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ABSTRACT 

The problem of deciding whether a given prop- 
ositional formula in conjunctive normal form is 
satisfiable has been widely studied. I t  is known 
that, when restricted to formulas having only two 
l i te ra ls  per clause, this problem has an eff ic ient 
(polynomial-time) solution. But the same problem 
on formulas having three l i te ra ls  per clause is 
NP-complete, and hence probably does not have any 
eff ic ient solution. 

In this paper, we consider an in f in i te  class 
of sa t i s f i ab i l i t y  problems which contains these 
two particular problems as special cases, and show 
that every member of this class is either polynomi- 
al-time decidable or NP-complete. The in f in i te  
collection of new NP-complete problems so obtained 
may prove very useful in finding other new NP-com- 
plete problems. The classification of the polyno- 
mial-time decidable cases yields new problems that 
are complete in polynomial time and in nondetermin- 
is t i c  log space. 

We also consider an analogous class of prob- 
lems, involving quantified formulas, which has the 
property that every member is either polynomial- 
time decidable or complete in polynomial space. 

I .  INTRODUCTION -- A GENERALIZED SATISFIABILITY 
PROBLEM 

We start with an introductory example. Let 
R(x,y,z) be a 3-place logical relation whose truth- 
table is {(l,O,O),(O,l,O),(O,O,l)} -- that is, 
R(x,y,z) is true i f f  exactly one of i ts  three argu- 
ments is true. Consider the problem of deciding 
whether an arbitrary conjunction of clauses of the 
form R(x,y,z) is satisfiable. We call this the 
ONE-IN-THREE SATISFIABILITY problem. For example, 
the formula R(x,y,z)AR(x,y,u)AR(u,u,y) is satis- 
fiable, because i t  is made true by assigning the 
values O,l,O,O to the variables x,y,z,u respective- 
ly. As wi l l  be seen, the ONE-IN-THREE SATISFIABIL- 
ITY problem is NP-complete. 

The simi lar i ty between this problem and the 
standard sa t i s f iab i l i t y  problem for propositional 
formulas in conjunctive normal form leads to the 
generalization which is the subject of this paper. 
Consider the problem of deciding whether a given 
CNF formula with 3 l i te ra ls  in each clause is 
satisfiable --.a well-known NP-complete problem. 
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
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Since a clause may contain any number of negated 
variables from 0 to 3, there are four dist inct 
relations among variables which occur as conjuncts 
in the formulas of this problem -- namely, the re- 
lations Ro,R I,R~,R 3 defined by Ro(x,y,z) ~ x v y v z ,  
R1(x,y,z) ~ I x ~ y v z ,  R2(x,y,z) ~ ~ x v ~ y v z  
a6d R3(x,y,z) z ~ x v ~ y v ~ z .  An input to this 
sat is f iab ia l i ty  problem is just a conjunction of 
clauses of the form Ri(~,~',~") for various vari- 
ables ~,~',~" and various i ~{0,I,2,3}. 

This sets the stage for the following general- 
ization. Let S = {R l . . . . .  R m} be any f in i te  set of 
logical relations. (A logical relation is defined 

to be any subset of {O,l} k for some integer k~l. 
The integer k is called the rank of the relation.) 
Define an S-formula to be any conjunction of 
clauses, each of the form ~i(~l,~2 . . . .  ), where 
~l,~p . . . .  are variables whose number matches the 
r~nk-o fR i , iE{ l  . . . . .  m}, and R~ is a relation sym- 
bol representing the relation"'R i .  The S-satisf i-  
ab i l i t y  problem is the problem of deciding whether 
a given S-formula is satisfiable. We denote by 
SAT(S) the set of al l  satisfiable S-formulas. 

The main result of this paper characterizes 
the complexity of SAT(S) for every f in i te  set S 
of logical relations. The most striking feature 
of this characterization is that for any such S, 
SAT(S) is either polynomial-time decidable or 
NP-complete. This dichotomy is somewhat surprising, 
since one might expect that any such large and di- 
verse class of problems, that includes both polyno- 
mial-time decidable and NP-complete members, would 
also contain some representatives of the many in- 
termediate degrees of complexity which presumably 
l ie  between these two extremes. 

Furthermore, we give an interesting c lass i f i -  
cation of the polynomial-time decidable cases. We 
show that (assuming P~NP) SAT(S) is polynomial-time 
decidable only i f  at least one of the following 
conditions holds: 

(a) Every relation in S is satisfied when al l  
variables are O. 

(b) Every relation in S is satisfied when al l  
variables are I. 

(c) Every relation in S is definable by a CNF 
formula in which each conjunct has at most 
one negated variable. 

(d) Every relation in S is definable by a CNF 
formula in which each conjunct has at most 
one unnegated variable. 
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(e) Every relation in S is definable by a CNF 
formula having at most 2 l i terals in each 
conjunct. 

(f) Every relation in S is the set of solutions 
of a system of linear equation over the two- 
element f ie ld {0,1}. 

Sections 2-4 are devoted to the statement and 
proof of this Dichotomy Theorem. (Although we use 
the word "dichotomy" to describe this result, i t  
should be borne in mind that the dichotomy holds 
only i f  P#NP; i f  P=NP, the dichotomy would col- 
lapse.) 

A variation of the problem consists of allow- 
the constants 0 and l to occur in input formulas 
(e.g. a clause R(x,O,y) is allowed). We denote 
this "satisfiability-with-constants" problem by 
SATc(S)~ Our results for SATe(S) are sharper than 
for SAT(S): we obtain a compTete characterization 
up to log-space equivalence. For any f in i te  set S 
of logical relations, SATc(S) lies in one of seven 
log-space equivalence classes, described as follows: 

I. SATc(S) is decidable deterministically in log 
space. 

2. The complement of SATe(S) is log-equivalent to 
the graph reachabilit~ problem (given a graph G 
and nodes s,t of G, do s and t l ie  in the same 
connected component of G?). 

3. The complement of SATe(S) is log-equivalent to 
the digraph reachabil~ty problem (given a direc- 
ted graph G and nodes s,t  of G, is there a di- 
rected path from s to t?). In this case, 
SATc(S) is log-complete in co-NSPACE(Iog n). 

4. SATc(S) is log-equivalent to 
the problem of deciding whether a graph is 
bipartite. 

5. SATc(S) is log-equivalent to the problem of 
whether an arbitrary system of linear equations 
over the f ield {0,]} is consistent. 

6. SATc(S) is log-complete in P. 

7. SATc(S ) is log-complete in NP. 

This result is presented in Section 5. For "most" 
sets S, SATc(S ) is essentially identical to, and 
has the same complexity as, SAT(S). (See Lemma 4.2.) 
Of course, i t  is not known that the above seven 
classes are distinct. 

In Section 6, we present a polynomial-space 
analogue of the Dichotomy Theorem, involving quan- 
t i f ied formulas. We define QFc(S) to be the analog 
of SATc(S) in which formulas contain universal and 
existential quantifiers quantifying the proposition- 
al variables. The main theorem of this section 
states that for any f in i te  set S of logical rela- 
tions, QFc(S ) is either polynomial-time decidable 
or log-complete in polynomial space. For both 
QFc(S ) and SATc(S) the polynomial-time decidable 
ca~es are just-the cases (c)-(f)  listed above; 
cases (a) and (b) are excluded. 

We men~ion here a few particular completeness 
results whic~follow from these general theorems. 
Problems NPI,NP2 and NP3 are NP-complete. 

NPI. ONE-IN-THREE SATISFIABILITY 

Given sets S l . . . . .  S_ each having at most 3 mem- 
bers, is there a subset T of the members such 
that for each i ,  ITnSiJ = l ? 

NP2. NOT-ALL-EQUAL SATISFIABILITY 

Given sets S., . . . ,S m each having at most 3 
members, canlthe meJiibers be colored with two 
colors so that no set is all one color? 

NP3. TWO-COLORABLE PERFECT ICATCHING 

Given a graph G, can the nodes of G be colored 
with two colors so that each node has exactly 
one neighbor the same color as itself? (G may 
be restricted to be planar and cubic.) 
(Theorem 7.1) 

Problems PI and P2 are log-complete in P. 

Pl. 

P2. 

SAT3W (Weakly Positive Satisf iabi l i ty) 

Given a CNF formula having at most 3 l i terals 
in each clause, and having at most one negated 
variable in each clause, is i t  satisfiable? 
(Corollary 5.2) 

NOT-EXACTLY-ONE SATISFIABILITY 

Given sets S I . . . . .  S m each having at most 3 
members, and'a distTnguished member s, can one 
choose a subset of the members, containing s, 
so that no set has exactly one member chosen? 
(Corollary 5.2) 

This paper contains a ful l  proof of the 
Dichotomy Theorem. The other results are, for the 
most part, stated without proof. 

Technical Note. The definition of "logical relation" 
given above is deficient in that i t  fa i ls to d i f fer-  
entiate between empty relations of differing ranks. 
Therefore, we formally define a logical relation to 
be a pair (k,R) with R~{O,1}k; but informally we 
shall continue to regard R i t se l f  as being the 
relation. 

2. THE DICHOTOMY THEOREM 

This section states and discusses the main 
result of this paper, the following theorem. 

Theorem 2.1. (Dichotomy Theorem for Sat isf iabi l i ty) .  
Let S be a f in i te  set of logical relations. I f  S 
satisfies one of the conditions (a)-(f) below, then 
SAT(S) is polynomial-time decidable. Otherwise, 
SAT(S) is log-complete in NP. (See below for 
definitions). 

(a) Every relation in S 

(b) Every relation in S 

(c) Every relation in S 

(d) Every relation in S 

(e) Every relation in S 

(f) Every relation in S 

is O-valid. 

is l-valid. 

is weakly positive. 

is weakly negative. 

is affine. 

is bijunctive. 

Definitions. 
(The following definitions were all invented for 
this paper and should not be assumed to agree with 
terminology used elsewhere.) 

The logical relation R is O-valid i f  (0 ..... O) 
E R. The logical relation R is l-valid i f  
(I . . . . .  I)~R. 

- 217 - 



The logical re lat ion R is weakly posi t ive 
(resp. weakly negative) i f  R(x I . . . .  ) is l og ica l l y  
equivalent to some CNF f o r ~ l a  having at most one 
negated (resp. unnegated) variable in each con- 
junct. 

The logical re lat ion R is bi junct ive i f  
R(x I . . . .  ) is l og ica l l y  equivalent to some CNF for-  
~ul~ having at most 2 l i t e r a l s  in any conjunct. 

The logical re lat ion R is af f ine i f  R(x I . . . .  ) 
is log ica l l y  equivalent to somesy--~m o f - l inear  
equations over the two-element f i e l d  { 0 , I } ;  that 
is,  i f  R(x~ . . . .  ) is l og ica l l y  equivalent to a con- 
junctio~ o~ formulas of the forms ~I ~ " "  ~Cn = 0 
and ~l ~ ' ' ' ~ n  = l ,  where ~ denotes addition 
modulo 2. 

Complexity-theoretic notions, such as P, NP, 
log-space reduc ib i l i t y ,  etc. are defined b r i e f l y  in 
the Appendix. 

Exampl es 

The relat ion RI = { ( l ,O ,O ,O) , (O , l , l ,O ) , (O , l ,O , l ) ,  
( I , 0 , I , I ) }  is aff in& s i nce~ i ( u , x , y , z )  is equival- 
ent to ( u ~ x : l ) A ( x ~ y m z : O } .  

The re lat ion R 2= { ( 0 , 0 , 0 ) , ( 0 , 0 , I ) , ( 0 , I , 0 ) ,  
( I , I , 0 ) }  is b i junct ive and weakly negative, since 
~2(x,y,z) is equivalent to ( - I x V y ) A ( 4 y v - l z ) .  
I~ is also, obviously, O-valid. 

The re lat ion R 3 = { ( 0 , I ) , ( I , 0 ) }  is defined by 
the formula ( x v y ) ~ ( ~ x v ~ y ) ,  or equivalent ly ,  
x ~ y =  I.  Hence this re lat ion is b i junct ive and 
af f ine.  I t  is not, however, weakly posi t ive or 
weakly negative - -  this can be shown using Lemma 
3.1W. 

The re lat ion R 6 = { ( 0 , 0 , 0 ) , ( I , I , I ) }  is defined 
by the formula (xmy) A(ymz), or equivalent ly,  
( x v ~ y )  A ( y V I x ) A ( y v ~ z ) A ( Z ~ - I y ) .  Hence, i t  
is O-valid, l - v a l i d ,  weakly posi t ive,  weakly nega- 
t i ve ,  a f f ine and bi junct ive.  

The relat ion R~={ (O,O, I ) , (O , I ,O) , (O , I , I ) ,  
( I ,O ,O) , ( I ,O , I ) , ( I ,T ,O) }  is the complement of R 4. 
I t  does not have any of the six properties l i s ted  
for R 4 -- this can be proved using Lemmas 3.1A, 
3.1B, and 3.1W. Thus, this example shows that none 
of these properties is preserved under complement. 

The re lat ion R 6 = { ( 0 , 0 , I ) , ( 0 , I , 0 ) , ( I , 0 , 0 ) }  is 
the re lat ion "exact ly one of three" mentioned in 
the Introduction. I t  can be shown, using Lemmas 
3.1A, 3.1B and 3.1W, that i t  is not weakly posi t ive,  
not weakly negative, not af f ine and not b i junct ive.  

By applying Theorem 2.1 with S={R 5} and S={R6} 
respect ively,  i t  can be deduced that tee NOT-ALL -v 
EQUAL and ONE-IN-THREE s a t i s f i a b i l i t y  problems, 
defined in Section I ,  age log-complete in NP. We 
omit the proofs. 

Method of Proof 

The key question on which the proof of the 
Dichotomy Theorem centers is :  For a given S, what 
relat ions are definable by e x i s t e n t i a l l y  quantif ied 
S-formulas? For example, is S={R}, where R is the 
re lat ion "exactlY one of x ,y ,z , "  then the existen- 
t i a l l y  quantif ied S-formula (3Ul,U2,U3)(R(X,Ul,U3) 
AR(y,up,uR)A~(Ul,U2,Z)) defines the re lat ion 
{ (T , I , I ) , (T ,O,O) , (O, I ,O) , (O,O, I ) } ,  which in the 
notation of Section 3 could be wri t ten [ x ~ y ~ z = l ] .  

Moreover, for this par t icu lar  S, i t  turns out that 
every logical re lat ion is definable by some exis-  
t e n t i a l l y  quanti f ied S-formula. This fact readi ly  
implies the NP-completeness of SAT(S). 

Another way to state th is fact is as a closure 
property: The smallest set of re lat ions which con- 
tains S and is closed under certain operations (con- 
junction and ex is tent ia l  quant i f icat ion)  is the 
set of a l l  logical re lat ions.  From this point of 
view, the general problem can be phrased as f o l -  
lows: What sets of logical re lat ions are closed 
under these operations? I f  we can obtain a reason- 
ably succinct c lass i f i ca t ion  of the sets of re la-  
tions that are closed in th is way, then this may 
serve as a basis for  c lass i fy ing the complexity of 
SAT(S) for various S. 

We do in fact obtain a c lass i f i ca t ion  theorem 
along these l ines.  Section 3 is devoted to i t s  
statement and proof, and a refinement of i t  is 
given in Section 5. This theorem c lass i f ies  the 
sets of logical relat ions that are closed under 
composition, subst i tut ion of constants for  var ia-  
bles, and ex is ten t ia l  quant i f icat ion.  Although the 
c lass i f i ca t ion  is not so thorough as to give a com- 
plete enumeration of the sets having th is closure 
property, i t  does permit the complexity of the 
corresponding s a t i s f i a b i l i t y  problem to be deter- 
mined up to log-space equivalence in a l l  cases. 

The closure of the set S under these three 
operations is denoted Rep(S). I t  is interest ing 
to note that the corresponding s a t i s f i a b i l i t y - w i t h -  
constants problem, SATc(S), is NP-complete just  
when Rep(S) is the set of a l l  logical re lat ions.  
Thus, NP-completeness is c losely t ied to a kind of 
functional completeness. (In Section 3 of [Sch] 
we observed and exploited a s imi lar  " logical  com- 
pleteness property" which is probably exhibited in 
some form by a l l  known NP-complete problems.) 

Relation to Ear l ier  Work 

The work presented here is s imi lar  in s p i r i t  
to the c lass i f i ca t ion  by Post [P] of the sets of 
logical functions that are closed under functional 
composition. In both cases, i t  is shown that "func- 
t ional completeness" holds provided that the gener- 
ating set is not included in one of a f i n i t e  number 
of rest r ic ted classes of functions or re lat ions.  
But the generating operations are quite d i f fe ren t ,  
and to the best of our knowledge, none of the par- 
t i cu lars  of Post's proof carry over to this work. 

Our generalized s a t i s f i a b i l i t y  problem em- 
braces, as par t icu lar  cases, a number of previously 
studied problems. Of the NP-complete cases, so far  
as we know, only the standard CNF s a t i s f i a b i l i t y  
problem with 3 l i t e r a l s  per clause has appeared in 
the l i t e ra tu re  [C]. Of the polynomial-time decid- 
able cases, a l l  are e i ther  t r i v i a l  or previously 
known. The s a t i s f i a b i l i t y  problem for weakly nega- 
t i ve  formulas is essent ia l ly  ident ical  to the prob- 
lem called UNIT which is shown to be complete in P 
in [JL]. A rest r ic ted form of weakly posi t ive 
s a t i s f i a b i l i t y  is equivalent (under complement) to 
the digraph reachabi l i ty  problem, a complete prob- 
lem in nondeterministic log space [Sav]. Our work 
makes use of a l l  these ea r l i e r  completeness re- 
sul ts.  
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3. CLASSIFICATION OF LOGICAL RELATIONS 

This section presents the c l a s s i f i c a t i o n  the- 
orem (Theorem 3.0) which is the essent ia l  part of 
the proof of the Dichotomy Theorem. This theorem 
c l a s s i f i e s  the sets of  log ica l  re la t ions  that  are 
closed under cer ta in  operations (conjunction, sub- 
s t i t u t i o n  of constants for  var iab les ,  and ex is ten-  
t i a l  quan t i f i ca t i on ) ,  showing that  any such set 
consists exc lus ive ly  of re la t ions  which are in one 
of the four classes weakly pos i t i ve ,  weakly nega- 
t i v e ,  a f f i ne  or b i j unc t i ve ,  or else is the set of 
a l l  log ica l  re la t ions .  

A key part of the proof, which is also of in -  
dependent i n te res t ,  is  a series of lemmas (Lemmas 
3.1A, 3.1B and 3.IW) which characterize these four 
classes of re la t ions  in semantic terms, that  i s ,  
in terms of  what elements are in the re l a t i on ,  
rather than in terms of def in ing formulas as in 
the d e f i n i t i o n s .  

The resu l ts  of th is  section deal purely with 
log ica l  re la t i ons ;  no complex i ty- theoret ic  notions 
are involved. 

Def in i t ions  

The d e f i n i t i o n  of S-formula was given in Sec- 
t ion I .  We use the term formula in a larger  sense, 
to mean any well-formed formula, formed from v a r i -  
ables, constants, log ica l  connectives, parentheses, 
log ica l  re la t i on  symbols and e x i s t e n t i a l  and uni-  
versal quan t i f i e rs  - -  the in ten t  here is to in -  
clude whatever notat ion is handy for  expressing a 
re la t ion  among proposi t ional  var iab les.  

To c l a r i f y  these terms: (a) A var iab le ,  fo r  
purposes of th i s  paper, is an element of the set 
{X,Xn,Xl . . . . .  Y,Yn,Yl . . . .  ,z ,zn,  . . . .  U,Uo . . . .  , v , v n , v l ,  
. . . } T  Variables~ l i ke  formuIas, are s t r ings of 
symbols; and we construe, e .g . ,  the var iab le  x18 
to be a s t r ing  of length 3. (b) A constant is one 
of the symbols 0, I  ( l= t rue ,  O=false~7--( -~A log- 
ical  connective is one of the symbols - 1 , ^ , v ,  
+ , z , ~  which have t h e i r  usual meanings of "not" ,  
"and", "o r " ,  " imp l ies" ,  "equals",  "does not equal."  
(d) Each log ica l  re la t i on  R has associated with i t  
a log ica l  re la t ion  symbol, denoted ~, as in Section 
I .  (e) The quan t i f i e rs  (3x) and (Vx) are i n t e r -  
preted to mean " fo r  some x e { 0 , I } "  and " fo r  a l l  
x ~ { 0 , I } " .  

A l i t e r a l  is a var iab le  or a negated var iab le ,  
i . e . ,  ~ or - ~  fo r  some var iab le  ~. 

The notat ion R(xl . . . .  ) is  shorthand fo r  
~(x I . . . . .  x k) where~k ~s the rank of R. 

I f  A is a formula, then Var(A) denotes the 
set of f ree ( i . e . ,  u n q u a n t i f i e d - ~ r i a b l e s  occur- 
r ing in A. An assignment for  A is a funct ion 
s : V a r ( A ) + { O , l } .  We say the assignment s s a t i s f i e s  
A i f  s makes A true under the usual rules of i n t e r -  
p re ta t ion .  

We define Sat(A) to be the set of a l l  assign- 
ments s : V a r ( A ) + - ~  which sa t i s f y  A. Two formu- 
las A and B are l o g i c a l l y  equivalent i f  Var(A) = 
Var(B) and Sat(A)=Sat(B) .  

Let A be a formula, V~Var(A),  and i ~ { 0 , I } .  

Then K A denotes the assignment s : V a r ( A ) ÷ { O , l }  i ,V 
defined by s(~):i i f f  ~EV. Usually we write just 
K: ,, and let the domain be inferred from context. 
K!'Vdenotes the assignment which has the constant 
v~lue i;  again the domain is inferred from context. 

I f  A is a formula, ~ is a variable, and w is 

a l i te ra l ,  then A[#] denotes the formula formed 
from A by replacing each occurrence of ~ by w. I f  

V is a set of variables, then A[~] denotes the re- 
sult of substituting w for everyWoccurrence of 
every variable in V. Multiple substitutions are 

V' V" denoted by expressions such as A[~,w,,w,, ]  with 
obvious meaning. 

The set of existential ly quantified S-formulas 
with constants is denoted Gen(S). Specifically, 
Gen(S) is the smallest set of formulas such that 
(a) fo r  a l l  R~S, ~(x I . . . .  ) ~Gen(S), and (b) fo r  
a l l  A,B~Gen(S) and a l l  var iables ~,n, the fo l low-  
ing are all in Gen(S): A~B, A[~], A[~], A[f] 
and (3~)A. 

Gen+(S) denotes the set of all formulas which 
are logically equivalent to some formula in GentS). 

I f  A is a formula, then we denote by [A] the 
logical relation defined by A, when the variables 
are taken in lexicographic order. For example, 
[ z ~ ( x v y ) ]  is the 3-place relation { (0,0, I ) , (0 , I ,0) ,  
(l ,o,o) , ( i  ,l ,o)}. 

F ina l l y  we define Rep(S) := { [A]  : AeGen(S)}. 
Rep(S) is  the set of re la t ions  that  are "represent- 
able" by quant i f ied S-formulas with constants. Ob- 
serve that  i f  S~S ' ,  then Rep(S)~Rep(S'). 

C lass i f i ca t i on  Theorem for  Rep(S) 

Theorem 3.0. Let S be any set of log ica l  re la t ions .  
I f  S s a t i s f i e s  one of  the condit ions (a) - (d)  below, 
then Rep(S) s a t i s f i e s  the same condit ion. Other- 
wise, Rep(S) is the set of a l l  log ica l  re la t ions .  

(a) Every relation in S is weakly positive. 
(b) Every relation in S is weakly negative. 
(c) Every relation in S is affine. 
(d) Every relation in S is bijunctive. 

The remainder of  th is  section is devoted to 
the proof of Theorem 3.0. 

Lemma 3.1A. Let R be a log ica l  re la t i on  and l e t  
~I~ . . ) .  Then R is a f f i ne  i f  and only i f  

A:=for I s i , s 2 , s 3 c S a t ( A ) ,  S l~S2~S3~Sat (A) .  

Proof. We use the fo l lowing fac t ,  which can be 
proved using elementary l i nea r  algebra. I f  K is a 
f i e l d ,  then a subset D~K n is the solut ion set of a 
system of l i nea r  equations over K i f f  for  a l l  
bl,b2,b3 ~D and a l l  ci 2 3 , c  ,c ~K with ci 2+c +c =I ,  
Clb I +c2b2 +c3b 3eD. In case K is the f l e l ~  { 0 , I } ,  
th i~ condit ion is equivalent  to "the sum of any 
three elements of D is in D." Since R is a f f i ne  
i f f  A is equivalent to a system of l i near  equations 
over { 0 , I } ,  the lemma fol lows from th is  f a c t . [ ]  

Remark. The c a r d i n a l i t y  of an a f f i ne  re la t ion  is 
always a power of 2. (This fol lows from standard 
resu l ts  in l i near  algebra.)  This fac t  is often of 
use for  showing that  a re la t i on  is  not a f f i ne .  

We now define some terminology for  the next 
lemma. 

I f  ~ is a va r iab le ,  we use the notation <~,i> 
to denote the l i t e r a l  ~ i f  i : l  and ~C i f  i=O. As 
is customary, ~ denotes the complementary l i t e r a l  
of ~, that  i s ,  the l i t e r a l  <~ , l - i >  where ~=<~, i> .  
We say the l i t e r a l  ~=<~ , i>  is  consistent with a 
formula A i f  s(~)=i fo r  some s~Sat (A) .  We say the 
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assignment s a~rees with the l i te ra l  ~ i f  e= 
<C,s(~)> for some variable ~. A set of l i te ra ls  
is consistent i f  i t  does not contain ~ and ~ for 
any l i te ra l  ~. 

I f  s is an assignment and Q is a consistent 
set of l i te ra ls ,  we denote by s#Q the assignment 
which differs from s just on the set {~ : 
<~,l-s(~)> ~ Q}. 

Let e be a l i te ra l  and A a formula. We define 
ImPA(e) to be the set of a l l  l i te ra ls  B such that 
every s ~ Sat(A) which agrees with ~ also agrees 
with 8. Thus, ImPA(e) is the set of l i te ra ls  which 
are "implied" by tSe l i te ra l  e. For example, i f  
A= x v y ,  then <y,1> ~ ImPA(<X,O>). 

Let A be a formula ~nd s ~Sat(A). A chan~e 
set for (A,s) is any set V~Var(A) such that 
sBK] V eSat(A)" That is,  V is a change set for 
(A,s)' i f f  the assignment which differs from s 
just on V satisfies A. 

Lemma 3.1B. Let R be a logical relation and le t  
A:=B(x I . . . .  ). Then the following are equivalent: 

(a) R is bijunctive. 

(b) For every s ~ Sat(A), i f  V l and V 2 are change 
sets for (A,s) then so is VImV 2. 

(c) For every s ~ Sat(A) and every l i te ra l  
which is consistent with A, s#ImPA(e ) ~Sat(A). 
(See Note on last page of this section.) 

Proof.(a)~(b-T?-. Assume R is bijunctive. Thus, A 
is logically equivalent to some formula B which is 
a conjunction of clauses of the form (~+B), where 
~,B are l i te ra ls .  Let s~Sat(A) be given, and let  
VI,V2 be change, sets for (A,s). Let Q be the small- 
est set of l~terals such that (a) {<n,l-s(q)> : 
q~VlnV ~}eQ, and (b) whenever ~ Q  and (~+8) or 
(B ÷ ~) is a conjunct of B for some l i te ra l  8, then 
8~Q. Clearly, any assignment t~Sat(B) which d i f -  
fers from s on al l  of Vlf%V 2 must agree with every 
l i te ra l  in Q. Since S®Kl,Vl is such an assign- 

ment, Q is consistent and Q cannot contain any l i t -  
eral <n,l-s(n)> with n~V~. Similarly, Q cannot 
contain any l i te ra l  <n,l-~(n)> with n~V 2. Hence, 
s#Q = s®KI,v, nV " I t  is straightforward to show 

that s#Q sati~fie~ every conjunct of B; hence 
S®Kl, V nV ~Sat(B) = Sat(A). Hence V lmV2 is a 

1 
change set ~or (A,s). 

(b)-->(c): Assume that (b) holds. Let s ~Sat(A), 
and let  ~ be a l i te ra l  consistent with A. We want 
to show that s#ImPA(e ) ~ Sat(A). AssumeTthat s dis- 
agrees with ~; that is, ~ =<~,1-s(~)> for some 
variable ~. Let W:={n : <n,l-s(n)>~ImPA(~)}; 
that is,  W is the set of variables on which ImPA(~ ) 
clashes with s. We claim that W =( ' ] {V:V is a 
change set for (A,s) & ~ V } .  To prove this claim, 
f i r s t  note that any change set containing ~ must 
also contain al l  of W, since W consists of a l l  var- 
iables which are forced to change as a result of 
changing ~. On the other hand, i f  some variable n 
is not contained in W, then there is some assign- 
ment t such that  t (~)~s(~) but t (n )=s(n ) ,  so that  
n is  not contained in the change set {~ : 
t (~ )~s(~) } .  This proves the claim. 

Now by mul t ip le  appl icat ion of hypothesis (b) ,  
W is i t s e l f  a chan~e set fo r  (A,s) .  Thus, s8K 1 
= s#1mPA(e) e Sat(A), as was to be shown. ,W 

(C)-->(a): Assume that  for  every s ~Sat(A) and 
every l i t e r a l  e which is consistent with A, 

s#ImPA(~) eSat(A). Define B to be the conjunction 
of {(~+B): ~,B are l i te ra ls  & B~ImpA(~)}. Note 
that Var(B)=Var(A), since B has the c~njunct ({÷~) 
for each ~Var(A).  We claim that B is logically 
equivalent to A, and hence R is bijunctive. 

We must show that Sat(B)=Sat(A). Clearly, 
Sat(A)~Sat(B), since any assignment satisfying A 
must satisfy each conjunct of B. 

I t  remains to show Sat(B)~Sat(A). Suppose, 
for sake of contradiction, that s I ~ Sat(B) - Sat(A). 
Choose s~ E Sat(A) such that IwI is maximum, where 
W = {n :~s1(n)=sp(n) • Choose CEVar(A)-W, and let  

:=<~,Sl(~)>. ?he l i te ra l  ~ is consistent with A, 
because i f  ~ were inconsistent with A, then B would 
have a conjunct asserting this fact (that is,  i f  

= <~,0> is inconsistent with A, then B has a con- 
junct ( - ~ ÷ ~ ) ,  and i f  ~=<~,l> is inconsistent 
with A, then B has a conjunct ( ~ ÷ - ~ ) ) ,  and this 
would force s2(~)=Sl(~). Let sR:= sp#ImPA(~). By 
hypothesis s 3 satisfies A. - - 

We claim that for a l l  n~W, s3(n)=s2(n). To 
see this,  suppose nEW with sR(n)#sp(n). Since now 
<n,l-s2(n)>~ ImPA(e), B has a~conjuBct 
(e÷<n,l-s2(q)>), or equivalently (<~,s1(C)> + 
<q,l-sl(n)>). This conjunct is not satisfied by s l ,  
contradicting the assumption that s I satisfies B. ' 
This proves the claim. 

Thus, s3 agrees with s I on al l  of Wu{~}. 
This contradicts the fact t~at s 2 was chosen to 
maximize IwI .. The contradiction completes the 
proof.. [ ]  

Let A be a formula, let  i E {O,l}, and let  
V~Var(A). Define the i-closure of V with respect 
to A to be the set Cli,A(V-[:={~cVar(A) : for a l l  

seSat(A) such that s lV~ i ,  s(C)=i}. In other 
words, Cln A(V) (resp. Cll.A(V)) is the set of 
var iables~ich are forced ~o be false (resp. true) 
by al l  variables of V being false (resp. true). 

I t  is easy to see that V~Cll A(V), and that 
V~V' implies Cl~ A(V)~Cl i A(V')~'-for a l l  V,V' 

Var(A), i ~{o, i}? Call t6e set VSVar(A) 
i-closed for A i f  V=CI i A(V). Also, call V 

i,consistent for A i f  £Here is some s ~ Sat(A) 
such that s IVs i .  We say V is i-nonclosed (resp. 
i-inconsistent) for A i f  V is not i-closed (resp. 
i-consistent) for A. 

Lemma 3.1W. Let R be a logical relation and let  
A:= R(x~ . . . .  ). Then (a) R is weakly positive i f  
and ~ l y ' i f  whenever V~Var(A) is O-consistent and 
O-closed for A, K n v~Sat(A); and (b) R is weakly 
negative i f  and o~I# i f  whenever V~Var(A) is l-co~- 
sistent and l-closed for A, Kl, V~Sat(A). 

Proof. We just prove part (a). The proof of (b) is 
similar. I f  R is empty, the lemma holds t r i v i a l l y ,  
so assume R is nonempty. 

( ~ ) :  Assume that R is weakly positive. Thus A is 
logically equivalent to some CNF formula A' having 
at most one negated variable per conjunct. I t  suf- 
fices to show that i f  V&Var(A') is O-consistent 
and O-closed for A °, then KO, V~Sat(A'). Let V be 
such a set and suppose to t5e contrary that Kn v 
Sat(A'). Let C be a conjunct of A' on which ~'" 
Kn v fa i ls .  Let U be the set of u~negated variables 
o~"C. Since KO, V fa i ls  on C, U&V. I f  C has no 
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

TIf s agrees with ~, the conclusion is immediate, 
since then s#1mPA(~ ) = s. 
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negated variable, then this contradicts the fact 
that V is O-consistent for A'. Otherwise, let n 
be the unique negated variable of C. I t  can be 
seen that nECln a,(U). Also, since K n V fails on 
C, n~ V. This £(~h'tradicts the fact th~£ V is 
O-closed for A'. This proves that in fact 
KO, V ~ Sat(A'). 

(~ ) .  Assume that K n vESat(A) for all O-closed, 
O-consistent sets V_~?ar(A). Let A' be the con- 
junction of all the clauses { (C lV ' "V~n)  : 
{~I . . . . .  ~n} is O-inconsistent for A } ~ { ( , q v ~ ] v  
• ..V~n) '." ~leCl 0 A({~I . . . . .  ~n})}. Since every" 
variabl'eis contained ~n its own O-closure, A' has 
a conjunct ( -~v~ )  for each ~Var(A);  hence, 
Var(A')=Var(A). We claim that A' is logically 
equivalent to A. 

To show Sat(A)~_Sat(A'), suppose that s~Sat(A'). 
Let C be a conjunct of A' on which s fai ls. I f  C 
is of the form (~ lV. . .V~n),  then s(~)=.. . :s(~ n) 
=0 and, by the de~=inition of A', {~ , ' " . ,~n }  is. 
O-inconsistent for A; hence, s~Sat(A). Other- 
wise C is of the form ( -~nv~v . . .V~n ) ,  and so 
s(n)=l, s(~)=...=S(~n)=O. T~en by the definition 
of A' ,  n~C~n A({~I . . . . .  ~ } ) ,  hence s~Sat(A).  
This proves £6at Sat(A):_,"Sat(A'). 

Next we show that Sat(A')_~Sat(A). Suppose 
s~Sat(A).  Let V : :  {~ : s(~)=O}. By the property 
assumed for  A, V is e i ther  O-inconsistent of O-non- 
closed for A. I f  i t  is O-inconsistent, then 
( C ~ v . . . v  ~ )  is a conjunct of A ' ,  where V = {~1, 
• - ; ,~n} ,  an~ hence s~Sat (A ' ) .  I f  V is O-non- 
closed, le t  n~Cln A(V) - V. Then ( - ~ n v ~ i v . . . v  
~n) is a conjunct~'~of A' ,  and hence s#Sat (A ' ) .  
THis proves that Sat(A')_~Sat(A). 

Thus Sat(A)=Sat(A') and so A' is log ica l l y  
equivalent to A. Hence R is weakly posi t ive.  [ ]  

Lemma 3.2. Let R be a logical re lat ion.  I f  R is 
not weakly negative, then Rep({R})m{[x~y],[xvy]} 

@. I f  R is not weakly positive, then Rep({R})m 
{ [ x~y ] , [ ' ~XV-~y ] }  / @. 

Corollary 3.2.1. I f  S contains some re lat ion which 
is not weakly posit ive and some re lat ion which is 
not weakly negative, then [x~y] ~ Rep(S). 

Proof of Corollary. Assume R,R' ~S with R not 
weakly posi t ive and R' not weakly negative. Sup- 
pose, for  sake of contradict ion, that [x~y] 
Rep(S). Then, by Lemma 3.2, [ x v y ]  and [ , x V  ~y ]  
are in Rep(S). Hence, Rep(S) contains [ ( x v y ) ^  
( ~ x v - ~ y ) ] ,  which is jus t  [x~y], contrary to 
assumption. [ ]  

Proof of Lemma 3.2. Let R be a logical re lat ion 
which is not weakly negative, and le t  A:=R(x I . . . .  ). 
By Lemma 3.1W, there is a set V-~Var(A) which is l -  
cons!stent" and l-closed such that:_ K~,,V ~.Sat(A)" 
Let V := Var(A)- V. Choose W-V ,of maximum cardi-  
na l i t y  such that K n w eSat(A). I t  can be seen 
from the de f in i t i on {  that I<IWI<IV I. Choose 

eV-W, and le t  s be an assignment sat isfy ing A 
such that s l V - I  and s(~)=O. Such an s exists be- 
cause V is l-closed and l -consistent .  

For j=O,l define W i := {new : s(n)= j } ,  
Wi : : {n~  Var(A)-W : s~(~):j }, and let 

:= A[ Wo "l "o 
"X ' y  ' 

W 1 is nonempty by maximality of IWI. WO is non- 

empty since i t  contains ~. Thus x and y both actual- 
ly occur in B. 

Clearly [B]~Rep({R}). Also, [B] contains 
(O,l) and (I,0), because A is satisfied by K 0 w and 
s respectively. And [B] does not contain (0,07, by 
maximality of IWI. Thus, depending on whether (1,1) 
is in [B], [B] is either [x~y] or [ xvy ] .  This 
proves the lemma for the case where R is weakly 
negative. 

The proof of the weakly positive case is sim- 
i lar.  [ ]  

The following lemma is of frequent use in what 
follows. 

Negated Substitution Lemma. Assume [x~y] ~ Rep(S). 
Then Gen+(S) is closed under negated substitution; 
that is, i f  A~Gen+(S) and ~,q are variables, 

A[~n] ~ Gen+(S). 

Proof. By hypothesis Gen+(S) contains the formula 
x~y Observe that ~ ~r • A[ ,n]  ,o log ica l l y  equivalent to 
(3u)(A[~]An~u),~where u is a variable not occurring 
in A. ~Hence,A[~n]~Gen+(S). [ ]  

By a "3-element binary logical re la t ion"  we 
mean a 2-place logical re lat ion having exactly 3 
elements• I t  is easy to ver i f y  that there are 
exactly four such re la t ions,  and that these are 
[ xVy ] , [~  xVy] , [x~  ~y]  and [4 xV~y ] .  

Lemma 3.3. Let R be a relation which is not affine. 
Then Rep({R ,[x~y]}) contains all 3-element binary 
logical relations. 

Proof. I t  suffices to show that Rep({R,[x~y]}) con- 
tains some 3-element binary relation, since the 
others can then be obtained by use of the Negated 
Substitution Lemma. 

Let A: :  ~!x I . . . .  ). Using Lemma 3.1A, let 
So,Sl,S 2 be asslgnments satisfying A such that 
SnSSl 8sR does not satisfy A. Form A' from A by 
n~gating All occurrences of variables in the set 
{n : So(n)=l}. By the Negated Substitution Lemma, 
A'~Gen+({R,[x~y]}). Define si' := s iSsQ, for 
i=l,2. Observe that an assignment t 'sat isf ies A' 
i f f  tSs o satisfies A. Thus, K 0 (the all-zero as- 
signment}, Sl' , s 2' all satisfy A', but Sl'8 s{ 
does not. 

For i , j  = O,l, let V~ ~ :={C~Var(A') : 
s I' (~):i & s~ (C)=j}, and"~let 

~ vl,o V~,l] B := A [  0 , 0 ,  0 , I  , y  ' z  " 

Clearly, BeGen+({R,[x~y]}).  Assume without loss 
of general i ty that  x ,y ,z a l l  actual ly occur in B. 
(For example, i f  x does not occur, one can add a 
conjunct (3w)(w~x) just to make i t  occur.) 

By the statement just made about satisfaction 
of A', [B] contains (O,O,O),(O,l,l) and ( l ,O, l ) ,  
but not ( l , l ,O). 

Assume, for sake of contradiction, that 
Rep({R,[x~y]}) does not contain any 3-element bin- 
ary relation. Then [B] must contain (O,l,O), or 
else [(3x)B] is {(O,O),(] , ]) ,(O,l)} .  Also, [B] 
must contain (I,0,0), or else [(3y)B] is{(O,O), 
(0, ] ) , ( I ,1)} .  But then [B[Z]  
(l,O)}, and this contradictiSn ]completesis {(O,O),(O,l),the 
proof. [ ]  

- 2 2 1  - 



Lemma 3.4. Let R be a logical relation which is 
not bijunctive. Then Rep({R,[x~y],[xvy]}) con- 
tains the relation "exactly one of x,y,z." 

Proof. Let A :=B(x I . . . .  ). By part (b) of Lemma 
there exist s nCSat(A) and U,V~Var(A) such 

that U and V are change sets for CA,s), but UmV 
is not a change set for (A,s). 

Form A' from A by negating all occurrences of 
each variable in the set {n :,Sn(n)=l}. By the 
Negated Substitution Lemma, A ~Gen+({R,[xly]}). 
Observe that U and V are change sets for (A',Ko), 
where KO is t~e all-zero assignment, but UnV is 
not. (Also, K 0 satisfies A'.) Define 

Var(A')-(UuV) U~V U-V V U 
B := A ' [  0 ' x ' y ' z ] 

By the above remarks about change sets for (A',Kn), 
[B] contains (0,0,0), ( l , l ,O) and ( l ,O, l ) ,  but n~t 
(l,O,O). Now define 

B' := B[Xx] ^ ( I x v 1 y )  A ( l y v ~ z ) A ( ~ z v 1 x )  

By the Negated Substitution Lema, B' ~Gen+({R, 
[x~y] , [xvy ] } ) .  I t  is easy to check that 
[B'] = {(l,O,O),(O,l,O),(O,O,l)}. That is, [B'] 
is the relation "exactly one of x,y,z." [ ]  

Lemma 3.5. Let R be the logical relation "exactly 
one of x,y,z." Then Rep({R}) is the set of all 
logical relations. 

Proof. Define 

A := (3Ul,U2,U3,U4,U5,U6)(R(X,Ul,U4)AR(y,u2,u4) 

^ R(Ul,U2,U 5) ̂ R(u3,u4,u 6) ^ R(z,u3,0) 

B := R(x,y,O) 

I t  is straightforward to verify that A is logical- 
ly equivalent to ( xvyvz )  and that B is logically 
equivalent to x~y. 

Let a logical relation Q be given and let 
Q=[C] for some standard propositional formula C. 
By introducing a new existential ly quantified var- 
iable for each binary logical connective of C, one 
can form a formula (3y I . . . . .  Ym) D, equivalent to C, 
where D is a conjunction of cTauses each involving 
at most 3 variables (and hence D can be expanded to 
CNF form with at most 3 l i terals per conjunct.) 
Details of this process can be found in [St,Lemma 
6.4] or [BBFMP]. I t  is now straightforward, 
using the formulas A and B, to convert D into an 
equivalent formula in Gen({R}). I t  follows that 
Q E Rep({R}). 

Thus Rep({R}) is the set of all logical rela- 
tions. [ ]  
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

Note. Condition (b) of Lemma 3.1B can also be ex- 
pressed in the following pleasantly symmetric 
form: 

(b') For all sj,s2,s R~sat(A), (SlYS2) A(s2vs3) 
^ (s3vs I) ~ Sa~(A). 

This is derived from condition (b) by setting Sl=S, 
s 2=sCKI,V~, sR=sCKi,vo and observing that 
(Ts2 ~ s l) ^ (s3~sl) I e s I : is  equivalent to (SlY s 2) 
m(s2vs3)~(s3vs I . 

Proof of Theorem 3.0. First we show that i f  S 
does not satisfy any of the conditions (a)-(d) of 
Theorem 3.0, Rep(S) is the set of all logical rela- 
tions. 

Assume that S does not satisfy any of (a)-(d). 
Then S contains some relation R l which is not weak- 
ly positive, some relation R 2 which is not weakly 
negative, some relation R 3 wBich is not affine, 
and some relation Rm which is not bijunctive. By 
Corollary 3.2.1, [x~y]~Rep({Ri,Rp}). Now by 
Lemma 3.3, [xVy]~Rep({RI,R~,RR} ~. Hence, by 
Lemma 3.4, Rep({RI,R?,R3,R4}) c6ntains the rela- 
tion "exactly one'of-x,~,z~" and hence is the set 
of all logical relations, by Lemma 3.5. Thus, 
Rep(S) is the set of all logical relations. 

I t  remains to show that i f  S satisfies one of 
the conditions (a)-(d), so does Rep(S). The proof 
of this part does not involve any new techniques, 
and we leave i t  as an exercise for the reader. 
(This part is not needed in the proof of the Di- 
chotomy Theorem.) [ ]  

4. PROOF OF DICHOTOMY THEOREM 

This section finishes the proof of the Dichot- 
omy Theorem (Theorem 2.1). 

Lemma 4.1. (Dichotomy Theorem for Sat is f iabi l i ty-  
with-Constants) Let S be a f in i te  set of logical 
relations. I f  S satisfies one of the conditions 
(a)-(d) of Theorem 3.0, then SATc(S) is polynomial- 
time decidable. Otherwise, SATc(S ) is log-complete 
in NP. 

Proof. (a) Suppose that every relation in S is 
weakly positive. Then SAT(S) is decidable using 
the following algorithm: 

I. Given an S-formula A, replace each conjunct of 
A by an equivalent CNF formula A' having at 
most one negated variable in each conjunct. 

2. I f  every conjunct of A' contains an unnegated 
variable, ACCEPT. 

3. Otherwise, let (-I~) be a conjunct of A'. I f  
(~) is also a conjunct of A', REJECT. Otherwise, 
drop every conjunct in which -~C occurs and 
drop ~ from every conjunct in which ~ occurs 
unnegated. ( I f  A' becomes empty, ACCEPT.) 

4. Go to step 2. 

We leave verif ication to the reader. 

(b) The case where every relation in S is weakly 
negative is similar to (a). 

(c) Suppose that every relation in S is affine. 
Then to decide whether a given S-formula A is 
satisfiable, convert A to an equivalent system 
of linear equations over {O,l} and solve the 
system by Gaussian elimination. (Eliminate 
one variable at a time until either all varia- 
bles have been eliminated or O=l has been 
deduced.) This is a well-known polynomial- 
time algorithm. 

(d) Suppose that every relation in S is bijunctive. 
Then to decide whether a given S-formula is 
satisfiable, convert i t  to an equivalent CNF 
formula with at most 2 l i tera ls  per conjunct 
and use the Davis-Putnam procedure [DP], which 
as noted in [C] decides sat is f iab i l i ty  of such 
formulas in polynomial time. 
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In (a) - (d)  above, we have sketched polynomial-t ime 
algorithms for  SAT(S). For SATe(S), that  is  i f  
the formulas contain cons tan ts , - i t  is obvious how 
to modify the algorithms. 

Assume now that  S does not sa t i s f y  any of the 
condit ions (a ) - (d ) .  We w i l l  show that  SATe(S) is 
NP-complete by showing SAT3 <_I~SATc(S), w~ere 
SAT3 is the set of s a t i s f i a b l ~ C N F  formulas hav- 
ing at most 3 l i t e r a l s  per conjunct, a known 
NP-complete problem [C]. 

Let Ro,RI,R2,R 3 be the 3-place log ica l  re la -  
t ions defif ied-by Rn[x,y,z )_= ( x v y v  z) ,  R l ( x , y , z )  
-= ! - i x v y v z ) ,  R2(~,y,z)--- ( I x v - ~ y v z ) ,  ~3(x ,y ,z )  
- t ~ x v - l y v - ~ z ) .  For i = 0 , I , 2 , 3 ,  l e t  F i ( x , y , z )  
be a formula in Gen(S) which is l o g i c a l l y  equiva- 
lent  to R i ( x , y , z ) .  Such formulas ex i s t  by Theorem 
3.0. 

Given a CNF formula A with at most 3 l i t e r a l s  
in each conjunct, form an equivalent formula A' by 
replacing each conjunct of A by one of the formu- 
las F.. with appropriate var iables subst i tu ted.  
Form ~" from A' by delet ing a l l  quan t i f i e r s ,  a f t e r  
making sure that  a l l  quant i f ied var iables are d is -  
t i n c t  from each other and from a l l  f ree var iab les .  
Observe that  A" is s a t i s f i a b l e  i f f  A is s a t i s f i a -  
ble. I t  is  not hard to show that  A" is  log-space 
computable from A. This proves that  SAT3 <~__ 
SATc(S). - ,uy 

Since clearlySATc(S)cNP , i t  fo l lows that  
the problem SATc(S ) is log-complete in NP. [ ]  

We define "no-constants" analogues of Gen(S) 
and Rep(S), as fo l lows.  Let GenNC(S) :={A~Gen(S) 
: no constants occur in A}, Rep~(S) { [A] : 
A E GenNC(S) }. 

THe log ica l  re la t ion  R is complementive i f  i t  
is  closed under complement, that i s ,  i f  fo r  a l l  
(a I . . . . .  am) eR, ( l - a  I ,  . . . .  l-am) ~R. 

The fo l lowing easi ly-proved lemma c l a r i f i e s  
the re la t ion  between SAT(S) and SATc(S). 

Lemma 4.2. I f  RePNK(S) contains [ x ]  and [ - I x ] ,  
then Rep(S)=RePNC'CS), and hence SATc(S ) and 
SAT(S) have the same complexity. 

As the next lemma shows, the hypothesis of 
Lemma 4.2 f a i l s  only under very res t r i c ted  condi- 
t ions.  Thus, for  "most" sets S, SAT(S) and 
SATc(S) have the same complexity. 

nonempty 
Lemma 4.3. Let S be a set o f^ log ica l  re la t ions .  
Then at least  one of the fo l lowing holds: 

(a) Every re la t ion  in S is O-val id.  
(b) Every re la t i on  in S is l - v a l i d .  
(c) [ x ]  and [ - i x ]  are contained in RePNc(S). 
(d) [x~y] E RePNc(S). 

Moreover, i f  (c) f a i l s  and (d) holds, every re la -  
t ion in S is complementive. 

Proof. Assume as noted above that  a l l  
re la t ions  in S are nonempty. Assume that (a) and 
(b) f a i l .  We w i l l  show that  (c) or (d) holds. 

CASE I .  Every re la t ion  in S is O-val id or l - v a l i d .  
In th is  case, since (a) and (b) f a i l ,  there is 
some RoeS that  is O-val id but not l - v a l i d ,  and 
some R ~ S  that  is l - v a l i d  but not O-val id.  Let- 
t ing A i :=R i (x  I . . . .  ) ,  we have FA FVar(Ai) l  I - 

~ i  ~ x ~ - 
{ ( i ) }  for  i=O, l ;  hence, [ x ]  and [ - I x ]  are in 
RePNc(S), so (c) holds. 

CASE 2. S contains some nonempty re la t ion  R that  
is nei ther  O-val id nor l - v a l i d .  In th is  case, l e t  
A :=~ (x  I . . . .  ) and choose sESat(A) .  Set 

B := A [ s - I ( { o } )  s - l ( { l } ) ]  
x 0 , x 1 

Since R is nei ther  O-val id nor l - v a l i d ,  x 0 and x 1 
both occur in B and [B] is e i the r  { (0 ,1 ) }  or 
{ ( 0 , I ) , ( I , 0 ) } .  In the former case, [(3x~)B] = [ x ]  
and [ (3Xl )B]  = [ ~ x ] ,  so (c) holds. In ~he l a t t e r  
case, [B] = [x~y ] ,  so (d) holds. 

Thus (c) or (d) holds in a l l  cases. 
Now assume (c) f a i l s  and (d) holds. We claim 

that  [x]{RePNc(S).  For i f  [x]eRePNc(S), we 
would have [ ( ~ x ) ( x ^  x~y)]  = [ T y ] ,  contradict ing 
(c) f a i l i n g .  S i m i l a r l y ,  [ I x ]~RePNc(S) .  Assume 
for  sake of contradict ion that  R e S-And R is not 
complementive. Let A:= R(x] . . . .  ) and choose 
s~Sat(A) such that  ~ S a ~ ( A ) ,  where T is the com- 
plementary assignment of s. Define the formula B 
as in CASE 2. Now x 0 must occur in B, or else 
[ B ] = [ x ] .  S im i l a r l y  x I must occur in B. Thus 
Var(B)={Xl,X 2} and [B] contains (0 , I )  but not ( I , 0 ) .  
Now [B] must contain (0,0) ,  or else [(3xn)B] is 
[ x ] .  And [B] must contain ( I , I ) ,  or els~ [ (3Xl)B]  
is [ T x ] .  Thus, [B] is [ x ÷ y ] .  But then 
[ ( 3 x ) ~ x ÷ y ) ^ ( x ~ y ) ~  is [ y ] ,  and th is  contradict ion 
completes the proof that  every re la t ion  in S is 
complementive. [ ]  

F i na l l y ,  we are able to prove the Dichotomy 
Theorem for  SAT(S). 

Proof of Theorem 2.1. Assume that  not every re la -  
t ion in S is O-val id and not every re la t i on  in S 
is l - v a l i d  ( that  i s ,  condit ions (a) and (b) of 
Theorem 2.1 f a i l ) .  By Lemma 4.3 there are two 
cases to consider. 

CASE I .  [ x ]  and [ , x ]  are in RePNc(S). 

In th is  case, i t  is  easy to replace any given S- 
formula with constants by an equivalent S-formula 
without constants, so the conclusion fol lows by 
Lemma 4.1. 

CASE 2. [x~y]eRePNc(S), and every re la t i on  in S 
is complementive. 

In th is  case, l e t  an S-formula with constants, A be 
given. Let A' be A"A(yO~y l ) ,  where A" is formed 
from A be replacing each-ocdurrence of 0 by YO and 
each occurrence of 1 by Y l ,  and YO,Yl are new- 
var iab les.  Thus, A' is a6 S-formOla without con- 
stants,  and, by complementarity, A' is s a t i s f i a b l e  
i f f  A is s a t i s f i a b l e .  So again the conclusion 
fol lows by Lemma 4.1. [ ]  

5. REFINEMENT TO LOG-SPACE EQUIVALENCE 

This section c l a s s i f i e s  the complexity of 
SATe(S) up to log-space equivalence. Results are 
pre~ented without proof. The de f i n i t i on  of (~k)- 
weakly pos i t i ve  is found l a t e r  in th is  section. 

C lass i f i ca t i on  Theorem for  SATc(S ) 

Theorem 5.1. Let S be a f i n i t e  set of log ica l  re- 
la t ions .  Then SATe(S) l i es  in one of seven log- 
space equivalence ~lasses, as fo l lows:  (S-ATc(S) 
denotes the complement of SATc(S).) 

LI.  I f  every re la t ion  in S is (~O)-weakly pos i t i ve ,  
then SATc(S) is decidable d e t e r m i n i s t i c a l l y  in 
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log space. 

L2. I f  every relation in S is (sl)-weakly positive, 
and S contains some non~O)-weakly positive re- 
lation, then either 

(a) S-~-$-c(S) is log-equivalent to the graph 
reachability problem (given a graph G and 
nodes s,t ,  do s and t l ie  in the same con- 
nected component of G?). 

or (b) S--A-$-c(S) is log-equivalent to the digraph 
reachability problem (given a digraph G 
and nodes s,t ,  is there a directed path 
from s to t?), and hence is log-complete 
in nondeterministic log space. 

L3. I f  every relation in S is weakly positive, and 
S contains some relation that is not (sl)-weak- 
ly positive, then Rep(S) is the set of all 
weakly positive relations, and SATc(S) is log- 
complete in P. 

Statements LI-L3 also hold when "negative" is sub- 
stituted for "positive." 

L4. I f  S contains some relation that is not weakly 
positive and some relation that is not weakly 
negative, and every relation is S is affine and 
bijunctive, then Rep(S)=Rep([x~y]), and SATc(S) 
is log-equivalent to the problem of deciding 
whether a graph is bipartite. 

L5. I f  S contains some relation that is not weakly 
positive, some relation that is not weakly neg- 
ative, and some relation that is not bijunctive, 
and every relation in S is affine, then Rep(S) 
= Rep([xgy®z=O]), and hence SATc(S) is log- 
equivalent to the problem of deciding whether 
an arbitrary system of linear equations over 
the f ie ld {O,l} is consistent. 

Remark. The latter problem is log-equivalent 
to its own complement, since a set of linear 
equations is inconsistent i f f  there is some 
subset of them which sums to O=l, a condition 
which i tse l f  can be written as a set of linear 
equations. Thus for this case, any class in 
which SATc(S) is complete is closed under 
complement. 

L6. I f  S contains some relation that is not weakly 
positive, some relation that is not weakly neg- 
ative, and some relation that is not affine, 
and every relation in S is bijunctive, then 
Rep(S)=Rep([x ÷y]) and s--A-$-c(S ) is log-complete 
in nondeterministic log space. 

L7. I f  S contains some relation that is not weakly 
positive, some relation that is not weakly neg- 
ative, some relation that is not bijunctive, 
and some relation that is not affine, then 
Rep(S) is the set of all logical relations, 
and SATc(S) is log-complete in NP. 

Corollary 5.2. SAT3W and NOT-EXACTLY-ONE SATISFIA- 
BILITY (defined in Section l) are log-complete in 
P. (This follows from statement L3.) 

The proof of L3 relies on the result of Jones 
and Laaser [JL] that the problem UNIT (the set of 
CNF formulas that yield a contradiction from unit 
resolution) is log-complete in P. Although [JL] 
does not give any expl ic i t  syntactic characteriza- 
tion, we believe that UNIT is just the set of un- 
satisfiable CNF formulas having at most one posi- 
tive variable in each conjunct. 

Actually, the proof that SAT3W is complete in 
P can be given in a manner that completely paral- 
lels Cook's proof [C] that SAT3 (the set of satis- 
fiable CNF formulas with 3 l i terals per conjunct) 
is complete in NP. Cook's proof takes a sequence 
of instantaneous machine descriptions and writes a 
CNF formula that describes the sequence. All that 
is necessary to get a completeness result in P is 
to observe that, i f  the machine involved is deter- 
ministic, the CNF formula constructed has at most 
one positive variable in each conjunct. (This re- 
quires certain modifications of Cook's argument, 
which are carried out in the UNIT proof of [JL].) 
The reduction to formulas with 3 l i terals per con- 
junct again completely parallels Cook's proof -- 
one has just to observe that this reduction pre- 
serves the property of having at most one positive 
variable per conjunct. (One can then reverse the 
negativity of all variables so as to get at most 
one negated variable per conjunct, i .e. SAT3W.) 

The proof of statement L2(b) uses the result 
of Savitch [Sav] (later refined by Jones [J]) that 
the digraph reachability problem is complete in 
nondeterministic log space. Jones [J] asks whether 
the undirected graph reachability problem is also 
complete in nondeterministic log space. 

The completness of the sat is f iab i l i ty  problem 
for bijunctive formulas (cf. L6), which follows 
from the completeness of the digraph reachability 
problem, was noted in [JL]. 

Definitions 

Let k be a nonnegative integer or ~. The re- 
lation R is (<k)-weakly positive i f f  ~(x I . . . .  ) is 
equivalent to-some formula B ̂ (~ i~1)  ^ . . .  ^(~n~n ), 
where Cl . . . .  Cn are variables and B is a CNF formuIa 
in which each conjunct has at most one negated var- 
iable and every conjunct which has a negated varia- 
ble has at most k unnegated variables. (Note: The 
clauses (Cirri) serve no function except to make 
the variable ~i occur vacuously in the formula. 
Actually this is necessary only i f  k=O.) 

Note that "weakly positive" is the same as 
"(~)-weakly positive." 

Let A be a formula, V~Var(A), k as above. 

We define cl~kA ( v ) v .  := {~ : 3W~V, IWIsk, such that 
< ~  

VsESat(A), slWzO ---> s(~)=O}. Thus CI6,A(V) is 

the same as~uClo,A(V). We say V is (O,~k)-closed 

forA i f  CI~A(V) = V. 
(Similar definitions are given with "negative" in- 
stead of "positive" and " l "  instead of "O".) 

The analysis of weakly positive relations in 
Theorem 5.1 is based on the following lemma, which 
generalizes Lemma 3.1W. 

Lemma 5.3. Let R be a logical relation and let 
A:=R(x I . . . .  ) and let k be a nonnegative integer 
or J'. Then R is (~k)-weakly positive i f f  whenever 
V~Var(A) is O-consistent and (O,~k)-closed for A, 
KO, v ~ Sat(A). 

Lemma 5.4. I f  R is affine and bijunctive, then 
~(xl . . . .  ) is logically equivalent to a CNF formula 

" " X composed of conjuncts of the forms (xzy) , (~y) ,  
x and I x. 
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6. EXTENSION TO POLYNOMIAL SPACE 

This section gives a polynomial-space analogue 
of the Dichotomy Theorem, involving quantified for- 
mulas. The result is presented without proof. 

A quantified S-formula with constants is a 
member of the smallest set of formulas T such that 
(a) for each RE S, R(x I . . . .  ) cT, and (b) whenever 
A,B~T and ~,n are variables, the following are in 
T: AAB, (3~)A, (V~)A, A[~], A[~], A[~]. Define 

QFc(S) := {A : A is a quantified S-formula with 
constants, Var(A)=@, and A is true}. 

Theorem 6. l .  Let S be a f in i te  set of logical re- 
lations. I f  one of the four conditions (c)-(f)  of 
Theorem 2.1 holds, QFr(S) is polynomial-time decid- 
able. Otherwise, QFc~S) is log-complete in polyno- 
mial space. 

The proof relies on the result of Stockmeyer 
and Meyer [StM] that the problem Bun 3CNF (decide 
the truth of a quantified CNF formula with 3 l i t e r -  
als per conjunct) is log-complete in polynomial 
space, (See also [St]).  

7. APPLICATIONS 

The results presented here are potentially 
very useful in expediting NP-completeness proofs, 
for the reason that they give one a much broader 
"target cross-section" for use in reductions. 
Traditionally, a researcher has had to aim his re- 
duction at a specific NP-complete problem, such as 
the CNF sat is f iab i l i ty  problem. By virtue of The- 
orem 2.1, the researcher's aim no longer has to be 
so specific. Once he has set up the framework for 
simulating conjunctions of clauses, he has great 
latitude regarding the specific content of those 
clauses. 

To i l lustrate this idea, we prove that the 
TWO-COLORABLE PERFECT MATCHING problem, defined in 
Section l ,  is NP-complete. With the help of Theo- 
rem 2.1, the proof is rather simple, whereas pre- 
viously the author had tried without success to 
prove this problem NP-complete. 

Theorem 7.1. TWO-COLORABLE PERFECT MATCHING is log- 
complete in NP. 

Comment. With additional arguments, which we do 
not give here, i t  can be shown that this problem 
restricted to planar cubic graphs in also NP-com- 
plete. 

Proof (sketch). Consider the graph shown in Figure 
~ t h r e e  of whose nodes are labeled with the 
variables x,y,z. Any coloring of this graph with 
the colors "0" and " l "  can be interpreted as as- 
signing truth values to the variables x,y,z. The 
requirement that the coloring be a solution to the 
2-colorable perfect matching problem is thus inter- 
preted as imposing a certain relation on these 3 
variables. I t  is straightforward to verify that 
this relation is [ ( x v y v z ) A ( 4 x v - - y v ~ z ) ]  -- 
the only values the t r ip le (x,y,z) cannot assume 
are (O,O,O) and ( l , l , l ) .  Call this relation R and 
observe that SAT({R}) is the NOT-ALL-EQUAL SATISFI- 
ABILITY problem, which, as noted in Section 2, is 
NP-complete as a consequence of Theorem 2.]. 

Figure l (a) 

Figure l(b) 

x •  
A= R(x,x,y)AR(y,z,u) 

Z 

Figure l(c) 

We wil l  reduce SAT({R}) to the 2-colorable 
perfect matching problem. 

Let an {R}-formula A be given. Construct a 
graph G as follows. Let Gn be the union of dis- 
jo int  copies of Figure l(a),  one copy for each con- 
junct of A. On each copy label the nodes "x","y" 
and "z" with the names of the variables occurring 
in the corresponding conjunct of A. Then, for each 
pair nl,n 2 of nodes that are labeled with the same 
variable, join n I to n 2 by means of the structure 
shown in Figure 1(b). I t  may be verified that 
this structure forces n I and n 2 to have the same 
color. Call the resultlng graph G. Figure l(c) 
shows a simple example of this construction. I t  
can be seen that G has a two-colorable perfect 
matching i f f  A is satisfiable. Hence, TWO-COLOR- 
ABLE PERFECT MATCHING is NP-complete. [ ]  

The point we wish to make is that, in the 
above proof, "almost any" graph could have been 
used for Figure l(a). We suspect that i f  one sim- 
ply randomly generated a graph having lO or 15 
nodes, within a certain range of arc probability, 
the result would be, with very high probability, a 
graph representing a relation satisfying the condi- 
tions of Theorem 2.1 for NP-completeness, which 
would therefore serve just as Figure l(a) for a 
proof of NP-completeness. 

This raises the.intriguing possibil i ty of 
computer-assisted NP-completeness proofs. Once 
the researcher has established the basic framework 
for simulating conjunctions of clauses, the rela- 
tional complexity could be explored with the help 
of a computer. The computer would be instructed 
to randomly generate various input configurations 
and test whether the defined relation was non-af- 
fine, non-bijunctive, etc. The fruitfulness of 
such an approach remains to be proved: the enumer- 
ation of the elements of a relation on lO or 15 
variables is Surely not a l ight computational task. 
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8. PROBLEMS FORFURTHER RESEARCH 

I. Generalize the Dichotomy Theorem from 2-valued 
variables to k-valued variables ( i . e . ,  a re la-  
t ion of rank n is a subset of { 0 , I  . . . . .  k-I }n). 
An analogue for k=3 would imply the (already 
known) NP-completeness of the graph 3-colorabi l -  
i t y  problem. I t  would be interest ing to see i f  
any new polynomial-time decidable cases ar ise,  
which are not obvious general izations of the 
case k=2. 

2. Study the complexity of deciding whether a re- 
la t ion is a f f ine ,  b i junct ive,  or weakly posi t ive.  
From Lemmas 3.1A and 3.1B, i t  can be seen that 
i t  can be decided in polynomial time whether a 
given re la t ion,  presented as a l i s t  of i t s  ele- 
ments, is a f f ine or b i junct ive.  But we do not 
know of any e f f i c i en t  algorithm for recognizing 
weakly posi t ive re lat ions.  

9. CONCLUSION 

We have studied the complexity of an i n f i n i t e  
class of s a t i s f i a b i l i t y  problems and obtained 
c lass i f i ca t ion  theorems which include and extend 
various previous complexity resul ts ,  thereby uni fy-  
ing these ea r l i e r  results within a larger frame- 
work. 

By way of exploring this problem, we were led 
to a f a i r l y  r ich theory of c lass i f i ca t ion  of log i -  
cal re lat ions,  which is independent of ,  although 
motivated by, complexity-theoretic notions. I t  
seems l i ke l y  that th is theory w i l l  lead to a 
heightened understanding of the inherent complexity 
of various classes of logical re lat ions.  

Since Cook's NP-completeness proof [C], the 
standard CNF s a t i s f i a b i l i t y  problem has become a 
kind of canonical NP-complete problem, being proba- 
bly used more widely in reductions than any other 
NP-complete problem. We feel that the usefulness 
of th is problem for reductions is a property which 
is probably shared to some degree by other conjunc- 
t ive s a t i s f i a b i l i t y  problems, such as those we have 
considered, Thus we feel that problems such as 
ONE-IN-THREE SATISFIABILITY and NOT-ALL-EQUAL SAT- 
ISFIABILITY w i l l  l ikewise prove to have wide appl i -  
cab i l i t y  in completeness proofs. 

APPENDIX 

Complexity-Theoretic Def ini t ions 

Inputs to a l l  decision problems are assumed 
to be presented as str ings of symbols from some 
f ixed f i n i t e  alphabet ~. 

A log-space bounded Turin 9 machine is a Tur- 
ing machine, having a two-way read-only input tape, 
a one-way wr i te-only output tape, and a single 
work tape, which, on any input weZ*,  never v i s i t s  
more than c log( lw I) frames of i t s  work tape, for  
some constant c depending on the machine. The 
machine is assumed determinist ic unless otherwise 
stated. 

A function f : ~ * ÷ ~ *  is log-space computable 
i f  there is some log-space bounded Turing machine 
which on input weZ* outputs f(w) and halts. 

Let A , B ~ * .  Then A<~ B ("A is log-space 
reducible to B") i f f  therea°gis a log-space comput- 
able function f such that for  a l l  w~Z*, w~A i f f  
f(w) eB. This is a t rans i t i ve  re la t ion.  A is 

log-equivalent to B i f  ASlogB and BSlogA. A set B 

is log-complete in a class C i f  BeC and for a l l  
A ~ C, A~logB. 

Lo 9 space (resp. nondeterministic Io 9 space) 
is the class of a l l  sets A~Z* such that there is 
some determinist ic (resp. nondeterministic) log- 
space bounded Turing machine that recognizes A. 

Polynomial time (denoted P), nondeterministic 
polynomial time (denoted NP) and polynomial space 
(denoted PSPACE) are the classes of sets that are 
recognized by determinist ic and nondeterministic 
polynomial-time bounded and polynomial-tape bound- 
ed Turing machines respect ively.  (These are stan- 
dard one-tape Turing machines, and the bounds are 
expressed as a function of the length of the input 
s t r ing . )  In this paper, "NP-complete" means " log- 
complete in NP." 

More detai led explanations can be found in 
[K] ,[StM] , [St ] .  
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