 1

• x0x1 h = 1, f = 2 an f value of two.

• minterm x0x1 is associated with an f = 2 and x0x1 is assigned to f = 3

• extract x0x1 with value 2, find successors 01 and 11.

• Combining the characteristic function x1 with h⇒ split BDD of x1, since x0x1
relates to h = 0, whereas x0x1 relates to h = 1.

⇒ Minimal solution length = 3

0 1
0 1

0 1

1

1

1 1

1 0

0
x1

f0

x1 x1

x0 x0

0

f0

f1 f1

x0x0

0

f1

1

0 1 0

1 0 0 1

0 1

1

0

0

Symbolic A* 16

ICAPS 2005

Tutorial on Directed Model Checking 57

Complexity

g

≤ d/2

d

f∗h(s)

h(s)

h

Assume consistent und undirected system, d = δ(s, T)− h(s)

• “below” h(s) we have ≤ dh(s) + h(s)©s

• “roof” above h(s) has ≤ 1 + 3 + . . . + 2(d/2)− 1 = d2/4©s

≤ dh(s) + h(s) + d2/4 iterations

Symbolic A* 17

Matrix Computation (gh-Search)

Goal : avoid arithmetic computation with BDDs

Idea (Jensen et al.): 2D bucket-layout for BDDs

Advantages:

• state sets to be expanded next are generally smaller

• hope is that BDD representation is as well

• arithmetics to compute f -values no longer needed

Note: tight connection to bucket represenation in External A*

Symbolic A* 18

ICAPS 2005

58 Tutorial on Directed Model Checking

Pseudo Code

Procedure gh-BDD-A*
Open[0, h(I)]← Φs

fmin ← min{i + j| Open[i, j] �= 0}
while (fmin �=∞ or ΦG ∧ Open = 0)

gmin ← min{i | Open[i, fmin − i] �= 0}
hmax ← fmin − gmin
Reduce(Open[gmin, hmax])
A(x′)←∨

O∈O
(∃x. T (x, x′) ∧ Open[gmin, hmax](x)[x \ x′]

)

for each i ∈ {0, . . . ,max}
Ai ← H[i] ∧A
Open[gmin + 1, i]← Open[gmin + 1, i] ∨Ai

fmin ← min{i + j| Open[i, j] �= 0} ∪ {∞}

Symbolic A* 19

References

[1] R. E. Bryant. Graph based algorithms for boolean function manipulation. IEEE Transaction on
Computing, 35(8):677–691, 1986.

[2] A. Cimatti, E. Giunchiglia, F. Giunchiglia, and P. Traverso. Planning via model checking: A
decision procedure for AR. In European Conference on Planning (ECP), pages 130–142, 1997.

[3] S. Edelkamp and F. Reffel. OBDDs in heuristic search. In German Conference on Artificial
Intelligence (KI), pages 81–92, 1998.

[4] E. A. Hansen, R. Zhou, and Z. Feng. Symbolic heuristic search using decision diagrams. In
Symposium on Abstraction, Reformulation and Approximation (SARA), pages 83–98, 2002.

[5] R. M. Jensen, R. E. Bryant, and M. M. Veloso. SetA*: An efficient BDD-based heuristic search
algorithm. In National Conference on Artificial Intelligence (AAAI), pages 668–673, 2002.

[6] K. Qian and A. Nymeyer. Heuristic search algorithms based on symbolic data structures. In
Australian Conference on Artificial Intelligence (ACAI), pages 966–979, 2003.

[7] K. Qian and A. Nymeyer. Guided invariant model checking based on abstraction and symbolic
pattern databases. In Tools and Algorithms for the Construction and Analysis of Systems
(TACAS), pages 497–511, 2004.

Symbolic A* 20

ICAPS 2005

Tutorial on Directed Model Checking 59

[8] F. Reffel and S. Edelkamp. Error detection with directed symbolic model checking. In World
Congress on Formal Methods (FM), pages 195–211, 1999.

[9] B. Yang, R. E. Bryant, D. R. O’Hallaron, A. Biere, O. Coudert, G. Janssen, R. K. Ranjan, and
F. Somenzi. A performance study of BDD based model checking. In Formal methods in
Computer-Aided Design (FMCAD), pages 255–289, 1998.

Directed Model Checking

– Symbolic Model Checking –

Stefan Edelkamp

ICAPS 2005

60 Tutorial on Directed Model Checking

1 Overview

• Kripke Structure

• CTL/CTL*

• Symbolic Model Checking CTL

• μ-calculus

• Symbolic Model Checking μ-Calculus

• Simulation

Overview 1

Kripke Structures

Kripke structure: M = (S, L, AP, T), consists of

• a set of states S,

• a set of atomic propositions AP ,

• a labeling function L : S → 2AP and

• a transition relation T ⊆ S × S.

S0: set of initial states associated with M , s→ s′ abbreviates (s, s′) ∈ T

Note: (labeled) transition systems and Kripke structures closely related

Model checking problem: deciding if model M satisfies specification φ, i.e. M |= φ

Specialized model checking problem: M, S0 |= φ

Overview 2

ICAPS 2005

Tutorial on Directed Model Checking 61

2 CTL and CTL*

CTL: another temporal logic for specifying properties in model checking.

Basic CTL operators: AX and EX, AF and EF, AG and EG, AU and EU.

Example of CTL formula that has no equivalent LTL formula: A(FGφ)

Example of LTL formula that has no equivalent CTL formula: AG(EFφ)

Example of CTL* formula that is neither LTL or CTL: A(FGφ) ∨AG(EFφ)

CTL and CTL* 3

Semantics CTL

ν and μ: (largest and smallest) fixpoint operators

Sat(p) = {s | p ∈ L(s)}, Sat(φ ∨ ψ) = Sat(φ) ∪ Sat(ψ)

Sat(EXφ) = {s | ∃s′; s′ ∈ Sat(φ) ∧ s→ s′}
Sat(AXφ) = {s | ∀s′; s′ ∈ Sat(φ)⇒ s→ s′}

Sat(A(φUψ)) = μv.ψ ∨ (φ ∧AXv),
Sat(E(φUψ)) = μv.ψ ∨ (φ ∧ EXv)

Sat(AFφ) = μv.φ ∨AXv, Sat(EFφ) = μv.φ ∨ EXv

Sat(AGφ) = νv.φ ∧AXv,
Sat(EGφ) = νv.φ ∧ EXv

CTL and CTL* 4

ICAPS 2005

62 Tutorial on Directed Model Checking

Example

Kripke system:→©p
0 →©p

1
→←©q

2 ←©3

Check property: E(pUq) = μv.p ∨ (q ∧ EXv)

f(v) = p ∨ (q ∧ EXv)⇒ f1(∅) = {2}, f2(∅) = {1,2}, f3(∅) = {1,2,0}

S0 = {0} ∈ f∗(∅)⇒M, S0 |= E(pUq)

To compute Sat(φ) in general:

• evaluate L(S) for proposition AP

• set operations for propositional operators,

• evaluate transitional relation for X operator

• compute fixpoints for A, E and U operators

CTL and CTL* 5

Symbolic Model Checking CTL

Use BDDs on bitvectors s1, . . . , sAP , symbolic search for μ and ν

Check(si) = si, si ∈ L(s) Check(φ ∨ ψ) = Check(φ) ∨ Check(ψ)

Check(EX, φ(s)) = ∃s′φ(s)[s/s′] ∧ T (s, s′),
Check(AX, φ(s)) = ∀s′φ(s)[s/s′]⇒ T (s, s′),

Check(AU(φ(s), ψ(s))) = μv.ψ(s) ∨ (φ(s) ∧ Check(AX, v(s))),
Check(EU(φ(s), ψ(s))) = μv.ψ(s) ∨ (φ(s) ∧ Check(EX, v(s)))

Check(AF(φ(s)) = μv.φ(s) ∨ Check(AX, v(s)),
Check(EF(φ(s)) = μv.φ(s) ∨ Check(EX, v(s))

Check(AGφ) = νv.φ(s) ∧ Check(AX, v(s)),
Check(EGφ) = νv.φ(s) ∧ Check(EX, v(s))

CTL and CTL* 6

ICAPS 2005

Tutorial on Directed Model Checking 63

Complexities

Theorem (Carke, Grumberg, Long 1993) CTL model checking is polynomial in M

and φ

Theorem (Sistla, Clarke 1985) LTL model checking is PSPACE complete

Most MC algorithms are polynomial in M and exponential in φ

Theorem (Sistla, Clarke 1985) CTL* model checking is PSPACE complete

Theorem NP �= P ⇒ For every Kripke structure M there exists a LTL formula φ,
s.t. every CTL formula equivalent to Eφ has more than polynomial length

Theorem NP �= P ⇒ For every Kripke structure M there exists a LTL formula φ,
s.t. every CTL formula equivalent to Aφ has more than polynomial length

CTL and CTL* 7

3 μ-Calculus

Vμ variables of the μ-calculus, Fμ formulae

• p ∈ AP ⇒ p ∈ Fμ

• v ∈ Vμ⇒ v ∈ Fμ

• φ, ψ ∈ Fμ⇒ ¬φ, φ ∨ ψ, φ ∧ ψ ∈ Fμ

• φ ∈ Fμ⇒ [t]φ, 〈t〉φ ∈ Fμ

• v ∈ Vμ, φ ∈ Fμ⇒ μv.f, νv.φ ∈ Fμ

[t]φ: “φ holds for all state reachable making a t-transition“
〈t〉φ: “possible to make transition t where φ holds“

φ (in μ,ν) syntactiacally monoton: occurences of v in φ have even number of
negations

μ-Calculus 8

ICAPS 2005

64 Tutorial on Directed Model Checking

Semantics μ-Calculus

Sat(p) = {s | p ∈ L(s)}, Sat(¬p) = S \ Sat(p),

Sat(v) = environment(v), with

environment : Vμ → 2S and environment[v/v′](v) = v′

Sat(φ ∨ ψ) = Sat(φ) ∪ Sat(ψ), Sat(φ ∧ ψ) = Sat(φ) ∪ Sat(ψ)

Sat(〈t〉φ) = {s | ∃s→ s′ ∧ s′ ∈ Sat(φ)}
Sat([t]φ) = {s | ∀s→ s′ ⇒ s′ ∈ Sat(φ)}

Sat(μv.φ) =
⋃

i>0 τi(∅)
Sat(νv.φ) =

⋂
i>0 τi(S)

with predicate transformer τ(v) = Sat(φ)[v/v′], S ⊆ S′ ⇒ τ(S) ⊆ τ(S′)

μ-Calculus 9

Symbolic Model Checking μ-Calculus

Check(p) = sp, Check(v) = environment(v), Check(¬φ) = ¬Check(φ)

Check(φ∧ψ) = Check(φ)∧Check(ψ), Check(φ∨ψ) = Check(φ)∨Check(ψ)

Check(μv.φ) = Fixpoint(φ, environment,0)
Check(νv.φ) = Fixpoint(φ, environment,1)

Fixpoint(φ, e, s) is following symbolic BFS traversal: r ← s

repeat o← r; environment[s/o]; r ← Check(φ) until (o = r) return r

Example: μv.(q ∧ u) ∨ 〈t〉v

S0 = 0; Si+1 = (sq ∧ environment(u)) ∨ (∃s′.T (s, s′) ∧ Si)

μ-Calculus 10

ICAPS 2005

Tutorial on Directed Model Checking 65

Translating CTL in μ-Calculus

Algorithm η performs the translation process

η(p) = p, η(¬φ) = ¬η(φ), η(φ ∧ ψ) = η(φ) ∧ η(ψ)

η(EXφ) = 〈t〉η(φ), η(EGφ) = νv.η(φ) ∧ 〈t〉v

η(E(φUψ)) = μv.η(ψ) ∨ (η(φ) ∧ 〈t〉v

Example: η(EG(E[pUq])) = νv.(μv′.q ∨ (p ∧ 〈t〉v′)) ∧ 〈t〉v)

Theorem M = (S, L, AP, T) Kripke structure, φ formula⇒
M, S0 |= φ ⇐⇒ S ⊆ Sat(η(φ))

μ-Calculus 11

Simulation

Given: Kripke structures M = (S, L, AP, T) and M ′ = (S′, L′, AP ′, T ′), with
AP ′ ⊆ AP

Simulation relation ∼⊆ S × S′ between M and M ′ (M ′ !M):

• for all s ∼ s′ then L(s) ∩AP ′ = L′(s′)

• for every state s1 such that s→ s1 there is a state s′1
• s′ →′ s′1 and s1 ∼ s′1

Theorem If M ′ !M , then for every CTL* formula f , which atomic propositions are
contained in AP ′, M ′ |= f ⇒M |= f

μ-Calculus 12

ICAPS 2005

66 Tutorial on Directed Model Checking

References

[1] E. Clarke, O. Grumberg, and D. Long. Verification tools for finite-state concurrent systems. In
REX School Symposium, A Decade of Concurrency, LNCS, pages 124–175. Springer, 1993.

[2] E. Clarke, O. Grumberg, and D. Long. Model checking and abstraction. ACM Transactions on
Programming Languages and Systems, 16(5):1512–1542, 1994.

[3] E. Clarke, O. Grumberg, and D. Peled. Model Checking. MIT Press, 2000.

[4] D. Kozen. Results on the propositional μ-calculus. Theoretical Computer Science, 27:333–354,
1983.

[5] T. Kropf. Introduction to Formal Hardware Verification. Springer, 1999.

[6] K. L. McMillan. Temporal logic and model checking. In M. K. Inan and R. P. Kurshan, editors,
Verification of Digital and Hybrid Systems, pages 36–54. Springer, 1998.

[7] A. P. Sistla and E. M. Clarke. The complexity of propositional linear temporal logics. Journal of
the ACM, 32(3):733–749, 1985.

μ-Calculus 13

Directed Model Checking

– Planning and Model Checking –

Stefan Edelkamp

ICAPS 2005

Tutorial on Directed Model Checking 67

1 Overview

• Common Ground

• Model Checking via Planning

• Model Checking Integrated Planning

• Planning via Model Checking

• Promela Planning

Overview 1

Common Ground

Model checker searches counterexample to falsify a given specification, planner
searches for sequence of actions to satisfy a goal

Kripke Structure: finite set of states, set of initial states, transition relation, and state
labeling function.

⇒ propositional planning problems can be modeled based on Kripke structures

Thorem Any propositional deterministic planning problem can be modeled as an
LTL model checking problem.

Achieving any propositional goal g can be expressed in form of a counter-example
to the temporal formula f = A(G ¬g) in LTL.

The inverse is often available, in particular when model checking safety properties

Overview 2

ICAPS 2005

68 Tutorial on Directed Model Checking

2 Planning via Model Checking

• Symbolic Planning: use symbolic state information in form of BDDs to cope
with the increasing number of states to be represented

• Nondeterministic Planning: A plan (state-action table) is weak if for each state
a goal can be reached, strong if all terminal states are goals, and strong cyclic
strong and for each state a terminal one is reachable

• Conformant and Contingent Planning: Belief-state planning has been dealt with
e.g. the power of BDD representations

• Planning with Temporary Extended Goals: Extend the goal specification by
general temporal logic formulae

• Real-Time Planning: PDDL2.1 has been converted to the timed automata
language of the model checker UPPAAL

• Planning with Control-Rules: Hand-tailored planners attach supplementary
information in form of temporal formulae to prune the state space

Planning via Model Checking 3

3 Model Checking Integrated Planning

Initial Work : planning with the μcke model checker

Minimized Encoding: Fact-space exploration, partition and merge predicates

BDD package: Buddy

MIPS at IPC-2: explicit heuristic search algorithms based on bit-vector state
representation and relaxed planning heuristic as well as symbolic heuristic search

Between the Planning Competitions: explicit and symbolic pattern databases

MIPS at IPC-3: PDDL2.1 expressiveness, (plan at least in every domain)

After 2002: non-linear relaxed planning heuristics, posterior plan scheduling with
time-windows, external (symbolic) search

Model Checking Integrated Planning 4

ICAPS 2005

Tutorial on Directed Model Checking 69

Architecture of MIPS

4 parts: pre-compilation, heuristics, search algorithms, and post-compilation

Scheduler

Precompiler

Critical Path

problem.pddldomain.pddl

static analyzer

numerical

sequential plan

temporal plan

intermediate representation

symbolic search explicit search

EHC

scheduling
RPH

RPH
BDD-BFSBDDA*, IDA*,A*,

RPH

relaxed planSearch Algorithms

Heuristics

explicit PDBssymbolic PDBs

relaxed
temporal plan

PERT

clustersymmetryground

Model Checking Integrated Planning 5

4 Model Checking via Planning

1. Bounded Model Checking: applies the same techniques to Model Checking
that are used in the Planning as Satisfiability approach

2. Directed Model Checking: mimics the success of heuristic search in action
planning, e.g. in the domain of hardware validation

Here: Direct Conversion of Model Checking Problems in PDDL (IPC4 Benchmark)

Compiler : Automatically generating a PDDL model from Promela syntax

Restrictions: Safety Properties, especially Deadlocks

fixed number of processes: dynamic creation of processes in PDDL would require a
language extension for dynamic object creation

Model Checking via Planning 6

ICAPS 2005

70 Tutorial on Directed Model Checking

Example

Automata representation for the model of the 10 Dining Philosophers problem:
(Intermediate file produced by SPIN):

proctype philosopher
state 1 -(tr 3)-> state 6 line 11 => forks[pid]!fork
state 6 -(tr 4)-> state 3 line 12 => forks[pid]?fork
state 3 -(tr 5)-> state 4 line 14 => forks[((pid+1)%10)]?fork
state 4 -(tr 3)-> state 5 line 16 => forks[pid]!fork
state 5 -(tr 6)-> state 6 line 16 => forks[((pid+1)%10)]!fork

Process P : finite graph (S(P), trans, init(P), curr(P), δ(P))

Channel Q: finite graph (S(Q), head(Q), tail(Q), δ(Q), mess(Q),cont(Q))

Shared and local variables are modeled by PDDL fluents

Model Checking via Planning 7

Domain Encoding

Operators: queue-read, queue-write, advance-queue-head,
advance-empty-queue-tail, advance-non-empty-queue-tail,
process-trans

• activate-trans: activates a transition in a process of a given type if in the
current state we have an option to perform the local transition

• queue-read and queue-write actions, initialize reading/writing of a
message.

• advance-queue-head, advance-empty-queue-tail,
advance-non-empty-queue-tail: queue update operators, set settled
flag, which is a precondition of every queue access action

• process-trans: executes local transition resets the flags.

Model Checking via Planning 8

ICAPS 2005

Tutorial on Directed Model Checking 71

Blocking and Deadlocks

Blocked Transitions:

1. read message does not match the requested message

2. queue capacity is either too small or too large

All active transitions in a process block⇒ process itself will block

All processes are blocked⇒ deadlock in the system

Planning Goal : conjunction of atoms requiring that all processes are blocked

Elegant Model : Blocking implemented as a set of derived predicates (PDDL2.2)

Model Checking via Planning 9

References

[1] F. Bacchus and F. Kabanza. Using temporal logics to express search control knowledge for
planning. Artificial Intelligence, 116:123–191, 2000.

[2] P. Bertoli, A. Cimatti, and M. Roveri. Heuristic search symbolic model checking = efficient
conformant planning. In International Joint Conference on Artificial Intelligence (IJCAI), pages
467–472, 2001.

[3] P. Bertoli, A. Cimatti, M. Roveri, and P. Traverso. Planning in nondeterministic domains under
partial observability via symbolic model checking. In International Joint Conference on Artificial
Intelligence (IJCAI), 2001.

[4] A. Biere, A. Cimatti, E. Clarke, and Y. Zhu. Symbolic model checking without BDDs. In Tools
and Algorithms for the Construction and Analysis of Systems, Lecture Notes in Computer
Science. Springer, 1999.

[5] R. Bloem, K. Ravi, and F. Somenzi. Symbolic guided search for CTL model checking. In
Conference on Design Automation (DAC), pages 29–34, 2000.

[6] A. Cimatti, M. Roveri, and P. Traverso. Automatic OBDD-based generation of universal plans in
non-deterministic domains. In National Conference on Artificial Intelligence (AAAI), pages
875–881, 1998.

Model Checking via Planning 10

ICAPS 2005

72 Tutorial on Directed Model Checking

[7] H. Dierks, G. Behrmann, and K. Larsen. Solving planning problems using real-time model
checking. In Artificial Intelligence Planning and Scheduling (AIPS)–Workshop on Model
Checking, pages 30–39, 2002.

[8] S. Edelkamp. Promela planning. In Workshop on Model Checking Software (SPIN), Lecture
Notes in Computer Science, pages 197–212. Springer, 2003.

[9] F. Giunchiglia and P. Traverso. Planning as model checking. In European Conference on
Planning (ECP), pages 1–19, 1999.

[10] H. Kautz and B. Selman. Pushing the envelope: Planning propositional logic, and stochastic
search. In National Conference on Artificial Intelligence (AAAI), pages 1194–1201, 1996.

[11] M. Pistore and P. Traverso. Planning as model checking for extended goals in non-deterministic
domains. In International Joint Conference on Artificial Intelligence (IJCAI), pages 479–486,
2001.

Directed Model Checking

– State Compaction and
Incremental Hashing –

Stefan Edelkamp

ICAPS 2005

Tutorial on Directed Model Checking 73

1 Overview

• State Compression

• Bitstate Hashing

• Paritial A*

• Partial IDA*

• Rabin Karp String Matching

• Incremental Hashing (static, abstract, and dynamic)

Overview 1

2 State Compression

Problem: Given M bity, an uncompressed state representation that requires R bits
allows to store M/R distinct states

⇒ find state representation that requires less than R bits of information.

Total compression: assign distinct compressed representation to each state; either
reversible or not; e.g., collapse method

Partial compression: allow two different states to have the same compressed
representation.

- drastically reduce the amount of bits to represent states
- incomplete, since it is not possible to distinguish each state
- false prunings of some parts of the state space

State Compression 2

ICAPS 2005

74 Tutorial on Directed Model Checking

Bitstate Hashing

Single and multi bitstate hashing:

0 M 0 M

h1(s)h(s) h2(s)

ss

Collisions detected during the exploration of the state space are not resolved, since
it is not possible to determine the representation of a compressed state

⇒ not possible to decide whether the colliding state has been already visited or not

Sequential bitstate hashing (Supertrace): improve coverage of bitstate hashing by
performing the exploration repeatedly with different, independent hash functions

State Compression 3

3 Partial A*

If we apply state compaction for the entire visited list, we arrive at Partial GSEA and
Partial A*.

. . . organizes visited list Closed in form of an array without any collision strategy on
board (We will write Closed[i] to highlight the difference).

. . . should additionally be applied without reopening strategy, even if the estimate
used is not admissible, since the resulting algorithm cannot guarantee optimal
solutions anyway.

In that manner one can avoid node expansions introduced by the reopening issue.

For reducing Open-List, state reconstruction scheme is needed

Partial A* 4

ICAPS 2005

Tutorial on Directed Model Checking 75

Pseudo-Code

Procedure Partial A*(s, m)

Closed [0..m] ← false
Open← {s}
while (Open �= ∅)

u← arg minfOpen
Closed [Hash(u)]← true
if (goal(u)) return solution
Γ(u)← Expand(u)

for each v = to(e) e in outgoing(u)

if (v �∈ Open) and (Closed [Hash(v)] = false)
Open← Open ∪ {v}

Partial A* 5

4 Partial IDA*

Applying bit-state compression for search algorithms such as BFS and A* is not as
effective as it is in DFS or IDA*.

⇒ apparent aspirant for such state compaction techniques is IDA*.

Bit-state hashing can be hardly combined with transposition table updates
propagating f - or h-value back to the root

⇒ simpler to initialize the hash table in each iteration.

In opposite to A*, IDA* tracks the solution path on the stack

⇒ omit the predecessor link and additional state information in the state description
for the set of visited states.

Partial IDA* 6

ICAPS 2005

76 Tutorial on Directed Model Checking

Pseudo Code

Procedure Partial IDA*(s, m)
Push(Stack, {s, h(s)}); U ′ ← U ← h(s)
while (U ′ �=∞)

U ← U ′; U ′ ← ∞ Closed [0..m] ← false
while (S �= ∅)
{u, f(u)} ← Pop(S)
if (goal(u)) return solution
for each v = to(e), e in outgoing(u)

if not (Closed [Hash(v)]) Closed [Hash(v)] ← true
if (f(u) + cost(u, v)− h(u) + h(v) > U)

if (f(u) + cost(u, v)− h(u) + h(v) < U ′)
U ′ ← f(u) + cost(u, v)− h(u) + h(v)

else Push(Stack, v, f(u) + cost(u, v)− h(u) + h(v))

Partial IDA* 7

5 Rabin Karp String Matching

Task: search pattern P ∈ Σk in a text S = (s1, . . . , sn) ∈ Σn.

First compute hash code h(P)

In i-th iteration, check, if Si = (si, . . . , si+k−1) equals P :

h(si, . . . , si+k−1) = h(P)⇒ character-by-character comparison of S with P

No match is found⇒ compare pattern to Si+1 = (si+1, . . . , si+k).

Hash value
∑i+k

j=i si|Σ|j mod q of Si+1 computed in constant time as

h(Si+1) = (h(Si)− si · |Σ|k−1) · |Σ|+ si+k mod q

Rabin Karp String Matching 8

ICAPS 2005

Tutorial on Directed Model Checking 77

6 Incremental Hashing

Assumption: state vector v present with vi in Σ = {0, . . . , l − 1} (generalizes to
vi ∈ Di, |Di| <∞)

Practical Software Model Checking: state vector is a byte array.

For state vectors v = (v1, . . . , vk) and their successor state vectors
v′ = (v′1, . . . , v′k) we calculate

h(v′) =
k∑

j=1

vj · |Σ|j − vi · |Σ|i + v′i · |Σ|i mod q

= h(v)− vi · |Σ|i + v′i · |Σ|i mod q.

Incremental Hashing 9

General Result

. . . operators change the value of some component (e.g. atomic blocks)

Let I(v, v′) = {i | vi �= v′i} the set of modified vector indices, then

h(v′) =
k∑

i=1

vi · |Σ|i −
∑

i∈I(v,v′)
vi · |Σ|i +

∑

i∈I(v,v′)
v′i · |Σ|i mod q

= h(v)− ∑

i∈I(v,v′)
vi · |Σ|i +

∑

i∈I(v,v′)
v′i · |Σ|i mod q.

Theorem Computing the hash value of v′ given the one for v is available in time

• O(|I(v, v′)|); using O(k) extra space

• O(1); using O((k · |Σ|)Imax) extra space, where Imax = max(v,v′) |I(v, v′)|.

Incremental Hashing 10

ICAPS 2005

78 Tutorial on Directed Model Checking

Abstraction

State space abstractions are used to compute pattern databases

Let φi be a mapping v = (v1, . . . , vk) to φi(v) = (φi(v1), . . . , φi(vk)), 1 ≤ i ≤ l.

Theorem Combined incremental state and abstraction state vector hashing of state
vector v′ with respect to its predecessor v is available in time

• O
(
|I(φ(v, v′))|+ ∑l

i=1 |I(φi(v), φi(v
′))|

)
using O(kl) extra space, where

I(φi(v), φi(v
′)) denotes the set of affected indices in database i

• O(l); using O(l · (k · |Σ|)Imax) extra space.

Incremental Hashing 11

Dynamic Distributed Incremental Hashing

Distributed and dynamic incremental hashing of vector v′ = (v1, . . . , vm) with
respect to its predecessor v = (v1, . . . , vm) assuming a modification in component
i (update, insertion or deletion) is available in time

• O(|I(vi, v
′
i)|) for update, O(m + logni) for insertion, and O(m) for deletion

using O(m + maxm
i=1 ni) extra space.

• O(|I(vi, v
′
i)| logm) for update, O(logm + logni) for insertion, and

O(logm) for deletion using O(m + maxm
i=1 ni) extra space.

First approach uses shifts within bitvector

Second approach uses AVL trees

Incremental Hashing 12

ICAPS 2005

Tutorial on Directed Model Checking 79

References

[1] S. Edelkamp, S. Leue, and A. Lluch-Lafuente. Partial order reduction and trail improvement in
directed model checking. International Journal on Software Tools for Technology (STTT),
6(4):277–301, 2004.

[2] S. Edelkamp and T. Mehler. Incremental hashing in state space search. In Workshop ”New
Results in Planning, Scheduling and Design”, 2004.

[3] S. Edelkamp and T. Mehler. Incremental hashing for pattern databases. In International
Conference on Automated Planning and Scheduling (ICAPS), 2005. Poster, To Appear.

[4] G. J. Holzmann. State compression in SPIN. In 3rd Workshop on Software Model Checking,
1997.

[5] G. J. Holzmann. An analysis of bitstate hashing. Formal Methods in System Design,
13(3):287–305, 1998.

[6] W. Holzmann. Memory efficient storage in SPIN. In 2nd Workshop on Software Model
Checking, 1996.

Incremental Hashing 13

[7] F. Hüffner, S. Edelkamp, H. Fernau, and R. Niedermeier. Finding optimal solutions to Atomix.
In KI, pages 229–243, 2001.

[8] R. M. Karp and M. O. Rabin. Efficient randomized pattern-matching algorithms. IBM Journal of
Research and Development, 31(2):249–260, 1987.

[9] T. Mehler and S. Edelkamp. Dynamic distributed incremental hashing and state reconstruction
in program model checking. Draft.

[10] P. Wolper and D. Leroy. Reliable hashing without collision detection. In Computer-Aided
Verification, LNCS, pages 59–70. Springer, 1993.

ICAPS 2005

80 Tutorial on Directed Model Checking

Directed Model Checking

– Abstraction –

Stefan Edelkamp

1 Overview

• Pattern Databases

• Abstraction

• Data/Predicate abstraction

• Abstraction Databases

• Abstraction in Practice

Overview 1

ICAPS 2005

Tutorial on Directed Model Checking 81

Pattern Databases

. . . automatic technique for designing estimator functions

. . . first applied to define effective heuristics for the 15-puzzle

Subsequently, pattern databases defined heuristics to solve random instances to
Rubik’s Cube for the first time

Recently, they have shown general applicability in action planning

Overview 2

Abstraction

• copes with large and infinite state spaces in model checking

• reduces verification efforts

• abstract system often smaller than the original one

• if abstract system satisfies correctness spec, so does the concrete one

• abstractions may introduce behaviors not present in the original system

Combination of abstraction with heuristic search to improve error detection

• abstract system is explored in order to create a database that stores the exact
distances from abstract states to the set of abstract error states

• check, whether or not the abstract behavior is present in the original system,
efficient exploration algorithms exploit the database as a guidance

Overview 3

ICAPS 2005

82 Tutorial on Directed Model Checking

Abstraction as Simulation

Problem: find abstractions that are correct wrt. correctness specification and, at the
same time, provide significant reductions⇒ research focused on simulations

System M̂ simulates a system M : every behavior of M is also present in M̂

Abstract system simulates the original one⇒ if it satisfies the specification so does
the original one

Opposite direction: not true!

Spurious error : bad behavior in the abstract system might not be present in the
original one.

Abstract-and-refine loop: approximation refined for a one that is consistent with the
counterexample established, and the verification process starts again.

Overview 4

Data/Predicate Abstraction

Data Abstraction: If variables vi in state vector (v1, . . . , vk) have domain D and all
abstract variables have domain A ⊆ D⇒ abstraction φ : D → A.

In many cases: abstracted system simulates the original one

————–

Predicate abstraction: abstract concrete states under a finite set of predicates

The predicates p1, . . . , pn define an abstraction function φ : S → {0,1}n with
φ(s) = ŝ if for all i we have ŝi = pi(s)

Abstract state reachable: abstraction of a concrete state that is reachable

As above: predicate abstractions are simulations

Overview 5

ICAPS 2005

Tutorial on Directed Model Checking 83

Example

x:=0; while x<n do x++; end do

Abstraction on variable x: φ(0) = ZERO, φ(n) = N , and φ(i) = MIDDLE⇒
x:=ZERO
while x<N
if(x=0) then x=MIDDLE
else x=nondeterministically MIDDLE or N

Original system has finite path (s0, . . . sn), where si is state in which x = i

Abstraction φ: φ(si) = φ(si+1) for 1 ≤ i ≤ (n− 2)⇒ φ is a simulation that
induces abstract system with infinitely many paths (φ(s0), φ(s1)

j, φ(sn))

(φ(s0), φ(s1)
(n−2), φ(sn)): has corresponding concrete path

(φ(s0), φ(s1), φ(sn)): spurious counterexample

Overview 6

Abstraction a Kripke Structures

φ : M = (S, L, AP, T)→ M̂ = (Ŝ, L̂, ÂP , T̂) with

• Ŝ = φ(S) = {φ(s) | s ∈ S},
• T̂ = {(φ(s), φ(s1)) | T (s, s1)}

General: apply a surjection of the state space graph (S, T) into (Ŝ, T̂)

φ homomorphism: for all s→ s1 we have φ(s)→̂φ(s1)
⇒ t is reachable from state s implies φ(t) is reachable from φ(s)

Note: abstraction φ can be extended to modify the label set

Theorem: For each two concrete states s and t:
shortest path from φ(s) to φ(t) ≤ shortest path from s to t

Overview 7

ICAPS 2005

84 Tutorial on Directed Model Checking

Abstraction Database

Abstraction database: according to an abstraction φ table with entries

(m, δH(m, φ(t))

for each m in abstract space

Construction: Database computed in a backward traversal of abstract space:

Directed graph with invertible operators: Backward BFS or Backward Dijkstra’s
single-source shortest path search algorithm if the graphs are weighted

Directed graph with non-invertible operators: in forward traversal of abstract space
construct graph inverse on-the-fly, collect horizon nodes and uses only inverse
graph links

Overview 8

2 Abstractions in Practice

α-SPIN: extends SPIN by allowing the Promela model to be abstracted.

Processing: model is read with an XML parser and combined with an abstraction
function, also coming in XML

Result: XML file representing abstract model, translated back into Promela.

⇒ approach produces no source conflict with the model checker

Storage/Retrieval: Maintain hash table with abstract state information on disk

Addressing: dummy assignments of the form variable := variable; in the
original Promela source. The abstraction mechanism results in an assignment
variable := map(variable);.

Abstractions in Practice 9

ICAPS 2005

Tutorial on Directed Model Checking 85

References

[1] T. Ball, R. Majumdar, T. D. Millstein, and S. K. Rajamani. Automatic predicate abstraction of c
programs. In SIGPLAN Conference on Programming Language Design and Implementation,
pages 203–213, 2001.

[2] E. Clarke, O. Grumberg, and D. Long. Model checking and abstraction. ACM Transactions on
Programming Languages and Systems, 16(5):1512–1542, 1994.

[3] E. Clarke, O. Grumberg, and D. Peled. Model Checking. MIT Press, 2000.

[4] R. Cleaveland, P. Iyer, and D. Yankelevich. Optimality in abstractions of model checking. In
Static Analysis Symposium, Lecture Notes in Computer Science, pages 51–53. Springer, 1995.

[5] J. C. Culberson and J. Schaeffer. Pattern databases. Computational Intelligence,
14(4):318–334, 1998.

[6] S. Edelkamp. Planning with pattern databases. In European Conference on Planning (ECP),
Lecture Notes in Computer Science. Springer, 2001. 13-24.

[7] S. Edelkamp and A. Lluch-Lafuente. Abstraction in directed model checking. In
ICAPS-Workshop on Connecting Planning Theory with Practice, 2004.

Abstractions in Practice 10

[8] R. E. Korf. Finding optimal solutions to Rubik’s Cube using pattern databases. In National
Conference on Artificial Intelligence (AAAI), pages 700–705, 1997.

[9] R. E. Korf and A. Felner. Disjoint pattern database heuristics. Artificial Intelligence,
134(1-2):9–22, 2002.

[10] P. Merino, M. del Mar Gallardo, J. Martinez, and E. Pimentel. aspin: Extending spin with
abstraction. In Model Checking Software (SPIN), Lecture Notes in Computer Science.
Springer, 2002.

[11] R. Milner. An algebraic definition of simulation between programs. In Joint Conference of
Artificial Intelligence (IJCAI), pages 481–489, 1995.

[12] K. Qian and A. Nymeyer. Guided invariant model checking based on abstraction and symbolic
pattern databases. In Tools and Algorithms for the Construction and Analysis of Systems
(TACAS), pages 497–511, 2004.

[13] S. Graf and H. Saidi. Construction of abstract state graphs with PVS. In Conference on
Computer Aided Verification (CAV), Lecture Notes in Computer Science, pages 72–83.
Springer, 1997.

ICAPS 2005

86 Tutorial on Directed Model Checking

Directed Model Checking

– Partial Order Reduction –

Stefan Edelkamp

1 Overview

• Motivation

• Independence and Invisibility

• Stuttering Equivalence

• Ample Set

• General State Expanding Search

• Hierarchy of Cycle Conditions

• (Recovering) Solution Quality

Overview 1

ICAPS 2005

Tutorial on Directed Model Checking 87

2 Motivation

Idea: exploit the commutativity of asynchronous systems to reduce the size of the
state space

Resulting state space: equivalent to the original one wrt. specification

Two main families:

• net unfoldings

• diamond properties (here)

Several approaches:

• “stubborn” sets, “persistent” sets, and

• “ample” sets (here)

Motivation 2

Independence and Invisibility

α, β ∈ T independent : for each state s ∈ S in which α, β are defined we have

1. α ∈ enabled(β(s)) and β ∈ enabled(α(s)) (enableness preserving)

2. α(β(s)) = β(α(s)) (communtative)

α invisible wrt. a set of propositions P : ∀s, s′, s′ = α(s): L(s) ∩ P = L(s′) ∩ P .

Example: Transitions α, β and γ are pairwise independent; α and β are invisible

with respect to the set of propositions P = {p}, while γ is not

p

pp

p

α

αγ

α γ
β

β β

β α

γ

γ

Motivation 3

ICAPS 2005

88 Tutorial on Directed Model Checking

Stuttering Equivalence

Two executions are stuttering equivalent wrt. P : atomic propositions of the i-th
block of both executions have the same intersection with P , for each i > 0

Example: stuttering equivalent paths wrt. LTL property in which only p and q occur.

p, q p, q

p, q

¬p,¬q ¬p,¬q

¬p,¬q¬p, q¬p, q¬p, q

¬p, q

Two transition systems stuttering equivalent : same set of initial states and for each
execution in one systems ∃ stuttering equivalent execution in the other one

LTL−X cannot distinguish between stuttering equivalent transition systems

M and N are two stuttering equivalent transition systems⇒M satisfies a given
LTL−X specification ⇐⇒ N does

Motivation 4

Ample Set

C0: ample(s) is empty exactly when enabled(s) is empty.

C1: Along every path in full state space starting at s, a transition dependent on one
in ample(s) does not occur without a transition in ample(s) occurring first.

C2: If a state s is not fully expanded, then each transition α in the ample set of s
must be invisible with regard to P .

C3: If for each state of a cycle in the reduced state space, a transition α is enabled,
then α must be in the ample set of some of the states of the cycle.

C0 and C2: independent to search algorithm applied

Checking Condition C1 at least as hard as checking reachability for the full state
space⇒ over-approximation

Motivation 5

ICAPS 2005

Tutorial on Directed Model Checking 89

Dynamically Checking the Cycle Condition

Condition C3cycle: Every cycle in the reduced state space contains at least one
state that is fully expanded.

⇒ checking C3 can be reduced to detecting cycles during the search

Avoiding ample sets containing backward edges except when state is fully
expanded ensures C3 when using DFS/IDA*

⇒ C3stack:

C3stack: If a state s is not fully expanded, then no transition in ample(s) leads to a
state on the search stack.

Motivation 6

Safety Cycle Condition

C3−: If for each state of a cycle in the reduced state space, α is enabled, then α

must be in the ample set of some successor of a state of the cycle.

Condition C3−stack: If a state s is not fully expanded, then at least one transition in
ample(s) does not lead to a state on the search stack.

Example:

s

α1

α2..αn

dfs stack

Contrary to C3stack, C3−stack accepts {α1, α2} as valid ample set

⇒ C3−stack not sufficient to guarantee C3 (necessary for checking liveness)

Motivation 7

ICAPS 2005

90 Tutorial on Directed Model Checking

3 Checking Cycle Condition with GSEA

Common: assumes cycle to exist whenever an already visited state is found.

⇒ weaker reductions, as it is known that state spaces of concurrent systems
usually have a high density of duplicate states.

C3duplicate: If a state s is not fully expanded, then no transition in ample(s) leads to
an already visited state.

s

s′

α1

α2..αn

Open

Closed

{α1} and {α1, α2} are examples of non valid ample sets. On the other hand, the
set {α2} is not refuted.

Checking Cycle Condition with GSEA 8

Safety Cycle Condition for a GSEA

. . . alternative condition in order to enforce the cycle condition C3−

. . . sufficient to guarantee a correct reduction when checking safety properties.

. . . based on the same idea as C3duplicate

Condition C3−duplicate: If a state s is not fully expanded, then at least one
transition in ample(s) does not lead to an already visited state.

Example: {α1, α2} is rejected as ample set by condition C3duplicate, but not by
C3−duplicate.

Checking Cycle Condition with GSEA 9

ICAPS 2005

Tutorial on Directed Model Checking 91

4 Hierarchy of Cycle Conditions

C3 Conditions: All presented cycle conditions for checking safety properties.

C3 C3−
stack

C3−
duplicate

Depth-first search based algorithms

General state
expanding algorithms

C3static

Arrows indicate which condition enforces which other.

Hierarchy of Cycle Conditions 10

5 Solution Quality

Observation: Shortest path to error in reduced space often longer than shortest
path to error in full space

Intuition: Concept of stuttering equivalence does not make assumptions about
length of equivalent blocks.

Example: α and β independent, α invisible wrt. p; invariant Gp to be checked

⇒ reduced state space stuttering equivalent to full one, shortest path length of 2 vs.
1 for original space

¬p

¬p

α

β α

β

p

p

¬p

α

β

p

p

Solution Quality 11

ICAPS 2005

92 Tutorial on Directed Model Checking

Recovering Solution Quality

Idea: process error trail after the verification; ignore those transitions that are
independent from the one that directly lead to the error state

Approach: extracting irrelevant transitions from the counterexamples until there is
no such transition

Observation: after extracting an irrelevant transition, more new transitions may
become irrelevant, e.g. if they were dependent on the recently extracted transition.

⇒ an efficient algorithm must extract transitions beginning from the last one.

Solution Quality 12

6 Pseudo-Code

Procedure Filter(r)
r′ ← r; j ← n− 1;
while 1 ≤ j < n do

irrelevant← true;
if visible(r′[j]) then irrelevant← false;
else

for i in j + 1 .. n do
if dependent(r′[i], r′[j]) or can enable(r′[j], r′[i]) then

irrelevant← false; break;
if irrelevant then r′ ← extract(r′, j); n← n− 1;
else j ← j − 1;

return r′;

Pseudo-Code 13

ICAPS 2005

Tutorial on Directed Model Checking 93

Admissability

Observation: resulting counterexample may not be optimal.

¬p

¬p

p

p

¬p

p

α2

α1 α5

α4

α4

α8

α6

p

¬p

¬p

¬p

p

α6

α6

α8α3

α3

α7

α7

p

Error : p doesn’t hold; Independent: (α3, α4), (α6, α7), (α6, α8); Visible: α6, α4

Path formed by transitions α1, α2, α3 and α4 can be established as shortest path
in the reduced state space denoted by the dashed region.

Established error path α1α2α4; Optimal error path in full space: α5α6.

Pseudo-Code 14

References

[1] R. Alur, R. Brayton, T. Henzinger, S. Qaderer, and S. Rajamani. Partial-order reduction in
symbolic state space exploration. In International Conference on Computer-Aided Verification.

[2] S. Bornot, R. Morin, P. Niebert, and S. Zennou. Black box unfolding with local first search. In
International Conference on Tools and Algorithms for Construction and Analysis of Systems
(TACAS), pages 241–257, 2002.

[3] C.-T. Chou and D. Peled. Formal verification of a partial-order reduction technique for model
checking. In International Conference on Tools and Algorithms for Construction and Analysis of
Systems (TACAS), pages 241–257, 1996.

[4] P. Godefroid. Using partial orders to improve automatic verification methods. In International
Conference on Computer-Aided Verification.

[5] D. A. Peled. Combining partial order reductions with on-the-fly model-checking. Formal Methods
in Systems Design, 8:39–64, 1996.

[6] A. Valmari. A stubborn attack on state explosion. Lecture Notes in Computer Science,
531:156–165, 1991.

Pseudo-Code 15

ICAPS 2005

94 Tutorial on Directed Model Checking

Directed Model Checking

– Directed Search –

Stefan Edelkamp

1 Overview

• Search in Directed Graphs

• General State Expanding Search

• Depth-Bounded Search and Re-opening

• Heuristics

• Dijkstra / A*

• IDA*

• Other Heuristic Search Algorithms

Overview 1

ICAPS 2005

Tutorial on Directed Model Checking 95

2 Search in Directed Graphs

Implicit Graphs: graph G = 〈V, E〉 constructed starting from the initial vertex and
generating new vertices in each step

Strongly connected component (SCC): maximal set of vertices, such that each
vertex in the set is reachable from each other vertex of the set.

Computing the SCCs: Algorithm of Tarjan

Cost of p = 〈e1..en〉: cost(p) =
∑

i=1..ncost(ei)

Termination: search algorithm does not run forever.

Completeness: search algorithm terminates exactly when a solution exists.

Admissibility/Optimality : always returns optimal solutions.

Search in Directed Graphs 2

General State Expanding Search Algorithm

General state expanding search algorithm (GSEA): divides the vertices of a graph
into three sets: the set Open, Closed and the rest

- iteratively extracts vertices from Open and moves them into Closed.

- if extracted vertex is a goal⇒ algorithm terminates

- vertices extracted from Open are expanded

- if successor of expanded vertex neither in Open nor in Closed ⇒ add to Open

BFS implements Open as a FIFO queue and DFS as a stack.

Reopening: visit vertices and their successors more than once by inserting already
visited and newly generated vertices into Open

Search in Directed Graphs 3

ICAPS 2005

96 Tutorial on Directed Model Checking

Pseudo-Code

Procedure GeneralStateExpandingAlgorithm(s)
Closed← ∅;
Open← ∅;
Open.insert(s);
while not Open.empty() do

u← Open.extract();
Closed.insert(u);
if goal(u) then return solution;
for each e ∈ outgoing(u) do

v ← to(e);
if v �∈ Closed and v �∈ Open then

Open.insert(v);

Search in Directed Graphs 4

Bounding the Depth

Directed weighted graph with exponentially many goal paths:
3

1 1 1 1
3 3 3

1 1 1 1

. . .

Depth-Bounded Search: Bound maximal depth reachable by DFS

Anomaly :

depth-bound

v

v

g

g

Guarantee completeness and admissibility : reopen vertices, when reached through
a shorter path than the current shortest one.

Search in Directed Graphs 5

ICAPS 2005

Tutorial on Directed Model Checking 97

Pseudo-Code

Procedure AdmissibleDepthFirstSearch(s);
if goal(s) then

goal← s; depthbound← s.depth;
end if;
Closed.insert(s)
for each e ∈ outgoing(s) do

s′ ← to(e);
if (s �∈ Closed or s′.depth > depth + 1)
and s′.depth < depthbound then

s′.depth = depth + 1;
AdmissibleDepthFirstSearch(s′);

Initially: s.depth for each s and depthbound are set to∞, and depth is set to 0

Search in Directed Graphs 6

Dijktra’s Single Source Shortest Path

Change to original: new algorithm terminates if a goal vertex is found.

Specializes GSEA algorithm by implementing the Open list as a priority queue.

- Priority of a vertex: cost of the current optimal cost path to that vertex

- Value is denoted by attribute f in the algorithm.

- Every time a vertex is reached through a path with lower cost the priority of the
vertex is updated

Search in Directed Graphs 7

ICAPS 2005

98 Tutorial on Directed Model Checking

Pseudo-Code

Procedure Dijktra(s)
Closed← ∅; Open← ∅; s.f ← 0;
Open.insert(s);
while not Open.empty() do

u← Open.extractmin(); Closed.insert(u);
if goal(u) then return solution;
for each e ∈ outgoing(u) do

v ← to(e); f ′ ← u.f + cost(e);
if v ∈ Open then

if (f ′ < v.f) then v.f ← f ′;
else v.f ← f ′; Open.insert(v);

Search in Directed Graphs 8

3 Heuristics

Heuristic search: exploits information of the underlying problem being solved in
order to improve the search process.

Information: usually represented by means of functions that rank the desirability of
exploring a vertex

A heuristic estimate function h is

- admissible: h(u) ≤ h∗(u) for every vertex u of the graph.

- monotone: h(u) ≤ cost(e) + h(v), for every pair of vertices u, v of the graph
where e is the edge going from u to v with minimum cost.

Theorem: Monotone heuristic is admissible

Heuristics 9

ICAPS 2005

Tutorial on Directed Model Checking 99

4 A* Search Algorithm

. . . similar to BFS and Dijktra: instead of expanding the vertices according to their
depth or cost, rank the vertices by using the value assigned by a heuristic function.

. . . identify vertices having higher probability to lead to goal vertex

If successor vertex v is in

- Open with new cost < old one⇒ update current optimal cost

- Closed with new cost < old one⇒ delete from Closed and re-insert into Open

Reopening: required for guaranteeing admissibility with non-monotone heuristics

Theorem: A* optimal on finite graphs. Optimality on infinite graphs is also
guaranteed if the cost of every infinite path is unbounded (Pearl)

A* Search Algorithm 10

Pseudo-Code

Procedure A*(s)
Closed← ∅; Open← ∅; s.f ← h(s); s.g ← 0; Open.insert(s);
while not Open.empty() do

u← Open.extractmin(); Closed.insert(u);
if goal(u) then return solution;
for each e ∈ outgoing(u) do

v ← to(e); v.g ← u.g + cost(e); f ′ ← v.g + h(v);
if v ∈ Open then

if (f ′ < v.f) then v.f ← f ′;
else if v ∈ Closed then

if (f ′ < v.f) then
v.f ← f ′; Closed.delete(v); Open.insert(v);

else v.f ← f ′; Open.insert(v);

A* Search Algorithm 11

ICAPS 2005

100 Tutorial on Directed Model Checking

Example

Search in a grid with Dijktra’s algorithm (left) and A* (right):

...

...

... ...

...

...

...
.........

...

...

... ...

...

...

...
.........

s

g

s

g

Estimator: Euclidean distance

Goal vertex: upper corner of the grid

Initial vertex: center of the grid.

Reduction: number of visited vertices ≈ 1/4 with respect to Dijktra’s algorithm.

A* Search Algorithm 12

Application to Dining Philosophers

State space of the asynchronous composition of three philosophers (left)

tl1

tl2
tl2

tr1

tl2

tl1
tr2

tl1

tl2

tr3

tl3 tl3
tl2

tl1
tl1 r3

tl2

r1 r2

r3r1

tl3
tl3

1t1t0w0w1t1t

0w0w1t 0w1t0w 1t0w0w

0t0w0e0e0t0w

1t1t1t

1t0w1t

1t0e0t0e0t1t 0t1t0e

0w0w0w 0w0e0t

3

1

2

4
3+0

2+12+12+2

1+3 1+3 1+3

0+3

Search with A* in this state space (right) – order on top of g+h

Error : Deadlock; Heuristic: number of active processes

A* Search Algorithm 13

ICAPS 2005

Tutorial on Directed Model Checking 101

5 Iterative Deepening A*

Depth-first search iterative deepening (DFID): performs several depth-first search
traversals with increasing depth bound

⇒ linear space with respect to the depth, while optimal solutions are guaranteed.

Iterative deepening A*: successive iterations correspond to increased cost bounds

⇒ space complexity remains linear to depth reached, admissibility is preserved,
less vertex expansions wrt DFID if good heuristic function are used.

7

9

1

3

6

4

2 5

8

. . .

. . .

. . .

.

1 +
√

13

2 +
√

10

3 + 3 2 + 2

1 +
√

5

0 +
√

8

1 +
√

132 +
√

103 + 3

1 +
√

5

2 +
√

2

2 + 2

3 + 1

4 + 03 + 1

0 +
√

8

1 +
√

5
2 +
√

2

4

Iterative Deepening A* 14

Pseudo-Code

Procedure IDA*()
threshold← h(s);
loop new threshold←∞; depth← 0;

search(s, threshold); threshold← new threshold;

Procedure search(u, threshold)
if goal(u) then return solution;
depth← depth + 1;
for each e ∈ outgoing(u) do

v ← to(e); f ← depth + h(v);
if f ≤ threshold then search(v, threshold);
else if f < new threshold then new threshold← f ;

depth← depth− 1;

Iterative Deepening A* 15

ICAPS 2005

102 Tutorial on Directed Model Checking

6 Other Directed Search Strategies

Hill Climbing: DFS variant where the order in which successors of a vertex are
explored is determined by a heuristic function; not admissible, local optima.

WA* : modification of A* with f(u) = (1− w) ∗ u.g + w ∗ h(u), with 0 ≤ w ≤ 1;
trade-off between solution quality and acceleration of the search.

Greedy Best-First : A* without reopening in which the heuristic function used is just
an evaluation function; not admissible but able to find goal vertices very fast.

Beam Search: similar to best-first, but uses a bounded Open list, incomplete and
applied for searching in large graphs with high density of goals

Frontier Search: The frontier search reduce memory requirements of A* by avoiding
storage of closed vertices, effective in graphs where |Open| >> |Closed |

Other Directed Search Strategies 16

References

[1] R. Bisiani. Beam search. In Encyclopedia of Artificial Intelligence, pages 1467–1568. Wiley
Interscience Publication, 1992.

[2] R. E. Korf. Depth-first iterative-deepening: An optimal admissible tree search. Artificial
Intelligence, 27(1):97–109, 1985.

[3] R. E. Korf and W. Zhang. Divide-and-conquer frontier search applied to optimal sequence
allignment. In National Conference on Artificial Intelligence (AAAI), pages 910–916, 2000.

[4] J. Pearl. Heuristics. Addison-Wesley, 1985.

[5] A. Reinefeld and T. Marsland. Enhanced iterative-deepening search. IEEE Transactions on
Pattern Analysis and Machine Intelligence, 16(7):701–710, 1994.

[6] R. Tarjan. Depth-first search and linear graph algorithms. SIAM Journal of Computing,
(1):146–160, 1972.

[7] A. L. Zobrist. A new hashing method with application for game playing. Technical Report 88,
Computer Science Department, University of Wisconsin, 1970.

Other Directed Search Strategies 17

ICAPS 2005

Tutorial on Directed Model Checking 103

