
Logic, Computation and Constraint
Satisfaction

Barnaby D. Martin

University of Leicester

Submitted for the degree of Doctor of Philosophy

November 2005

Abstract

We study a class of non-deterministic program schemes with while loops:
firstly, augmented with a priority queue for memory; secondly, augmented with
universal quantification; and, thirdly, augmented with universal quantification and
a stack for memory. We try to relate these respective classesof program schemes
to well-known complexity classes and logics.

We study classes of structure on which path system logic coincides with poly-
nomial timeP.

We examine the complexity of generalisations of non-uniform boolean con-
straint satisfaction problems, where the inputs may have a bounded number of
quantifier alternations (as opposed to the purely existential quantification of the
CSP). We prove, for all bounded-alternation prefixes that have some universal
quantifiers to the outside of some existential quantifiers (i.e. Π2 and above), that
this generalisation of boolean CSP respects the same dichotomy as that for the
non-uniform boolean quantified constraint satisfaction problem.

We study the non-uniform QCSP, especially on digraghs, through a combi-
natorial analog – the alternating-homomorphism problem – that sits in relation
to the QCSP exactly as the homomorphism problem sits with theCSP. We es-
tablish a trichotomy theorem for the non-uniform QCSP when the template is
restricted to antireflexive, undirected graphs with at mostone cycle. Specifi-
cally, such templates give rise to QCSPs that are either tractable,NP-complete
or Pspace-complete.

We study closure properties on templates that respect QCSP hardness or QCSP
equality. Our investigation leads us to examine the properties of first-order logic
when deprived of the equality relation.

We study the non-uniform QCSP on tournament templates, deriving sufficient
conditions for tractability,NP-completeness andPspace-completeness. In partic-
ular, we prove that those tournament templates that give rise to tractable CSP also
give rise to tractable QCSP.

Acknowledgements

I would like to thank my global and local supervisors, Iain Stewart and Rick
Thomas, respectively, for their help, guidance and advice throughout the last four
years. I would like to thank my mentor Florent Madelaine for his assistance in the
field of constraint satisfaction problems. I would also liketo thank Florent and his
wife Sukhi for their hospitality in Newcastle on many occasions.

I would like to thank my examiners, Dave Cohen and Vincent Schmitt, for
undertaking the arduous task of reading this thesis, and fortheir many helpful
suggestions.

I am very grateful to the Engineering and Physical Sciences Research Council
(EPSRC) for funding this research.

1

Contents

1 Introduction 5

2 Program Schemes 9
2.1 Structures and Logic . 9

2.1.1 Graphs and Transitive Closure 10
2.1.2 Alternating graphs and Alternating Reachability 11
2.1.3 Hypergraphs and Path Systems 12
2.1.4 Least Fixed Point logic 13
2.1.5 Stratified Fixed Point logic 14

2.2 Program Schemes . 14
2.2.1 Introducing NPS . 15
2.2.2 Shorthands . 18
2.2.3 Shorthands on successor structures 19
2.2.4 Adding a stack: introducing NPSS 20

2.3 Turing Machines . 21

3 Adding a Priority Queue 22
3.1 A single weight:k = 0 . 25
3.2 The Hamilton Path problem is in NPSPQ 27
3.3 NPSPQb

s ⊆ NPspace . 29
3.4 Expanding alphabets . 30
3.5 Pushing and Popping Numbers in NPSPQb

s / NPSPQu
s. 31

3.5.1 NPSPQu+
s (k) = NPSPQu

s(k). 32
3.5.2 NPSPQb+

s = NPSPQb
s. 32

3.6 NPSPQb(k) ⊆ NPSPQu(k) . 33
3.7 NPSPQu

s(k) ⊆ NPSPQu(k+2). 34
3.7.1 Start-routine:τstart . 35
3.7.2 Simulation ofρ: τρ. 35
3.7.3 End-routine:τend . 36

3.8 NPspace ⊆ NPSPQu
s . 38

3.8.1 Preparation:τbin(A) . 39

2

3.8.2 Simulation:τsim . 41
3.8.3 Verification:τend . 42

3.9 A polynomial-time restriction of NPSPQu. 44

4 Adding Universal Quantification 46
4.1 Introducing APS(1) . 46
4.2 Introducing APSS(1) . 49
4.3 The ACCEPT instruction. 51
4.4 APSSs(1) = APSS(1) . 52

4.4.1 Simulation ofρ; τρ . 53
4.5 NPspace ⊆ APSSs(1) . 54
4.6 Summary . 58

5 Classes of Structure on whichP = ±PSk[FO] 60
5.1 Finitely generated sets . 61

5.1.1 F contains a singlek-ary partial functionf0. 62
5.1.2 F contains multiple partial functions. 64
5.1.3 An application: finitely generated groups 65

5.2 Hamiltonian Outerplanar graphs 65

6 Dichotomies in Boolean Constraint Satisfaction 68
6.1 Introduction . 68
6.2 Technical results . 72
6.3 A dichotomy theorem forΠ2-SAT NC 75

6.3.1 Case 1 :RA is 0-valid and not 1-valid. 75
6.3.2 Case 2 :RA is 1-valid and not 0-valid. 76
6.3.3 Case 3 :RA is 0-valid and 1-valid, but not complimentative. 76
6.3.4 Case 4 :RA is 0-valid and 1-valid, and complimentative. . 77

7 Quantified Constraints on Graphs 79
7.1 Introduction . 79
7.2 Preliminaries . 81

7.2.1 Structures and Logic. 81
7.2.2 Alternating-homomorphism problems. 82
7.2.3 QCSP versus ALT-HOM. 85
7.2.4 Alternating-homomorphisms as winning strategies. 86
7.2.5 Graphs . 87

7.3 Basic graph results . 88
7.3.1 Restricting partitions . 88
7.3.2 Basic results. 90
7.3.3 Non-connected templates. 93

3

7.4 QuantifiedH-colouring . 94
7.4.1 Bipartite templates. 94
7.4.2 Odd Catherine Wheels 95
7.4.3 A trichotomy theorem 101

7.5 Closure properties . 101
7.5.1 Indicator construction 102
7.5.2 Adding a vertex to a core. 104
7.5.3 A sufficient condition for ALT-HOM problem equivalence. 107
7.5.4 Why that condition is not necessary: equivalence in frag-

ments ofFO. 108
7.6 Results concerning tournament templates 113

7.6.1 Template is a directed cycle. 113
7.6.2 Template is a digraph with source and sink. 114
7.6.3 Tractable tournament ALT-HOM problems. 115
7.6.4 NP-complete tournament ALT-HOM problems. 118
7.6.5 Pspace-complete tournament ALT-HOM problems. 118

8 Conclusions and Further Work 121
8.1 Program Schemes . 121
8.2 Classes of Structure on whichP = ±PSk[FO] 121
8.3 Quantified Constraints on Graphs 122

4

Chapter 1

Introduction

Structural Complexity is that part of the study of Computational Complexity that
concerns itself with the intrinsic computational difficulty of decidable problems.
Perhaps its main thrust is an attempt to classify problems into complexity classes
by various upper and lower bounds on their computational complexity. Since its
inception, logic has impinged on Computational Complexityin a variety of ways:
in the first instance, many of the problems that are amongst the hardest of many
natural complexity classes have been problems in logic. These problems, known
ascompletefor the given complexity class, include the following problems in the
Propositional Calculus: Circuit Value, complete forP; Satisfiability, complete for
NP; and Quantified Satisfiablity, complete forPspace.

Another intersection between logic and complexity is in thefield of Descrip-
tive Complexity – in which finding an algorithm for a computational problem is
seen as a question of expression – where complexity classes translate to classes
of expressions,i.e. logics. Indeed, the complexity classes, defined through Turing
Machines, may be seen as logics already: for example, ifP is defined as those
Turing MachinesT, such that there existsk, such thatT accepts an inputx of
sizen iff T acceptsx within timenk, then this class of Turing Machines is a logic
of sorts. However, it is a logic not of a form that lends itselfto study by what
are usually considered the tools of logic: it has a cumbersome syntax and is in-
terpreted over strings and not first-order structures. We may remedy the second
of theses problems by considering certain standard binary string encodings of a
structure. Since, for us, a decision problem is always a subset of finite structures,
we consider a problem to be inP iff the language of all binary encodings of these
structures is inP, as defined previously. In this way, we can talk of conventional
logics capturing Turing complexity classes: a logic captures a complexity class iff
the set of problems expressible in each coincides. It is in the translation between
computational problems over strings and expression problems over finite struc-
tures that Descriptive Complexity is concerned. As such, itis very much a part of

5

Finite Model Theory.
Perhaps the greatest hope for Descriptive Complexity was that known methods

for separating logics might be brought to bear on complexityclasses; that hard
questions on the (non)-equivalence of complexity classes might become easier
questions on the separation of logics. Among the major results of Descriptive
Complexity are the proven equivalence of: existential second-order logic∃SO
andNP (Fagin, 1974 [17]); least fixed-point logic LFP (with successor) andP

(Immerman/Vardi 1982 [28, 44]); partial fixed point logic PFP (with successor)
andPspace (Vardi 1982 [44]); and transitive closure logic TC (with successor)
and NL (Immerman 1983/1988 [28, 30]). Despite these results, few advances
have been made in the use of techniques such as Ehrenfeucht-Fraisse games to
separate these logics, and, consequently, their complexity classes1. Partly, this can
be explained by the somewhat artificial inclusion of the successor function into
many of these logics (not∃SO), since Ehrenfeucht-Fraisse games are notoriously
hard to win on structures with successor. However, the equivalence of LFP and
PFP, both with successor, is known to be consequent on their equivalence without
successor [1], yet still a proof resists thatP 6= Pspace. One ray of sunshine in this
field was Immerman’s proof, through Transitive Closure logic, thatNL =co-NL

[30].
The syntax of a logic is exactly its set of well-formed formulae; a logic is said

to have recursive syntax iff its syntax is decidable. The inclusion of successor
generally precludes the possibility that the resultant logic has recursive (or even
recursively enumerable) syntax [24], a property which is certainly desirable, and
is thought by some authors (e.g.Gurevich [24], Otto [36]) to be necessary, if the
name ‘logic’ is to be bestowed.

In the first part of this thesis we study various classes of non-deterministic
Program Schemes with while loops (based on those in [2, 41]),which are logics
in Gurevich’s sense, but which appear well-suited for computation. We attempt
to relate these logics to standard complexity classes, preferably in the absence of
that built-in successor.

Chapter 2 introduces these program schemes, and discusses some known re-
sults involving them [2]. The situation where a stack is available for memory [2]
is considered.

In Chapter 3, we introduce some new work investigating the addition of a
priority queue as a memory device available to these programschemes. We prove
that the priority queue is sufficiently powerful to simulatea successor function:
thus we define two ‘logics’ with recursive syntax that subsumeNPspace2 andNP,

1Indeed, it is not known thatNL,P,NP andPspace are not equivalent.
2We remind the reader thatNPspace andPspace coincide (e.g. [37]). Even so, we use both

classes in this thesis, depending on which appears the more natural in a given situation.

6

respectively. These logics actually have identical syntax, and differ only in their
semantics.

In Chapter 4, we introduce some new work examining the explicit introduction
of universal quantification to our program schemes (since they are non-deterministic,
existential quantification is already insinuated), both inthe absence of any mem-
ory and with the benefit of a stack. With no added memory, we tiethe ensuing
logic to least fixed-point logic LFP. With the addition of a stack we, once again,
are able to simulate a successor: this enhanced logic subsumesNPspace.

Chapter 5 uses some known results utilising program schemes[42] to study
various classes of structure on which the infinite hierarchywhich constitutes Path
System logic collapses and capturesP. We give a brief overview of known results
and introduce some new ones.

A further confluence of logic and complexity, and, indeed, combinatorics, is
in the study of the Constraint Satisfaction Problem, CSP, and its generalisations.
In terms of complexity classification, much has been made of the conjectured di-
chotomy of the non-uniform CSP on finite templates [1]: it seems as though,
for anyT, CSP(T) is either tractable orNP-complete. This is remarkable given
the breadth of CSP problems, together with Ladner’s result [35] that such a di-
chotomy will not hold over allNP (unless we actually haveP = NP). The non-
uniform CSPs, and their generalisations, lend themselves to dual interpretations:
one in which they are model-checking problems over restricted logics; and one in
which they are combinatorial problems between two structures. In particular, the
non-uniform CSP may be seen as both a model-checking problemin existential
positive conjunctive first-order logic and as the homomorphism problem. This
duality is perhaps at its most obvious on graphs, and it is on these that we dwell
most.

Chapter 6 concerns itself with the dichotomy of alternation-bounded general-
isations of the non-uniform CSP on boolean templates. (These results have been
obtained independently in [27] and, to a lesser extent, in [18].) We prove, for all
bounded-alternation prefixes that have some universal quantifiers to the outside of
some existential quantifiers (i.e. Π2 and above), that our generalisation of boolean
CSP respects the same dichotomy as that for boolean quantified constraint satis-
faction problems.

Chapter 7 examines the non-uniform Quantified Constraint Satisfaction Prob-
lem, QCSP, on graph templates. We study the QCSP through a combinatorial
analog, the so-called Alternating-Homomorphism problem ALT-HOM. We study
a variety of graph templates that give rise to tractable,NP-complete orPspace-
complete QCSPs, culminating in a complete classification tothose classes – a tri-
chotomy theorem – when the template ranges over undirected antireflexive graphs
with at most one cycle.

We consider two problems to be equal exactly when the respective subsets

7

of structures that they define coincide. It is well-known that the two problems
CSP(T) and CSP(T′) are equal iff the templatesT andT′ are homomorphically
equivalent (which is exactly the condition that they have isomorphic cores). We
study a similar condition on templatesT,T′ that is sufficient to guarantee the
equality of QCSP(T) and QCSP(T′). However, we find that this condition is
not necessary, and that is has a closer relationship with first-order logic without
equality than the logic we associate with QCSP (positive-conjunctive first-order
logic).

Finally, we study the non-uniform QCSP on tournament templates, deriving
sufficient conditions for tractability,NP-completeness andPspace-completeness.
In particular, we prove that those tournament templates that give rise to tractable
CSP also give rise to tractable QCSP.

8

Chapter 2

Program Schemes

2.1 Structures and Logic

We will only consider finite relational structures, of at least two elements, over a
given signatureσ. We denote this set STRUC(σ). If A is a structure, then|A| is
the universe, or domain, of the structure, and||A|| is the cardinality of that domain.
If R is a relation symbol ofσ thenRA is the interpretation ofR overA. When the
structureA is clear, we may abuse notation by dropping it as the superscript, thus
identifyingRwith both the relationsymboland the relationactual.

We will also consider the situation where a successor is available to us, built-in
to the signatureσ. We consider a successor to be a binary relationsucc, whose
realisation as a graph is a directed path, together with two constantsminandmax,
whose interpretations are the first and last vertices of thatpath. This is equivalent
to considering the restricted class of structures overσ]{succ,min,max} in which
the interpretations ofsucc, minandmaxsatisfy the properties given. Throughout,
when we consider the restriction to structures that have a successor relation, we
add the subscripts to our logic or class, for exampleFOs. When we consider
logics in which we have a successor, we will insist on a further semanticrestriction
on their formulae, namely, that a formula may only be in that logic if its truth is
independent of the actual successor function used. For example, consider the
formulaE(min,max), ostensibly ofFOs, interpreted on the directed 3-path – the
graph with vertices{0,1,2} and edge set{(0,1),(1,2)}. The truth of this formula
is not independent of the ordering we choose on the graph – if the successor is
{(0,2),(2,1)}, it is true; if the successor is{(0,1),(1,2)}, it is false. We conclude
that E(min,max) is not a formula ofFOs. Given such a formula, ostensibly of
FOs, establishing whether it has this property of order-independence is, in general,
undecidable [24].

9

2.1.1 Graphs and Transitive Closure

A graph, or digraph,G is a structure over signatureσ2 = 〈E〉, whereE is a binary
relation symbol. There is a (directed) path inG from vertexx to vertexy iff
either:x= y, E(x,y), or there is a sequence of verticesz1, . . . ,zr such thatE(x,z1),
E(zi ,zi+1), for 1≤ i < r, andE(zr ,y). This is equivalent to the inductive definition
that there is a path fromx to y iff:

• x = y, or

• there is azsuch thatE(x,z), and there is a path fromz to y.

Definition. Define TC to be the global binary relation on graphs expressing reach-
ability. Specifically:

TC = { {(x,y) : there is a path inG from x to y } : G ∈ STRUC(σ2)}

Let ψ be some formula whose only free variables are among those of the j-
tuplesx andy. A formula TC[λx,yψ](u,v) is interpreted as true on a structureA in
the case that, in the graph of||A|| j vertices with edge set specified byψ(x,y), there
is a path from vertexu to vertexv. (It is usual to allow additional free variables,i.e.
other thanx andy, in ψ. However, this does not increase our expressive power,
since i such variables can be moved so they only appear free in the end-point
(j + i)-tuplesu′ andv′ of some new Transitive Closure formula over a graph of
size||A|| j+i (see [16]). We forbid such additional free variables for thesake of a
simpler exposition.)

In the fashion described, the global relation TC has given usa uniform se-
quence of vectorised quantifiers of the same name. This sequence is derived from
the arity ofx andy. The first quantifier in the sequence corresponds to the arityof
x= (x1) andy= (y1) being 1, and binds the 2 variables,x1 andy1. Theith quanti-
fier in this sequence corresponds to the arity ofx= (x1, . . . ,xi) andy= (y1, . . . ,yi)
beingi, and binds the 2i variablesx1, . . . ,xi andy1, . . . ,yi. This sequence of quan-
tifiers is uniform in semantics and syntax, and is an example of a sequence of
Lindström quantifiers (see,e.g., [16]).

Definition. Letx,ybe j-tuples of variables. Letj ′, j ′′≤ j andu1, . . . ,u j ′,v1, . . . ,v j ′′

be variables, andu j ′+1, . . . ,u j ,v j ′′+1, . . . ,v j be variables or constant symbols. De-
fine:

• ±TC1[FO] to be the set of formulae of the form

∃u1 . . .u j ′∃v1 . . .v j ′′ TC[λx,yψ](u,v)

whereψ is quantifier-free, and

10

• ±TCm+1[FO] to be the set of formulae of the form

∃u1 . . .u j ′∃v1 . . .v j ′′ TC[λx,yψ](u,v)

whereψ is in the closure under boolean operators of formulae in±TCm[FO].

In the presence of two distinct constants, any formula in TCm+1[FO] is equiva-
lent to some formula of the form TC[λx,yψ](u,v), with ψ∈ TCm[FO], i.e.without
the need for existential quantification outside the TC operator [21]. However, we
do not wish to restrict ourselves only to structures with such constants. We define
±TC∗[FO] to be

S

i∈ω±TCi [FO].
Recall that the subscriptsdenotes a built-in successor. The following gives us

an idea as to the power of Transitive Closure logic.

Proposition 1 (Immerman 1983/1988, [29, 30]). TC1
s[FO] = TC∗

s[FO] = NL.

Remark.It may be noticed that we are rather liberal with notation such as TC,
allowing it to denote a global relation, an operator and a logic. Hopefully, the
meaning should be clear by context.

2.1.2 Alternating graphs and Alternating Reachability

An alternating graphA is a structure over the signatureσ21 = 〈E,U〉, where the
relation symbolsE andU are binary and unary, respectively. In an alternating
graph the unary relationU partitions the vertices into those that are existential
(¬U), and those that are universal (U). There is an alternating path in an alternat-
ing graphA, from vertexx to vertexy, iff:

• x = y, or

• x is existential, and there is az such thatE(x,z), and there is an alternating
path fromz to y, or

• x is universal, and, for allz such thatE(x,z), there is an alternating path
from z to y.

Definition. Define AR to be the global binary relation on graphs expressing al-
ternating reachability. Specifically:

AR = {{(x,y) : there is an alternating path inA from x to y} : A∈STRUC(σ21)}

Let ψ be some formula whose only free variables are among those ofx and
y. A formula AR[λx,yψ](u,v) is interpreted as true in the case that, in the graph
specified byψ(x,y), there is an alternating path fromu tov. (Again, it is customary
to permit additional free variables inψ. Again, it is unnecessary for the same
reason as given for TC.)

11

Definition. Letx,y, be j-tuples of variables. Letj ′, j ′′≤ j andu1, . . . ,u j ′,v1, . . . ,v j ′′

be variables, andu j ′+1, . . . ,u j ,v j ′′+1, . . . ,v j be variables or constant symbols. De-
fine:

• ±AR1[FO] to be the set of formulae of the form:

∃u1 . . .u j ′∃v1 . . .v j ′′ AR[λx,yψ](u,v)

whereψ is quantifier-free, and

• ±ARm+1[FO] to be the set of formulae of the form

∃u1 . . .u j ′∃v1 . . .v j ′′ AR[λx,yψ](u,v)

whereψ is in the closure under boolean operators of formulae in±ARm[FO].

We define±AR∗[FO] to be
S

i∈ω±ARi [FO]. In the presence of two distinct
constants,±ARm+1[FO] collapses to the class of formulae of the form
AR[λx,yψ](u,v) for ψ ∈±ARm[FO] (proof similar to that for TC).

Recall that the subscriptsdenotes a built-in successor. The following gives us
an idea as to the power of Alternating Reachability logic.

Proposition 2 (Immerman 1983, [29]). AR1
s[FO] = AR∗

s[FO] = P.

2.1.3 Hypergraphs and Path Systems

We consider ahypergraph1 H to be a structure over the signatureσ3 = 〈R〉, where
R is a ternary relation symbol. A vertexy is said to beR-accessible(or justacces-
sible) from a vertexx iff:

• x = y, or

• there existz1,z2, both accessible fromx, such thatR(z1,z2,y).

A hypergraphH is said to becommutativeexactly when, for allx,y,z, we have
R(x,y,z) iff R(y,x,z). It is said to bedeterministiciff, for all x,y, there exists at
most onezsuch thatR(x,y,z).

Definition. Define PS to be the global binary relation on commutative hyper-
graphs expressing accessibility. Specifically:

PS= {{(x,y) : y is accessible inH, from x } : H is a commutatative hypergraph}

1What we refer to as a hypergraph would perhaps be better described as adirected3-uniform
hypergraph, taking into consideration more standard definitions.

12

Let ψ be some formula whose only free variables are among those ofx, y
andz. A formula PS[λx,y,zψ](u,v) is interpreted as true in the case that, in the
commutative hypergraph specified byψ(x,y,z), v is accessible fromu. (Again, it
is customary to permit additional free variables inψ. Again, it is unnecessary for
the same reason as given for TC.)

Definition. Letx,y, be j-tuples of variables. Letj ′, j ′′≤ j andu1, . . . ,u j ′,v1, . . . ,v j ′′

be variables, andu j ′+1, . . . ,u j ,v j ′′+1, . . . ,v j be variables or constant symbols. De-
fine:

• ±PS1[FO] to be the set of formulae of the form

∃u1 . . .u j ′∃v1 . . .v j ′′ PS[λx,y,zψ](u,v)

whereψ is quantifier-free, and

• ±PSm+1[FO] to be the set of formulae of the form

∃u1 . . .u j ′∃v1 . . .v j ′′ PS[λx,y,zψ](u,v)

whereψ is in the closure under boolean operators of formulae in±PSm[FO].

We define±PS∗[FO] to be
S

i∈ω±PSi [FO]. In the presence of two distinct
constants,±PSm+1[FO] collapses to the class of formulae of the form
PS[λx,yψ](u,v) for ψ ∈ ±PSm[FO] (proof similar to that for TC).

Recall that the subscriptsdenotes a built-in successor. The following gives us
an idea as to the power of Path System logic.

Proposition 3 ([40]). PS1
s[FO] = PS∗s[FO] = P.

2.1.4 Least Fixed Point logic

Let ψ(P,x) be a first-order formula with freej-ary relation symbolP whose only
free variables are those of thej-tuplex. Then, over a structureA, ψ may be seen
as a functionfA : P(|A| j) → P(|A| j) defined by:

fA(R) = {x : A |= ψ(R,x)}

If ψ does not contain negated instances of the free relation symbol P (i.e. is P-
positive), then the functionfA is monotone, satisfyingR⊆ fA(R). Given aP-
positiveψ, we define inductively:ψ0

A
= φ, and thereafterψk+1

A
= fA(ψk

A
). Since

f is monotone andA is finite, we are guaranteed that this sequence of relations
must reach a fixed-pointK whereψK

A
= ψi

A
(for all i ≥K). This relation is denoted

ψ∞
A

.

13

Definition. Given a formulaψ(P,x) with free j-ary relation symbolP and includ-
ing free variables of thej-tuple x, and anotherj-tuple of variables or constants
u, we may apply the Least Fixed Point operator LFP to generate the formula
LFP[λPxψ](u). This formula’s free variables are those free inψ that are not inx,
and those ofu. The formula is interpreted as true on a structureA (under some
valuation of its free variables) exactly whenu∈ ψ∞

A
.

Least Fixed Point logic LFP[FO] is the closure ofFO under the Least Fixed
Point operator.

Remark.It may be noted that we have allowed free variables inψ that are not
among the variables ofx, in contrast with the situation with the Lindström logics
of the previous sections. It seems particularly unnatural to specify LFP with such
free variables forbidden, moreover, we will make use of themin later chapters. It
suffices to say that these additional variables could be forbidden by being forced
into the outer tupleu, as described for Transitive Closure logic.

2.1.5 Stratified Fixed Point logic

Definition. Let Rbe a freej-ary relation, andx be a j-tuple of variables. Letj ′≤ j
and u1, . . . ,u j ′ be variables, andu j ′+1, . . . ,u j be variables or constant symbols.
Define:

• ∃LFP1[FO] to be the set of formulae of the form∃u1 . . .u j ′LFP[λRxψ](u)
whereψ is first-order with no universal quantifiers and with negation only
of atomic formulae, and

• ∃LFPm+1[FO] to be the set of formulae of the form∃u1 . . .u j ′LFP[λRxψ](u)
whereψ is first-order with no universal quantifiers but may contain positive
or negative occurrences of formulae of∃LFPm[FO] that do not containR.

We naturally define∃LFP∗[FO] to be
S

i∈ω∃LFPi [FO]. In the presence of
two distinct constants,∃LFPm+1[FO] collapses to the class of formulae of the
form ∃LFP[λRxψ](u,v) for ψ ∈ ∃LFPm[FO] [22].

We note that∃LFP∗[FO] is often known asStratified Fixed Point logicSFP.
The following gives us an idea as to the power of∃LFP.

Lemma 4 (Grohe 1997, [22]). ±PSm[FO] = ∃LFPm[FO].

2.2 Program Schemes

We will examine several classes of non-deterministic program schemes with while
loops, originally seen in [2]. These program schemes were born of an attempt to

14

imbue logic with the tools of computation, whilst keeping that logic well-behaved,
e.g., with recursive syntax. Unlike Turing Machines, which compute on strings
encoding some structure, these schemes compute on a structure, in a similar man-
ner to a formula of logic being interpreted on that structure. However, the syntax
of computation is often more easily followed, and this may have advantages in
simplifying proofs. For example, the recursion of while loops may be considered
more natural than that of fixed point logics. Such advantagesare largely cosmetic,
but, in studying objects of computation, forms of memory canbe added that would
be most bizarre added directly to conventional logic. In doing this, new logics can
be defined without obvious parallel in conventional logic. However, that which
is not obvious is not necessarily untrue, and several results are known tying these
new logics with their better known, conventional counterparts.

2.2.1 Introducing NPS

Definition (Syntax of NPS [2]). Each program schemeρ ∈ NPS(1), over signa-
tureσ, involves a set of input-output variablesVio, a set of free variablesVf , and a
finite sequence of|ρ| instructions, where each instruction, other than the first and
last, is of one of the following forms:

• an assignment instruction of the form ‘v := q’ , wherev∈Vio andq∈Vio∪
Vf ∪{c : c is a constant symbol ofσ}, or

• a guess instruction of the form ‘GUESSv’ , wherev∈Vio, or

• while loops of the form ‘WHILE t DO τ OD’ , where t is quantifier-free
FO(σ) with free variables amongVio ∪Vf , and whereτ is a sequence of
instructions of one of the forms listed.

The first instruction is INPUT(Vio), and the last OUTPUT(Vio). All instructions
begin a new line, and all, except while loops, take up only oneline. While loops
take up 1+ |τ| lines, where|τ| is the number of lines inτ, in the obvious way.
We consider sub-routinesτ to be sequences of instructions of the types in the list,
i.e. program schemes without an input instruction at the beginning and an output
instruction at the end.

The program schemesρ ∈ NPS(m+1) are defined exactly as the schemes of
NPS(1), except that schemesρ′ ∈ NPS(m′) (for m′ ≤m) may take the place of ex-
tensional relations in the tests in while loops. We define NPSto be

S

i∈ω NPS(i).

In terms of semantics, the assignment instructions and while loops behave
in the obvious way, and the guess instruction non-deterministically assigns an
element of the universe to the variable in question. At the start of computation, the

15

input-output variables are GUESSed, as just specified. A computation is deemed
accepting if, and only if, it reaches the (final) OUTPUT line. It follows that non-
accepting computations are forever trapped in while loops.Suppose a program
schemeρ∈ NPS(m) involves preciselyi free variablesz1, . . . ,zi. Then, computing
on a structureA, we write(A,a1 . . . ,ai) |= ρ, or A |= ρ(a1, . . . ,ai), iff ρ makes it
to the output instruction when computing onA under the free-variable assignment
(z1, . . . ,zi) := (a1, . . . ,ai) ∈ |A|i.

Note that free variables may not be ‘used’ during computation, in that they can
not have values assigned to them. However, input-output variables of schemes in
NPS(m) may appear as free variables in schemes of strictly lower strata that ap-
pear in tests in their while loops. In this manner, program schemes of NPS(m)
are evaluated ‘top-down’, entering sub-routines to evaluate any required tests in-
volving such schemes of NPS(m′) (wherem′ < m).

Definition ([2]). Let the lines onz denote ani-tuple, and the line onv denote a
j-tuple. Suppose the program schemeρ ∈ NPS(1) involvesi free variablesz and
j input-output variablesv. Then a configuration ofρ, computing on a structureA,
is an(i + 1+ j)-tuple (z, l ,v) giving the values of the free variables, the number
of the line just executed, and the values of the input-outputvariables.

Each such program schemeρ ∈ NPS(1), computing over a structureA of size
n, gives rise to a graph:

• whose vertices are the|ρ|.n(i+ j) possible configurations,

• and in which there is an edge(c,c′) iff ρ, executing a single instruction, can
move from configurationc to configurationc′.

It may be asking too much to specify this graph in quantifier-freeFO, especially
sinceA may not have|ρ| distinct constants to play the part of the line numbers. We
will actually specify a variant of it, namely the graphGρ

A
, with ni+|ρ|+ j vertices,

where the|ρ|-sub-tupleŵ = (w1, . . . ,w|ρ|) represents a certain line according to
the following scheme:

• if w1 = w2 thenŵ represents line 1,

• if w1 6= w2 butw2 = w3 thenŵ represents line 2,

• if w1 6= w2, w2 6= w3 butw3 = w4 thenŵ represents line 3,

•
...

• if w1 6= w2, . . . , w|ρ|−2 6= w|ρ|−1 but w|ρ|−1 = w|ρ| then ŵ represents line
|ρ|−1, and

16

• if w1 6= w2, . . . ,w|ρ|−1 6= w|ρ| thenŵ represents line|ρ|.

Let the the lines onzdenote ani-tuple, the line onu,v denotej-tuples, the hat
on ŵ denote a|ρ|-tuple, and the line on~x,~y denote(i + |ρ|+ j)-tuples.

Proposition 5 ([2]). Supposeρ ∈ NPS(1) is as in the definition, and thatψ(~x,~y)
is a quantifier-free first order formula expressing the edge relation ofGρ

A
. The

following are equivalent:

• A |= ρ(z)

•

A |= ∃w1, . . . ,w|ρ| w1 = w2 ∧
∃w′

1, . . . ,w
′
|ρ| w′

1 6= w′
2∧ . . .∧w′

|ρ|−1 6= w′
|ρ| ∧

∃u,v TC[λ~x,~yψ]((z,w1, . . . ,w|ρ|,u),(z,w′
1, . . . ,w

′
|ρ|,v))

Proof. Follows immediately from the definition ofGρ
A

, together with the existen-
tial semantics of NPS(1). Note that the bizarre constraints on thews are simply
our means of encoding the first and last lines. As can be seen, we are not too inter-
ested in what the input-output variables are at the start andend of the computation,
i.e. u andv, respectively.

Recall that the class NPSs(m) is as NPS(m), but with a built-in successor
available. The following gives us an idea as to the power of NPS.

Theorem 6([2]). For m≥1, TCm[FO] = NPS(m), and, consequently,TC∗[FO] =
NPS. Furthermore, for m≥ 1, TCm

s [FO] = NPSs(m) = TC∗
s[FO] = NPSs = NL.

Proof. The first part follows from the fact that there is a program schemeρTC ∈
NPS(1) that expresses the relation TC, combined with the previous proposition,
by induction. The second part follows from theNL-completeness of the Transitive
Closure problem.

Remark.The class NPSs appears to be devoid of any memory, and it may seem
surprising, in that light, that NPSs = NL. However, NPS has memory, in the form
of the constant number of input-output variables. Moreover, this constant number
of variables may collectively attainn|Vio| values, computing on a structureA of
sizen. This is of similar order to the number of different tape configurations on an
NL-Turing Machine, which is logn.|Q|.|Σ|logn, whereQ is the set of states andΣ
the alphabet. TheNL-Turing Machine has constant alphabet and logarithmically-
bounded number of tape squares, while the class NPSs has linearly-sized alphabet
and constant number of memory-variables.

17

2.2.2 Shorthands

We can build other useful instructions from those that we have, possibly requiring
the introduction of additional new variables. Specifically:

• If p,q are j-tuples of variables or constants, then considerp= q to be short-
hand forp1 = q1∧ . . . ∧ p j = q j .

• If v is a j-tuple of variables andq is a j-tuple of variables or constants, then
considerv := q to be shorthand forv1 := q1 ; . . . ; v j := q j .

• Consider LOOP FOREVER to be shorthand for:

WHILE v1 = v1 DO OD.

• Consider IF t THEN DO τ FI to be shorthand for:

GUESSv1,v2

WHILE v1 = v2 DO LOOP FOREVER OD

WHILE v1 6= v2∧ t DO τ ; v1 := v2 OD

Of course, it may come to pass that a computation entering an IF statement gets
trapped in an endless loop. This may seem undesirable, but itdoes not affect us:
owing to our existential semantics, we only require thatsomepath leads through
the conditional.

• Considerv′ : 6= v (wherev,v′ are distinct variables) to be shorthand for:

GUESSv′

IF v = v′ THEN DO LOOP FOREVER FI

Sometimes we will want the computation to evaluate the disjunction of a fixed col-
lection of possibilities. It may not be possible to write these directly in quantifier-
free tests in WHILE loops. In the following, the labels word1, . . . , wordj act as
local dummy ‘variables’.

• Let word1, . . . , wordj be words representing certain possibilities. Con-
sider:

EITHER(word1, . . . , wordj)
IF word1 THEN DO τ1 FI

...
IF wordj THEN DO τ j FI

to be shorthand for:

18

GUESSv1, . . . ,v j

IF v1 = v2 THEN DO τ1 FI

IF v1 6= v2∧v2 = v3 THEN DO τ2 FI
...

IF v1 6= v2∧ . . .∧v j−2 6= v j−1∧v j−1 = v j THEN DO τ j−1 FI

IF v1 6= v2∧ . . .∧v j−1 6= v j THEN DO τ j FI

The EITHER construction allows us to choose between any finite number of
possibilities. Note that, in the EITHER shorthand, we have no need for an ‘Else’
construction, since all possibilities for the antecedent are covered. In all use of
shorthands we will require that the variables we introduce in the longhand do not
appear elsewhere in the program schemes involving those shorthands, lest we lose
their information. This may ultimately require the introduction of new variables
to our program schemes. We only need a fixed number of new variables for this,
and we will usually be sloppy, omitting these variables whenwriting out program
schemes involving shorthand.

2.2.3 Shorthands on successor structures

In the presence of a successor relationsucc, we will use the following shorthands:

• v′ := cyc.succ(v) to be shorthand for:

IF v = maxTHEN DO v′ = min OD

IF v 6= maxTHEN DO

GUESSv′

IF v′ 6= succ(v) THEN DO LOOP FOREVER FI FI

In contrast tosucc, which is a partial function,cyc.succis a total function. More-
over, it is a bijection.

• v′ := inv.cyc.succ(v) to be shorthand for:

GUESSv′

IF v 6= cyc.succ(v′) THEN DO LOOP FOREVER FI

• For variablej-tuplesv,v′, considerv′ := cyc.succ(v) to be shorthand for:

IF v j 6= maxTHEN DO

(v′1, . . . ,v
′
j−1) := (v1, . . . ,v j−1)

v′j := cyc.succ(v j) FI

19

IF (v j = max)∧ (v j−1 6= max) THEN DO

(v′1, . . . ,v
′
j−2) := (v1, . . . ,v j−2)

v′j−1 := cyc.succ(v j−1)

v′j := min FI

...

...
IF (v j = max)∧ . . .∧ (v1 = max) THEN DO

(v′1, . . . ,v
′
j) := (min, . . . ,min) FI

• For variablej-tuplesv,v′, considerv′ := inv.cyc.succ(v) to be shorthand for:

IF v j 6= min THEN DO

(v′1, . . . ,v
′
j−1) := (v1, . . . ,v j−1)

v′j := inv.cyc.succ(v j) FI

IF (v j = min)∧ (v j−1 6= min) THEN DO

(v′1, . . . ,v
′
j−2) := (v1, . . . ,v j−2)

v′j−1 := inv.cyc.succ(v j−1)

v′j := maxFI

...

...
IF (v j = min)∧ . . .∧ (v1 = min) THEN DO

(v′1, . . . ,v
′
j) := (max, . . . ,max) FI

2.2.4 Adding a stack: introducing NPSS

We can increase the power of our program schemes by introducing certain types
of memory. In [2], the authors considered adding a stack.

Definition (Syntax of NPSS[2]). The syntax of NPSS(1) is as that of NPS(1),
with the addition of two new instructions:

• a push instruction ‘PUSH v’ , where

v∈Vio∪Vf ∪{c : c is a constant symbol ofσ} , and

• a pop instruction ‘v :=POP’ , wherev∈Vio.

Again, the program schemes of NPSS(m+1) are those whose tests in while loops
may include schemes from strictly lower strata as extensional relations.

20

For semantics, the push instruction should be viewed as pushing the value
of the given variable (or constant) to the stack, and the pop instruction should
be viewed as an assignment instruction removing the currenttop element of the
stack. If the stack is empty, the pop instruction leaves its variable unchanged.

The following gives us an idea as to the power of NPSS.

Theorem 7([2]). For m≥ 1, PSm[FO] = NPSS(m), andPS∗[FO] = NPSS. Fur-
thermore,PSm

s [FO] = NPSSs(m) = PS∗s[FO] = NPSSs = P.

2.3 Turing Machines

Turing Machines compute on strings and not structures. In order that we can con-
sider the Turing complexity of problemsΩ ⊆ STRUC(σ), we will need to have a
standard encoding of structures over a signatureσ. Let σ = 〈R1, . . .Rj ,c1, . . .c j ′〉,
where the arities ofR1, . . . ,Rj area1, . . . ,a j respectively.

Over an ordered structureA ∈ STRUC(σ) of sizen, we will code eachRi

by a stringbin(Ri) over {0,1} of lengthnai . For a number 0≤ r ≤ nai −1, let
r be theai-tuple that representsr in n-ary. SinceA is ordered, thisr represents
an ai-tuple rA over A. Let therth2 entry of bin(Ri) be a 1 if rA ∈ Ri , and a 0
otherwise. We code eachci by a stringbin(ci) of lengthn, as if ci were a unary
relation with one member. Finally, we considerbin(A) to be the concatenation
bin(Ri) . . .bin(Rj)bin(c1) . . .bin(c j ′).

We consider Turing Machines to have a one-way infinite tape, finite state setQ
and uniform alphabetΣ = {zero,one,blank}. The read/write head is initially over
square 1. Given a (non-deterministic) Turing MachineT and a stringw∈ {0,1}∗,
we write T ↓ w, iff T enters the accept state, at some point in its computation,
when it is given inputw over squares 1 to|w| with all other squares blank.

We say that a (non-deterministic) Turing MachineT accepts a problemΩ ⊆
STRUC(σ) iff, for all structuresA ∈ STRUC(σ), and for all orderings ofA, we
have:

T ↓ bin(A) ⇔ A ∈ Ω

2This should really ber +1, since otherwise we would be considering the first entry ofbin(Ri)
to be indexed by the number zero. This is an occupational hazard of variously considering the
setZn to be{1, . . . ,n} or {0, . . . ,n−1}. We largely use the former for the chapters on program
schemes, and the latter for the chapters on constraint satisfaction.

21

Chapter 3

Adding a Priority Queue

We now consider the situation where we have a priority queue for memory. A
priority queue allows us to send elements to memory tagged with a numerical
weight. We are free to choose from a range of weights polynomially-bounded in
the size of the structure on which we are computing, but we mayonly retrieve
from the maximal (non-empty) weight. We will consider a variety of semantic
variations, and will, therefore, be no more specific at this point as to the properties
of the priority queue. However, we are in a very different situation from before,
because now we deal with both elements of structures and numbers. Such is the
power of the inclusion of numbers, that we will find ourselvesdealing with Turing
Machines and complexity classes directly, as opposed to Lindström logics that
capture complexity classes only on ordered structures. We needed free variables
in NPS and NPSS in order to build the stratification within those hierarchies.
We do not need that variety of stratification here. Therefore, since we are only
concerned with decision problems, we will have no need for free variables here,
and we dispense with them for the sake of a simpler exposition.

Since we will deal in a range of queue weights that is polynomially-bounded
in the size of the structureA on which we are computing, we will have interest
in the numbers 1, . . . ,n, wheren = ||A||. We allow ourselves the first and last of
these, 1 andn, as constants that we may refer to by name.

Definition. For eachk ≥ 0 , the program schemes of NPSPQ(k), over a signa-
tureσ, involve two finite sets of variables, a setV of element variables and a set
N of numeric variables. A program schemeρ ∈ NPSPQ(k) consists of a finite
sequence of instructions, where each instruction, other than the first and last, is of
one of the following forms:

• an assignment instruction of the form ‘p := q’ , wherep∈V andq∈V∪{c :
c is a constant symbol ofσ} or p∈ N andq∈ N∪{1,n}

• a guess instruction of the form ‘GUESSv’ , wherev∈V

22

• an increase (numeric successor) instruction ‘INCR m’ , wherem∈ N

• a push instruction ‘PUSH v,mi1, . . . ,mik’1 where,v∈V andmi1, . . . ,mik ∈ N

• a pop instruction ‘v :=POP’ wherev∈V.

• while loops of the form ‘WHILE t DO τ OD’ , where t is quantifier-free
FO(σ) with free variables amongV or quantifier-freeFO(〈1,n〉) whose free
variables are amongN, and whereτ is a sequence of instructions of one of
the forms listed.

The first instruction is INPUT(V,N), and the last OUTPUT(V,N). We further define
NPSPQ to be∪k∈ωNPSPQ(k).

As hinted at before, the stratification here – dimensionk of the queue – is quite
different from the stratification we have seen thus far, which was based on nestings
of negation. With a priority queue, we will have sufficient computational power
[at what would have been the first level of that nesting] to notrequire stratification.

The assignment and guess instructions, and the while loops,behave as before.
Observe that in each case there are two modes of use: one relates to elements,
the other to numbers. We do not allow the guessing of numeric variables simply
because it is unlikely to be useful. The instruction INCR m increases the numberm
by one, under the convention that INCR n is 1. This ensures that INCR is a function,
like cyc.succ, and in contrast tosucc. The push instruction sends the element in
question to the priority queue tagged with weightk-tuple (mi1, . . . ,mik), i.e. the
current value of those numeric variables. It is for this reason thatk is considered
the dimension of the queue. We will consider a number of alternative semantics
for the pop instruction:

u The pop removes, deterministically, the last element to be sent to the queue
at whatever is the maximal non-empty weight. This semanticsleads to a
potentially unbounded queue size, and hence will be referred to as semantics
‘u’.

b The pop removes, deterministically, the last element to be sent to the queue
at whatever is the maximal non-empty weight, and then scrubsall other
entries at that weight. This is equivalent to the condition that the queue
has only one space at each weight,i.e. new pushes would overwrite. This
semantics leads to a (polynomially-)bounded queue size, and hence will be
referred to as semantics ‘b’.

1Whenk = 0 there are nom’s.

23

u+ As with ‘u’, but the maximal weight is also returned. This requires pop
syntax ‘p,mi1, . . . ,mik =: POP’. We refer to this as semantics ‘u+’.

b+ As with ‘b’, but the maximal weight is also returned. This also requires pop
syntax ‘p,mi1, . . . ,mik =: POP’. We refer to this as semantics ‘b+’.

As before, the pop instruction leaves its variable unchanged if the queue is
empty. Also as before, the INPUT instruction non-deterministically assigns el-
ements of the structure toV. The numeric variablesN are set initially to 1.
Again, we consider an accepting computation of a program schemeρ on a struc-
tureA to be any one that reaches OUTPUT, and we denote thisA |= ρ. We refer
to each of the four alternative semantics above specificallyby superscript, e.g.
NPSPQb+(k). Again, we will refer to the classes endowed with successor with
the subscripts, e.g.NPSPQb+

s (k).
We will use the following shorthands, specific to schemes of NPSPQ:

• Consider FOR m= m′ TO m′′DO τ NEXT to be shorthand for:

m := m′

WHILE m 6= m′′ DO

τ
INCR m OD

τ.

• Consider DECR m to be shorthand for:

m′ := 1;m′′ := m′

INCR m′

WHILE m′ 6= m DO

m′′ := m′

INCR m′ OD

m := m′′.

• Consider FOR m= m′ DOWNTO m′′ DO τ NEXT to be shorthand for:

m := m′

WHILE m 6= m′′ DO

τ
DECR m OD

τ.

Note that FOR loops are inclusive with respect to their limits.

• Considerm := m′ +m′′ to be shorthand for:

24

m := m′

FOR m′′′ = 1 TO m′′ DO INCR m OD.

• Considerm := m′−m′′ to be shorthand for:

m := 1
DECR m; DECR m
FOR m′′′ = m′ DOWNTO m′′ DO INCR m OD.

Henceforth, we will feel free to put arithmetic terms such asm′−m′′ as limits
in FOR loops.

Let m be a j-tuple(m1, . . . ,mj) of numeric variables. Consider INCR m to be
shorthand for:

IF (mj = n)∧ . . .∧ (m2 = n) THEN DO INCR m1; . . . ; INCR mj OD

IF (mj = n)∧ . . .∧(m3 = n)∧(m2 6= n)THEN DO INCR m2; . . . ; INCR mj OD
...

IF mj 6= n THEN DO INCR mj OD

Let 1j andn j be the j-tuples of 1s andns, respectively. We have that INCR m
returns the lexicographic next number, subject to the convention that INCR (n j) =
(1 j). Define DECR manalogously. Sums and differences ofj-tuplesmandm′ are
defined in the natural way. However, we will insist that we never attempt the sum
or difference of aj-tuple andj ′-tuple whenj 6= j ′.

Computing over a structureA, with ||A|| = n, we find we have been granted
basic modulon arithmetic. This is ostensibly weaker than an ordering of the
elements ofA, but it will ultimately allow us to build such an order.

Remark.For eachj, 1j represents the number 1, in modulon j arithmetic, and
n j represents the additive identity (zero). So, for example, INCR 1 j = 1j + 1 j =
(1, . . . ,1,2), where 2 is INCR 1.

3.1 A single weight:k = 0

The bottom level in our apparent hierarchy merits brief attention. In the presence
of a single weight, it is apparent thatb+ (respectively,u+) is no stronger thanb
(respectively,u).

Lemma 8. NPSPQb
s(0) = NPSs(1) = NL

Proof. We already have the second equality; we prove the first.
(NPSs(1) ⊆ NPSPQb

s(0)). Trivially, we will have for anyρ ∈ NPSs(1), that
alsoρ ∈ NPSPQb

s(0).

25

(NPSPQb
s(0) ⊆ NPSs(1)). The priority queue may hold only one element

at any time, and, as such, behaves like an extra element variable. Furthermore,
the ability to count in NPSPQbs(0) may be simulated by the successor relation of
NPSs(1). Specifically, ifρ ∈ NPSPQb

s(0) involves|V| element variables and|N|
numeric variables, then we constructρ′ ∈ NPSs(1) with |V|+ |N|+ 3 variables.
Our simulation is made somewhat more complicated by our convention that pop-
ping from an empty queue leaves the variable unchanged: thisis why we need the
extra variablesv′,v′′ (we usev′ = v′′ to signify that the queue is non-empty). We
constructρ′ thus:

INPUT(v1, . . . ,v|V|,v|V|+1, . . . ,v|V|+|N|,vqueue,v′,v′′)
v′ : 6= v′′

τsim

OUTPUT(v1, . . . ,v|V|,v|V|+1, . . . ,v|V|+|N|,vqueue,v′,v′′)

Whereτsim is the body ofρ (i.e. with the input and output lines removed), with
the following substitutions:

• Convert all instances of variablesmi to variablesv|V|+i .

• Convert all instances of the numeric constant 1 (respectively, n) to the ele-
ment constantmin (respectively,max).

• Convert all instances of ‘INCR mi ’ to: ‘ v|V|+i := cyc.succ(v|V|+i)’.

• Convert all instances of ‘PUSH vi ’ to: ‘ vqueue:= vi ; v′ := v′′’.

• Convert all instances of ‘vi := POP’ to:

IF v′ = v′′ THEN DO

vi := vqueue; v′ : 6= v′′ FI .

It should be clear that we have, for all structuresA, A |= ρ iff A |= ρ′.

Lemma 9. NPSPQu
s(0) = NPSSs(1) = P

Proof. We already have the second equality; we prove the first.
(NPSSs(1) ⊆ NPSPQu

s(0)). Trivially, any ρ ∈ NPSSs(1) is such thatρ ∈
NPSPQu

s(0).
(NPSPQu

s(0) ⊆ NPSSs(1)). The priority queue’s single weight here acts as
a stack. We may use a similar, though simpler, reduction to that of the previ-
ous lemma: we no longer need the variablesv′,v′′ in any capacity, and we leave
instances of ‘PUSH vi ’ and ‘vi := POP’ in ρ unchanged inρ′.

26

Remark.The previous lemmas are somewhat misleading. We had provision for
free variables in NPS and NPSS, but we have none in NPSPQ. The previous
results, therefore, can only authoritatively refer tosentencesof NPSs and NPSSs,
i.e. those schemes without free variables. The only reason we omit free variables
from NPSPQ is to simplify our exposition. The previous lemmas would hold in
generality, if we were to allow free variables in NPSPQ.

When we are deprived of the successor relation, we find NPSPQb(0)⊆/NPS(1)
(respectively, NPSPQu(0)⊆/NPSS(1)), since the parity problem may be expressed
in the former, through counting, but not in the latter. Of course, we will have the
inclusions

• NPSPQb(0) ⊆ NPSPQb
s(0) = NPSs(1) and

• NPSPQu(0) ⊆ NPSPQu
s(0) = NPSSs(1).

We conjecture that these inclusions are proper, and in particular that NPSPQu(0)
is contained within LFP+COUNT[FO], which is known to be strictly contained
in P [31].

3.2 The Hamilton Path problem is in NPSPQ

We proceed by examining the power of the program schemes of NPSPQ and, in
particular, one of their numberρHP with the ability to accept theNP-complete
Hamilton Path problem. The Hamilton Path problem2 HP is exactly the class of
digraphs that have a directed path containing each vertex exactly once. The fol-
lowing is part of the program schemeρHP∈NPSPQu(2) that non-deterministically
builds an order on such a structure.

1. INPUT(v1,v2,m1,m2,m3)
2. FOR m1 = 1 TO n DO

3. GUESSv1

4. FOR m2 = 1 TO n DO

5. PUSH v1,m2,m1 NEXT NEXT

Our method is simple enough: we producen copies ofn guessed vertices, each
copy occupying weights(i,1) to (i,n) for 1 ≤ i ≤ n. These could be genuine
orders, but only if we haven’t picked some element twice. After line 5, the queue

2In contrast to TC,AR,PS etc., which we initially defined as global relations, we define HP
as a decision problem.

27

looks like this (entry followed by weight):

︷︸︸︷
xn (n,n)
...

x1︸︷︷︸
(n,1)

...

...
︷︸︸︷
xn (1,n)
...

x1︸︷︷︸
(1,1)

At line 6, we proceed by consumingn−1 copies of ourn guessed elements to
see if some element is repeated. First we look at the last copyand last element,
xn, stored at weight(n,n), then we look through(n,n− 1) to (n,1), elements
xn−1, . . . ,x1, to see if it is repeated. Next, lines 11-13, we remove the unneeded
(already checked) elementxn at weight(n−1,n) and repeat the process for(n−
1,n−1) to (n−1,1). If we do thisn−1 times, finding no element guessed twice,
then we know we do indeed have a genuine order left in weights(1,1) to (1,n).
(If the first element had been repeated we would have already discovered that; we
only needn−1 iterations here.)

6. FOR m1 = 1 TO n−1 DO

7. v2 := POP

8. FOR m2 = m1 TO n−1 DO

9. v1 := POP

10. IF v1 = v2 THEN DO LOOP FOREVER FI NEXT

11. IF m1 6= n−1 THEN DO

12. FOR m3 = 1 TO m1 DO

13. v2 := POP FI NEXT NEXT NEXT

For any computation that gets past line 13 the queue will looklike

︷︸︸︷
xn (1,n)
...

x1︸︷︷︸
(1,1)

28

where we know thatx1, . . . ,xn is an ordering of the vertices. We will now search
along it for a Hamilton path:

14. v1 := POP

15. FOR m1 = 1 TO n−1 DO

16. v2 := v1

17. v1 := POP

18. IF ¬E(v1,v2) THEN DO LOOP FOREVER FI NEXT

19. OUTPUT(v1,v2,m1,m2,m3)

It is because we can non-deterministically guess all orderings that there will be an
accepting computation if, and only if, the structure has a Hamilton path. For all
digraphsG, we will haveG |= ρHP iff G ∈ HP.

The schemeρHP computes in such a way that, on all inputsG, it only uses any
weight at most once. Consequently,ρHP also accepts the Hamilton Path problem
under semanticsb. Clearly,ρHP can undergo minor syntactic changes to produce
a program scheme that acceptsHP for semanticsu+ andb+, too.

3.3 NPSPQb
s ⊆ NPspace

With the polynomially-bounded memory of NPSPQb
s, the following is almost

immediate.

Proposition 10. NPSPQb
s ⊆ NPspace.

Sketch Proof.The proof is by simulation. Forρ ∈ NPSPQb
s we will construct

a non-deterministic Turing MachineT, together with an exhibited boundl , such
that, for all structuresA (of size n), and all orderings ofA, the following are
equivalent:

• A |= ρ.

• T ↓ bin(A).

• T ↓ bin(A) with the read/write head never leaving the firstnl squares.

Note that equivalence of the last two guarantees thatT is anNPspace machine
since there exists somel ′ (dependent on the maximum relation arity of the signa-
tureσ) s.t. |bin(A)|= O(nl ′).

If ρ ∈ NPSPQb
s(k) and involvesj program scheme variables (element or nu-

meric) then we need to record at mostnk + j items, corresponding to the entries
on the priority queue and the assignments of the variables ofρ, at any point of
the simulation. Each of thesenk + j items may take at mostn possible values,

29

so each of these items may be written onT ’s tape in log(n) squares. We do not
give full details ofT ’s simulation, but note that the amount of tape space required
to hold all thesenk + j items isO((nk + j) log(n)). It follows that we may take
l := k+ j +1.

Corollary. NPSPQb ⊆ NPspace.

Proof. The inclusion NPSPQb ⊆ NPSPQb
s is trivial.

3.4 Expanding alphabets

At present there are preciselyn distinct symbols that we can send to the queue,
namely the elements of the structure on which we are computing. However, we
can expand this alphabet by always pushing and poppingj-tuples, instead of sin-
gle variables. In this way we potentially increase our working alphabet ton j

symbols.
Let v be a j-tuple of variables. We work in semanticsu, but our results apply to

semanticsu+, and also to NPSS. A similar method may be used for semanticsb
andb+, although at the cost of more weights. The method by which these results
for semanticsu transfer to semanticsb will be explored later.

• Consider ‘PUSH v,m’ to be shorthand for ‘PUSH v j ,m ; . . . ; PUSH v1,m’.

• Consider ‘v := POP’ to be shorthand for ‘v1 := POP ; . . . ; v j := POP’ (note
the reverse order).

By these methods, we can push and pop tuples as if they were single elements.
We can now set up special symbols by the use of a certain convention. Suppose
we wanti special symbolsM1, . . . ,Mi, then we can achieve this, in a rather sloppy
manner, by always pushing and popping(i + 1)-tuples(v1, . . . ,vi+1), using the
convention:

• (v1, . . . ,vi+1) wherev1 = v2 is the elementv1.

• (v1, . . . ,vi+1) wherev1 6= v2∧v2 = v3 is the symbolM1.

•
...

• (v1, . . . ,vi+1) wherev1 6= v2∧ . . .∧vi−1 6= vi ∧vi = vi+1 is the symbolMi−1.

• (v1, . . . ,vi+1) wherev1 6= v2∧ . . .∧vi 6= vi+1 is the symbolMi .

30

Note that all(i +1)-tuples are defined. Henceforth we will assume a finite set of
special symbols at our disposal.

Given a program scheme in which we are always pushing and popping j-
tuples, we may drop the line over the variables, and use that line only when re-
ferring to somej ′-tuple of ‘variables’ each of which is actually aj-tuple of real
variables. This should not cause too much confusion. This will result in our hav-
ing variablesv that can hold values that do not represent actual elements ofthe
universe on which we are computing. Such special characterswill constitute the
symbol setΛ.

3.5 Pushing and Popping Numbers in NPSPQbs / NPSPQu
s.

For program schemes of NPSPQu
s or NPSPQb

s, consider ‘v := element(m)’ to be
shorthand for

v := min
FOR m′ = 1 TO m−1 DO

GUESSv′

IF v′ 6= succ(v) THEN DO LOOP FOREVER FI

v := v′ NEXT

and ‘m := position(v)’ to be shorthand for

v′ := min
m := 1
WHILE v′ 6= v DO

GUESSv′′

IF v′′ 6= succ(v′) THEN DO LOOP FOREVER FI

INCR m
v′ := v′′ OD

The instructionv := element(m) assigns tov themth element of the universe,
conversely the instructionm := position(v) assigns tom the position of the ele-
mentv in that order.

For j-tuplesm= (m1, . . . ,mj) andv = (v1, . . . ,v j):

• Considerv := element(m) to be shorthand forv1 := element(m1) ; . . . ;v j :=
element(mj).

• Considerm := position(v) to be shorthand form1 := position(v1) ; . . . ;
mj := position(v j).

31

3.5.1 NPSPQu+
s (k) = NPSPQu

s(k).

Lemma 11. NPSPQu+
s (k) ⊆ NPSPQu

s(k).

Proof. The proof is by simulation. For allρ ∈ NPSPQu+
s (k) we construct aρ′ ∈

NPSPQu
s(k) such that, for all structuresA, we haveA |= ρ iff A |= ρ′.

The program schemeρ′ will involve all the variables ofρ together with a new
k-tuple of element variablesvm. Whereρ pushes and pops single variables,ρ′

will always push and pop(k+1)-tuples of variables (of which the trailingk-tuple
contains the weight).

• Convert all instances of ‘PUSH v,m’ , in ρ, to the following inρ′:

vm := element(m)
PUSH (v,vm),m

• Convert all instances of ‘v,m := POP’ , in ρ, to to the following inρ′:

(v,vm) := POP

m := position(vm)

Corollary. NPSPQu+
s (k) = NPSPQu

s(k)

Proof. The converse inclusion NPSPQu
s(k) ⊆ NPSPQu+

s (k) is trivial.

3.5.2 NPSPQb+
s = NPSPQb

s.

Lemma 12. NPSPQb+
s (k) ⊆ NPSPQb

s(2k).

Proof. The proof is broadly similar to that of the previous lemma, but we will
require more than single weights to store the(k+1)-tuples of that proof. For all
ρ ∈ NPSPQb+

s (k) we construct aρ′ ∈ NPSPQb
s(k) such that, for all structuresA,

we haveA |= ρ iff A |= ρ′.
The program schemeρ′ will involve all the variables ofρ together with a new

k-tuple of element variablesvm = (v1
m, . . . ,vk

m).

• Convert all instances of ‘PUSH v,m’ , in ρ, to the following inρ′:

PUSH v,(m,1k)
PUSH vk

m,(m,1k−1,n)
...

PUSH v1
m,(m,n,1k−1)

32

• Convert all instances of ‘v,m := POP’ , in ρ, to to the following inρ′:

(v,vm) := POP

m := position(vm)

Corollary. NPSPQb+
s = NPSPQb

s

Proof. The inclusion NPSPQbs(k) ⊆ NPSPQb+
s (k) is trivial.

3.6 NPSPQb(k) ⊆ NPSPQu(k)

Intuitively, semanticsu appears at least as strong as semanticsb. It is relatively
straightforward to prove this.

Lemma 13. NPSPQb(k) ⊆ NPSPQu(k).

Proof. The proof is by simulation. For allρ ∈ NPSPQb(k) we construct aρ′ ∈
NPSPQu(k) such that, for all structuresA, we haveA |= ρ iff A |= ρ′.

The program schemeρ′ will involve all the variables ofρ together with two
newk-tuples of numeric variablesm′,m′′ and a new element variablev′. Assume
thatM is a special marker symbol not used byρ. Build ρ′ from ρ by adding the
following lines to the beginning (after INPUT):

FOR m′ = 1k TO nk DO

PUSH M,m′ NEXT

This sends a copy of the markerM to every weight on the queue. Finally, convert
all instances of ‘v,m := POP’ , in ρ, to the following inρ′.

m′ := nk

v′ := POP

WHILE m′ 6= 1k∧v′ = M DO

DECR m′

v′ := POP OD

IF v′ 6= M THEN DO

v := v′

WHILE v′ 6= M DO

v′ := POP OD FI

FOR m′′ = m′ TO nk DO

PUSH M,m′′ NEXT

33

The given subroutine counts, top-down, the number of empty weights in the queue
of ρ – these contain justM in the queue ofρ′. When it finds something other than
an M, it stores this inv then removes everything else at that weight,i.e. until it
reaches anotherM. The situation where the queue ofρ is empty is dealt with
by the conditionalv′ 6= M in the sixth line. Finally, anM is returned to each of
the weights of the queue ofρ′ above and including the weight of the retrieved
element.

Corollary.

• NPSPQb
s(k) ⊆ NPSPQu

s(k)

• NPSPQb+(k) ⊆ NPSPQu+(k)

• NPSPQb+
s (k) ⊆ NPSPQu+

s (k)

Proof. Our proof is equally valid for these statements.

Remark.It may seem that our method is unnecessarily complicated. Insimulating
semanticsb with semanticsu, when popping from the queue at a certain weight,
why do we not simply then pop everything else off at that same weight (foregoing
any need for the markerM)? This method would generate very simple proofs
for the last two statements of the corollary, and a relatively easy proof of the first
statement of the corollary. However, it would not easily be applied in the case of
the statement of the theorem.

3.7 NPSPQu
s(k) ⊆ NPSPQu(k+2).

Lemma 14. NPSPQu
s(k) ⊆ NPSPQu(k+2).

Proof. We prove the inclusion by simulating the successor relation. We take any
schemeρ ∈ NPSPQu

s(k), and construct a schemeρ′ ∈ NPSPQu(k+2) such that,
for all structuresA, A |= ρ iff A |= ρ′.

Assume, without loss of generality, thatρ involves element variablesV and
numeric variablesN, and thatv1,v2 /∈ V andm1,m2,m3 /∈ N. Given ρ we will
constructρ′ by adding a special start-routine, a special end-routine, and amending
push and pop instructions, as well as successor tests in while loops.

LetV ′ = V ∪{v1,v2} andN′ = N∪{m1,m2,m3}. Thenρ′ will be:

INPUT(V ′,N′)
τstart;τρ;τend

OUTPUT(V ′,N′)

We will now meet the sub-routinesτstart,τρ,τend, and explain why each one
performs the function that will be claimed of it.

34

3.7.1 Start-routine: τstart

We will add a sub-routineτstart to the start, that builds an order overA’s n el-
ements. We will simply guess an order, as we did inρHP, and we will put this
putative order in the weights(1k,1,1) to (1k,1,n). τstart will first send a special
marker symbolM to each of these weights via:

FOR m1 = 1 TO n DO

PUSH M,(1k,1,m1) NEXT

We then add lines 2-13 of the schemeρHP that solved the Hamilton Path problem,
with the proviso that weight tuples(m1,m2) in ρHP become(1k,m1,m2) in τstart.
Any computation that gets throughτstart will leave the queue looking like:

︷︸︸︷
xn (1k,1,n)
M (1k,1,n)
...

x1 (1k,1,1)
M︸︷︷︸ (1k,1,1)

wherex1, . . . ,xn is an ordering of the elements ofA.

3.7.2 Simulation ofρ: τρ.

The main body ofρ′, the sub-routineτρ, is that bit that actually simulatesρ. It will
use higher weights of the form(n,n,m), where the line onm specifies ak-tuple.
Before we get to the main simulation, we will push a special marker symbolM′

to weight(n,n,1k) to ensure that we never stray into the lower weights, in which
the order is contained, during the simulation. Thus:

PUSH M′,(n,n,1k)

For the actual simulation:

• Convert all instances of ‘PUSH v,m’ to: ‘PUSH v,(n,n,m)’.

• Convert all instances of ‘v := POP’ to the following inρ′:

v1 := v ; v := POP

IF v = M′ THEN DO PUSH v,(n,m,1k) FI

v := v1

35

The simulation of pop is rather complicated because the original program scheme
ρ must leave a pop unchanged when the queue is empty. But when the queue
associated withρ is empty, the queue associated withρ′ still contains entries in
the lower weights beneathM′.

We may also have to evaluate quantifier-free successor queries of the form
v′ = succ(v), that might appear in a test for a while loop, immediately before the
test of that while loop. LetΦ be a propositional formula that involves the atom
v′ = succ(v):

• Convert all instances of WHILE Φ(v′ = succ(v)) DO τ OD to:

τsucc; WHILE Φ(m2 = n) DO τ;τsuccOD.

Whereτsucc is the sub-routine:

m1 := 1; m2 := 1
WHILE m1 6= n DO

GUESSv1

PUSH v1,(1k,1,m1)
IF v1 = v THEN DO

INCR m1

GUESSv1

PUSH v1,(1k,1,m1)
IF v1 = v′ THEN DO m2 := n FI FI

INCR m1 OD

Observe thatv′ andv are free in the sub-routine. What is happening in the while
loop in the added sub-routine is that we are guessing what we hope to be an order.
If it is the order that we guessed at the start, thenm2 = n iff v′ = succ(v). We will
check later that all these guessed ‘orders’ are not only genuine orders, but also the
same as the first. In this manner, each instance ofv′ = succ(v) in Φ becomes a test
of m2 = n. There may be any constant number of tests of the formv′ = succ(v),
involving different variable pairs: each one of these will cause its own copy of the
τsuccsub-routine to appear before, and in, the while loop.

3.7.3 End-routine: τend

Once the simulation ofρ is accomplished we will want access to the lower weights
to verify that these ‘orders’ we have been guessing are uniformly the same. We
will want to pop everything on the queue down to, and including, the markerM′.
τend will therefore begin:

WHILE v1 6= M′ DO v1 := POP OD.

36

At this point the queue will look like:

︷︸︸︷
yn,s
...

yn,1 (1k,1,n)
xn

M︸︷︷︸
...
...

︷︸︸︷
y1,s
...

y1,1 (1k,1,1)
x1

M︸︷︷︸

wheres is the number of times that we needed to check successor queries in while
loops. We already know thatx1, . . . ,xn is an order of the elements – what we must
now check is that:

• x1 = y1,1 = . . . = y1,s

•
...

• xn = yn,1 = . . . = yn,s

soτend concludes:

FOR m1 = 1 TO n
v1 := POP

WHILE v1 6= M DO

v2 := v1

v1 := POP

IF v1 6= v2 THEN DO LOOP FOREVER FI OD NEXT

Corollary. NPSPQu+ = NPSPQu+
s = NPSPQu

s = NPSPQu.

Proof. NPSPQu+ ⊆ NPSPQu+
s is trivial; NPSPQu+

s ⊆ NPSPQu
s was proved

in Lemma 11; NPSPQus ⊆ NPSPQu was proved in the previous lemma; and,
NPSPQu ⊆ NPSPQu+ is trivial.

37

Remark.Whilst we have NPSPQus ⊆ NPSPQu, there is no reason to think that
NPSPQb

s ⊆ NPSPQb. NPSPQb can simulate NPSPQu up to a point, as we will
see, but if there is a super-polynomial number of successor calls in a scheme of
NPSPQb

s, then we can not use our method to simulate in NPSPQb.

3.8 NPspace ⊆ NPSPQu
s

Let Ω ⊆ STRUC(σ) be some problem inNPspace. Then there exists a positive
integerk and a non-deterministic Turing machineT such that, for all structuresA
(of sizen), and all orderings ofA, the following are equivalent:

• T ↓ bin(A).

• T ↓ bin(A) with the read/write head never leaving the firstnk squares.

• A ∈ Ω.

Let Q be the set of states ofT, including start stateqs and accept stateqa.
In addition to variables ranging over the elements ofA, we will want to enlarge

our alphabet such that we also have:

• The set of pairsΠ = {(zero,q),(one,q),(blank,q) : q∈ Q}.

• The special symbolsL, R, andU . These will track the movement ofT ’s
read/write head.

• The marker symbolM.

SinceQ is fixed this will not be a problem.
Let Γ ⊆ Π2 be such that((y1,q1),(y2,q2)) ∈ Γ iff y1 = y2. Γ appears to be a

rather unusual set, but we will need to verify such pairs on the queue in our given
simulation.

Let ∆ ⊆ Π2∪ (Π×{L,R}) be such that:

• ((y1,q1),(y2,q2))∈∆ if there is a transition rule ofT from (y1,q1) to (y2,q2).

• ((y,q),R) ∈ ∆ if there is a transition rule that moves the read/write head
Right from(y,q).

• ((y,q),L)∈ ∆ if there is a transition rule that moves the read/write head Left
from (y,q).

∆ is, therefore, our visualisation ofT ’s transition rules.

38

Theorem 15. NPspace ⊆ NPSPQu
s.

Proof. We aim to prove this by simulation. We will construct a program scheme
ρΩ ∈ NPSPQu

s(k+1) such thatA |= ρΩ if, and only if,A ∈ Ω. Thenk weights of
the form(1,m) will mimic the nk squares of the Turing machineT. The line onm
will always refer to ak-tuple.ρΩ will be:

INPUT(v,vq,v,v′,v′′,m,mr/w)
τbin(A); τsim; τend

OUTPUT(v,vq,v,v′,v′′,m,mr/w)

We will now meet the sub-routinesτbin(A), τsim, andτend, and explain why
each one performs the function claimed of it.

3.8.1 Preparation: τbin(A)

First we will write the marker symbolM to the weights(1,1k) to (1,nk). Before
we can simulate the computation ofT we must writebin(A) to the queue. We
will do this by randomly writingzero, oneor blank, together with the start state
qs, simultaneously to the weight ranges(1,1k) to (1,nk) and (n,1k) to (n,nk).
The nk entries in the range(1,1k) to (1,nk) will represent thenk squares of the
Turing tape at the start of computation. We let the variablem range over these
tape squares in the following.

FOR m= (1k) TO (nk) DO

PUSH M,(1,m)
EITHER(Zero, One, Blank)
IF Zero THEN DO PUSH (zero,qs),(1,m); PUSH (zero,qs),(n,m) FI

IF One THEN DO PUSH (one,qs),(1,m); PUSH (one,qs),(n,m) FI

IF Blank THEN DO PUSH (blank,qs),(1,m); PUSH (blank,qs),(n,m) FI

NEXT

39

This will leave the queue looking like:

︷ ︸︸ ︷
(y0

nk,qs) (n,nk)
...

(y0
1k,qs)

︸ ︷︷ ︸
(n,1k)

︷ ︸︸ ︷
(y0

nk,qs) (1,nk)

M (1,nk)
...

(y0
1k,qs) (1,1k)

M︸︷︷︸ (1,1k)

where eachy ∈ {zero,one,blank}. We will consume the top copy in weights
(n,1k) to (n,nk) to check thaty0

1k, . . . ,y
0
nk is an encodingbin(A).

If σ is a signature with relationsR1,R2, . . . ,Rj , of aritiesa1,a2, . . . ,a j then the
coding ofR1 will take the weights(n,1k) to (n,1k + na1), the coding ofR2 will
take the weights(n,1k +na1 +1) to (n,1k +na1 +na2 +1) etc. Fori ≤ k, note that
the i’th power ofn is represented by thek-ary vectorni that has a 1 in positions
1≤ i′ ≤ k− i and ann in positionsk− i < i′ ≤ k.

We will explicitly give the method whenσ = σ2 = 〈E2〉, i.e. on graphs. In
the sequencey0

1k, . . . ,y
0
nk, we must ensure that all apart from the firstn2 entries are

blank. We must then ensure that the firstn2 entries code the edge relation of the
graph. Recall thatn2 = (1, . . . ,1,n,n)3.

FOR m= nk DOWNTO 1k +n2 +1k DO

v := POP

IF v 6= blankTHEN DO LOOP FOREVER FI NEXT

FOR m= n2 DOWNTO 1k DO

v := POP

IF v = blankTHEN DO LOOP FOREVER FI

(v1, . . . ,vk) := element(m1, . . . ,mk)
IF E(vk−1,vk)∧v = zeroTHEN DO LOOP FOREVER FI

IF ¬E(vk−1,vk)∧v = oneTHEN DO LOOP FOREVER FI NEXT

3We retain the line on thek-aryn2 to distinguish it from the binaryn2 = (n,n).

40

Any computation that gets through that will leave the queue looking like:

︷︸︸︷
y0

nk (1,nk)

M (1,nk)
...

y0
1k (1,1k)

M︸︷︷︸ (1,1k)

wherey0
1k, . . . ,y

0
nk is necessarily a copy ofbin(A) – which we consider to beT ’s

tape on input. The superscript 0 refers to time 0.

3.8.2 Simulation: τsim

Throughout the simulation we will keep track of the positionof T ’s read/write
head in a numeric variablek-tuple mr/w, and the state will be remembered in a
single variablevq.

In simulating theith step ofT we first guess what type of moveT will perform
at that stage. We will verify later that these were valid choices in the computation.
There are two basic cases: either moving the read/write head; or changing the
entry at the read/write head’s current position. We can not move left from position
1k and if we move right from positionnk we may assume we do not have an
accepting computation.

In the first case we write the symbolRor L to the weight(1,mr/w), depending
on whether the read/write head is to move right or left. We amend the position
of the read/write head as stored inmr/w, either adding one, or subtracting one.
Afterwards we guess what will be the entries ofT ’s tape at timei + 1 and write
them, together with the current state stored invq, to all the weights(1,1k) to
(1,nk). We will want the tape-entries we have guessed to be exactly the same as at
time i, written beneath them on the queue (except for the introduction somewhere
of a symbolR or L). We will only verify that this is the case at the end of the
simulation.

In the second case we write the symbolU to the weight(1,mr/w). We then
choose a new state to go into, amendingvq accordingly. We then guess the entries
of T ’s tape at timei +1 and write them, together with the new state stored invq,
to all the weights(1,1k) to (1,nk). In this case we will want the tape-entries to be
the same as at timei except possibly for the weight(1,mr/w), i.e., for entries split
by aU symbol. We will verify this at the end of the computation.

This simulation will continue until we guess that we go into the accept state
qa.

41

WHILE vq 6= qa DO

EITHER(Right, Left, Unmoved)
IF Right THEN DO

IF mr/w = nk THEN DO LOOP FOREVER FI

PUSH R,(1,mr/w)
INCR mr/w FI

IF Left THEN DO

IF mr/w = 1k THEN DO LOOP FOREVER FI

PUSH L,(1,mr/w)
DECR mr/w FI

IF Unmoved THEN DO

PUSH U,(1,mr/w)
GUESSvq; IF vq /∈ Q THEN DO LOOP FOREVER FI

FOR m= (1k) TO (nk) DO

EITHER(Zero, One, Blank)
IF Zero THEN DO PUSH (zero,vq),(1,m) FI

IF One THEN DO PUSH (one,vq),(1,m) FI

IF Blank THEN DO PUSH (blank,vq),(1,m) FI NEXT OD

3.8.3 Verification: τend

We now move into the verification, in which we check that we have effected a
legitimate computation.

If t is the length of the simulated computation, then at this point each weight
(1,m) of the queue, representing themth square of the Turing tape, will have a

42

stack on it looking something like4:

(yt
m,qa)

(yt−1
m ,qt−1)

...
(yg+1

m ,qg+1)
R

(yg
m,qg)

...
(yh+1

m ,qh+1)
U

(yh
m,qh)

...
(y1

m,q1)
(y1

m,qs)
M

Note that entriesR, L, U , or, indeed,M may never be adjacent. We will read
these entries off such that we can consider three adjacent atonce. At any point the
variablesv,v′,v′′ will hold descending successive entries on the stack.τend will
be:

FOR m= nk DOWNTO 1k DO

v := POP; v′ := POP; v′′ := blank
WHILE v′′ 6= M DO

v′′ := POP

τcheck

v := v′; v′ := v′′ OD NEXT

In the case thatv,v′ /∈ {L,R,U}, we will simply check that the tape-entry inv
is the same as inv′. This is not quite the conditionv = v′, since each such entry
on the queue is a pair of tape entry and state, but it is the condition (v,v′) ∈ Γ, i.e.
the tape entries contained inv andv′ are the same – even if the states are different.

In the case thatv∈ {L,R,U} we do nothing.
Wherev′ is the symbolR we check that(yi+1,qi+1) and(yi ,qi) (in v andv′′,

respectively) are the same. It is actually consequent on oursimulation method that

4The qs with superscript should be considered as representative of some state inQ, just as
theys with superscript are representative of one of{zero,one,blank}. Theqs with subscript,e.g.
qs,qa, are actual states.

43

qi+1 = qi . We must also check whetherT has a transition rule in stateqi reading
yi to move right.

We do analogously whenv′ is L.
Wherev′ is the symbolU we check thatT has a transition rule((yi ,qi),(yi+1,qi+1))

(stored in(v,v′′)) in ∆.
Thusτcheckwill be:

IF v,v′ /∈ {L,R,U} THEN DO

IF (v,v′) /∈ ∆ THEN DO LOOP FOREVER FI FI

IF v′ = R THEN DO

IF v 6= v′′ THEN DO LOOP FOREVER FI

IF (v,R) /∈ ∆ THEN DO LOOP FOREVER FI

IF v′ = L THEN DO

IF v 6= v′′ THEN DO LOOP FOREVER FI FI

IF (v,L) /∈ ∆ THEN DO LOOP FOREVER FI

IF v′ = U THEN DO

IF (v,v′′) /∈ ∆ THEN DO LOOP FOREVER FI FI

The result follows.

Corollary. NPspace ⊆ NPSPQu

Proof. Recall NPSPQus = NPSPQu.

3.9 A polynomial-time restriction of NPSPQu.

Definition. A program schemeρ ∈ NPSPQu(k) is said to bepolynomially step-
boundedif there exists aj such that, for all structuresA, ρ acceptsA if, and only
if, ρ acceptsA within n j steps. Let:

• NPSPQu(k)poly :=

{ρ : ρ ∈ NPSPQu(k) andρ is polynomially step-bounded}

• NPSPQu
poly := ∪k≥0NPSPQu(k)poly.

Proposition 16. NPSPQu
poly⊆ NPSPQb.

Proof. We prove this by simulation. The idea is that we can never attempt to use
a weight more than once. Given someρ ∈ NPSPQu(k)poly, and thej that is the
polynomial power of its step bound, we will construct aρ′ ∈ NPSPQb(k+ j),
such that, for all structuresA, A |= ρ iff A |= ρ′.

Let the line onm indicate aj-tuple. Assumem is a numeric variable tuple not
involved inρ.

Givenρ we constructρ′ by

44

• adding, after every line, except the last, the instructions

INCR m
IF m= n j THEN DO LOOP FOREVER FI.

(m will act as a step-counter inρ′), and

• converting all instances of PUSH v,(m1, . . . ,mk) to PUSH v,(m1, . . . ,mk,m).

Corollary. NP ⊆ NPSPQb

Proof. The simulation method we used in provingNPspace ⊆ NPSPQu will also
proveNP ⊆ NPSPQu

poly. The result follows from the previous lemma.

45

Chapter 4

Adding Universal Quantification

4.1 Introducing APS(1)

The schemes of NPS have existential quantification built-inthrough their guess
instruction. NPS(1) is devoid of any notion of universal quantification. The
higher strata, NPS(m), have some notion of universal quantification, through
negation of existential quantification, but have no facility to combine both types
of quantification within while-loop recursion. We considerthe effect of explicitly
adding universal quantification. We are, once more, withoutthe stack.

Definition (Syntax of APS(1)). The syntax of APS(1) is as that of NPS(1), ex-
cept the extant GUESS instruction is renamed∃GUESS, and a new instruction
∀GUESS is added, with identical syntax.

The schemes of NPS(1) accepted a structure, expanded with values for the
free variables, iff there existed some accepting computation, i.e. at each point the
program went through an∃GUESS v, there existed an assignment tov such that
thenceforth the scheme made it to output. The schemes of APS(1) accept an
expanded structure iff:

• at each point the program goes through a∃GUESSv, there exists an assign-
ment tov such that thenceforth the computation makes it to output, and

• at each point the program goes through a∀GUESS v, we have that for all
assignments tov the computation thenceforth makes it to output.

These instructions have an appealing semantic characterisation in terms of the
configurations of a schemeρ ∈ APS(1). When computing on a structureA, we
can construct an alternating graphAG

ρ
A

just as we constructedGρ
A

, but with the
additional information that a configuration(z, ŵ,u) is universaliff ŵ represents

46

line l , and the instruction on line(l +1) is a∀GUESS. Observe that, for the edge
relation ofAG

ρ
A

, there is no difference between∃GUESS and∀GUESS, since in
each case the configuration can move to any configuration thatis identical except-
ing the guess for the pertinent variable. Let the the lines onz denote ani-tuple,
the line onu,v denotej-tuples, the hat on̂w denote a|ρ|-tuple, and the line on~x,~y
denote(i + |ρ|+ j)-tuples.

Proposition 17. Supposeρ ∈ APS(1) has i free variables and j input-output
variables, and thatψ(~x,~y) is a quantifier-free first order formula expressing the
edge relation ofAG

ρ
A

, then the following are equivalent:

• A |= ρ(z)

•

A |= ∃w1, . . . ,w|ρ| w1 = w2 ∧
∃w′

1, . . . ,w
′
|ρ| w′

1 6= w′
2∧ . . .∧w′

|ρ|−1 6= w′
|ρ| ∧

∃u,v AR[λ~x,~yψ]((z,w1, . . . ,w|ρ|,u),(z,w′
1, . . . ,w

′
|ρ|,v))

Proof. Follows immediately from the semantics of APS(1) and the definition of
AG

ρ
A

. Recall that the bizarre constraints on thews are our encoding of the first
and last lines.

Just as acceptance in NPS(1) is a reachability (transitive closure) problem, so
acceptance in APS(1) is an alternating reachability problem.

Corollary. APS(1) ⊆±AR1[FO].

Not only can the schemes of APS(1) be recast as formulae of AR1[FO], but
a scheme of APS(1) can express the Alternating Reachability relation. In order
to prove this, we will have use for another shorthand that is available to us in the
presence of our new instruction∀GUESS.

• Let word1, . . . , wordj be words representing certain possibilities. Consider:

ALL (word1, . . . , wordj)
IF word1 THEN DO τ1 FI

...
IF wordj THEN DO τ j FI

to be shorthand for:

47

∀GUESSv1, . . . ,v j

IF v1 = v2 THEN DO τ1 FI

IF (v1 6= v2)∧ (v2 = v3) THEN DO τ2 FI
...

IF (v1 6= v2)∧ . . .∧ (v j−2 6= v j−1)∧ (v j−1 = v j) THEN DO τ j−1 FI

IF (v1 6= v2)∧ . . .∧ (v j−1 6= v j) THEN DO τ j FI

ALL is the universal counterpoint to the existential EITHER. When a program
scheme meets an EITHER instruction it will accept iff one of those choices leads
to acceptance; when a program scheme meets the ALL instruction, it will accept
iff all of the choices lead to acceptance.

Proposition 18. There is a program schemeρAR(u,v) ∈ APS(1) with two free
variables that expresses the relationAR. Formally, for all alternating graphsA,
and vertices a,a′ ∈ A:

A |= ρAR(a,a′) iff A |= AR(a,a′) (there is an alt. path inA from a to a′)

Proof. We will constructρAR. First we note that the relation AR(u,v) may be
written in LFP[FO] as LFP[λPxyψ](u,v), whereψ(P,x,y) :=

(x = y)∨ (∃sP(x,s)∧¬U(s)∧E(s,y))∨ (∃sP(x,s)∧U(s)∧ [∀rE(s, r) → P(r,y)])

This can be re-written asψ(P,x,y) ≡

(x = y)∨∃sP(x,s)∧ ([¬U(s)∧E(s,y)]∨ [U(s)∧∀r(¬E(s, r)∨P(r,y))])

Note that the∃squantifies everything to its right. We will denote the two conjuncts
after that quantification as Left and Right. Thus:

• Left is P(x,s), and

• Right is([¬U(s)∧E(s,y)]∨ [U(s)∧∀r(¬E(s, r)∨P(r,y))]).

Let τAR(u,v,x,y,s, r) be the sub-routine involving free variablesu,v:

x := u;y := v
WHILE x 6= y DO

∃GUESSs
ALL (Left,Right)

IF Left THEN DO y := s FI

IF Right THEN DO

IF ¬U(s)∧E(s,y) THEN DO x := y FI

IF ¬(¬U(s)∧E(s,y))∧¬U(s) THEN DO LOOP FOREVER FI

48

∀GUESSr
IF ¬(¬U(s)∧E(s,y))∧¬E(s, r) THEN DO x := y FI

IF ¬(¬U(s)∧E(s,y))∧E(s, r) THEN DO x := r FI OD

We now setρAR(u,v) to be:

• INPUT(x,y, r,s); τAR; OUTPUT(x,y, r,s)

ρAR evaluates whether(u,v) is in AR from the outside-in, hencex and y are
initially set tou andv, respectively. Each path of the computation succeeds only
when the variablesx andy become equal.ρAR mimics exactly LFP[λPxyψ](u,v):
indeed if the rank of(u,v) in LFP[λPxyψ](u,v) is j, i.e. (u,v) ∈ ψ j but (u,v) /∈
ψ j−1, thenτAR will go through the while loop [a maximum of]j times.

Proposition 19. AR1[FO] ⊆ APS(1)

Proof. Take any formula ϕ ∈ AR1[FO]. Then ϕ is of the form
∃u1 . . .u j ′∃v1 . . .v j ′′ AR[λx,yψ](u,v), whereψ is quantifier-free. We construct
ρϕ ∈ APS(1) such that, for all structuresA, A |= ρϕ iff A |= ϕ.

Let ρϕ be:

INPUT(x,y,s, r,u1, . . . ,u j ′,v1, . . . ,v j ′′)
∃GUESSu1, . . . ,u j ′,v1, . . . ,v j ′′

τAR(u,v,x,y,s, r)
OUTPUT(x,y,s, r,u1, . . . ,u j ′,v1, . . . ,v j ′′)

Theorem 20. APS(1) = AR1[FO]

Proof. Follows from the previous two propositions.

Corollary. APS(1) = AR1[FO] = LFP[FO] = AR∗[FO].

Proof. AR1[FO] = LFP[FO] = AR∗[FO] is proved in [16].

4.2 Introducing APSS(1)

Here we consider the situation where we augment the schemes of APS(1) with
a stack for memory. We will find that we can quantify over the stack in a way
that was not possible with NPSS. Consequently, order will not be a problem, and
we quickly establish that we subsumeNPspace. We will have no need for free
variables to generate stratification: as with NPSPQ, we dispense with them.

49

Definition (Syntax of APSS(1)). Notwithstanding the forbidding of free vari-
ables, the syntax is that of APS(1), with the PUSH and POP instructions of
NPSS(1).

Definition. Suppose the program schemeρ∈APSS(1) involves j variables. Then
a configuration ofρ, computing on a structureA, is a sequence(v, l ,w) giving the
values of the variables, the number of the line just executed, and the contents of
the stack (w∈ |A|∗).

Each such program schemeρ, computing on a structureA, gives rise to an
infinite alternating graphAG

ρ
A

, defined as in the previous section. We say there is
a finite alternating pathbetween configurationsc,c′ in AG

ρ
A

, if there is ani ∈ ω
such that(c,c′) ∈ ψi(P,x,y), whereψ is as in the proof to Proposition 18.

For some structureA, let ΓA be some subset of|A|∗. Then for some signature
σ, let Γ be the global set{ΓA : A ∈ STRUC(σ)}.

Definition (Recognising Stacks). We say that the global setΓ is recognisableiff
there is aρΓ ∈ APSS(1) such that for allA the following are equivalent:

• For all v, there existsv′ andw′ ∈ |A|∗ such that there is an alternating path
in AG

ρΓ
A

from configuration(v,1,w) to configuration(v′, |ρΓ|,w′).

• w∈ ΓA.

Suppose thatτΓ is the subroutine constructed fromρΓ be removing the input
and output instructions. We are stating that, for eachA, the uniform subroutine
τΓ, when confronted with a stackw, finishes (i.e. does not loop forever) if, and
only if, w ∈ ΓA. This is independent of the values of all input-output variables
going intoτΓ. Essentially,τΓ recognisesw.

If a subroutine, computing onA, recognises a stack with contentsw ∈ |A|∗,
without ever popping off more than the top entriesw′ (|w′| < |w|), then it fol-
lows that that subroutine will recognise any word in{w′}.|A|∗. This suggests that
sometimes recognition only relates to the top portion of thecontents of a stack.
This motivates the cartesian product in the following:

Lemma 21. Let M1 be a special marker symbol. The following is recognisable as
the stack:

{{M1,x1, . . . ,xn,M1 : x1, . . . ,xn is an ordering of|A| }.|A|∗ : A ∈ STRUC(σ)}

where the ‘.|A|∗’ indicates cartesian product1

1There is potential for ambiguity here: By|A|∗ we mean any possible finite string ofreal
elements ofA, i.e. anything that could possibly be pushed to the stack, as opposed to just those
symbols (encoded as tuples) thatrepresentelements ofA.

50

Proof. Recall thatΛ is our set of additional special symbols. Thereforex /∈ Λ iff
x represents abona fideelement of the structure on which we are computing. We
begin by definingτorder:

v1 := POP ; IF v1 6= M1 THEN DO LOOP FOREVER FI

∀GUESSv2

IF v2 /∈ Λ THEN DO

v1 := POP

WHILE v1 6= v2 DO

v1 := POP OD

v1 := POP

IF v1 = v2 THEN DO LOOP FOREVER FI

WHILE v1 6= v2 ∧ v1 6= M1 DO

v1 := POP

IF v1 = v2 THEN DO LOOP FOREVER FI OD FI

The subroutine works by checking that everybona fideelement appears once
(lines 4-6), and only once,i.e. not again (lines 7-11), between two markersM1.

The following schemeρ accepts the global set of the lemma:

INPUT(v1,v2)
τorder

OUTPUT(v1,v2).

We will also define the following subroutineτpush, which pushes a random
(non-deterministic) number of random (non-deterministic) choices (exceptM1) to
the stack:

∃GUESSv′,v′′

WHILE v′ 6= v′′ DO

∃GUESSw′

IF w′ = M1 THEN LOOP FOREVER FI

PUSH w′

∃GUESSv′,v′′ OD

4.3 The ACCEPT instruction.

With the inclusion of a universal side to our semantics, we will have need of
an ACCEPT instruction which, as its name suggests, tells the computation to im-
mediately accept. Any program schemeρ′ that involves an ACCEPT instruction

51

should be considered shorthand for a schemeρ ∈ APSS(1) in the following way.
Assume, w.l.o.g., thatρ′ involves variable setV and thatv1,v2 /∈ V. Let τ′ beρ′

without the input and output instructions. Constructτ from τ′ via the substitutions:

• All testst in while loops inτ′ become testsv1 6= v2∧ t in τ.

• All instances of ACCEPT in τ′ becomev1 := v2 in τ.

Thenρ should be considered as:

INPUT(V,v1,v2)
v1 : 6= v2

WHILE v1 6= v2 DO τ OD

OUTPUT(V,v1,v2)

Note that, oncev1 = v2, the program can never get trapped in an infinite loop, and,
consequently, must make it to output.

4.4 APSSs(1) = APSS(1)

Lemma 22. APSSs(1) ⊆ APSS(1).

Proof. We prove the inclusion by simulating the successor relation. We take any
schemeρ ∈ APSSs(1), and construct a schemeρ′ ∈ APSS(1) such that, for all
structuresA, A |= ρ iff A |= ρ′.

Assume, without loss of generality, thatρ involves element variablesV, with
v1,v2,v3 /∈V, and does not use the marker symbolM1. Givenρ, we will construct
ρ′ by adding a special start-routine, and amending pop instructions as well as
successor tests in while loops.

LetV ′ = V ∪{v1,v2,v3}. Thenρ′ will be:

INPUT(V ′)
PUSH M1

τpush

PUSH M1

ALL (CheckOrder, Continue)
IF CheckOrder THEN DO τorder; ACCEPT FI

IF Continue THEN DO FI

τρ
OUTPUT(V ′)

52

whereτρ is the, as yet undefined, subroutine that actually mimicsρ. Observe how
we are using the ALL instruction to use the stack twice, once for verification of
the order, and again for whatever we want to do in the rest of the computation.
The stack is no longer readable only once, as it was with NPSS.Note that the
ALL choice ‘Continue’ is a dummy, in that any computation that follows that path
will continue through the rest of the program.

We will now meetτρ.

4.4.1 Simulation ofρ; τρ

Any computation that gets to this sub-routine will haveM1 as the top element of
the stack. AssumingM1 is not a symbol ofρ, we can use it to ensure that we never
stray into the bottom part of the stack, where the putative order is held, during our
simulation ofρ. In constructingτρ, we first remove the input and output lines (of
ρ). Next we,

• convert all instances of ‘v := POP’ to:

v1 := v
v := POP

IF v = M1 THEN DO PUSH v ; v := v1 FI

We may also have to evaluate quantifier-free successor queries of the form
v′ = succ(v), that might appear in a test for a while loop, immediately before the
test of that while loop. LetΦ be a propositional formula:

• Convert all instances of ‘WHILE Φ(v′ = succ(v)) DO τ OD’ to:

τsucc

WHILE Φ(v1 = v2) DO τ;τsuccOD

Whereτsucc is:

ALL (CheckSuccv, Continue)
IF CheckSuccv THEN DO

WHILE v1 6= M1 DO v1 := POP OD

WHILE v1 6= v DO v1 := POP OD

v2 := POP

IF v2 = v′ THEN DO ACCEPT FI

LOOP FOREVER FI

IF Continue THEN DO FI

53

Observe thatv′ andv are free in the sub-routine.
The subroutine works by splitting the computation, both checking thatv′ =

succ(v) (consuming the stack in the process) and continuing the computation with
the stack intact.

Corollary. APSSs(1) = APSS(1)

Proof. The converse APSS(1) ⊆ APSSs(1) is trivial.

4.5 NPspace ⊆ APSSs(1)

We will ultimately prove this by simulation of a non-deterministic Turing Ma-
chine that uses no more thannk tape squares (for somek), on inputbin(A), where
||A|| = n. First, we will need some technical lemmas, which are statedfor the
case when the signature isσ2, i.e. for graphs. Similar lemmas may be obtained
for other signatures. Letm be such that 1≤ m≤ nk, then we identifym with the
lexicographicmth variablek-tuplev, with respect to the built-in successor.

Lemma 23 (Recognisebin(G)). Let M1 and M2 be special marker symbols. The
following is recognisable as the stack (the brackets are synthetic, and appear, as
the commas, purely for clarity):

{ {(1,α1,M2),(2,α2,M2), . . . , (nk,αnk,M2),M1}.|G|
∗

: G ∈ STRUCs(σ2), α1 . . .αn2 = bin(G), αn2+1, . . . ,αnk = blank}

Proof. Lettingv = (v1, . . . ,vk), we defineτbin:

(v,v′,v′′) := POP

IF v 6= 1∨v′′ 6= M2 THEN DO LOOP FOREVER FI

w := v
WHILE v 6= nk DO

(v,v′,v′′) := POP

IF v 6= succ(w) THEN DO LOOP FOREVER FI

IF v′′ 6= M2 THEN DO LOOP FOREVER FI

IF v > n2∧v′ 6= blankTHEN DO LOOP FOREVER FI

IF E(vk−1,vk)∧v′ = zeroTHEN DO LOOP FOREVER FI

IF ¬E(vk−1,vk)∧v′ = oneTHEN DO LOOP FOREVER FI

w := v OD

v′′ := POP; IF v′′ 6= M1 THEN DO LOOP FOREVER FI

Thenρ, as INPUT(v,v′,v′′,w);τbin;OUTPUT(v,v′,v′′,w), recognises the global set
of the lemma.

54

Lemma 24(Read/Write Head Right). Let M1 and M2 be special marker symbols.
The following is recognisable as the stack (the brackets aresynthetic, and appear,
as the commas, purely for clarity):

{ {(m,αm,M2), . . . ,(nk,αnk,M2),(1,α1,M2), . . . ,(m−1,αm−1,M2),M1,

(m+1,αm+1,M2), . . . ,(nk,α
nk,M2),(1,α1,M2), . . . ,(m,αm,M2),M1}.|G|

∗

: G ∈ STRUCs(σ2), α1, . . . ,αnk ∈ Σ}

Proof. We defineτr/w−right in two parts. One part will check that the numbersm
to m−1, andm+1 to m behave correctly; that the markers are placed properly;
and that theαs are inΣ. The other part will check that theαs match in the two tape
lists, i.e. eachα j that appears before the firstM1 is equal to theα j that appears
between the first and secondM1s. In the following, the variablesutop will hold
the number of the first entry of the first tape (m), andubottomwill hold the number
of the last entry of that tape (m−1).

Defineτcheck f ormto be:

(v,v′,v′′) := POP

IF (v1 ∈ Λ)∨ . . .∨ (vk ∈ Λ)∨ (v′ /∈ Σ)∨ (v′′ 6= M2) THEN DO

LOOP FOREVER FI

utop := v
ubottom:= inv.cyc.succ(utop)
(w,w′,w′′) := POP

WHILE v 6= ubottomDO

(v,v′,v′′) := POP

IF w 6= cyc.succ(v) THEN DO LOOP FOREVER FI .
IF v′ /∈ Σ∨v′′ 6= M2 THEN DO LOOP FOREVER FI

w := v OD

v′′ := POP; IF v′′ 6= M1 THEN DO LOOP FOREVER FI

(v,v′,v′′) := POP

IF (v1 ∈ Λ)∨ . . .∨ (vk ∈ Λ)∨ (v′ /∈ Σ)∨ (v′′ 6= M2) THEN DO

LOOP FOREVER FI

IF v 6= cyc.succ(utop) THEN DO LOOP FOREVER FI

WHILE v 6= utop DO

(v,v′,v′′) := POP

IF w 6= cyc.succ(v) THEN DO LOOP FOREVER FI .
IF v′ /∈ Σ∨v′′ 6= M2 THEN DO LOOP FOREVER FI

w := v OD

v′′ := POP; IF v′′ 6= M1 THEN DO LOOP FOREVER FI

The first half of the sub-routine (12 lines) checks the form ofthe stack up to, and

55

including, the firstM1. The second half (last 9 lines) does the same up to, and
including, the secondM1.

Defineτcheckcontentto be:

∀GUESSw
IF w1 ∈ Λ∨ . . .∨wk ∈ Λ THEN DO ACCEPT FI

(v,v′,v′′) := POP

utop := v
ubottom:= inv.cyc.succ(utop)
IF v = w THEN DO vf irstα := v′ FI

WHILE v 6= w DO

(v,v′,v′′) := POP

vf irstα := v′ OD

WHILE v 6= ubottomDO

(v,v′,v′′) := POP OD

v′′ := POP

(v,v′,v′′) := POP

IF v = w THEN DO vsecondα := v′ FI

WHILE v 6= w DO

(v,v′,v′′) := POP

vsecondα := v′ OD

IF vf irstα 6= vsecondα THEN DO LOOP FOREVER FI

The three lines culminating in the middle ‘v′′ := POP’ remove down to, and in-
cluding, the firstM1.

We now giveτr/w−right :

ALL (CheckForm,CheckContent)
IF CheckForm THEN DO τcheck f orm FI

IF CheckContent THEN DO τcheckcontent FI

Now, ρ, as:

INPUT(v,v′,v′′,w,w′,w′′,vf irstα,vsecondα)
τr/w−right
OUTPUT(v,v′,v′′,w,w′,w′′,vf irstα,vsecondα)

recognises the global set of the lemma.

56

Lemma 25 (Read/Write Head Left). Let M1 and M2 be special marker symbols.
The following is recognisable as the stack (the brackets aresynthetic, and appear,
as the commas, purely for clarity):

{ {(m,αm,M2), . . . ,(nk,αnk,M2),(1,α1,M2), . . . ,(m−1,αm−1,M2),M1,

(m−1,αm−1,M2), . . . ,(nk,α
nk,M2),(1,α1,M2), . . . ,(m−2,αm−2,M2),M1}.|G|

∗

: G ∈ STRUCs(σ2), α1, . . . ,αnk ∈ Σ}

Proof. We constructτr/w−le f t in a similar manner toτr/w−right .

Proposition 26. NPspace ⊆ APSSs(1)

Proof. We aim to prove this by simulation. As before, and w.l.o.g., we assume
thatΩ ∈ NPspace is a graph problem. Similar lemmas to those previous may be
obtained for other signatures. SupposeΩ ∈ NPspace is accepted by the Turing
MachineT, with space bound ofnk on inputbin(A), where||A|| = n. We con-
structρΩ such that, for all graphsG, and for all orderings ofG, bin(G) ∈ Ω iff
G |= ρΩ.

We will consider our alphabet expanded to include the|Q|+ |Σ| symbols rep-
resentingT ’s states and alphabet; we also assume the additional markersymbols
M1 andM2. We will storeT ’s state in one variablevq: let qs andqa be the distin-
guished start and accept states. Once again∆ is how we envisageT ’s transition
rules (cf. section 3.8).ρΩ will be:

INPUT(v,v′,v′′,w,w′,w′′,vf irstα,vsecondα,vq,v′q)
vq := qs

PUSH M1

τpush

PUSH M1

ALL (CheckBin,Continue)
IF CheckBin THEN DO τbin ; ACCEPT FI

IF Continue THEN DO FI

WHILE vq 6= qa DO

(v,v′,v′′) := POP; PUSH (v,v′,v′′)
EITHER(Right,Left,Unmoved)
IF Right THEN DO

IF (vq,v′,R) /∈ ∆ THEN DO LOOP FOREVER FI

PUSH M1; τpush; PUSH M1

ALL (Verify,Continue2)
IF Verify THEN DO τr/w−right ; ACCEPT FI

IF Continue2 THEN DO FI FI

IF Left THEN DO

57

IF (vq,v′,L) /∈ ∆ THEN DO LOOP FOREVER FI

PUSH M1; τpush; PUSH M1

ALL (Verify,Continue2)
IF Verify THEN DO τr/w−le f t ; ACCEPT FI

IF Continue2 THEN DO FI FI

IF Unmoved THEN DO

(v,v′,v′′) := POP

∃GUESSw′,v′q
IF(vq,v′,v′q,w

′) /∈ ∆ THEN DO LOOP FOREVER FI

vq := v′q ; PUSH(v,w′,v′′) FI

OD

OUTPUT(v,v′,v′′,w,w′,w′′,vf irstα,vsecondα,vq,v′q)

4.6 Summary

Below, we summarise the results of this chapter, and the previous.

58

NPSPQb(0) ⊆ NPSPQb
s(0) = NPSs(1) = NL

NPSPQu(0) ⊆ NPSPQu
s(0) = NPSSs(1) = P

NPSPQb(k) ⊆ NPSPQu(k)

NPSPQb
s(k) ⊆ NPSPQb+

s (k)
NPSPQb+

s (k) ⊆ NPSPQb
s(2k)

NPSPQb+
s = NPSPQb

s
NPSPQu+

s (k) = NPSPQu
s(k)

NPSPQu+
s = NPSPQu

s

NPSPQu+ = NPSPQu+
s = NPSPQu

s = NPSPQu

NPspace ⊆ NPSPQu

NP ⊆ NPSPQu
poly ⊆ NPSPQb ⊆ NPspace

LFP = APS(1)
P = APSs(1)

NPspace ⊆ APSSs(1) = APSS(1)

Figure 4.1: Summary of Results

59

Chapter 5

Classes of Structure on which
P = ±PSk[FO]

In [42], various classes of structureC were studied, on which, for somek,
NPSS(k) = PSk[FO] captures exactlyP. The method used in the proofs involved
building a canonical order in NPSS(k−1), whereupon, since NPSS(k) = P on
ordered structures, the result followed. The following is aconsequence of that
work:

Proposition 27 ([42]). Let C be any class of structures, and letx,y,z be vari-
able j-tuples. Suppose there are formulae R(w1, . . . ,wm,x,y,z) ∈ ±PSk[FO] and
ψ(w1, . . . ,wm) ∈ PSl [FO] such that, for allA ∈ C:

• R is commutative inx andy, and deterministic inz, i.e.,

A |= ∀w1, . . . ,wmx y z R(w1, . . . ,wm,x,y,z) ↔ R(w1, . . . ,wm,y,x,z)

A |= ∀w1, . . . ,wmx y ∃z R(w1, . . . ,wm,x,y,z) →∃!z R(w1, . . . ,wm,x,y,z)

• A |= ψ(w1, . . . ,wm) if, and only if

in the deterministic, commutative Hypergraph specified by
R(w1, . . . ,wm,x,y,z) on |(A,w1, . . . ,wm)| j , we have, for all u∈ |A|,
u j = (u, . . . ,u) is accessible from w1 j .

• A |= ∃w1, . . . ,wmψ(w1, . . . ,wm).

ThenP = ±PSmax{k,l}+1[FO] on the classC.

Any tuple(w1, . . . ,wm) s.t. A |= ψ(w1, . . . ,wm) may be considered agenerat-
ing tuple forA. Generating tuples will be denoted(g1, . . . ,gm), and their underly-
ing generating set{g1, . . . ,gm} asG.

The principle results of [42] were:

60

• On the class of locally-ordered strongly connected digraphs,P =±PS1[FO].

• On the class of planar triangulations,P = ±PS2[FO].

In these cases, the construction ofψ, as in the proposition, is fairly straightfor-
ward. However, if we are prepared to sacrifice a few levels in±PS∗[FO], we can
disregardψ altogether.

Given some relationR∈ ±PSk[FO], as in the proposition, there must neces-
sarily be someψ ∈ PSk+3[FO] that will satisfy the required conditions. We may
takeψ(w1, . . . ,wm) :=

∀u PS[λx,y,z,R(w1, . . . ,wm,x,y,z)](w1
j ,u j)

Since we may write the∀u as¬∃u¬, R∈±PSk[FO] indeed implies that
ψ ∈±PSk+3[FO].

The following is now immediate:

Corollary. Let C be any class of structures, and letx,y,z be variable j-tuples.
Suppose there is a formula R(w1, . . . ,wm,x,y,z) ∈ ±PSk[FO] such that, for all
A ∈ C, there exists a generating tuple(g1, . . . ,gm) ∈ |A|m such that:

• R(g1, . . . ,gm,x,y,z) is commutative inx andy, and deterministic inz

• For all u ∈ |A|, uj is R-accessible from(g1)
j .

ThenP = ±PSk+4[FO] on the classC.

5.1 Finitely generated sets

Intuitively, a setA on which some partial functions are defined is described as
m-generated if it has a (generating) subset ofmelements such that all elements of
A may be obtained by (possibly nested) applications of these partial functions on
the elements of this subset.

WhenF is a finite set of partial functions, each of some finite arity,we will
want to define the setF∗ of all functions that can be created from those inF by
repeated relabelling and substitution. So long asF contains a non-unary function,
F∗ must be infinite (even under equivalent relabellings), since it will have func-
tions of all arities. Throughout this chapter we will use a bracketed superscript to
indicate the arity of variable tuples or partial functions.Thus, whilst for an ele-
mentx, xk denotesthe k-tuple ofxs, the notationv(k) specifies a variablek-tuple,
whose different positions may hold different values.

61

Definition. For some finite structureA, let F = { f1, . . . , f j} be partial functions

of respective aritiesa1, . . . ,a j (i.e. f (a1)
1 : |A|a1 → |A| , . . . , f

(a j)
j : |A|a j → |A|).

ThenF∗ is defined inductively via:

• f1(v1, . . . ,va1), . . . , f j(v1, . . . ,va j) ∈ F∗.

• (Projection/Reordering.) Iff ∈F∗ of aritya, anda′≤a, then let{n1, . . . ,na}
and{n′1, . . . ,n

′
a′} be subsets ofZ of ordera anda′, respectively. If we have

a functionp : {n1, . . . ,na}→ {n′1, . . . ,n
′
a′}, then f ′ ∈ F∗, of arity a′, where:

f ′(vn1, . . . ,vna′
) := f (vp(n1), . . . ,vp(na))

• (Composition.) If f , f ′ ∈ F∗, with respective aritiesa,a′, then f ′′ ∈ F∗, of
arity (a−1+a′), where:

f ′′(v1, . . . ,va−1,va, . . . ,va+a′−1) := f (v1, . . . ,va−1, f ′(va, . . . ,va+a′−1))

Projection/Reordering is nothing more than relabelling ofthe variables. Be-
cause of the Reordering rule, we have no need to explicitly mention compositions
that occur other than at the right hand end of the outer partial function. The mini-
mum depth of nestings of Composition in a partial functionf ∈ F∗ will be known
as therank of f in F∗.

Definition. LetF = { f1, . . . , f j} be a set of functions of respective aritiesa1, . . . ,a j .
Let σF = 〈 f1, . . . , f j〉 be the associated signature. Then:

• STRUC(σF ,m) is the class of finite structures overσF , such that, for all
A ∈ STRUC(σF ,m), there exists a generating subsetG = {g1, . . . ,gm} ⊆
|A|, such that, for everyu∈ |A|, there exists an arityr, a f (r) ∈ F∗, and a
w(r) = (w1, . . . ,wr) ∈ Gr , such thatu = f (r)(w(r)).

STRUC(σF ,m) is said to be the class of structures that can bem-generated
by the set of partial functionsF.

5.1.1 F contains a singlek-ary partial function f0.

Theorem 28. For each m, we have thatP = ±PS4[FO] on the class
STRUC(σ{ f0},m).

Proof. Let k be the arity of the partial functionf0, and letx,y,z be variable
(k+ 1)-tuples. We will define a deterministic, commutative Hypergraph rela-
tion R(w1, . . . ,wm,x,y,z), in quantifier-freeFO, such that, for all structuresA ∈

62

STRUC(σ{ f0},m), there existsg1, . . . ,gm ∈ |A| such that, for allu∈ |A|, uk+1 is
accessible fromg1

k+1. We may then appeal to the Corollary of Proposition 27.
We will specify R(w1, . . . ,wm,x,y,z) asR(x,y,z), where the entries ofx,y,z

may be among the variablesw1, . . . ,wm. We will defineR over (k+ 1)-tuples
from ({P,Q,S,t}] |A|)k+1.

The symbolsP, Q, andSare used for switching rules, andt represents blank.
(Note that we can enlarge our alphabet to include these special symbols in pre-
cisely the manner we did in Section 3.4. Thus, each ‘variable’ we discuss here,
will, in point of fact, be a quintuple of actual variables.)

We begin with the ‘start’ rules:

• R[(wk+1
1),(wk+1

1),(P,tk−1,w1)].

• R[(P,tk−1,wi),(P,tk−1,wi),(P,tk−1,wi+1)] for 1≤ i < m.

We now progress to the ‘active’ rules:

Switching:

• R[(P,tk−i,x(i)),(P,tk−i,x(i)),(Q,tk−i ,x(i))] for x(i) ∈ |A|i, andi ≤ k.

• R[(Q,tk−i ,x(i)),(Q,tk−i,x(i)),(S,tk−i,x(i))] for x(i) ∈ |A|i, andi ≤ k.

Concatenation:

• R[(P,tk−i,x(i)),(Q,tk− j ,y(j)),(P,tk− j−i,x(i),y(j))] for x(i) ∈ |A|i,
y(j) ∈ |A| j , andi + j ≤ k.

Production:

• R[(Q,ti,x(k−i)),(S,t j ,y(k− j)),(P,tk−1,z)] for i + j = k, and f0(x,y) = z.

and the ‘finish’ rule:

• R[(P,tk−1,x),(S,tk−1,x),(xk+1)] for x∈ |A|.

Finally, we considerR to be the symmetric closure of the above rules,i.e. for all
x(k+1),y(k+1),z(k+1),

R(x(k+1),y(k+1),z(k+1)) ⇒ R(y(k+1),x(k+1),z(k+1)).

This ensures the commutativity ofR.
R is clearly deterministic inz(k+1), and can be written in quantifier-freeFO.

We will now prove that, for allu∈ |A|, uk+1 is accessible fromg1
k+1. It follows,

from the start and finish rules, that this is equivalent to thequestion of whether
(P,tk−1,u) is accessible from the collection(P,tk−1,g1), . . . ,(P,tk−1,gm).

63

We know that, for each suchu, there exists a partial functionf (r) ∈ { f0}∗,
and tuple(w1, . . . ,wr) ∈ {g1, . . . ,gm}

r , such thatu = f (r)(w1, . . . ,wr). We prove
(P,tk−1,u) is accessible by induction on the rank off (r).

(Base Case.) When the rank off (r) is 0, thenr ≤ k, and it follows thatu =
f0(w1, . . . ,wr) for somew1, . . . ,wr ∈ {g1, . . . ,gm}. We may access(P,tk−1,u)
from (P,tk−1,g1), . . . ,(P,tk−1,gm) by repeated use of Switching, then repeated
Concatenation, and finally a single application of Production.

(Inductive Step). Assuming it works for rankδ, we prove it works for rank
δ+1. If f (r) is of rankδ+1, then it follows from the definition of rank, and the in-
ductive hypothesis, thatu = f0(w1, . . . ,wr), where(P,tk−1,w1),. . . ,(P,tk−1,wr)
have been accessed (sincew1, . . . ,wr are generated by partial functions of strictly
lower rank). Again, we access(P,tk−1,u) by repeated use of Switching, then
repeated Concatenation, then a single application of Production.

5.1.2 F contains multiple partial functions.

Theorem 29. Let F be a finite set of partial function symbols. For each m, we
have thatP = ±PS4[FO] on the classSTRUC(σF ,m).

Proof. We reduce this case to the previous. SupposeF containsj partial functions
of respective aritiesa1, . . . ,a j . Let a = max{a1, . . . ,a j}. We aim to construct a
single partial functionfF , of arity (a+ j), that simulates all the functions inF.
w(j) = (w1, . . . ,w j) will represent functionsf1 to f j according to our ubiquitous
scheme:

• if w1 = w2 thenw(j) representsf1,

• if w1 6= w2 butw2 = w3 thenw(j) representsf2,

•
...

• if w1 6= w2, . . . ,w j−2 6= w j−1 butw j−1 = w j thenw(j) representsf j−1, and

• if w1 6= w2, . . . ,w j−1 6= w j thenw(j) representsf j .

Supposeŵ representsfi whose arity isai. Consider fF(x(ai),y(a−ai), ŵ) to be
fi(x(ai)), if fi is defined atx(ai), and undefined otherwise.

Since j is fixed, this construction offF can be specified in quantifier-freeFO.

64

5.1.3 An application: finitely generated groups

We say that a finite groupH is m-generated if there exists a set ofm generating
elementsG = {g1, . . . ,gm}, such that for everyx∈ H we have somey∈ G∗ such
that x≡H y (where∗ is the usual Kleene star). Clearly, all groups of order≤ m
arem-generated.

Corollary. For each m, on the class of m-generated finite groups,±PS4[FO] = P.

Corollary. On the class of finite simple groups,±PS4[FO] = P.

Proof. Recall that finite simple groups are 2-generated [3, 39].

Despite finitely generated groups being a paradigm for our systems, it should
be noted that the results of the previous section go well beyond groups; beyond
single functions, and beyond associativity.

5.2 Hamiltonian Outerplanar graphs

A graph is said to beouterplanarif it can be drawn in the plane with all its vertices
on the outer face. Such a drawing will be called an OP-drawing.

Definition. A Hamilton cycle in a graphG, where||G|| = n, is a sequencescyc of
distinct verticesvi (for 1 ≤ i ≤ n) such that, for 1≤ i < n, EG(vi ,vi+1), and also
EG(vn,v1).

We consider ahamiltonian outerplanar graph(HOP) to be an antireflexive,
undirected, outerplanar graph with a Hamilton cycle. We start by noting some
basic properties of outerplanar graphs that have a Hamiltoncycle.

Lemma 30.

(i) Consider anHOP graph G, with Hamilton cycle scyc. Then, in anyOP-
drawing ofG, scyc must be on the outer face.

(ii) For anyHOPgraphG, the subgraph given by any Hamilton cycle is unique.

(iii) G has a uniqueOP-drawing in the plane, up to combinatorial isomorphism.

Proof. (i) Note that any OP-drawing ofscyc is combinatorially equivalent to the
n-gon (n = ||G||). Thus,scyc must appear on the outer face of any OP-drawing.

(ii) Consider a graphG with two Hamilton cycles,scyc ands′cyc, that give rise
to different subgraphs. In any OP-drawing ofG, scyc ands′cyc must be drawn as
distinct n-gons over the same vertices. Yet not both can be on the outer face,
violating part(i) .

(iii) The unique Hamilton cycle subgraph dictates the unique OP-drawing.

65

s

s

s
s

s

x

y

z

w

Proof forwards

s

s

s
s

s

x

y

w

z

Proof backwards

Figure 5.1: Diagrams for Lemma 31.

We make use of this unique OP-drawing by now referring, unambiguously, to
theouter face.

Lemma 31. There is a formulaϕ(x,y,z) ∈±PS3[FO] that holds on anHOPG if,
and only if, x and z are the distinct neighbours of y, on the outer face.

Proof. We first defineP(x,z,y,w) ∈ ±PS1[FO], intended to mean that there is a
path fromx to z avoiding bothy andw. We defineP as the Transitive Closure
(though in Path System logic) of the following formulaθ:

θ(p,q,y,w) := p 6= y∧ p 6= w∧q 6= y∧q 6= w∧E(p,q)

Thus,
P(x,z,y,w) := PS[λp, p,qθ](x,z)

Now, ϕ(x,y,z) :=

E(x,y)∧E(y,z)∧x 6= z∧
∀w[(w 6= x∧w 6= z∧E(y,w) →¬P(x,z,y,w)]

We now prove thatx andzare the distinct neighbours ofy, on the outer face ofG,
if, and only if,G |= ϕ(x,y,z).

(Forwards.) Ifx andzare the distinct neighbours ofyon the outer face, then the
first three conjuncts ofϕ are clearly satisfied. Furthermore, the edge between any
distinctw andy must cut across the OP-drawing ofG (see Figure 5.1). It follows
that all paths fromx to z must go through eithery or w. HenceG |= ϕ(x,y,z).

66

(Backwards.) Supposex andzare not the distinct neighbours ofy on the outer
face. Ifx andz are not distinct, ory is not adjacent to both, then we fail on one of
the first three conjuncts ofϕ. So, assumex andz are distinct, andy is adjacent to
both, butx andz are not the two neighbours ofy on the outer face. If we choose
some distinctw that is such a neighbour, then there is clearly a path fromx to z
avoiding bothy andw (see Figure 5.1). In any case,G |=/ ϕ(x,y,z).

Theorem 32. On the classHOP, P = ±PS7[FO].

Proof. We will define a deterministic, commutative Hypergraph relation
R(w1,w2,w3,x1,x2,y1,y2,z1,z2), in ±PS3[FO] s.t. for all structuresG ∈ HOP,
there existsg1,g2,g3 ∈ |G| such that, for allu∈ |G|, u2 is accessible fromg1

2. We
may then appeal to the Corollary of Proposition 27, withj = 2.

The rules will be the symmetric closure of:

• R[(w1,w1),(w1,w1),(w1,w2)]

• R[(w2,w2),(w2,w2),(w2,w3)]

• R[(w,x),(x,y),(y,z)] if ϕ(w,x,y)∧ϕ(x,y,z) (whereϕ is as in Lemma 31).

• R[(w,x),(w,x),(x,x)] if w 6= x.

That the rules are deterministic, commutative, and can be written in±PS3[FO]
is straightforward. It is also clear that, starting with anyg1,g2,g3 such that
ϕ(g1,g2,g3), all vertices are accessible: fromg1 we accessg2 (somenext vertex
on the outer face – which determines whether we are moving clockwise or anti-
clockwise around a certain OP-drawing ofG), theng3 (thenext vertex on the outer
face – now direction is set), then all the way round the outer face until we reach
the final vertex on the Hamilton cycle (before we reachg1 again).

Remark.We can easily extend our result to hamiltonian outerplanar graphs that
are not undirected or not antireflexive, by considering their undirected, antireflex-
ive versions. Specifically change all instances ofE(x,y), in the prior discourse, to
(E(x,y)∨E(y,x))∧x 6= y.

67

Chapter 6

Dichotomies in Boolean Constraint
Satisfaction

6.1 Introduction

Let σ range over all relational signatures. We define the relational class of boolean
structures BOOL.

BOOL := {A : A is aσ-structure and||A||= 2}

We denote tuples of variables (resp. boolean constants) in bold, e.g.x (resp. t).
These tuples are not of a uniform arity.

Definition. ForA ∈ BOOL, and each with the question as to whetherA |= ϕ,

• the problem SATNC(A) has inputϕ := ∃xQ(x),

• the problem QSAT NC(A) has input, for somen≥ 1, of the form,

ϕ := ∀x1∃x2∀x3∃x4 . . .∀x2n+1∃x2n+2Q(x1,x2, . . . ,x2n+2)

• the problemΠ2n+1-SATNC(A) has input,

ϕ := ∀x1∃x2∀x3∃x4 . . .∀x2n+1Q(x1,x2 . . .x2n+1)

• the problemΠ2n+2-SATNC(A) has input,

ϕ := ∀x1∃x2∀x3∃x4 . . .∀x2n+1∃x2n+2Q(x1,x2, . . . ,x2n+2)

• the problemΣ2n+1-SAT NC(A) has input,

ϕ := ∃x1∀x2∃x3∀x4 . . .∃x2n+1Q(x1,x2 . . .x2n+1)

68

• the problemΣ2n+2-SAT NC(A) has input,

ϕ := ∃x1∀x2∃x3∀x4 . . .∀x2n+2Q(x1,x2 . . .x2n+1)

where, in each case,Q is a conjunction of positive atoms.
The problems SATC(A) etc are defined analogously, but with the two boolean

constants 0 and 1 built-in to the signature.

It is clear thatΠ2n+2-SAT NC(A) (respectively,Σ2n+1-SAT NC(A)) is in the
complexity classΠP

2n+2 (respectively,ΣP

2n+1). In fact, it follows from [43] that
they are complete for those classes, for certainA. It is also clear thatΠ1-SAT NC(A)
is tractable, for allA, since we may check each extensional relation independently,
one-by-one, for an invalidating assignment. Indeed, if themaximum arity of a re-
lation in A is a, then the complexity ofΠ1-SAT NC(A) is O(na), wheren is the
size of the input. It follows, by similar argument [43], thatΠ2n+1-SAT NC(A) (re-
spectively,Σ2n+2-SAT NC(A)) is in the complexity classΠP

2n (respectively,ΣP

2n+1).
The comments of the previous paragraph apply equally to the problemsΠi-

andΣi-SAT C, i.e. in the situation where the Boolean constants are available.

Definition. For a relationR, of arity a, define:

• ∃-FORM(R) to be the set of formulae formed from the closure of the atoms
R(x) (wherex is ana-tuple of not necessarily distinct variables), under con-
junction and existential quantification.

• Π2-FORM(R) to be the set of formulae of the form∀xϕ(x,y), whereϕ ∈
∃-FORM(R).

• ∀/∃-FORM(R) to be the set of formulae formed from the closure of the
atomsR(x), under conjunction, existential quantification, and universal quan-
tification.

We define∃-REL(R) to be the set of relations expressible by formulae in∃-FORM(R),
when reading the variables lexicographically. We do likewise forΠ2-REL(R) and
∀/∃-REL(R). These sets are sometimes known as relational clones [14].

We may refer to boolean relations by some propositional formula that ex-
presses them, reading the propositional variables lexicographically,e.g. [A∨B]
expresses{(0,1),(0,1),(1,1)}; [A 6= B] expresses{(0,1),(1,0)}.

Definition. A relationR, of arity a, is:

(i) 0-valid iff it contains the tuple(0a).

(ii) 1-valid iff it contains the tuple(1a).

69

(iii) horn iff it may be expressed by a propositional formula in CNF where each
clause has at most one positive literal.

(iv) dual horniff it may be expressed by a propositional formula in CNF where
each clause has at most one negative literal.

(v) bijunctiveiff it may be expressed by a propositional formula in 2-CNF.

(vi) affineiff it may be expressed by a propositional formula that is theconjunc-
tion of linear equations overZ2.

Given a templateA, over signature involving relationsR1, . . . ,Rj , of respective
aritiesa1, . . . ,a j , we construct the relationRA thus:

• If A has j ′ ≤ j non-empty relations, then letR′
i be theith non-empty relation

of A.

• Let RA = R′
1× . . .×R′

j ′.

This construction will enable us to consider signatures with multiple relations,
as though they only had one. This is because each of the six attributes from the
previous definition hold over all the relations ofA if, and only if, they hold forRA.
Note that all the relations ofA, except possibly the empty relationφ, are present
in ∃-REL(RA).

Theorem 33(I-III: Schaefer [38], and IV: Dalmau/Creignou et al [15, 14]).

I. SAT C(A) is tractable if RA satisfies any of conditions(iii)− (vi), and is
NP-complete otherwise.

II. SAT NC(A) is tractable if RA satisfies any of conditions(i)− (vi), and is
NP-complete otherwise.

III. QSAT C(A) is tractable if RA satisfies any of conditions(iii)− (vi), and is
Pspace-complete otherwise.

IV. QSAT NC(A) is tractable if RA satisfies any of conditions(iii)− (vi), and is
Pspace-complete otherwise.

We will briefly consider the methods involved in proving these dichotomies.
When the boolean constants are present, Schaefer was able totake anyRA not in
classes(i)− (iv), and construct the ternary boolean not-all-equal relation, which
is known to give rise to anNP-complete SAT , andPspace-complete QSAT . When
constants are not present, there are the degenerate cases of0- and 1-validity, which
become trivial. For the other tractable sub-classes of templatesA, we clearly have

70

that SATNC(A) is polynomially reducible to SAT C(A), guaranteeing its tractabil-
ity in the no-constants scenario. It remained for him to prove that SAT C(A) is
polynomially reducible to SAT NC(A) for thoseA not in classes(i)− (vi). He did
this by simulating the boolean constants. Call a relationRA complementativeif,
for all tuplesx in RA, the tuplex′, obtained fromx by swapping the 0s and 1s, is
also inRA. Schaefer proved the following:

Lemma 34([38]). For some RA, not in classes(i)−(vi), either[A], [¬A]∈∃-REL(RA),
or [A 6= B] ∈ ∃-REL(RA) and RA is complementative.

Before going further, we will need the following lemma.

Lemma 35 ([15]). If RA is complementative, then all relations in∀/∃-REL(RA)
are complementative.

Proof. We prove this by induction on the term-complexity ofϕ ∈ ∀/∃-REL(RA).
The base case is trivial. For the inductive step, note that:

• R(x) andR′(x′) complementative, impliesR∧R′(x,x′) complementative.

• R(x) complementative, implies∃x1R(x) is complementative.

• R(x) complementative, implies∀x1R(x) is complementative.

We can now sketch Schaefer’s result, and method.

Proposition 36. If RA is in none of the classes(i)−(vi) above, thenSAT C(A)≤P

SAT NC(A).

Proof. By Lemma 34, we need to consider two cases.
(Case 1.) We have∃y1Q1(y1,b),∃y0Q0(y0,a)∈∃-FORM(RA) expressing[X], [¬X],

whereQ1 andQ0 are positive conjunctive. We are now in a position to simulate
the constants 0 and 1, for, given an input∃xϕ(x,0,1) for SAT C(A), we know,

∃xϕ(w,0,1) ⇔ ∃x∃a∃b ϕ(x,a,b)∧∃y1Q1(y1,b)∧∃y0Q0(y0,a)

The latter formula is an input for SAT NC(A), when the inner existential quantifiers
are drawn out, putting it in prenex form.

(Case 2.) We have∃yQ′(y,a,b) ∈ ∃-FORM(RA) that expresses[A 6= B], and
RA is complementative. It follows that,

∃xϕ(x,0,1) ∈ SAT C(A) ⇔ ∃x∃a∃b ϕ(x,a,b)∧∃yQ′(y,a,b) ∈ SAT NC(A)

sinceϕ must be complementative (by Lemma 35).

The problem of removing the constants in QSAT C was not attended to by
Schaefer. It was finally settled many years later by Dalmau [15], and, indepen-
dently, by Creignou et al. [14].

71

6.2 Technical results

Before progressing, we will need a number of technical lemmas.

Lemma 37 (Quantifier Re-ordering). Let the variables a,b not appear inx. The
following are equivalent on all boolean structures for all conjunctive positive Q:

∃x∃a∀b B(a,b)∧Q(a,x)

∀b∃x∃a B(a,b)∧Q(a,x)

If, and only if:

• B is φ (empty), singleton,{(0,0),(1,0)}, {(1,1),(0,1)}, or

• B contains(0,0) and(0,1).

• B contains(1,0) and(1,1).

Proof. If B is φ, singleton,{(0,0),(1,0)}, or {(1,1),(0,1)} then both sentences
will be false irrespective ofQ.

If B contains both(0,0) and(0,1), it may easily be verified that both sentences
are equivalent. The case whereB contains both(1,0) and(1,1) is symmetric.

The remaining possibilities forB are{(0,0),(1,1)} and{(1,0),(0,1)}, which
will be each false in the former sentence, but may be true in the latter (e.g.if Q is
logically valid).

Given the booleank-tuplest1 = (t1
1, . . . , tk

1) andt2 = (t1
2, . . . , tk

2) we definet1⊕
t2 to be(t1

1 + t1
2, . . . , tk

1 + tk
2) where the addition is modulo 2.

Lemma 38 (0-affine case. [13]). Let R be a boolean relation of arity k. The
following are equivalent:

(a) R is0-valid and affine.

(b) 0k ∈ R, and, for all assignmentst1, t2 ∈ R, we havet1⊕ t2 ∈ R.

Definitions. For a relationR of arity k, and any setT = {i1, . . . , i j} of j positions
0≤ i1 < .. .< i j ≤ k, we defineR|T to be thej-ary relation∃xl1 . . .∃xlk− j R(x1, . . . ,xk),
where{l1, . . . , lk− j} = {1, . . . ,k}−T. Observe thatR|T is in ∃-REL(R).

For anyt ∈ {0,1}k andT ⊂ {1, . . . ,k}, we definet|T as the assignmentt′ ∈
{0,1}|T| that agrees witht in the positions indexed byT.

Let R be a relation of arityk, andt ∈ {0,1}k an assignment. We say thatt is
j-compatible(w.r.t. R) if, for every subsetT ⊂ {1, . . . ,k} (of size|T|< j), we can

72

find some assignmentt′ ∈ Rsuch thatt andt′ agree in the positions indexed byT.
This is equivalent to the condition that anyj-ary sub-tuple oft can be extended to
somek-ary t′ in R. Clearly this is trivially true whent is itself inR; the interesting
cases are when it is not.

The notion ofj-compatibility is key in characterising horn logical relations.

Lemma 39(horn case. [15]). Let R be a boolean relation of arity k. The following
are equivalent:

(a) R is horn.

(b) for all t1, t2 ∈ R, we havet1∧ t2 ∈ R.

(c) for every T⊂ {1, . . . ,k}, and for every|T|-compatible (w.r.t. R|T) assign-
mentt ∈ {0,1}|T| not in R|T, we have thatt contains at most a single0.

Lemma 40 (Adapted from [15]). If RA is 0-valid and non-Horn, then there is a
relation S4

λ definable in∃-REL(RA) such that:

∈ S4
λ /∈ S4

λ
(0,0,0,0) (0,0,0,1)
(0,1,0,1)
(0,0,1,1)

Proof. SinceRA is non-horn, we may guarantee to break part(c) of the previous
lemma. This implies that there is a subset of indicesT ⊆ {1, . . . ,k} and a|T|-
compatible assignmentt not in R|T that contains at least two zeros. We may
benefit from dwelling on what exactly this means. It guarantees us some|T|-ary
relationR|T, in ∃-REL(RA), and a|T|-tuplet s.t.

• t /∈ R|T,

• for any t′ that agrees witht in all but one position,t′ ∈ R|T, and

• t contains at least two zeros.

We therefore considerR|T(v1, . . . ,v|T|) and two indicesα,β ∈Z|T| at whicht has
zeros. Note thatt can not be all zeros, sinceR is 0-valid yett /∈ R|T. Let I ′ be the
set of indices at whicht is one. Finally, letI ′′ be the set of indices, other thani, j,
at whicht is zero1. We obtainS4

λ(x,vα,vβ,y) from R|T(v1, . . . ,v|T|) by substituting

1It is possible thatI ′′ is empty, in which caseS4
λ will actually be a ternary relation. This will

cause no problems, and will come out in the wash in Lemma 42.

73

all variablesvi s.t. i ∈ I ′ by the variabley and substituting all variablesvi s.t. i ∈ I ′′

by the variablex.
We already know that(0,0,0,1) /∈ S4

λ, and we have assumed thatR is 0-valid,
hence(0,0,0,0)∈ S4

λ. Since(0,0,0,1) /∈ S4
λ, we will have(0,1,0,1),(0,0,1,1)∈

S4
λ by the |T|-compatibility, since these two assignments each only change the

value of a single variable inR|T.

Lemma 41 (Adapted from [15]). If RA is 0-valid and non-affine, then there is a
relation S4

µ definable in∃-REL(RA) such that:

∈ S4
µ /∈ S4

µ
(0,0,0,0) (0,1,1,0)
(0,1,0,1)
(0,0,1,1)

Proof. SinceR is 0-valid and affine, it follows from Lemma 38 that there are
assignmentst1, t2 ∈ R such thatt1⊕ t2 /∈ R. ForR(x1, . . . ,xk), define:

• V00 = {v : v∈ {x1, . . . ,xk} v is 0 in t1 and 0 int2 }

• V01 = {v : v∈ {x1, . . . ,xk} v is 0 in t1 and 1 int2 }

• V10 = {v : v∈ {x1, . . . ,xk} v is 1 in t1 and 0 int2 }

• V11 = {v : v∈ {x1, . . . ,xk} v is 1 in t1 and 1 int2 }

Let S4
µ(y00,y01,y10,y11) beR(x1, . . . ,xk) with the substitutionsy00 for V00, y01 for

V01, y10 for V10, andy11 for V11. The claimed properties follow immediately.

Lemma 42. If RA is 0-valid and non-Horn and non-affine, then there is a relation
S4

λµ definable in∃-REL(RA) such that:

∈ S4
λµ /∈ S4

λµ
(0,0,0,0) (0,0,0,1)
(0,1,0,1) (0,1,1,0)
(0,0,1,1)

Proof. S4
λµ := S4

λ ∧S4
µ.

74

6.3 A dichotomy theorem forΠ2-SAT NC

It follows from Schaefer’s work and [43] thatΠ2-SAT C(A) is tractable ifRA is in
any of the classes(iii)− (vi), andΠP

2 -complete otherwise. Borrowing much from
Dalmau, we will show thatΠ2-SATNC exhibits the same dichotomy.

Our proof rests on the following:

Proposition 43.LetA∈B. If RA is neither horn, dual horn, affine, nor bijunctive,
thenΠ2-SAT C(A) is polynomially reducible toΠ2-SATNC(A).

If RA is neither 0-valid nor 1-valid, we may appeal to Schaefer’s method for
simulating the constants. This may only result in more existential quantifiers on
the inside of the input instance, which will not jeopardise our being inΠP

2 . How-
ever, if we need formulae with universal quantifiers to simulate the constants, then
we find ourselves potentially outsideΠP

2 , with more than a single alternation of
quantifiers in the input instance.

Recall that we are only concerned withRA that are non-horn, non-dual-horn,
non-bijunctive, non-affine, and either 1-valid or 0-valid.We will consider four
cases.

6.3.1 Case 1 :RA is 0-valid and not 1-valid.

In this case we have the constant 0 for free, sinceRA(a, . . . ,a) expresses[¬A].
Let S2

3 be the boolean relation{(0,0),(1,0),(1,1)}.

Lemma 44. If RA is 0-valid, non-horn, non-affine, and not 1-valid, then S2
3 is

definable in∃-REL(RA).

Proof. We consider two further possibilities for the relationS4
λµ above.

• If S4
λµ also contains(0,0,1,0), thenS2

3 = ∃aS4
λµ(a,a,b,c)∧RA(a, . . . ,a).

• If S4
λµ does not contain(0,0,1,0), thenS2

3 =∃a∃a′S4
λµ(a,a′,c,b)∧RA(a, . . . ,a).

In both casesS2
3 is of the form∃wQS(w,b,c), whereQS is positive conjunctive.

Note that[A] is expressed by∀cS2
3(b,c).

Lemma 45. If RA is 0-valid, non-horn, non-affine, and not 1-valid, thenΠ2-
SAT C(A) polynomially reduces toΠ2-SAT NC(A).

75

Proof. Given an input∀x1∃x2Q(x1,x2,0,1) for Π2-SAT C(A), observe,

∀x1∃x2 Q(x1,x2,0,1)
⇔ ∀x1∃x2∃a∃b Q(x1,x2,a,b) ∧∀c S2

3(b,c)
∧RA(a, . . . ,a)

⇔ ∀x1∃x2∃a∃b Q(x1,x2,a,b) ∧∀c∃w QS(w,b,c)
∧RA(a, . . . ,a)

⇔ ∀x1∀c∃x2∃a∃b Q(x1,x2,a,b) ∧∃w QS(w,b,c)
∧RA(a, . . . ,a)

Note that the final line is a valid input forΠ2-SAT NC(A). The final equivalence
holds by the Quantifier Re-ordering Lemma, withB := ∃w QS(w,b,c).

6.3.2 Case 2 :RA is 1-valid and not 0-valid.

This is the symmetric case of the previous (where zero is replaced with one, and
vice-versa).

6.3.3 Case 3 :RA is 0-valid and 1-valid, but not complimenta-
tive.

SinceRA is 0-valid, 1-valid, and yet not complimentative, there exists a tuplet in
RA s.t ts complement is not inRA. Let I index the set of positions at whicht is
zero and letJ index those positions at whicht is one. IfRA(v1, . . . ,vk) is ak-ary
relation, considerQatom(a,b) to beRA under the substitutiona for all variables
indexed byI andb for all variables indexed byJ. Qatom is atomic, and it expresses
S2

3. We now have that∀bS2
3(a,b) expresses[A], and∀aS2

3(a,b) expresses[¬A].

Lemma 46. If RA is 0-valid, non-horn, non-affine, 1-valid, but not complementa-
tive, thenΠ2-SATC(A) polynomially reduces toΠ2-SATNC(A).

Proof. Given an input∀x1∃x2Q(x1,x2,0,1) for Π2-SAT C(A), observe,

∀x1∃x2 Q(x1,x2,0,1)
⇔ ∀x1∃x2∃a∃b Q(x1,x2,a,b) ∧∀b′ S2

3(a,b′)
∧∀a′ S2

3(a
′,b)

⇔ ∀x1∃x2∃a∃b Q(x1,x2,a,b) ∧∀b′ Qatom(a,b′)
∧∀a′ Qatom(a′,b)

⇔ ∀x1∀b′∀a′∃x2∃a∃b Q(x1,x2,a,b) ∧ Qatom(a,b′)
∧ Qatom(a′,b)

The final line is a valid input forΠ2-SAT NC(A). The final equivalence holds via
two applications of the Quantifier Re-ordering Lemma.

76

6.3.4 Case 4 :RA is 0-valid and 1-valid, and complimentative.

In this caseS4
λµ will look like:

∈ S4
λµ /∈ S4

λµ
(0,0,0,0) (0,0,0,1)
(0,1,0,1) (0,1,1,0)
(0,0,1,1)
(1,1,1,1) (1,1,1,0)
(1,0,1,0) (1,0,0,1)
(1,1,0,0)

Note that∀d∃aS4
λµ(a,b,c,d) expresses[B 6= C]. SinceS4

λµ ∈ ∃-REL(RA), it fol-
lows that[A 6= B] is expressed by∀d∃a∃wQλµ(w,a,b,c,d), whereQλµ is positive
conjunctive.

Lemma 47. If RA is 0-valid, non-horn, non-affine, 1-valid, and complementative,
thenΠ2-SAT C(A) polynomially reduces toΠ2-SAT NC(A).

Proof. Given an input∀x1∃x2Q(x1,x2,0,1) for Π2-SAT C(A), observe,

∀x1∃x2 Q(x1,x2,0,1)
⇔ ∀x1∃x2∃b∃c Q(x1,x2,b,c) ∧∀d∃aS4

λµ(a,b,c,d)

⇔ ∀x1∃x2∃b∃c Q(x1,x2,b,c) ∧∀d∃a∃wQλµ(w,a,b,c,d)

Now this is not, in general, equivalent to:

∀x1∀d∃x2∃b∃c Q(x1,x2,b,c)∧∃a∃wQλµ(w,a,b,c,d)

because, whenb = c, that formula may be true, but the previous ones are always
false. However, we claim that:

∀x1∃x2∃b∃c Q(x1,x2,b,c)∧∀d∃a∃wQλµ(w,a,b,c,d)

is equivalent to

∀x1∀d∀d′∃x2∃b∃c Q(x1,x2,b,c)∧∃a∃wQλµ(w,a,b,c,d)∧∃a′∃wQλµ(w,a′,b,c,d′)

which is an input forΠ2-SAT NC(A). It remains for us to prove this equivalence.
(forwards.) This direction is trivial. For each givenx1 in both formulae: any

b,c,x2 that witness the first formula will also witness the second .
(backwards.) For each givenx1 in both formulae: ifd 6= d′, it follows that any

true valuation of the second formula hasb 6= c. This ensures that, if the second
formula is true, that the first formula will also be, witnessed by someb 6= c.

77

Theorem 48. Π2-SAT NC(A) is tractable if RA is horn, dual horn, bijunctive, or
affine, and isΠP

2 -complete otherwise.

Proof. We knowΠ2-SAT C has the proposed dichotomy. Trivially, the tractability
of Π2-SATC(A) implies the tractability ofΠ2-SAT NC(A). Furthermore, we have
proved, forRA outside the listed classes, thatΠ2-SAT C(A) polynomially reduces
to thePspace-completeΠ2-SATNC(A). The result follows.

Corollary. For i > 2, Πi-SAT NC and Σi-SAT NC exhibit the same dichotomy as
Π2-SAT NC andQSAT NC.

Proof. Let j > 1. Our manipulation of the innermost universal quantifiers in the
pertinentΠ3 or Π4 formulae, such that we build equivalent ones inΠ2, will clearly
also work onΠ2 j+1 or Π2 j+2 (resp. Σ2 j+1 or Σ2 j) formulae to obtain equivalent
ones inΠ2 j (resp. Σ2 j−1). Consequently, our proof is equally valid for these
problems.

Remark.We are left with the class of problemsΣ2-SAT NC. As noted before, these
are inNP, and they exhibit the same dichotomy as SAT NC.

Remark.A similar proof to this dichotomy theorem appears in [27]. The result is
also inferred in [18].

Some recent work has been undertaken in alternation-bounded QCSP, by
Chen [12]. He studies certain templates for which the complexity of the prob-
lem collapses to co-NP-completeness for all levels of the polynomial hierarchy
above or equal toΠ2.

78

Chapter 7

Quantified Constraints on Graphs

7.1 Introduction

Theuniform constraint satisfaction problem, as used in Artificial Intelligence, is
usually defined as follows (seee.g.[32]).

• Input: a finite set of variablesA, a finite domain of valuesT, and a set of
constraints{C(S1), . . . ,C(Sc)} where eachSi is anai-tuple of (not neces-
sarily distinct) variables fromA and eachC(Si) is anai-ary relation over
T.

• Question: is there an assignment to the variables over the domain that mu-
tually satisfies all of the constraints?

It is clear thatT, together with the relationsS1, . . . ,Sc, is a first-order structureT
(over some signatureσ of the form〈Sa1

1 , . . . ,Sac
c 〉). It is also clear that the question

we are posing of this structure concerns the existence of a simultaneous solution
to a conjunction of atomic relational constraints. Therefore, we will prefer to use
the following formulation of the uniform CSP (seee.g.[5]).

• Input: a structureT and a sentenceϕ = ∃x Q(x), whereQ is a conjunction
of positive atoms.

• Question: doesT |= ϕ?

In this thesis we will be concerned only with thenon-uniformvariant of CSP,
which is a family of problems parameterised by the templateT. Thus, for each
templateT, CSP(T) is the decision problem with:

• Input: a sentenceϕ = ∃x Q(x), whereQ is a conjunction of positive atoms.

• Question: doesT |= ϕ?

79

Note that the well-knownNP-complete problems 3-SAT (satisfiability of a for-
mula in conjunctive normal form with exactly three literalsper clause) and 3-COL

(graph 3-colourability) correspond to constraint satisfaction problems. The prob-
lem 3-QSAT is a popular generalisation of 3-SAT to quantified formulae, which
is Pspace-complete. In this context, it makes sense to generalise constraint satis-
faction problems toquantified constraint satisfaction problems.

Definition ([5]). Thenon-uniform quantified constraint satisfaction problemwith
templateT, denoted by QCSP(T), is the decision problem with:

• Input: a sentenceψ of the form

∀x1∃x2∀x3∃x4 . . .∀x2n+1∃x2n+2Q(x1,x2, . . . ,x2n+2)

(for somen≥ 1), whereQ is a conjunction of positive atoms.

• Question: doesT |= ψ?

3-QSAT is easily recast as a QCSP, but we will be more interested in a variant
problem. LetB3

NAE be the boolean structure with a single ternary not-all-equal
relation

NAE3 = {(0,0,1),(0,1,0),(1,0,0),(1,1,0),(1,0,1),(0,1,1)}

The problem QCSP(B3
NAE) is known to bePspace-complete [38].

Much effort has gone into identifying theT for which CSP(T) is tractable
(e.g. [32, 34]) andNP-complete (e.g.[33]) . It has been conjectured in [19] that
CSP(T) is always either tractable, orNP-complete. (Indeed, it has even been
conjectured in [8] where this separation lies.) However, the grand classification
into dichotomy remains incomplete. Some partial results are known: many years
ago Schaefer proved the dichotomy forT ranging over boolean domains [38].
That was recently extended to domains of size 3, through methods of universal
algebra, by Bulatov in [7]. Of greater interest to us is the dichotomy theorem for
undirected, antireflexive graphs of Hell and Nešetřil. They prove in [25] that an
undirected templateT gives rise to a CSP(T) that is tractable, ifT is bipartite,
and a CSP(T) that isNP-complete otherwise. This dichotomy extends trivially
to all undirected graphs, since templates with self-loops will give rise to a trivial
CSP. Bang-Jenson, Hell and MacGillavray prove a similar dichotomy theorem
for tournament templates in [4]. Specifically, they prove that CSP(T) is tractable,
if T is a tournament with at most one (directed) cycle, and that CSP(T) is NP-
complete, ifT is any other tournament. Both of these graph dichotomy results are
proved by non-constructive means.

Following on from Schaefer’s work [38], Dalmau [15] and Creignou et al.
[14] eventually proved a dichotomy (tractable orPspace-complete) for QCSP on

80

boolean domains. A trichotomy (tractable,NP-complete orPspace-complete) has
been proved for QCSP on templates where all graphs of permutations appear as
relations [5]. A significant body of tractability results has been established for
QCSP, largely along the same lines as for CSP, in [5, 11]. However, so far, no
overarching polychotomy for QCSP has been conjectured.

It is well known from work by Chandra and Merlin [9], on the problem of
Conjunctive Query Containmentfrom database theory, that (existential positive)
conjunctive queries are directly related to the existence of homomorphism be-
tween structures. Defining constraint satisfaction problems in terms of structure
homomorphism became popular after the seminal paper by Feder and Vardi [19].
Thenon-uniform homomorphism problemwith templateT, denoted HOM(T), is
the decision problem with:

• Input: a structureA.

• Question: doesA h
T ?

If K3 is the 3-clique, then it is clear that HOM(K3) is the problem of graph 3-
colourability.

We define thecanonical queryϕA associated withA to be the existential quan-
tification of the conjunction of the facts ofA. For example,K3 has the canonical
query

ϕK3 := ∃x∃y∃z E(x,y)∧E(y,x)∧E(y,z)∧E(z,y)∧E(z,x)∧E(x,z).

HOM(T) and CSP(T) are essentially two views of the same problem. Specifically,
they are equivalent under the bijective (up to structural isomorphism and labelling
of variables) reductionr(A) = ϕA, i.e.A ∈ HOM(T) iff ϕA ∈ CSP(T).

In this chapter, we introduce a new problem ALT-HOM(T), which is to QCSP(T)
what HOM(T) is to CSP(T). It is defined in terms ofalternating-homomorphism
from a partitioned structure to a non-partitioned template. We also give a charac-
terisation of this problem through the existence of winningstrategies in a certain
game. Such a method has been used independently by Chen (e.g.in [11, 10, 12]).

7.2 Preliminaries

7.2.1 Structures and Logic.

We consider only finite, non-empty structures. LetA andT be such structures
overσ. We denote the universe, or domain, ofA by |A|, and the cardinality of|A|
by ||A||. For each relationRi of σ, with arity ai , RA

i ⊆ |A|ai is the interpretation
of Ri overA. When it does not lead to confusion we may be sloppy in identifying

81

Ri andRA
i . A structureA is connectedif, and only if, it isnot the disjoint union of

some structuresA′ andA′′. An isolated elementof a structureA is one that does
not appear in any tuple of any relation ofA.

A homomorphism fromA to T is a functionh : |A| → |T| such that, for all
relationsRi of σ, with arity ai , and for all (x1, . . . ,xai) ∈ |A|ai , we have that
RA

i (x1, . . . ,xai) implies RT
i (h(x1), . . . ,h(xai)). If there exists a homomorphism

from A to T, then we writeA h
T. If we have bothA h

T andT
h

A then
we describeA andT as homomorphically equivalent.

A quantifier-free first-order formulaQ is positive conjunctiveif it is a conjunc-
tion of positive atoms,i.e. of the form,

Q(x) = Ri1(x1)∧Ri2(x2)∧ . . .∧Rin(xn),

where, for every 1≤ j ≤ n, Ri j is a relational symbol fromσ, andxj is a tuple of
variables of suitable length (i.e., of the same length as the arity ofRi j). Note that
a variable may occur more than once in a given tuple.

7.2.2 Alternating-homomorphism problems.

For n ∈ N, let κn = {U1,E2,U3,E4, . . . ,U2n+1,E2n+2} be a set of unary symbols
that do not occur inσ. Define ann-partitioned structureP overσ to be a finite
structure over the signatureσ∪κn, such that the interpretation of the symbols from
κn is a partition of the structure:i.e.,

• |P| =
Sn

i=0(|U2i+1| ∪ |E2i+2|); and,

• for any 0≤ i < j ≤ n, the setsU2i+1, E2i+2, U2 j+1 andE2 j+2 are pairwise
disjoint.

We writeSP to denote theσ-structure underlyingP. We writeP�Ui (respectively,
P�Ei) to denote the substructure ofSP induced byUi (respectively,Ei). When this
does not cause confusion, we writeUi (respectively,Ei) for the sake of brevity.

We say there is analternating-homomorphismfrom then-partitioned structure

P overσ to the (non-partitioned)σ-structureT, and we writeP alt
T if, and only

if,

• for all functions fU1 : U1 → |T|,

• there exists a functionfE2 : E2 → |T|, such that,

...

• for all functions fU2n+1 : U2n+1 → |T|,

82

• there exists a functionfE2n+2 : E2n+2 → |T|, such that,

• fU1 ∪ fE2 ∪ . . . fU2n+1 ∪ fE2n+2 is a homomorphism fromSP to T.

A partitioned structureis one that isn-partitioned, for somen.

Definition (Alternating-homomorphism problem). Thenon-uniform alternating-
homomorphism problemwith templateT, denoted by ALT-HOM(T), is the deci-
sion problem with:

• Input: a partitioned structureP.

• Question: doesP alt
T?

Examples.Consider the graphG with vertices{a,b,c,d} and edge set
{(a,b),(b,a),(c,d),(d,c)}. We define three partitioned structures which haveG

as their underlying graph:

• P1 such thatU1 = {a},E2 = {b},U3 = {c},E4 = {d}.

• P2 such thatU1 = {a},E2 = {b},U1 = {c},E2 = {d}.

• P3 such thatU1 = {a},E8 = {b},U1 = {c},E10 = {d}.

These partitioned structures are depicted in Figure 7.1.

The above partitioned structures are equivalent in the sense that, for any struc-
tureT, if for any one of them there exists an alternating-homomorphism toT, then
there exists also an alternating-homomorphism toT from the others. This leads
us to define the followingrewrite scheme to transform ann-partitioned structure
P to arewrite-reducedpartitioned structure, denotedP.

1. If all relations ofSP are empty,i.e. all elements ofSP are isolated, then
setP to be the singleton with|SP| = {0}, all relations ofSP empty, and
E2 = {0}. Otherwise:

2. Remove all isolated elements ofP.

3. SupposeP is the disjoint union ofm connected substructuresP1, . . . ,Pm.
For each 1≤ l ≤ m, constructPl from Pl thus:

(a) while there is a minimali ≤ n such thatU2i+1 is empty, move every
element ofE2 j+2 into E2 j , for all i ≤ j ≤ n and every element ofU2 j+3

intoU2 j+1, for all i ≤ j ≤ n−1.

83

s
s
s
s

E4

U3

E2

U1

P1

d

c

b

a

s s
s s

E2

U1

P2

b

a

d

c s s
s

sE10

E8

U1

P3

a

b

c

d

Figure 7.1: Three Partitioned Graphs.

(b) while there is a minimali ≤ n such thatE2i is empty, move every
element ofE2 j+2 into E2 j , for all i ≤ j ≤ n and every element ofU2 j+1

intoU2 j−1, for all i ≤ j ≤ n.

4. SetP to beP1] . . .]Pm.

5. Remove as many empty partitions as possible, so obtainingann′-partitioned
structure (for somen′ ≤ n).

The rewrite scheme is deterministic, up to the order in whichthe connected sub-
structures are considered, and soP is well-defined. We say that two partitioned
structuresP andP′ arerewrite-equivalentif P = P

′
. In figure 7.1, the structures

P1, P2, andP3 are all rewrite equivalent, andP2 is rewrite-reduced. Note that,
for anyP, we can compute its rewrite-reducedP in polynomial time.

Two partitioned structuresP andP′ are said to beproblem-equivalentif, for
all templatesT, we haveP ∈ ALT-HOM(T) iff P′ ∈ ALT-HOM(T).

Proposition 49. Let P and P′ be two partitioned structures. IfP and P′ are
rewrite-equivalent then they are problem-equivalent.

Proof. It is easy to see that the rewrite rules preserve the existence of alternating-
homomorphism.

84

Note the converse does not hold as the following example shows.

Example.Consider the 1-partitioned digraphs:

• P4: with domain{x,y,z}, edge set{(x,y),(z,y)}, and partitionsU1 = {x},
E2 = {y,z}.

• P5: with domain{x,y}, edge set{(x,y)}, and partitionsU1 = {x}, E2 =
{y}.

Whilst they are not rewrite equivalent, they are problem equivalent. P4 is equiv-
alent to the sentence∀x∃y∃zE(x,y)∧E(y,z) andP5 is equivalent to the sentence
∀x∃yE(x,y). Both sentences have the same class of finite models.

We note, for anyP and its rewrite-reducedP, that their underlying structures
SP andSP differ by possibly only some isolated elements.SP andSP are homo-

morphically equivalent, and, for all templatesT, SP
h

T iff SP
h

T.

7.2.3 QCSP versus ALT -HOM .

In this section, we show that QCSP and ALT-HOM are essentially the same prob-
lem.

Theorem 50. LetT be a finiteσ-structure. The problemsQCSP(T) and
ALT-HOM(T) are equivalent under logspace reduction.

Proof. We will modify the bijective reductionr(A) = ϕA, mapping a structure to
its canonical query, that proved the equivalence of HOM and CSP in the intro-
duction to this chapter. Fromr we build the functions from partitioned structures
to prenex quantified formulae whose quantifier-free part is positive conjunctive.
Given a partitioned structureP, consider the canonical queryϕSP

of its underly-
ing structureSP. Given this existential queryϕSP

, we produce the queryϕP by
replacing all instances of∃x, for variablesx that correspond to elements ofP in a
universal partition, by∀x. The maps(P) = ϕP is bijective (up to isomorphism of
the rewrite-reducedP and labelling of variables) and, along with its inverse, may
be computed in logarithmic space. It follows directly from the definitions thats
ands−1 are reductions between QCSP(T) and ALT-HOM(T).

Just as we refer to the canonical query of a non-partitioned structure, so we
will refer to the canonical query of a partitioned structureas being the sentence it
reduces to, as in the previous theorem.

Example.Let T be any graph. The partitioned structure and sentence of Figure 7.2
give rise to equivalent instances of, respectively, ALT-HOM(T) and QCSP(T),
that reduce to one another in logarithmic space. The sentence is the canonical
query of the partitioned structure, as just defined.

85

s
s sE2

U1

∀x∃y∃z E(x,y)∧E(y,x)∧E(y,z)∧E(z,y)∧E(z,x)∧E(x,z)

Figure 7.2: Canonical sentence of a Partitioned Structure.

7.2.4 Alternating-homomorphisms as winning strategies.

We give a game characterisation of QCSP. The game we are aboutto define
corresponds exactly to a standard model-checking game, also known as a Hintikka
game [20]. We define this game in order to use the game parlancein subsequent
proofs.

Definition (Game for QCSP). Let P be ann-partitioned structure andT a (non-
partitioned) template. The(P,T)-gamegoes as follows. Opponent plays on the
universal partitions and Proponent plays on the existential partitions. They play
alternate partitions, in ascending order, until all the partitions have been played.
For 0≤ i ≤ n:

• Opponent(U -move): for every element in partitionU2i+1, Opponent chooses
an element inT, that is, Opponent gives a functionopp2i+1 : U2i+1 → |T|.

• Proponent(E-move): for every element in partitionE2i+2, Proponent chooses
an element inT, that is, Proponent gives a functionpro2i+2 : E2i+2 → |T|.

If, at any stage of the game, the function defined by the union of the moves of
both players,opp1∪ pro2∪opp3∪ . . ., is not a partial homomorphism fromSP

to T, then Opponent wins. Otherwise this finite game will finish with some ho-
momorphism fromSP to T having been constructed, and Proponent wins. It is
Proponent’s aim to construct such a homomorphism, and it is Opponent’s aim to
stop her. (In deference to the conventions of Ehrenfeucht-Fraisse games, Propo-
nent is considered female, and Opponent male.) Note that, ifat some point the

86

partial function defined by the play can not be extended to a homomorphism no
matter how either side plays, then Opponent must necessarily win the game.

A strategy specifies how Opponent or Proponent are to play, given what has
been played before:

• (Proponent) A strategy for partitionE2i+2 in the(P,T)-game is a function
σE2i+2 : E2i+2×Πλ<i(E2λ+2×T)× (U2λ+1×T) → T.

• A strategyσ for Proponent in the(P,T)-game is the union of her strategies
for all the existential partitions, viz

S

λ≤n σE2λ+2
.

• (Opponent) A strategy for partitionU2i+1 in the (P,T)-game is a function
τU2i+1 : U2i+1×Πλ<i(E2λ ×T)× (U2λ+1×T) → T.

• A strategyτ for Opponent in the(P,T)-game is the union of his strategies
for all the universal partitions, viz

S

λ≤n τU2λ+1.

A winning strategyfor Proponent is a strategyσ that beats all Opponent strategies
τ.

Theorem 51. LetP be a partitioned structure, andϕP the corresponding canon-
ical query. The following are equivalent.

(i) P
alt

T.

(ii) Proponent has a winning strategy in the(P,T)-game.

(iii) T |= ϕP.

Proof. The equivalence of(i) and(iii) follows from Theorem 50. It is well known
that Proponent has a winning strategy in theFO-model-checking game on(ϕP,T)
if, and only if, T |= ϕP [20]. The game we define is the model-checking game
restricted to sentences in prenex form whose quantifier-free part is positive con-
junctive. The equivalence of(ii) and(iii) follows.

7.2.5 Graphs

A digraph is a structure over the signature containing a single binary relationE.
An undirected graph is one whose edge relation is symmetric.

Definitions.
(Cliques.) Letn≥ 1. Let Kn be the(antireflexive) n-clique, that is the graph

with vertices{0,1, . . . ,n−1} such thatall distinctvertices are adjacent. LetK
re f
n

87

be thereflexive n-clique, that is the graph with vertices{0,1, . . . ,n−1} such that
all vertices are adjacent (wheni = j, we call the corresponding edge aself-loop).

(Paths.) LetPn be the undirected antireflexiven-path,i.e. with vertices
{0,1, . . . ,n−1} such thatE(i, j) iff j = i +1 or j = i−1. It follows that the 1-path
P1 is K1 and the 2-pathP2 is K2.

(Cycles.) LetDCn be the directed antireflexiven-cycle, i.e. with vertices
{0,1, . . . ,n− 1} such thatE(i, j) iff j = i + 1 modn. Let Cn be the undirected
antireflexiven-cycle, i.e. the symmetric closure ofDCn. It follows thatC3 is the
3-cliqueK3.

It is proved in [5] that, forn≥ 3, QCSP(Kn) is Pspace-complete. It follows
immediately that ALT-HOM(Kn) is alsoPspace-complete, forn≥ 3.

An induced sub-digraphG′ ⊆ G is a retract of G iff there is a homomorphism
h : G → G s.t. G′ is the image ofh. A graphG′ is a core if it contains no proper
retracts. For an arbitrary digraphG, we define acore ofG to be any minimal (w.r.t.
size) retract that is itself a core. It is well-documented (e.g.[26]) that the core of
a digraph is unique, up to isomorphism.

A bipartite graph is an undirected graph that is 2-colourable. A graph is bipar-
tite iff it has eitherK1 orK2 as its core. Note that bipartite graphs are antireflexive.

7.3 Basic graph results

Most of these results are given for digraphs; we will specifically consider undi-
rected graphs in the next section. When we discuss edgesbetweenverticesx and
y, these may be oriented either way, or not at all (double edges).

7.3.1 Restricting partitions

We define restrictions on the input partitioned structure which will ultimately lead
to tractability.

Definitions (restricting partitions). Let P be a partitioned digraph. We say that
P is in Σ1-form (respectively,Π2-form), if the only non-empty partition isE2

(respectively, if the only non-empty partitions are among{U1,E2}). If P is in
in Π2-form and there is at most one vertex inU1, then we say thatP is in Π2-
fan form. If, moreover, the vertexx ∈ U1 exists, and is adjacent to some vertex
y ∈ E2, then we say thatP is in strict Π2-fan form. Finally, we say thatP is in
Π2-multifan form, if P is the finite disjoint union of structures inΠ2-fan form.

Note that, ifP is in Σ1-form, thenP is a fortiori in Π2-fan form. AnyP in
Π2-fan form, but not in strictΠ2-fan form, has a rewrite-reducedP in Σ1-form.

88

s
s s s ss s s s sE2

U1

Figure 7.3: A Partitioned Graph in strictΠ2-fan form.

Proposition 52(Π2-multifan form). LetT be a digraph. The restriction of
ALT-HOM(T) to inputs inΠ2-multifan form isNP-complete, wheneverHOM(T)
is NP-complete.

Proof. Let P be the disjoint union ofP1, . . . ,Pm all in Π2-fan form. Note that
P ∈ ALT-HOM(T) iff Pi ∈ ALT-HOM(T), for 1≤ i ≤ m.

(Membership ofNP) For each 1≤ i ≤ m, if Pi is not in strictΠ2-fan form,
then it is equivalent toPi in Σ1-form, and we may simply guess a homomorphism
and verify in polynomial time. IfPi is in strictΠ2-fan form, we test all possible
maps for the single element inU1, guessing the rest of the homomorphism and
verifying in polynomial time.

(NP-hardness) IfP is in Σ1-form, thenP ∈ ALT-HOM(T) if, and only if,
SP ∈ HOM(T). Hence, ALT-HOM(T) is NP-hard provided that HOM(T) is NP-
complete.

We will find, for a wide range of templatesT, that every input which is not
in Π2-multifan form can be discarded. This will be because inputsP not in Π2-
multifan form are either easily seen to be no-instances of ALT-HOM(T), or to be
equivalent to the rewrite-reducedP which is in Π2-multifan form. Further, we
will find that we can split up inputsP in Π2-multifan form into their constituent
Π2-fan components (as in the previous proof). Thus, structures in Π2-fan form
are central to our discourse. Such a structure appears in Figure 7.3.

Remark.The ‘converse’ of Theorem 52, that the restriction of ALT-HOM(T) to
Π2-multifan form beingNP-complete implies HOM(T) is NP-complete, does not
in general hold. For example, takeT to be (the disjoint union)K3]K

re f
1 . The

self-loopK
re f
1 makes HOM(K3]K

re f
1) trivial (every instance is a yes-instance).

However:

Proposition53. The restriction ofALT-HOM(K3]K
re f
1) to Π2-multifan form is

NP-complete.

89

Proof. Membership ofNP follows as in the first part of the proof to the previous
proposition. For completeness, we give a reduction from theNP-complete 3-
colourability problem HOM(K3).

Let G be an input for the problem HOM(K3). Let G1, . . . ,Gm be the connected
components ofG and letx1, . . . ,xm be some sequence of vertices in these respec-
tive components.

We construct an input for ALT-HOM(K3]K
re f
1) thus:

• For each componentGi , construct a partitioned graphPi (in Π2-fan form)
whose underlying graph has vertices|Gi |] {yi} (whereyi is a new vertex)
and edge setEGi]{(xi,yi),(yi,xi)}, and whose partitions areU1 := {yi} and
E2 := |Gi |.

• SetP to be the disjoint unionP1∪ . . .∪Pm.

Clearly P is in Π2-multifan form: we claim thatG ∈ HOM(K3) if, and only if,
P ∈ ALT-HOM(K3]K

re f
1).

(forwards.) SupposeG∈ HOM(K3). For each of the connected componentsGi

there must be a homomorphismhi toK3. It suffices to show that there is a winning
strategy for Proponent for each of the games(Pi ,K3]K

re f
1). If Opponent plays

yi to the self-loop ofKre f
1 , then Proponent may play the remainder ofPi to the

same self-loop to win. If Opponent playsyi to one of the vertices of the triangle
K3, then Proponent playsxi to an adjacent vertex on the triangle, and may play
the remainder ofPi according to [a cyclic permutation of] the homomorphismhi

to win.
(backwards.) SupposeP ∈ ALT-HOM(K3]K

re f
1): which implies that for

eachPi there is a winning strategy for Proponent in the game on(Pi ,K3]K
re f
1).

It suffices to show that this must imply the existence of a homomorphism from
eachGi to K3. This is immediate, for suppose Opponent plays theyi to some
vertex in the triangleK3, then the remainder ofPi must be played to the trian-
gle, sincePi is connected, and so the winning strategy provides the necessary
homomorphism.

7.3.2 Basic results.

Proposition 54(reflexive clique). If T is a reflexive clique, thenALT-HOM(T) is
trivial. Specifically:P ∈ ALT-HOM(T), for everyP.

Proof. If T is a reflexive clique, then for anyP, all functions fromSP to T will
be homomorphisms.

Definition (e.g.[6]). A dominatingvertexz in a digraphT is one s.t. for allw∈ |T|,
bothET(w,z) andET(z,w) hold. (It follows that(z,z) ∈ ET .)

90

q q

E4

U3

E2

U1

Case(ii)

q
q

E4

U3

E2

U1 qf

E4

U3

E2

U1 q q

E4

U3

E2

U1

Case(iii)

q
q

E4

U3

E2

U1

Figure 7.4: Types of forbidden edges in the last two cases of Proposition 55.

Proposition 55 (dominating vertex). Let T be a digraph in which there exists a
dominating vertex z. ThenALT-HOM(T) may be decided in logarithmic space.

Proof. We consider three cases.
(i) If T is a reflexive clique, then ALT-HOM(T) is trivial (Proposition 54).
(ii) T is not a reflexive clique, but is reflexive. In this caseP ∈ ALT-HOM(T)

iff P has no edges between distinct verticesx ∈ Ui andy ∈ U j (for any i, j, see
Figure 7.4). This property can clearly be checked in logarithmic space; we prove
its correctness. Leta andb be distinct vertices ofT s.t.¬ET(a,b).

(⇒) By contraposition: ifP has an edge between distinct verticesx ∈ Ui and
y ∈ U j , then Opponent may playx on a andy on b to win, provingP /∈
ALT-HOM(T).

(⇐) If P has no edge between verticesx∈ Ui andy∈ U j , then Proponent may
follow the strategy of playing all existential vertices to the dominating ver-
texz. This will overcome all Opponent strategies.

(iii) T is not a reflexive clique, and is not reflexive. In this caseP∈ALT-HOM(T)
iff P has no edges between (not necessarily distinct) verticesx ∈ Ui andy ∈ U j

(for any i, j, see Figure 7.4). The proof proceeds as in part(ii), with all instances
of the word ‘distinct’ dropped.

Lemma 56 (not a reflexive clique). Let T be a digraph that is not a reflexive
clique, and letP be a partitioned digraph. If there is an edge inT between distinct
vertices x∈Ui and y∈U j (for any i, j) thenP is a no-instance ofALT-HOM(T).

Proof. By assumption, there are verticesa andb in T that are not adjacent (a may
be equal tob). Opponent playsa for x andb for y and wins.

91

Lemma 57(antireflexivity). LetT be an antireflexive digraph. If there is an edge
in P between nodes x∈ Ei and y∈ U j (for i < j) then P is a no-instance of
ALT-HOM(T). If there is an edge inP between (not necessarily distinct) nodes
x∈Ui and y∈U j (for any i, j) thenP is a no-instance ofALT-HOM(T).

Proof. In the first case, Proponent has chosen some vertexs in T for x. Opponent
also choosess for y and wins. Similarly, in the second case, Opponent chooses
the same vertexs for bothx andy.

Lemma 58(isolated vertex). LetT be a digraph with an isolated vertex s, and let
P be a partitioned digraph. If there is an edge inP between x∈ Ui and y∈ E j

(for any i, j), or between x∈ Ui and y∈ U j (any i, j), thenP is a no-instance of
ALT-HOM(T).

Proof. We prove the first case; the second may be done similarly. Regardless of
what is played before, when Opponent playsx on s, there is no way that partial
function can extend to homomorphism, regardless of where Proponent will map,
or has mapped,y.

Proposition 59 (isolated vertex). If T is antireflexive and has an isolated vertex,
thenALT-HOM(T) andHOM(T) are logspace equivalent.

Proof. The reduction of HOM(T) to ALT-HOM(T) is trivial.
We reduce ALT-HOM(T) to HOM(T) as follows. LetN be a fixed no-instance

of HOM(T) (say,T augmented with one vertex adjacent to every vertex ofT). If P

has an edge as in the previous lemma then we know that it is a no-instance and we
reduceP to N. If P has no such edge then every element in a universal partition
is isolated. Thus, Opponent’s moves have no bearing on Proponent’s moves, and
we may disregard every element occurring in a universal partition. Indeed, the
rewritten-reduced graphP will be in Σ1-form. We reduceP to its underlying
graphSP.

It is important thatT be antireflexive, to guarantee the existence of anN in the
previous proof. The following proposition is a cousin of theprevious.

Proposition 60. If T has an isolated vertex, thenALT-HOM(T) andHOM(T) are
equivalent under logspace Turing reductions.

Proof. Again, the reduction from HOM(T) to ALT-HOM(T) is trivial.
We give the reduction ALT-HOM(T) to HOM(T). If P has an edge as in the

previous lemma then we reject the input. IfP has no such edge then we reduce it
to the underlying graphSP.

Example.The problem ALT-HOM(K3]K1) is NP-complete. It is equivalent to
HOM(K3), which in turn is the well-knownNP-complete problem 3-COL.

92

7.3.3 Non-connected templates.

Lemma 61(forbidden paths and non-connected templates). LetT be a non- con-
nected graph. If there is a path inP between any x∈ Ei and y∈ U j (for i < j),
thenP is a no-instance ofALT-HOM(T). If there is a path inP between any
x∈Ui and y∈U j (for any i, j), thenP is a no-instance ofALT-HOM(T).

Proof. We prove the first case; the second may be done similarly. Wherever Pro-
ponent playsx, Opponent need only playy in another connected component to
win.

Lemma 62 (forbidden paths yieldΠ2-multifan form). If there is no path in a
partitioned digraphP between any x∈ Ei and y∈U j (for i < j), or between any
x∈Ui and y∈U j (for any i, j), then the rewrite-reducedP will be in Π2-multifan
form.

Proof. ConsiderP with all isolated vertices removed, and split into disjointcon-
nected components. It suffices to prove that each of these is in Π2-fan form.

For any such componentP′, let 0< i ≤ n be the largest integer such thatU2i+1

is non-empty. It follows that there is anx∈U2i+1, and that all other elements of
P′ are in existential partitions of index at least 2i +2, for otherwise there would
be a path that violates our assumptions. The rewrite rules may be applied to move
x toU1 and all other vertices in the component toE2. The result follows.

Note that we can determine in polynomial time whether or not adigraphT has
any of the paths of the previous lemma.

Lemma 63 (non-connected). Let T be a digraph that is not connected, then
ALT-HOM(T) is in NP.

Proof. Let P be a partitioned input digraph. If there are any of the paths in P

as in Lemma 61 then we may reject the instance. Otherwise, it follows from the
previous lemma that the rewrite-reducedP is in Π2-multifan form, and we can
use the algorithm of Theorem 52.

Proposition 64 (non-connected). Let T be a digraph that is not connected. If
HOM(T) is NP-complete thenALT-HOM(T) is NP-complete.

Proof. By Lemma 63, ALT-HOM(T) is in NP. HOM(T) reduces trivially to
ALT-HOM(T), and completeness follows.

Remark.As in the remark after Theorem 52, the ‘converse’ of the previous propo-
sition is not in general true:i.e. there areT such that HOM(T) is tractable but
ALT-HOM(T) is not. For example, whenT = K3]K

re f
1 , ALT-HOM(T) is readily

seen to beNP-complete. (Membership follows from Lemma 63 and completeness
follows from Proposition 53.)

93

7.4 QuantifiedH-colouring

7.4.1 Bipartite templates.

Lemma 65(forbidden paths and bipartite template). Let H be a bipartite graph.
If there is a path inP between any x∈ Ei and y∈U j (for i < j), thenP is a no-
instance ofALT-HOM(H). If there is a path inP between any x∈Ui and y∈U j

(for any i, j), thenP is a no-instance ofALT-HOM(H).

Proof. We prove the first case; the second may be done similarly. Leta be any
vertex inH on which Proponent playsx. If a is an isolated vertex, then Opponent
wins (cf. proof of Lemma 58). Assume thata is not isolated. If the path inP
betweenx andy is of even length, then Opponent playsy onb, whereb is adjacent
to a. A winning strategy for Proponent would imply the existenceof an odd cycle
in H. This contradicts the fact thatH is bipartite, thus it follows that Opponent
wins. If the path inP is of odd length, then Opponent playsy on a and wins by
the same argument.

Lemma 66 (Π2-multifan form and bipartite). Let H be a bipartite graph. IfH
has no isolated vertices then, for anyP in Π2-multifan form, the following are
equivalent:

(i) P
alt

H

(ii) P
alt

K2

(iii) SP
h

K2

Proof. If P is the disjoint union ofP1, . . . ,Pm all in Π2-fan form, recall that
P ∈ ALT-HOM(T) iff Pi ∈ ALT-HOM(T), for 1≤ i ≤ m.

For eachPi in Π2-fan form. WhenPi has no vertex inU1, the result holds
trivially. Otherwise, letx be the unique vertex inU1. Again, if x is isolated then
P can be rewrite-reduced toPi in Σ1-form. So, assume thatPi is in strictΠ2-fan
form, and thatx is adjacent to somey in E2.

• (i) ⇒ (ii): Given a winning strategyσ for Proponent in the(Pi ,H)-game,
we construct a winning strategy for Proponent in the(Pi ,K2)-game. Sup-
pose, w.l.o.g., that Opponent plays thex on the 1 inK2. All remain-
ing moves are Proponent’s. So, Proponent chooses any homomorphism
h : H → K2, and a vertexa in H such thath(a) = 1. She then plays the
rest of the vertices (all inE2) according to the strategyh◦σ (where she as-
sumes Opponent played thex to a in the oracle-game on(Pi ,H)). Sinceh
is a homomorphism, any outcome of the game on(Pi ,H) under strategyσ

94

that is a homomorphism will lead to an outcome of the game on(Pi ,K2)
under strategyh◦σ that is a homomorphism. We know that, under strategy
σ, all outcomes of(Pi ,H) are homomorphisms, so the result follows.

• (ii) ⇒ (i): Given a winning strategyσ for Proponent in the(Pi ,K2)-game,
we construct a winning strategy for Proponent in the(Pi ,H)-game. Sup-
pose Opponent plays thex on a vertexa in H. We know thata is not iso-
lated, and has a distinct neighbourb. Leth′ : K2→H be the homomorphism
{(1,a),(2,b)}. All remaining moves are Proponent’s. Proponent now plays
the rest of the vertices (all inE2) according to the strategyh′ ◦σ (where she
assumes Opponent played thex to 1 in the oracle-game on(Pi ,K2)). The
argument concludes as before.

• (ii)⇔ (iii): Since eachPi is in strictΠ2-fan form, the result follows imme-
diately from the symmetry ofK2.

Theorem 67(bipartite). LetH be a bipartite graph. The problemALT-HOM(H)
is tractable.

Proof. We propose the following algorithm to solve ALT-HOM(H).
The inputP is first scanned to check whether it has any of the forbidden paths

of Lemma 65. If there are any, then the input is rejected.
If there are none of the forbidden paths andH has an isolated vertex, then we

evaluate HOM(H) on inputSP. That this is correct follows from Proposition 59;
that it is tractable follows from Hell and Nešetřil’s dichotomy theorem [25].

Otherwise, if there are none of the forbidden paths andH has no isolated
vertex, then we check whetherSP is 2-colorable, and answer accordingly. This
is clearly polynomial: we prove its correctness. We know that if P has none of
the forbidden paths, then it is rewrite-equivalent to the reducedP in Π2-multifan

form, by Lemma 62. In particular,P alt
H if, and only if,P alt

H. By Lemma 66,

we know thatP alt
H if, and only if,SP

h
K2. Moreover, by definition ofP, SP

is the same asSP up to possibly some isolated vertices. Hence,SP
h K2 if, and

only if, SP
h

K2. It follows thatP alt
H if, and only if,SP

h
K2.

7.4.2 Odd Catherine Wheels

We have already met the problem QCSP(B3
NAE), known to bePspace-complete.

Let Bn
NAE be the boolean structure with singlen-ary not-all-equal relation

NAEn := {0,1}n−{(0n),(1n)}

95

For all n≥ 3, QCSP(Bn
NAE) is Pspace-complete, by a trivial reduction from

QCSP(B3
NAE).

Definition. We consider an undirected graphW to be anodd catherine wheel
(OCW) if it is isomorphic to some graphG constructed as follows. For somek,
take the(2k+1)-cycleC2k+1, together with(2k+1) undirected pathsP0, . . . ,P2k

(each of any finite length, whereK1 is considered the 0-path). ConstructG by
identifying an end of each pathPi with vertexi of C2k+1.

As in that construction, an OCW may be given an ordering over its (2k+1)-
cycle, which we will call alisting. An OCW may have up to 2.(2k+1) distinct
listings, corresponding to orientation of the cycle, together with position of the
zero (first) vertex. We will usually refer to a listing by a corresponding sequence
of paths.

Definition. For an undirected graphG, and a subsetA⊆ |G| define:

• d(x,y) to be the length of the shortest path inG from x to y,

• d(A,y) = min{d(x,y) : x∈ A}, and,

• D({p,q}) = max{d({p,q},y) : y∈ |G|}.

D({p,q}) is minimal such that there is anm′-walk (for somem′ ≤ D({p,q}))
from {p,q} to every vertex ofG. We will only be concerned withD({p,q}) when
p andq are adjacent vertices on the cycle of an OCW.

Definition. For any OCWW, define:

mW = min{D({p,q}) : p,q adjacent on the cycle ofW }

A D-minimal listingP0, . . . ,P2k of W is one in whichD({k,k+1}) = mW.

A D-minimal listing is one in which the maximal distance from the vertices
{k,k+1} is minimised. These middle verticesk andk+1 will eventually play the
role of TRUE and FALSE in a reduction from QCSP(B2k+1

NAE). It is the following
property ofD-minimal listings that is important.

Lemma 68. Given a D-minimal listingP0, . . . ,P2k of an OCW W, i.e. one in
which D({k,k+1}) = mW = m, there exists:

• a t ∈ |W| s.t. there is an m-walk from t to k, but no m-walk from t to k+1,
and

• an s∈ |W| s.t. there is an m-walk from s to k+1, but no m-walk from s to k.

96

s s
s s

ss s

s
s

s s
s s

ss s

s
s0

4 1

3 2
s s

s s
ss s

s
s0

1 4

2 3

Figure 7.5: An OCW and its twoD-minimal listings.

Proof. Let the respective lengths of the pathsPi beλi. It follows that:

m = D({k,k+1})
= max{ λ0+k ,

λ1+[k−1] , λ2k +[k−1] ,
...

...
λk−1 +1 , λk+2 +1 ,
λk , λk+1 }

We consider three cases.
(existsi, 1≤ i ≤ k, s.t.m= λi +[k−1].) Take such a branchi that has a vertex

at maximal distance from{k,k+ 1}. This vertex will be at the end of the path
Pi . Label this vertext, and its neighbour, the penultimate vertex alongPi , s. (If
the pathPi is K1, i.e. there is no path leaving the cycle, then consideri + 1 on
the cycle to be the ‘penultimate’ vertex). It follows that there will be anm-walk
from t to k but not tok+1 (by maximality ofm, together with the fact thatt must
be closer tok thank+ 1). It also follows that there will be anm-walk from s to
k+1 but notk (we can not go the long way round the cycle, and any backstepping
increases the walk by an even amount).

(existsi, k+ 1 ≤ i ≤ 2k, s.t. m= λi +[i − k−1].) This case is symmetric to
the previous.

(previous cases fail, andm= λ0 + k.) This is the case in which the ultimate
vertex ofP0 is theuniquevertex at maximal distancem from {k,k+ 1}. In this
case, we make two claims:

(i) there exists 1≤ i ≤ k s.t. m−1 = λi +[k−1], and

(ii) there existsk+1≤ i ≤ 2k s.t.m−1 = λi +[i −k−1].

For the first claim, if no suchi exists, then we do not have aD-minimal listing,
sinceD({k+ 1,k+ 2}) < D({k,k+ 1}). (If the vertex 0 is always considered
at the top of a drawing ofW, then this represents rotating the wheel one place

97

s s
s s

ss s

s
s

s

s
0

4 1

3 2

W0

s s
s s

ss s

s
s

ss

s
W1

0
4 1

3 2
s s

s s
ss s

s
s

s

s

s
0

4 1

3 2

W1

Figure 7.6: The listing onW0 is D-minimal, but only the rightmost listing ofW1

is D-minimal.

anticlockwise.) The proof of the second claim is symmetric.We may now taket
ands to be the ultimate vertices on some paths that fulfill the the second and first
criteria, respectively. The proof concludes as with the previous cases.

Before we go on, we will need the following.

Lemma 69 (e.g. [25]). For all vertices x of the(2k+1)-cycleC2k+1, there is no
(2k−1)-walk from x to x, but there is a(2k−1)-walk from x to all distinct vertices
y.

Proof. That there is no walk fromx to itself follows by a parity argument, together
with the fact that the walk can not go round the entire cycle. We now construct a
(2k−1) walk from vertex 0 to any vertex 1≤ i ≤ 2k, whereafter we may appeal to
symmetry. Ifi even, then walk backwards (anticlockwise) untili is attained, in an
odd number of moves, and waste the even number of moves remaining walking
betweeni and some neighbour. Ifi odd, then walk forwards (clockwise) untili is
attained, in an odd number of moves, and waste the remaining moves as before.

Pspace-completeness.

Theorem 70. If W is anOCW, thenALT-HOM(W) is Pspace-complete.

Proof. SupposeW has a(2k+1)-cycle, and letmW = m be given. The proof is
by direct reduction from QCSP(B2k+1

NAE). It is based on that given in [5]. Letϕ
be an instance of QCSP(B2k+1

NAE). Without loss of generality, we assume thatϕ
has at least one universal quantifier: if there is none we can introduce a dummy1.
Supposeϕ hasν variables andκ clauses: we will construct a partitioned graphP

such thatϕ ∈ QCSP(B2k+1
NAE) iff P ∈ ALT-HOM(W).

1This restriction is actually unnecessary in the reduction we use, but it saves us considering as
a special case the situation where there are no universally quantified variables.

98

s s s s s s s s

s s s s s s s s

s

s s
s s

s

s s
s s

s

s ss s

w

y1 y2 y3 y4

x1 x2 x3 x4

z1 z2 z3 z4

N(v1,v1,v1,v2,v4) N(v2,v3,v4,v4,v4)

Figure 7.7: Underlying Graph in reduction from QCSP(B2k+1
NAE). The dotted lines

are(2k−1)-paths; the double dotted lines arem-paths.

99

To build the underlying graphSP, we first takeν copies of the(2k+ 1)-gon
C2k+1, one for each variable. Consider each of these(2k+1)-gonsCi

2k+1 to have
identified vertexwi , and labelled twin verticesxi ,yi farthest away inCi

2k+1 from
wi (it is irrelevant which way roundxi andyi are). Attach to eachCi

2k+1 anm-path
from yi , and label the end-vertex on this pathzi. Now identify thewis as a single
vertexw. (A case involving pentagons, withν = 4, is shown in the top half of
Figure 7.7.) We now takeκ further copies ofC2k+1, one for each clause. Each
vertex of each of these(2k+1)-gons represents a variable in the clause. For each
variablevi in such a clause, add a(2k−1)-path from the vertex representingvi

to thexi previously introduced. The case in Figure 7.7 hasκ = 2, with clauses
(v1,v1,v1,v2,v3) and(v2,v3,v4.v4,v4). It remains for us to partition the vertices
of SP. There is nothing in partitionU1, andw is on its own in partitionE2. Now
we read the quantifiers inϕ, from the outside. For each existentially quantified
variablevi , we addzi, its path, and all the rest ofCi

2k+1, to the next strictly higher
existential partition. For each universally quantified variablevi , we add justzi to
the next available universal partition. We then add the restof zi ’s path, and all
the rest ofCi

2k+1, to the next existential partition. When we have gone through all
the quantifiers ofϕ, we add all of the remaining vertices,i.e. those in the clause
(2k+ 1)-gons, and in the paths that reach them, to the next availableexistential
partition.

This construction is clearly polynomial. It remains for us to prove its correct-
ness. Note that Proponent can not successfully play all thexi associated with some
clause(2k+1)-gon to a single vertex ofW (if she plays off the cycle she clearly
loses; if she plays on the cycle she loses by Lemma 69).

(ϕ ∈ QCSP(B2k+1
NAE) → P ∈ ALT-HOM(W)). We give Proponent’s strategy in

the game(P,W). She should playw on some vertex 0 on the(2k+1)-cycle ofW
such that this gives rise to aD-minimal listing ofW. Whenever Opponent plays a
zi in W, there will be anm-walk such thatyi may be played on one of verticesk or
k+1 of the cycle ofW. These vertices represent TRUE and FALSE respectively.
Since, no matter whether the universal variables are true orfalse, there is a val-
uation of the existential variables that gives the clauses anot-all-equal valuation,
Proponent may ensure that not allxi associated with each clause are mapped to
TRUE (respectively, FALSE). She should play this valuation, finally playing each
clause(2k+ 1)-gon and the path to it according to Lemma 69, ensuring homo-
morphism.

(P ∈ ALT-HOM(W) → ϕ ∈ QCSP(B2k+1
NAE)). If w is not played to a vertex 0

in the(2k+1)-cycle ofW such that this gives aD-minimal listing, then Opponent
may play any universalzi (by assumption there is at least one) to some vertex in
W that does not have anm-walk to eitherk or k+1, and Proponent loses. (Such a
vertex exists by minimality ofm.) Thus, in a winning strategy,w must be played

100

to some 0 on the(2k+ 1)-cycle that gives rise to aD-minimal listing. Note that
now Proponent must play each{xi ,yi} to {k,k+ 1}, with which being played to
which specifying truth or falsity of variablevi . Thereafter, for any play ofzi , there
is anm-walk to eitherk or k+1 (TRUE or FALSE respectively), by the definition
of m over aD-minimal listing. For certainz there is anm-walk to k but not to
k+ 1, and vice-versa, as guaranteed by Lemma 68. This ensures that Proponent
must answer to all valuations of the universal variables. Finally, when the clause
(2k+ 1)-gons are reached, if Proponent can extend to homomorphism,then not
all the xis of each clause were played tok (respectivelyk+ 1), and we have a
not-all-equal assignment

Corollary. LetG be a (undirected antireflexive) connected graph that has a unique
cycle, which is of odd length. ThenALT-HOM(G) is Pspace-complete.

Proof. Such a graphG is of form similar to an OCW, but with trees affixed to
the vertices of the odd cycle, instead of paths. The completeness result holds for
such graphs under exactly the same reduction. (The length ofsuch a tree should
be considered the maximal depth from its root on the odd cycle.)

7.4.3 A trichotomy theorem

Theorem 71. The class of antireflexive undirected graphs with at most onecycle
exhibitsALT-HOM-trichotomy. Specifically:

• If H is bipartite, thenALT-HOM(H) is tractable.

• If H has an odd cycle and is not connected, thenALT-HOM(H) is NP-
complete.

• If H has an odd cycle and is connected, thenALT-HOM(H) is Pspace-
complete.

Proof. We have just proved the final part. The first part is proved in Theorem 67.
The second part is a consequence of Proposition 64, and Hell and Nešetřil’s Di-
chotomy Theorem [25].

Remark.The same trichotomy holds on the class of antireflexive undirected graphs
with exactly one cycle. This is because bipartite graphs maycontain even cycles.

7.5 Closure properties

We examine some closure properties on templates that may be used for proving
Pspace-hardness. Later we look at the question of problem equivalence in QCSP.

101

7.5.1 Indicator construction

Hell and Nešetřil defined three graph constructions to prove their dichotomy the-
orem for undirected graphs in [25]. One of them is known as theIndicator con-
struction. An Indicator is a digraphI with two identified verticesi and j.

Definition (Hell and Nešetřil [25]). The indicator constructionT∗ of a digraphT
with respect to Indicator(I, i, j) is the graph with vertex set|T|; and, edge set:

{(a,b) : exists hom.h : I → T s.t.h(i) = a andh(j) = b}.

Remark.In the case of undirected graphs it makes sense to consider only Indi-
cators(I, i, j) that have an automorphism swappingi and j. This ensure thatT∗

remains undirected whenT is undirected. For an example of this construction, see
Figure 7.8.

Lemma 72 (Hell and Nešetřil [25]). Let T be an undirected graph and(I, i, j)
an indicator that has an automorphism swapping i and j. IfHOM(T∗) is NP-
complete thenHOM(T) is NP-complete.

Their result readily extends to digraphs; we extend it to QCSP.

Theorem 73(Indicator Construction). LetG be a digraph and(I, i, j) an indicator.

• If CSP(G∗) is NP-complete thenCSP(G) is NP-complete.

• If QCSP(G∗) is Pspace-complete thenQCSP(G) is Pspace-complete.

Proof. We prove the first claim by reducing CSP(G∗) to CSP(G). The proof
broadly follows that of Hell and Nešetřil. Letm := ||I||. Take the canonical query
θ of I and remove the two existential quantifiers fori and j. It is now of the form:

θ(z,z′) := ∃y1∃y2 . . .∃ym−2Q(z,z′,y1,y2, . . . ,ym−2),

where Q is positive conjunctive. It follows directly from the definitions that
EG∗

(a,b) holds if, and only if,

G |= θ(z/a,z′/b) = ∃y1∃y2 . . .∃ym−2Q(a,b,y1,y2, . . . ,ym−2).

Hence, given an instance of CSP(G∗), we can replace each occurrence ofE(z,z′)
by θ(z,z′), ensuring that variables introduced are new variables. More precisely,
let zk1, . . . ,zk2r be (not necessarily distinct) variables amongz, and letϕ :=
∃z

Vr
i=1E(zk2i−1,zk2i) be an instance of CSP(G∗). We haveG∗ |= ϕ iff G |= ψ,

where

ψ := ∃z
r̂

i=1

(∃yi
1∃yi

2 . . .∃yi
m−2)Q(zk2i−1,zk2i ,y

i
1,y

i
2, . . . ,y

i
m−2).

102

s s
s s

s

C5

s s
s si j

I

s s
s s

s

C∗
5 = K5

Figure 7.8: Example of the indicator construction.

Note thatψ can be built fromϕ in polynomial time (remember that the indicator
is a fixed graph). Both CSP(G) and CSP(G∗) are inNP, so it follows immediately
thatNP-completeness of the latter impliesNP-completeness of the former.

We use the same method to prove the second claim, by reducing QCSP(G∗) to
QCSP(G). We have seen that the edge relation ofG∗ can be defined in existential
positive conjunctive first-order logic onG. Thus, by replacing in the same way
each occurrence ofE(z,z′) by θ(z,z′), where every variable apart fromz andz′ is
a new one, we get a quantified formulaψ. The proof concludes as before, but for
Pspace instead ofNP.

We now have an alternative proof, based on that in [25], of thefollowing.

Corollary. For every undirected cycleC2k+1 (k≥1), the problemALT-HOM(C2k+1)
is Pspace-complete.

Proof. Recall that ALT-HOM(K2k+1) isPspace-complete. ForG :=C2k+1, choose
the indicator(I, i, j) to be the undirected(2k+ 1)-path from the vertexi to the
vertex j. It follows from Lemma 69 thatG∗ = K2k+1. The result follows from
Theorem 73. The casek = 2 is depicted in Figure 7.8.

Remark. In [25], Hell and Nešetřil introduced two other graph constructions.
WhenH is a core, they defined the graphsH∼ [respectively,H∧] with respect
to sub-indicatorJ [respectively, edge-sub-indicatorJ′]. We do not go into the
details of these constructions here. They proved that either of HOM(H∼) or
HOM(H∧) beingNP-complete implies HOM(H) is NP-complete. We note that
this result is unlikely to extend to ALT-HOM (QCSP) in the case of the sub-
indicator construction. That is, ALT-HOM(H∼) beingPspace-complete does not
imply ALT-HOM(H) isPspace-complete, under the assumption thatNP 6= Pspace.
We do not prove this here.

103

7.5.2 Adding a vertex to a core.

Definition. Let H be an antireflexive core (i.e. any core other than the self-loop
K

re f
1). Let H+ beH with a new vertexγ added, adjacent to all vertices ofH, but

not adjacent to itself (so it does not introduce a self-loop). Formally:

• |H+| = |H|]{γ}.

• EH+
= EH ∪{(x,γ),(γ,x) : x∈ H}.

We aim to establish thatH+ is a core.

Lemma 74. Any homomorphism h: H+ → H+ is such that there is an automor-
phism i ofH+ that swapsγ and h(γ).

Proof. We may assumeh(γ) 6= γ. We prove thath(γ) is [forward- and backward-
]adjacent to all vertices ofH+ except itself. If that is the case then the function
that leaves all vertices unchanged, but swapsγ andh(γ), will be an automorphism.

Supposeh(γ) were not adjacent to everything inH+ (except itself), and that
its neighbours constitute the proper subgraphH′ ⊂ H+ −{h(γ)}. Sinceh is a
homomorphism, it follows thath(H) ⊆ H′, so we have:

h(H) ⊂ H+ −{h(γ)}.

Now, γ itself may or may not be in the imageh(H). We consider both cases
separately.

[γ /∈ h(H).] We haveh(H) is a proper subgraph ofH, and we are done since
this contradictsH being a core.

[γ ∈ h(H).] See Figure 7.9. It follows that there is a homomorphism

h′ : H −→ h(H)−{γ}∪{h(γ)},

defined byh′(x) := h(x) except whenh(x) = γ, in which caseh′(x) := h(γ). Whilst
h(H) is not actually a subgraph ofH, h′(H) is, and it is proper since it has the
same cardinality ash(H). This contradictsH being a core, and we are done.

Lemma 75. H+ is a core.

Proof. Suppose there were a homomorphismh from H+ to a proper subgraph
H′ ⊂ H+. Since we know there is an automorphism ofG+ that swapsγ andh(γ),
we may assume w.l.o.g. thath(γ) = γ. But that implies thath mapsH to a proper
subgraph of itself, which contradictsH being a core.

Theorem 76. Let H be a core. ThenALT-HOM(H) is logspace reducible to
ALT-HOM(H+).

104

'

&

$

%

'

&

$

%
'
&

$
%

s s

s

γ h(γ)

γ

h(H)

H+-h(H+)

H

H+ H+h
−→

Figure 7.9: The caseγ ∈ h(H) in Lemma 74. Note thatH+-h(H+) must be
non-empty.

Proof. Given an inputP for ALT-HOM(H), we constructP′ as an input for
ALT-HOM(H+) such thatP ∈ ALT-HOM(H) iff P′ ∈ ALT-HOM(H+). We con-
structP′ from P by introducing a new existential partitionE0 beforeU1 (we may
renumber later). IntoE0 we place a copy ofH+, adding an edge from theγ of that
H+ to all the existential vertices ofP. Our proof rests on the equivalence of the
following:

(i) Proponent has a winning strategy in the game on(P′,H+).

(ii) Proponent has a winning strategy in the game on(P′,H+) where Opponent
is forbidden to playγ 2.

(iii) Proponent has a winning strategy in the game on(P,H).

In the game(P′,H+), Proponent must play the copy ofH+ in E0 to itself in the
template. Thereafter, Proponent may never play thisγ on the template, sinceH+

is a core. The equivalence of(ii) and(iii) follows.
The equivalence of(i) and(ii) follows from the fact thatγ is adjacent to ev-

erything inH+, so Opponent gains no advantage in playing it.

2Note thatγ is not necessarily well-defined inH+ until Proponent plays the copy ofH+ in P′

on to the templateH+.

105

s
s

s

E4

U3

E2

U1

P H

s ss s
s

s
s

s

E4

U3

E2

U1

‘E0’

P′ H+

ss s
s ss

s ss s
s
s

Figure 7.10: An example of the reduction used in Theorem 76, whenH = C5.

106

Corollary. The graphs associated with the(2n+ 1)-gonal pyramids give rise to
Pspace-completeALT-HOM problems.

Proof. The graph associated with the(2n+1)-gonal pyramid isC+
2n+1. The case

of the pentagonal pyramid appears in Figure 7.10.

7.5.3 A sufficient condition for ALT -HOM problem equivalence.

It is well known that, for any digraphG whose core isH, we have HOM(G) =
HOM(H), i.e., for all digraphsD we haveD ∈ HOM(G) iff D ∈ HOM(H). This
result does not extend to ALT-HOM.

Example.Let G beK3]K3, therefore its coreH will be K3. Consider a parti-
tioned graphP whose underlying graph is the directed 3-pathDP3. Placing the
two end-nodes in partitionU1 and the middle node in partitionE2, we will have
P ∈ ALT-HOM(H) whilst P /∈ ALT-HOM(G). This is because, forϕ :=

∀x∀z∃y E(x,y)∧E(y,z),

we haveK3 |= ϕ, butK3]K3 |=/ ϕ.

However, we propose a digraph construction that preserves the alternating-
homomorphism problem.

Definition. Given a digraphG and specified vertexg, we constructG+g by dupli-
catingthe vertexg. Specifically:

• |G+g| = |G| ∪{g′}, and

•

EG+g
= EG ∪{(g′,x) : (g,x) ∈ EG} ∪{(x,g′) : (x,g) ∈ EG}

∪{(g,g′),(g′,g),(g′,g′) : iff (g,g) ∈ EG}.

Theorem 77. For all digraphsG, and any g∈ G, the problemsALT-HOM(G)
and ALT-HOM(G+g) are equal, i.e. for all partitioned digraphsP we haveP ∈
ALT-HOM(G) iff P ∈ ALT-HOM(G+g).

Proof.

• (Forwards) We prove that a winning strategyσ for Proponent in the(P,G)-
game can be translated to a winning strategyσ′ for her in the(P,G+g)-
game.

The strategyσ′ will tell Proponent that, if Opponent ever playsg′ in the
game on(P,G+g), she should behave in the game on(P,G) exactly as if he
had played ong. Sinceg andg′ are adjacent toexactlythe same vertices in
G+g, any play of the(P,G)-game that results in homomorphism must yield
a play of the(P,G+g)-game that results in homomorphism.

107

• (Backwards) We prove that a winning strategyσ for Proponent in the(P,G+g)-
game can be translated to a winning strategyσ′ for her in the(P,G)-game.
Indeed, if we takeσ and substitiute all instances ofg′ for g, then we will
have such a strategy, for the same reason as before.

Definition. For then-clique Kn, defineK−
n to beKn with any single edge re-

moved.

Corollary. For all n ≥ 4, the problemALT-HOM(K−
n) is Pspace-complete.

Proof. Observe thatK−
n = K

+g
n−1, for anyg∈ Kn−1.

Corollary. The graphs associated with the(2n+1)-gonal bipyramids give rise to
Pspace-completeALT-HOM problems.

Proof. The graph associated with the(2n+ 1)-gonal bipyramid is(C+
2n+1)

+γ,
whereγ is the vertex ofC+

2n+1 adjacent to everything but itself.

7.5.4 Why that condition is not necessary: equivalence in frag-
ments of FO.

Definition.

• LetFO\{=} be first-order logicFO deprived of the binary equality relation.

• Let pos-con j-FO be the fragment ofFO involving formulae in prenex form,
whose quantifier-free portion is positive conjunctive.

• Let ∃-pos-con j-FO be the existential fragment ofpos-con j-FO.

Note the trivial containments∃-pos-con j-FO ⊆ pos-con j-FO ⊆ FO\{=} ⊆
FO. These containments are readily seen to be proper; we will return to this later.

∃-pos-con j-FO is closely related to the problems CSP and HOM. Indeed, it
follows from the definition of CSP that, for any two templatesT andT′, CSP(T) =
CSP(T′) iff T andT′ agree on all sentences of∃-pos-con j-FO. Similarly, it fol-
lows from the definition of QCSP that QCSP(T) = QCSP(T′) iff T andT′ agree
on all sentences ofpos-con j-FO. We also have, from the definition of the HOM

problems, that HOM(T) = HOM(T′) iff T is homomorphically equivalent toT′,

i.e. we have bothT h
T′ andT′ h

T. This is equivalent to the condition thatT

andT′ have isomorphic cores. The concept of core gives us a combinatorial char-
acterisation of what it is to be∃-pos-con j-FO-equivalent. Such a characterisation
seems harder for the logicpos-con j-FO: in the world of QCSP and ALT-HOM.

108

However, such a characterisation is at hand with the logicFO\{=}, but first we
must define the pertinent Ehrenfeucht-Fraisse game. Our exposition is based on
that for the standardFO-game given in [31].

Definitions. LetA andB be digraphs. TheFO\{=}m
k -game on a pair(A,α0,B,β0)

is played by two players, Spoiler and Duplicator, withk pairs of pebbles overm
rounds. A position in such a game, ak-configuration, is a pair of partial functions
(α,β), where

• α : {v1, . . . ,vk} → |A|, and

• β : {v1, . . . ,vk} → |B|,

and we further have thatdom(α) = dom(β). The domains ofα and β are the
pebbles that have already been played. From some position(α j ,β j), for the next
move, Spoiler picks some pebblei (where 1≤ i ≤ k) and chooses to play it in
either |A| or |B|. If the former [resp. latter], then he adds the pair(vi ,a) to α j

[resp. (vi ,b) to β j] and Duplicator adds the pair(vi ,b) to β j [resp. (vi ,a) to α j],
so obtaining the new position(α j+1,β j+1). Note thatvi may already have been
in dom(α j) = dom(β j), i.e. the pebblei may already have been played, in which
case some former pairs(vi ,a′) ∈ α j and(vi ,b′) ∈ β j will have been removed. The
initial position of the game is(α0,β0). Spoiler wins if at any point the relation
α−1◦β ⊆ |A|× |B| does not satisfy:

(∗) EA(a,a′) ⇔ EB(b,b′) for all (a,b),(a′,b′) ∈ α−1◦β

If Spoiler does not win, then Duplicator wins.
TheFO\{=}-game on(A,α0,B,β0) is played similarly, but with an unbounded

number of pebble pairs and an unbounded number of moves. Thismeans that
(α0,β0) is anω-configuration with potentially infinite domain: though only if the
initial position were infinite. Since we are concerned with finite digraphs, this will
never happen.

The quantifier-rankqr of a formulaFO\{=}3 is defined inductively thus: if
ϕ is quantifier-free thenqr(ϕ) = 0; if ϕ = ¬ϕ′ thenqr(ϕ) = qr(ϕ′); if ϕ = ϕ′∧ϕ′′

thenqr(ϕ) = max{qr(ϕ′),qr(ϕ′′)}; and if ϕ = ∃vϕ′ thenqr(ϕ) = qr(ϕ′)+1.
Let FO\{=}m

k be that fragment ofFO\{=} whose formulae involve only
the variablesv1, . . . ,vk and whose quantifier-rank is at mostm. For (α,β) a
k-configuration andϕ ∈ FO\{=}m

k a formula whose free variables are among
dom(α) = dom(β) we considerϕ to be true on(A,α) [resp. (B,β)] if ϕ is true
on A [resp. B] under free variable assignmentα [resp. β]. Letting (α,β) be a
k-configuration, we write:

3Quantifier-rank is defined identically inFO.

109

• (A,α)∼=m
k (B,β) iff A andB agree on all formulae ofFO\{=}m

k (whose
free variables are amongdom(α) = dom(β)), and

• (A,α)∼m
k (B,β) iff Duplicator has a winning strategy for theFO\{=}m

k -
game on(A,α,B,β).

Letting (α,β) be anω-configuration, we write:

• (A,α) ∼= (B,β) iff A andB agree on all formulae ofFO\{=} (whose
free variables must be amongdom(α) = dom(β)), and

• (A,α) ∼ (B,β) iff Duplicator has a winning strategy for theFO\{=}-
game on(A,α,B,β).

Lemma 78. There are only finitely many inequivalent formulae ofFO\{=}m
k .

Proof. We prove the result for digraphs: it is easily extended to arbitrary (finite,
relational) signatures. We proceed by induction onm.

(Base Case.) Form= 0, the formulae we can write are boolean combinations
of E(vi ,v j) (for i, j ∈ {1, . . . ,k}). We may consider anyϕ ∈ FO\{=}0

k to be a
propositional formula in thesek2 propositional variables. We may rewrite this in
CNF to obtain a formulaϕ ∈ FO\{=}0

k s.t. for all digraphsG, G |= ϕ ↔ ϕ′. The

number distinct clauses for a formula ofFO\{=}0
k in CNF is bounded by 22k2

, so

it follows that the number of inequivalent formulae in CNF isbounded by 22
2k2

.
The result for base case follows.

(Inductive step.) Assume it is true form. Any formulaϕ ∈ FO\{=}m+1
k is

a boolean combination of formulae of the form∃viϕ′ with ϕ′ ∈ FO\{=}m
k . It

follows from the inductive hypothesis that the number of inequivalent such for-
mulaeϕ is finite, sayc, and that therefore the number of inequivalent formulae in
FO\{=}m+1 is bounded above by 22c

.

Proposition 79 (Methodology). Let A andB be digraphs and let(α0,β0) be an
intial k-configuration. Then the following are equivalent:

(i) (A,α0) ∼
m
k (B,β0)

(ii) (A,α0) ∼=
m
k (B,β0)

Proof. (Based on that forFO in [31].) We proceed by induction onm. For the base
case,m= 0, Duplicator wins the zero-round game on(A,α0,B,β0) iff α−1

0 ◦β0

satisfies(∗) iff (A,α0) and(B,β0) agree on all quantifier-free formulaeϕ (whose
free variables, indeed, only variables, are indom(α0) = dom(β0)).

Inductive step:(i) ⇒ (ii) (by contraposition). Suppose the proposition is true
for m, but that(A,α0) and(B,β0) disagree on some formulaϕ ∈ FO\{=}m+1

k . If

110

ϕ were of the form¬ϕ′ [resp.ϕ′∧ϕ′′] then they would disagree onϕ′ [resp. one of
ϕ′,ϕ′′], so we may assume w.l.o.g. thatϕ = ∃viϕ′ (1≤ i ≤ k) and that(A,α0) |= ϕ
and(B,β0) |= ¬ϕ. In playing theFO\{=}m+1

k -game on(A,α0,B,β0), Spoiler
begins by playing a witness forϕ in A, but, no matter where Duplicator replies,
we will end up with a position(α1,β1) s.t. (A,α1) |= ϕ′ and(B,β1) |=¬ϕ′. Since
the quantifier-rank ofϕ′ is m, it follows from the inductive hypothesis that Spoiler
wins theFO\{=}m

k -game on(A,α1,B,β1), and we are done.
Inductive step:(ii) ⇒ (i). Suppose that(A,α0) ∼=

m
k (B,β0), and let Spoiler

take his first move in theFO\{=}m+1
k -game on(A,α0,B,β0). Let him place a

pebblei on an element ofA, so definingα1. Remembering that there are only
finitely inequivalent formulae ofFO\{=}m

k , let Φ be the conjunction of all of
these formulae that(A,α1) satisfies. We know that(A,α0) |= ∃viΦ: so by as-
sumption(B,β0) |= ∃viΦ. Let Duplicator play her pebblei on a witness for∃viΦ
in B. Thus(A,α1) and(B,β1) both satisfyΦ. SinceΦ is a complete description
of everything satisfied by(A,α1) in FO\{=}m

k , it follows that(A,α1)∼=
m
k (B,β1),

and the result follows from the inductive hypothesis.

Corollary. LetA andB be digraphs and let(α0,β0) be an initialω-configuration.
Then:

• (A,α0) ∼ (B,β0) iff (A,α0) ∼= (B,β0).

• (A,α0) ∼
||A||+||B|| (B,β0) iff (A,α0) ∼ (B,β0).

Proof. The first part follows immediately from the previous proposition and the
definitions. The second part follows from the fact that Duplicator need only find
an answer for the||A||+ ||B|| positions Spoiler can play: thereafter she may copy
previous replies.

We now introduce the converse of the vertex duplication thatwe have already
seen.

Definition. If a digraphA possesses two verticesa,a′ such that{x : E(a,x) ∈
EA} = {x : E(a′,x) ∈ EA} and{x : E(x,a) ∈ EA} = {x : E(x,a′) ∈ EA}, thenA

may befolded to the graphA−x by collapsing the verticesx andx′ to a single
vertexx′ (alternatively, removing vertexv).

A digraph that has no potential folds is said to bestiff. (Similar definitions for
fold, and stiff graph, appear,e.g., in [26].)

Theorem 80. The following are equivalent, for all digraphsA,B:

(i) A andB agree on all sentences ofFO\{=}.

111

(ii) Duplicator wins theFO\{=}-game on(A,B).

(iii) There exists a stiffC such that bothA andB may be put through a sequence
of folds to derive [isomorphic copies of]C.

Proof. We already have the equivalence of(i) and(ii).
((iii)→ (ii).) SupposefA : A→C and fB : B→C are the surjective collapsing

functions for the respective sequences of folds. For theFO\{=}-game on(A,B),
if Spoiler plays in|A| [resp. |B|] then Duplicator should answer with any vertex
b ∈ |B| s.t. fB(b) = fA(a) [resp. any vertexa ∈ |A| s.t. fA(a) = fB(b)] (the
existence of such vertices is guaranteed by surjectivity offA and fB). This is a
winning strategy by the definition of folding and, its inverse, duplication.

((ii)→ (iii).) Suppose Spoiler plays all||A||+ ||B|| distinct vertices. Duplica-
tor must be able to answer. Supposea1, . . . ,a||A|| was answered witha′1, . . . ,a

′
||A||

andb1, . . . ,b||B|| was answered withb′1, . . . ,b
′
||B||. In A repeatedly collapse vertices

ai ,a j to a single vertex iffa′i = a′j . Continuing until there are no more vertices to
collapse, we ultimately build a stiffCA. In B repeatedly collapse verticesbi ,b j to
a single vertex iffb′i = b′j , so obtaining a stiffCB. It follows by transitivity that
Duplicator has a winning strategy in theFO\{=}-game on(CA,CB). Let Spoiler
play all the positions inCA and let Duplicator make her reply. The so obtained
α−1◦β that satisifes(∗) must also satisfy:

injectivity: ∀a,a′ ∈ CA ∀b∈ CB (a,b),(a′,b) ∈ α−1◦β ⇒ a = a′

(for otherwiseAC is not stiff sincea may be folded toa′), and

surjectivity: ∀b∈ CB ∃a∈ CA (a,b) ∈ α−1◦β

(for otherwiseCB is not stiff). It follows thatα−1 ◦β is an isomorphism, and the
result follows.

Corollary ([26]). Every digraphG has a unique [up to isomorphism] stiff induced
subgraph that it can be put through a sequence of folds to obtain.

Proof. TakeA = B = G in the previous proof.

We will now unambiguously refer to thestiff-graph-withinG as the one which
G reaches through a maximal sequence of folds. We have seen that stiff-graphs-
within characteriseFO\{=}-equivalence in exactly the way that cores charac-
terise∃-pos-con j-FO-equivalence. This gives us a new proof of Theorem 77, in
which we proved that, for all digraphsG andg∈G, ALT-HOM(G) = ALT-HOM(G+g).
SinceG+g may be folded toG, it follows that they share the same stiff-graph-
within. It is now clear thatG andG+g agree on all sentencesFO\{=}, which
certainly includes all sentences ofpos-con j-FO.

112

It remains for us to ask whether or not stiff-graphs-within capture equiva-
lence in QCSP,i.e. whetherpos-con j-FOactually coincides withFO\{=}. It
turns out not to be so; we demonstrate the proper containments∃-pos-con j-FO ⊂
pos-con j-FO ⊂ FO\{=} ⊂ FO.

Examples.
K3 andK3]K3 give rise to the same CSP problem,i.e. are equivalent in

∃-pos-con j-FO, but do not give rise to the same QCSP problem, since∀x∀z∃yE(x,y)∧
E(y,z) is true in the former, yet false in the latter. It follows that∃-pos-con j-FO
can not express that property.

K2 = P2 andP4 give rise to the same QCSP problems. (In fact, it follows from
Lemmas 58 and 66 that there are precisely three classes of ALT-HOM = QCSP
problem for bipartite templateT: specifically,T having no edges; orT has an
edge and an isolated vertex; orT has an edge and no isolated vertices.P2 and
P4 are both in the last class.) Consider the sentence∃w,x,y,zE(w,x)∧E(x,y)∧
E(y,z)∧¬E(z,x). This is false in the former, but true in the latter. If follows that
the property can not be expressed inpos-con j-FO.

Finally, consider the query∀x∀y E(x,y)∨x = y. This can not be expressed in
FO\{=} sinceK3 andK−

4 disagree on it, yet agree on all sentences ofFO\{=}.

7.6 Results concerning tournament templates

7.6.1 Template is a directed cycle.

We consider the case where the templateT is a directedn-cycle DCn. Such a
graph is a tournament only whenn = 3, but the method easily generalises.

Definition. An oriented pathis a list of verticesv1, . . . ,vm and, for 1≤ i < m,
exactly one of the edgesE(vi ,vi+1) or E(vi+1,vi). Thenet lengthof this oriented
path is the number of instances of edgesE(vi ,vi+1) (forward-edges) minus the
number of instances of edgesE(vi+1,vi) (backward-edges). An oriented path in a
digraphG is a (not necessarily induced) subgraph ofG that is an oriented path.

In a directedn-cycle any oriented path between a vertex and itself must have
net length 0mod n. Furthermore, any path between a vertex and its forward-
neighbour must have net length 1mod n, and every vertexhasa forward-neighbour.
These facts will allow us once again to consider only partitioned inputs inΠ2-
multifan form since:

Lemma 81. For n≥ 3,

• if there is a path inP between any x∈ Ei and y∈ U j (for i < j), then
P /∈ ALT-HOM(DCn), and

113

• if there is a path inP between any x∈ Ui and y∈ U j (any i, j), thenP /∈
ALT-HOM(DCn).

Proof. We prove the first claim, the proof of the second is similar. Ifthe path
has net length 0mod n, then, if Proponent playsa for x, then Opponent plays the
forward-neighbourb of a for y, and wins. If the path has net length other than
0 mod n, then, if Proponent playsa for x, then Opponent also playsa for x, and
again wins.

Theorem 82. If T is a directed n-cycle thenALT-HOM(T) is tractable.

Proof. If the inputP has any of the paths of the previous lemma, then we have a
no-instance. We may therefore assume thatP has no such path, and is equivalent
to the rewrite-reducedP in Π2-multifan form. We may further splitP into its
Π2-fan form componentsPi (1 ≤ i ≤ m), for somem, and solve separately for
each.

SinceT is rotationally symmetric, eachΠ2-fan structurePi admits an alternating-
homomorphism toT iff the structureSPi

admits a homomorphism toT. It is
known that the problem HOM(T) is tractable [4], and the result follows.

7.6.2 Template is a digraph with source and sink.

In a digraph, a source (respectively, sink) is a vertex with in-degree (respectively,
out-degree) 0.

We consider the case where the templateT is a digraph with both a sources
and a sinkt. In such cases we need only consider inputs inΣ1-form since:

Lemma 83. For any i, j,

• if there is a forward-edge inP between any x∈ Ei and y∈ U j , thenP /∈
ALT-HOM(T),

• if there is a backward-edge inP between any x∈ Ei and y∈U j , thenP /∈
ALT-HOM(T),

• if there is any forward-edge inP between any x∈ Ui and y∈ U j , then
P /∈ ALT-HOM(T), and

• if there is any backward-edge inP between any x∈ Ui and y∈ U j , then
P /∈ ALT-HOM(T).

Proof. For the first and third claims, Opponent playss for y and wins. For the
second and fourth claims, Opponent playst for y and wins.

114

The following should be seen as a generalisation of Proposition 59.

Proposition 84. If T is an antireflexive digraph with both a source and a sink,
thenALT-HOM(T) is logspace equivalent toHOM(T).

Proof. Use the reduction of Proposition 59 (we have the same forbidden edges
here as we did there).

Definition. An n-tournament is a digraphG with vertex set{0, . . .n− 1}, such
that, for all i, j ∈ Zn, exactly one ofE(i, j) or E(j, i) is an edge ofG. The unique
n-tournament which contains no directed cycle as a subgraph is known as the
transitiven-tournament, and will be denotedTt

n.

Corollary. If Tt
n is the transitive n-tournament thenALT-HOM(Tt

n) is tractable.

Proof. Tt
n has both a source and a sink. So, the result follows from the previous

theorem, and the fact that HOM(Tt
u) is tractable [4].

7.6.3 Tractable tournament ALT -HOM problems.

The tournamentsTu
m+3

We examine the tournamentsTu
m+3 which are constructed from the directed 3-

cycle by repeatedly adding a sourcem times. (The superscriptu suggests this
unique cycle.)

Definition. We defineTu
m+3 inductively:

• Let T(0) := Tu
3 = DC3 , the directed 3-cycle..

• From T(r) build T(r+1) by adding a new source,i.e.,
|T(r+1)| := |T(r)|]{r +3}4 andET(r+1)

:= ET(r)
]{(r +3, i) : i ∈ |T(r)|}.

• Let Tu
m+3 := T(m).

Since we have dealt with the case of the directed 3-cycle, we considerm> 0,
i.e. whenTu

m+3 has a source.

Lemma 85. For m> 0:

• If there is a directed edge inP between x∈ Ei and y∈ U j (i < j), then
P /∈ ALT-HOM(Tu

m+3).

4T(r), being a tournament withr +3 vertices, will already have vertex numbers 0 tor +2.

115

• If there is a directed edge inP between x∈ Ui and y∈ U j (any i, j), then
P /∈ ALT-HOM(Tu

m+3).

• If there is a directed edge inP from x∈ E j to y∈ Ui (i < j), then P /∈
ALT-HOM(Tu

m+3).

Proof. The first two parts follow from the antireflexivity ofTu
m+3, by Lemma 57.

For the final part, if Opponent playsy to the source ofTu
m+3, Proponent can have

no reply forx.

Let P be a partitioned digraph, we define its cousinP̃ inductively:

• P(0) := P.

• FromP(r) we buildP(r+1) by removingall sources that are in existential
partitions.

• P̃ := P(m).

Let Ex(P− P̃) be those existential vertices inP that are not iñP, and letEx(P̃)

be those existential vertices inP that are also iñP (sinceP̃ ⊆ P these are the
existential vertices of̃P). Let PrEx(P) be those vertices ofP in existential par-
titions to which there is a directed pathfrom some vertex in a universal partition.
Let Un(P) be the set of universal vertices ofP. We refer to the vertices ofTu

m+3
that are not in the 3-cycle as thetail of Tu

m+3.
We will benefit from examining which vertices of the underlying graphSP

have been removed in the graphS
P̃

. It should be clear that vertices inUn(P) and
PrEx(P) can never be removed, and are, therefore,protected. Let us consider the
sub-partitioned-graphP1 of P induced by the existential vertices that are not pro-
tected.P1 may be put through our given inductive scheme, iteratively removing
sourcesm times, so obtaining̃P1. It should be clear that̃P is that subgraph ofP
induced by the setUn(P)∪PrEx(P)∪ |S

P̃1
|. Apart from the universal vertices

and those existential vertices that are protected, our construction is that given for
proving the tractability of HOM(Tu

m+3) in [4]. All of the sets we have defined

should now be considered as subsets ofP (though some may be subsets ofP̃

too). Before going on we will benefit from the following lemmas.

Lemma 86. In a winning strategy for Proponent on(P,Tu
m+3), if Opponent plays

all his vertices to the3-cycle, then Proponent must play all of the vertices of
Ex(P̃) [in P] to the3-cycle.

116

Proof. Again, let P1 be the sub-partitioned-graph ofP induced by those exis-
tential vertices that are not protected. Recall thatP̃ is the subgraph ofP in-
duced byUn(P)∪PrEx(P)∪ |S

P̃1
|, as in the previous paragraph. SoEx(P̃) is

PrEx(P)∪|S
P̃1

|. Since universal vertices are played to the 3-cycle, it follows that
all vertices ofPrEx(P) must be played to the 3-cycle. Furthermore, if any vertex
of |S

P̃1
| [in P] could be played to the tail ofTu

m+3, then this could not be extended

to a homomorphism fromSP1 to Tu
m+3 – by definition ofP̃1 – so this could not

be a winning strategy for Proponent on(P,Tu
m+3). The result follows.

Lemma 87. Assume thatP has none of the edges of Lemma 85. Then Opponent
can win the game on(P,Tu

m+3) iff he can win it whilst never playing in the tail of
Tu

m+3.

Proof. Since edges ofP from universal partitions only point toward verticesx in
higher existential partitions, if Opponent plays in the tail then he allows Proponent
to answerx with anything on the 3-cycle, whereas, if he plays on the 3-cycle he
limits Proponent to a single adjacent vertex of the 3-cycle.It is clear that Opponent
gains nothing by playing in the tail.

Theorem 88. The problemsALT-HOM(Tu
m+3) are tractable.

Proof. We already have the result form= 0. Form> 0 we will solve ALT-HOM(Tu
m+3)

by taking any inputP for that problem, and constructing a givenP′. We will prove
P ∈ ALT-HOM(Tu

m+3) iff P′ ∈ ALT-HOM(Tu
3), whereupon we may appeal to the

known tractability of ALT-HOM(Tu
3), and our result will follow.

If P has any of the edges of Lemma 85 then we defineP′ to be any set no-
instance of ALT-HOM(Tu

3) (e.g.the transitive 4-tournamentTt
4 with all vertices in

E2). If P has none of those edges then we setP′ to beP̃, via the construction
already described. It remains for us to prove that this is correct. It is trivially
correct ifP has any of the edges of Lemma 85: we assume it does not.

(P ∈ ALT-HOM(Tu
m+3) ⇒ P̃ ∈ ALT-HOM(Tu

3).) For a winning strategyσ
for Proponent in the game on(P,Tu

m+3), we claimσ is also a winning strategy for

her in the game on(P̃,Tu
3). This follows immediately from Lemma 86.

(P̃ ∈ ALT-HOM(Tu
3) ⇒ P ∈ ALT-HOM(Tu

m+3).) From a winning strategy

σ for Proponent in the game on(P̃,Tu
3), we construct a winning strategyσ′ in

the game on(P,Tu
m+3) where Opponent only plays in the 3-cycle. In that game

on (P,Tu
m+3), when Opponent plays on the 3-cycle, then Proponent answersthe

vertices inEx(P̃) according toσ, and then mapsEx(P− P̃) to the tail ofTu
m+3.

The result follows from Lemma 87.

117

The tournamentsTu
3+m

These tournaments are analogous to the tournamentsTu
m+3, but are constructed

by the repeated addition of a sink, rather than a source. It follows by a similar
argument that, for allm, ALT-HOM(Tu

m+3) is tractable.

The result

Theorem 89. If T is a tournament with at most one cycle thenALT-HOM(T) is
tractable.

Proof. It follows from standard results about tournaments (see [4]) thatT is either
transitive or isTu

3 with a succession of sources and/or sinks added. IfT has both a
source and a sink then we can reduce the problem to HOM(T), which is known to
be tractable [4]. If it has no sink, then it is one of the tournamentsTu

m+3 above. If
it has no source, then it is one of the tournamentsTu

3+m above.

7.6.4 NP-complete tournament ALT -HOM problems.

Bang-Jenson, Hell, and MacGillavray proved that, for anyn-tournamentTn that
has at least two distinct cycles, HOM(Tn) is NP-complete [4].

Theorem 90. Let T be a tournament with more than one cycle and a source and
sink, thenALT-HOM(T) is NP-complete.

Proof. Follows from Proposition 84 , together with [4].

7.6.5 Pspace-complete tournament ALT -HOM problems.

A 2-walk Tournament(2WT) is a tournamentT in which, for all distincti, j ∈ T,
there is a directed 2-walk fromx to y.

Theorem 91. For every2WT T, ALT-HOM(T) is Pspace-complete.

Proof. Note that||T|| > 2. Also, sinceT is a tournament, there can be no 2-
walk from any vertexx ∈ T to itself. Using the directed 2-path from vertexi to
vertex j as indicator, we find thatT∗ is K||T||. Pspace-completeness follows from
Theorem 73.

We conclude by proving that the class of 2WTs is infinite.

Definition. Form≥ 5, define the TournamentT
p
2m+1 thus:

• |T
p
2m+1| = {0, . . . ,2m}

118

Figure 7.11: The tournamentT
p
11. The 2-jump dotted edges point anticlockwise;

all other edges point clockwise.

• ET
p
2m+1 =

– {(i, j) : i, j ∈ Z2m+1 s.t. i +1 = j mod 2m+1}∪

– {(i, j) : i, j ∈ Z2m+1 s.t. i −2 = j mod 2m+1}∪

– {(i, j) : i, j ∈ Z2m+1 s.t. i +3 = j mod 2m+1}∪

– {(i, j) : i, j ∈ Z2m+1 s.t. i +4 = j mod 2m+1}∪

– {(i, j) : i, j ∈ Z2m+1 s.t. i +5 = j mod 2m+1}∪

–
...

– {(i, j) : i, j ∈ Z2m+1 s.t. i +m= j mod 2m+1}

It may easily be verified thatTp
2m+1 is a tournament. Note that this is partly a

consequence of the odd number of vertices: if we had an even number of vertices
under a similar construction we would either have vertices not joined by an edge
or vertices joined by a double edge. Observe the aberration of the 2-jumps: if we
draw edges on a regular(2m+ 1)-gon with the vertices enumerated clockwise,

119

then all edges point in a clockwise direction, except the 2-jumps which point
anticlockwise (see Figure 7.11.)

Lemma 92. For all distinct vertices i, j ∈ T
p
2m+1, there is a directed2-walk from

i to j, i.e.Tp
2m+1 is a2WT.

Proof. We will prove that there is a directed 2-walk from vertex 0 to each of the
vertices 1, . . . ,2m. We may then appeal to symmetry.

It will suffice to show that every number 1, . . . ,2m is the sum (mod 2m+1) of
exactly two elements of the set{1,−2,3,4,5, . . . ,m}. So: 1= 3−2; 2= 4−2; 3=
5−2 (this is whym≥ 5), henceforth we may use the positive numbers{3, . . . ,m}
for 6 = 3+3 through to 2m= m+m.

120

Chapter 8

Conclusions and Further Work

8.1 Program Schemes

Most of our results for program schemes augmented with priority queue are far
from tight, and those that are tight are unsurprising. It is hard to see how a Turing
machine simulation might prove that NPSPQu is contained in a space-bounded
(or time-bounded) complexity class. This is because the size of the potential mem-
ory of the priority queue in NPSPQu seems to be unbounded. We give no better
upper bound to NPSPQu than the class of recursively enumerable languages. For
better lower bounds for NPSPQu, our simulation method can go no further than
NPspace, since we rely on the fact that we can enumerate the tape squares through
a constant number of variables (which may encode only a polynomial quantity
of numbers). A similar problem arises in the case of a better lower bound for
APSS(1).

We suggest that an indirect method may be more likely to succeed, perhaps
like that used to proveP ⊆ NPSSs(1) – via the path system problem – in [2].

8.2 Classes of Structure on whichP = ±PSk[FO]

Grohe had proved in [23] thatP = LFP[FO] on the class of 3-connected planar
graphs. Since triangulations are 3-connected planar graphs and it is known thatP
= ±PS[FO] on the class of triangulations [42], it is natural to question whetherP
= LFP[FO] on the class of 3-connected planar graphs. Thus far, we have failed
to adapt Grohe’s method to settle this question.

121

8.3 Quantified Constraints on Graphs

The method used to prove thePspace-completeness of ALT-HOM(H), whereH

is an odd catherine wheel, may be applied to provePspace-completeness for sim-
ilar templates. An obvious extension is for graphs that are constructed like odd
catherine wheels, but where any bipartite graph (not just a tree) may be appended
to each position on the odd cycle.

For quantifiedH-colouring, we conjecture the following extension to Theo-
rem 71.

Conjecture 93. The class of antireflexive undirected graphs exhibits ALT-HOM-
trichotomy. Specifically:

• If H is bipartite, then ALT-HOM(H) is tractable.

• If H is not bipartite, and is not connected, then ALT-HOM(H) is NP-
complete.

• If H is not bipartite, and is connected, then ALT-HOM(H) isPspace-complete.

In order to prove this, it would remain for us to prove that ALT-HOM(H)
is Pspace-complete, whenH is antireflexive, undirected and connected, and has
more than one odd cycle.

It is well-known that common cores characterise equivalent∃-pos-con j-FO-
theories (CSP/ HOM), i.e. two templatesT,T′ have the same core iff they agree
on all sentences of∃-pos-con j-FO. Similarly, common stiff-graphs-within char-
acterise equivalentFO\{=}-theories. We know of no such characterisation for
equivalence ofpos-con j-FO-theories (QCSP/ ALT-HOM). It would be interest-
ing to isolate some characteristic on two templates that exactly specifies whether
they give rise to the same QCSP problem.

122

Bibliography

[1] A BITEBOUL, S., AND V IANU , V. Generic computation and its complexity.
In 32nd IEEE Symposium on FOCS(1991).

[2] A RRATIA-QUESEDA, A., CHAUHAN , S.,AND STEWART, I. Hierarchies in
classes of program schemes.Journal of Logic and Computation 9:6(1999),
915–957.

[3] A SCHBACHER, M., AND GURALNICK , R. Some applications of the first
cohomology group.Journal of Algebra 90(1984), 446–460.

[4] BANG-JENSON, J., HELL , P., AND MAGILLIVRAY , G. The complexity of
colourings by semi-complete digraphs.SIAM Journal on Discrete Mathe-
matics 1:3(1988).

[5] BORNER, F., KROKHIN, A., BULATOV, A., AND JEAVONS, P. Quanti-
fied constraints and surjective polymorphisms. Tech. Rep. PRG-RR-02-11,
Oxford University, 2002.

[6] BREWSTER, R., FEDER, T., HELL , P., HUANG, J.,AND MACGILLIVRAY ,
G. Near-unanimity functions and varieties of graphs. 2003.

[7] BULATOV, A. A dichotomy theorem for constraints on a three-element set.
In FOCS’02(2002).

[8] BULATOV, A., KROKHIN, A., AND JEAVONS, P. Constraint satisfaction
problems and finite algebras. InProceedings 27th International Colloquium
on Automata, Languages and Programming, ICALP’00(2000), vol. 1853 of
Lecture Notes in Computer Science, Springer-Verlag, pp. 272–282.

[9] CHANDRA , A., AND MERLIN, P. Optimal implementation of conjunctive
queries in relational databases. In 9th ACM Symposium on Theory of Com-
puting(1979), pp. 77–90.

123

[10] CHEN, H. Collapsibility and consistency in quantified constraint satisfac-
tion. In Proceedings of the Nineteenth National Conference on Artificial
Intelligence(2004).

[11] CHEN, H. The Computational Complexity of Quantified Constraint Satis-
faction. PhD thesis, Cornell University, August 2004.

[12] CHEN, H. Existentially restricted quantified constraint satisfaction. Tech.
Rep. cs.CC/0506059, ACM Computing Research Repository, 2005.

[13] CREIGNOU, N., AND HERMANN, M. Complexity of generalized satisfia-
bility counting problems.Information and Computation 125(1996).

[14] CREIGNOU, N., KHANNA , S., AND SUDAN , M. Complexity classifica-
tions of Boolean Constraint Satisfaction Problems. SIAM Monographs on
Discrete Mathematics and Applications 7. 2001.

[15] DALMAU , V. Some dichotomy theorems on constant-free quantified boolean
formulas.Machine Learning 35:3(1999).

[16] EBBINGHAUS, H.-D., AND FLUM , J. Finite Model Theory. Perspective in
Mathematical Logic. Springer-Verlag, 1995.

[17] FAGIN , R. Generalized first-order spectra and polynomial-time recognizable
sets. InComplexity and Computation: SIAM-AMS 7(1974).

[18] FEDER, T., AND KOLAITIS, P. Closures and dichotomies for quantified
constraints. To appear in SIAM J. Discrete Math.

[19] FEDER, T., AND VARDI , M. Y. The computational structure of monotone
monadic SNP and constraint satisfaction: a study through datalog and group
theory.SIAM J. Comput. 28(1999).

[20] GRADEL, E. Model checking games.Electronic Notes in Theoretical Com-
puter Science 67(2002).

[21] GRADEL, E., AND MCCOLM , G. Hierarchies in transitive closure logic,
stratified datalog and infinitary logic.Annals of pure and applied logic 77
(1996), 166–199.

[22] GROHE, M. Existential least fixed-point logic and its relatives.Journal of
Logic and Computation 7(1997).

[23] GROHE, M. Fixed-point logics on planar graphs. InLogic and Computer
Science: IEEE 13(1998), pp. 6–15.

124

[24] GUREVICH, Y. Logic and the challenge of computer science. InCurrent
trends in Theoretical Computer Science(1988).

[25] HELL , P.,AND NEŠETŘIL , J. On the complexity of H-coloring.J. Combin.
Theory Ser. B 48(1990).

[26] HELL , P., AND NEŠETŘIL , J. Graphs and Homomorphisms. OUP, 2004.

[27] HESMAPANDRA, E. Dichotomy theorems for alternation-bounded quanti-
fied boolean formulas. Tech. Rep. cs.CC/0306134, ACM Computing Re-
search Repository, 2003.

[28] IMMERMAN , N. Relational queries computable in polynomial time.Infor-
mation and Control 68(1986).

[29] IMMERMAN , N. Languages that capture complexity classes.SIAM Journal
of Computing 16:4(1987).

[30] IMMERMAN , N. Nondeterministic space is closed under complementation.
SIAM Journal of Computing 17:5(1988).

[31] IMMERMAN , N. Descriptive Complexity. Graduate Texts in Computer Sci-
ence. Springer, 1998.

[32] JEAVONS, P., COHEN, D., AND GYSSENS, M. A unifying framework for
tractable constraints. InProceedings 1st International Conference on Con-
straint Programming, CP’95(1995), vol. 976 ofLecture Notes in Computer
Science, Springer-Verlag, pp. 276–291.

[33] JEAVONS, P., COHEN, D., AND GYSSENS, M. A test for tractability. InPro-
ceedings 2nd International Conference on Constraint Programming—CP’96
(Boston, August 1996)(1996), vol. 1118 ofLecture Notes in Computer Sci-
ence, Springer-Verlag, pp. 267–281.

[34] KOLAITIS, P. G.,AND VARDI , M. Y. A game-theoretic approach to con-
straint satisfaction. InAAAI-2000/IAAI-2000 Proceedings(2000).

[35] LADNER, R. E. On the structure of polynomial time reducibility.J. ACM
22 (1975), 155–171.

[36] OTTO, M. Bounded Variable Logics and Counting. Lecture Notes in Logic
9. Springer-Verlag, 1997.

[37] PAPADIMITRIOU , C. Computational Complexity. Addison-Wesley, 1994.

125

[38] SCHAEFER, T. The complexity of satisfiability problems. InSTOC(1978).

[39] STEINBERG, R. Generators for simple groups.Canad. J. Math. 14(1962),
277–283.

[40] STEWART, I. Logical description of monotone NP problems.Journal of
Logic and Computation 4(1994), 337–357.

[41] STEWART, I. Program schemes, arrays, lindstrom quantifiers and zero-one
laws. Theoretical Computer Science 275(2002), 283–310.

[42] STEWART, I. Using program schemes to logically capture polynomial-time
on certain classes of structures.LMS Journal of Computation and Mathe-
matics 6(2003), 40–67.

[43] STOCKMEYER, L. The polynomial-time hierarchy.Theoretical Computer
Science 3(1977).

[44] VARDI , M. Complexity of relational query languages. In14th Symposium
on Theory of Computation(1982).

126

