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Abstract

We study a class of non-deterministic program schemes witilewoops:
firstly, augmented with a priority queue for memory; secgndugmented with
universal quantification; and, thirdly, augmented withvensal quantification and
a stack for memory. We try to relate these respective clafgg®gram schemes
to well-known complexity classes and logics.

We study classes of structure on which path system logicates with poly-
nomial timeP.

We examine the complexity of generalisations of non-unifdioolean con-
straint satisfaction problems, where the inputs may haveusmdbed number of
guantifier alternations (as opposed to the purely exiskeqtiantification of the
CSP). We prove, for all bounded-alternation prefixes thaehsme universal
quantifiers to the outside of some existential quantifiees (12 and above), that
this generalisation of boolean CSP respects the same dioyads that for the
non-uniform boolean quantified constraint satisfactiorbpem.

We study the non-uniform QCSP, especially on digraghs,uthinca combi-
natorial analog — the alternating-homomorphism problerhat sits in relation
to the QCSP exactly as the homomorphism problem sits witlCt8e. We es-
tablish a trichotomy theorem for the non-uniform QCSP whea template is
restricted to antireflexive, undirected graphs with at nms cycle. Specifi-
cally, such templates give rise to QCSPs that are eithetatvbg; NP-complete
or Pspace-complete.

We study closure properties on templates that respect Q@&Réss or QCSP
equality. Our investigation leads us to examine the prageedf first-order logic
when deprived of the equality relation.

We study the non-uniform QCSP on tournament templates/idgrsufficient
conditions for tractabilityNP-completeness anéspace-completeness. In partic-
ular, we prove that those tournament templates that giedeitractable CSP also
give rise to tractable QCSP.
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Chapter 1

Introduction

Structural Complexity is that part of the study of Compuwtasil Complexity that

concerns itself with the intrinsic computational diffiguttf decidable problems.
Perhaps its main thrust is an attempt to classify probletescomplexity classes
by various upper and lower bounds on their computationalptexity. Since its

inception, logic has impinged on Computational Complekits variety of ways:

in the first instance, many of the problems that are amongshandest of many
natural complexity classes have been problems in logicsélpeoblems, known
ascompletefor the given complexity class, include the following pretvls in the

Propositional Calculus: Circuit Value, complete RyrSatisfiability, complete for
NP; and Quantified Satisfiablity, complete f@space.

Another intersection between logic and complexity is infilb&l of Descrip-
tive Complexity — in which finding an algorithm for a computetal problem is
seen as a question of expression — where complexity clagseddte to classes
of expressiong,e.logics. Indeed, the complexity classes, defined througmgur
Machines, may be seen as logics already: for exampl,isf defined as those
Turing MachinesT, such that there exists such thafl accepts an input of
sizeniff T accepts<within time n¥, then this class of Turing Machines is a logic
of sorts. However, it is a logic not of a form that lends itdelfstudy by what
are usually considered the tools of logic: it has a cumbeessymtax and is in-
terpreted over strings and not first-order structures. Wg mamedy the second
of theses problems by considering certain standard binangsencodings of a
structure. Since, for us, a decision problem is always aedudidinite structures,
we consider a problem to be kiff the language of all binary encodings of these
structures is irP, as defined previously. In this way, we can talk of converaion
logics capturing Turing complexity classes: a logic cagsua complexity class iff
the set of problems expressible in each coincides. It isertridnslation between
computational problems over strings and expression pnablever finite struc-
tures that Descriptive Complexity is concerned. As suds,iery much a part of



Finite Model Theory.

Perhaps the greatest hope for Descriptive Complexity watktiown methods
for separating logics might be brought to bear on complesi#gses; that hard
guestions on the (non)-equivalence of complexity classightnibbecome easier
guestions on the separation of logics. Among the major tesil Descriptive
Complexity are the proven equivalence of: existential sdenrder logiciSO
andNP (Fagin, 1974 [17]); least fixed-point logic LFP (with sucees andP
(Immerman/Vardi 1982 [28, 44]); partial fixed point logic PRwith successor)
and Pspace (Vardi 1982 [44]); and transitive closure logic TC (with sessor)
and NL (Immerman 1983/1988 [28, 30]). Despite these results, fdvamaces
have been made in the use of techniques such as Ehrenfaaisge-games to
separate these logics, and, consequently, their compleagses. Partly, this can
be explained by the somewhat artificial inclusion of the sgsor function into
many of these logics (naiSO), since Ehrenfeucht-Fraisse games are notoriously
hard to win on structures with successor. However, the atprice of LFP and
PFP, both with successor, is known to be consequent on tigiradence without
successor [1], yet still a proof resists tiag: Pspace. One ray of sunshine in this
field was Immerman’s proof, through Transitive Closure ¢oghatNL =co-NL
[30].

The syntax of a logic is exactly its set of well-formed forme] a logic is said
to have recursive syntax iff its syntax is decidable. Thdusion of successor
generally precludes the possibility that the resultantddgs recursive (or even
recursively enumerable) syntax [24], a property which isaiely desirable, and
is thought by some authors.@. Gurevich [24], Otto [36]) to be necessary, if the
name ‘logic’ is to be bestowed.

In the first part of this thesis we study various classes ofaeterministic
Program Schemes with while loops (based on those in [2, d4tjich are logics
in Gurevich’s sense, but which appear well-suited for cotafon. We attempt
to relate these logics to standard complexity classesefaiefy in the absence of
that built-in successor.

Chapter 2 introduces these program schemes, and discussekaown re-
sults involving them [2]. The situation where a stack is &lde for memory [2]
is considered.

In Chapter 3, we introduce some new work investigating thditexth of a
priority queue as a memory device available to these progcdrames. We prove
that the priority queue is sufficiently powerful to simulaesuccessor function:
thus we define two ‘logics’ with recursive syntax that subsiNRspace? andNP,

lindeed, it is not known thatiL,P,NP andPspace are not equivalent.
2We remind the reader th&tPspace andPspace coincide €.9.[37]). Even so, we use both
classes in this thesis, depending on which appears the ratugahin a given situation.



respectively. These logics actually have identical syngéaud differ only in their
semantics.

In Chapter 4, we introduce some new work examining the expiicoduction
of universal quantification to our program schemes (sineg &éne non-deterministic,
existential quantification is already insinuated), botlth@ absence of any mem-
ory and with the benefit of a stack. With no added memory, wéhigeensuing
logic to least fixed-point logic LFP. With the addition of ask we, once again,
are able to simulate a successor: this enhanced logic s@sdifapace.

Chapter 5 uses some known results utilising program sch@éd@g¢so study
various classes of structure on which the infinite hierarghich constitutes Path
System logic collapses and captuRed/Ne give a brief overview of known results
and introduce some new ones.

A further confluence of logic and complexity, and, indeednbmatorics, is
in the study of the Constraint Satisfaction Problem, CSH i@ngeneralisations.
In terms of complexity classification, much has been madeetobnjectured di-
chotomy of the non-uniform CSP on finite templates [1]: itreseas though,
for any T, CSRT) is either tractable oNP-complete. This is remarkable given
the breadth of CSP problems, together with Ladner’s re88lf {hat such a di-
chotomy will not hold over aINP (unless we actually have@ = NP). The non-
uniform CSPs, and their generalisations, lend themsetvdsal interpretations:
one in which they are model-checking problems over restlitdgics; and one in
which they are combinatorial problems between two strestum particular, the
non-uniform CSP may be seen as both a model-checking prablexistential
positive conjunctive first-order logic and as the homomanphproblem. This
duality is perhaps at its most obvious on graphs, and it ihesd that we dwell
most.

Chapter 6 concerns itself with the dichotomy of alternatimunded general-
isations of the non-uniform CSP on boolean templates. @ hesults have been
obtained independently in [27] and, to a lesser extent, &.J2We prove, for all
bounded-alternation prefixes that have some universatifjeasmto the outside of
some existential quantifiers€. I, and above), that our generalisation of boolean
CSP respects the same dichotomy as that for boolean qudmtifiestraint satis-
faction problems.

Chapter 7 examines the non-uniform Quantified Constraitisfaation Prob-
lem, QCSP, on graph templates. We study the QCSP through hicatorial
analog, the so-called Alternating-Homomorphism problemm-AomM. We study
a variety of graph templates that give rise to tractahlle;complete orPspace-
complete QCSPs, culminating in a complete classificatidghdee classes — a tri-
chotomy theorem — when the template ranges over undirentedfiexive graphs
with at most one cycle.

We consider two problems to be equal exactly when the reispestibsets
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of structures that they define coincide. It is well-knowntttie two problems
CSRHT) and CSRTJ’) are equal iff the templates andJ’ are homomorphically
equivalent (which is exactly the condition that they havamsrphic cores). We
study a similar condition on templat&sJ’ that is sufficient to guarantee the
equality of QCSPT) and QCSPJ’). However, we find that this condition is
not necessary, and that is has a closer relationship withafider logic without
equality than the logic we associate with QCSP (positiveqtauctive first-order
logic).

Finally, we study the non-uniform QCSP on tournament tetepladeriving
sufficient conditions for tractabilityy P-completeness an@space-completeness.
In particular, we prove that those tournament templatesgiva rise to tractable
CSP also give rise to tractable QCSP.



Chapter 2

Program Schemes

2.1 Structures and Logic

We will only consider finite relational structures, of atdeéwvo elements, over a
given signatures. We denote this set STRUB). If A is a structure, thefA| is
the universe, or domain, of the structure, §ut]| is the cardinality of that domain.
If Ris a relation symbol off thenR* is the interpretation oR over.A. When the
structureA is clear, we may abuse notation by dropping it as the supptstitus
identifying Rwith both the relatiorsymboland the relatiomctual

We will also consider the situation where a successor isablaito us, built-in
to the signatures. We consider a successor to be a binary relasiot; whose
realisation as a graph is a directed path, together with timstantsmin andmax
whose interpretations are the first and last vertices ofgatit. This is equivalent
to considering the restricted class of structures owefsucc min, max} in which
the interpretations aducg min andmaxsatisfy the properties given. Throughout,
when we consider the restriction to structures that haveceessor relation, we
add the subscrips to our logic or class, for exampleOs. When we consider
logics in which we have a successor, we will insist on a furleenantigestriction
on their formulae, namely, that a formula may only be in tlogid if its truth is
independent of the actual successor function used. For@rarconsider the
formula E(min,max, ostensibly ofFOs, interpreted on the directed 3-path — the
graph with vertice§0, 1,2} and edge seft(0,1), (1,2) }. The truth of this formula
is not independent of the ordering we choose on the graphheibticcessor is
{(0,2),(2,1)},itis true; if the successor 50, 1), (1,2)}, it is false. We conclude
that E(min,may is not a formula ofFOs. Given such a formula, ostensibly of
FOs, establishing whether it has this property of order-inaelesce is, in general,
undecidable [24].



2.1.1 Graphs and Transitive Closure

A graph, or digraphg is a structure over signatuce = (E), whereE is a binary
relation symbol. There is a (directed) path §nfrom vertexx to vertexy iff
either:x=Yy, E(x,y), or there is a sequence of vertias.. .,z such thaE(x,z),
E(z,z+1),for 1<i<r,andE(z,y). Thisis equivalent to the inductive definition
that there is a path fromto y iff:

e X=Y,oOr
e there is az such thaE(x, z), and there is a path fromtoy.

Definition. Define TC to be the global binary relation on graphs expregssach-
ability. Specifically:

TC={{(xy): thereisapathig fromxtoy}:Ge STRUC(02)}

Let Y be some formula whose only free variables are among thodeegf t
tuplesx andy. A formula TC]AX, yy|(T,V) is interpreted as true on a structuten
the case that, in the graph|ofl||! vertices with edge set specified §iyx, y), there
is a path from vertel to vertexv. (Itis usual to allow additional free variables.
other tharx andy, in Y. However, this does not increase our expressive power,
sincei such variables can be moved so they only appear free in thep@nd
(j +i)-tuplest andV of some new Transitive Closure formula over a graph of
size||A||1*" (see [16]). We forbid such additional free variables for shke of a
simpler exposition.)

In the fashion described, the global relation TC has givea usiform se-
guence of vectorised quantifiers of the same name. This sequederived from
the arity ofx andy. The first quantifier in the sequence corresponds to the@lrity
X = (x1) andy = (y1) being 1, and binds the 2 variableg,andy;. Theith quanti-
fier in this sequence corresponds to the arityg of (xg,...,%) andy = (y1,..., V)
beingi, and binds thei2variablesxy, ..., % andys,...,Y;. This sequence of quan-
tifiers is uniform in semantics and syntax, and is an examplke sequence of
Lindstrom quantifiers (see, g, [16]).

Definition. LetX,ybe j-tuples of variables. Lejt, j” < janduy,...,uj, vy, ..., Vjr
be variables, and;1,...,uj,Vjr41,...,Vj be variables or constant symbols. De-
fine:

e +TC![FO] to be the set of formulae of the form
Juz...up3vz...vjr TCAX, WY](T,V)

wherey is quantifier-free, and
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e +TC™1[FQ] to be the set of formulae of the form
Juz...up3ve...vjr TCAX, WY](T,V)
wherey is in the closure under boolean operators of formulaeTiC™[FO].

In the presence of two distinct constants, any formula i T{FO] is equiva-
lent to some formula of the form T|&x, Y] (T, V), with ¢y € TC™[FQ], i.e.without
the need for existential quantification outside the TC ojpef@1]. However, we
do not wish to restrict ourselves only to structures withhscenstants. We define
+TC*[FO] to beljc, =TC'[FO].

Recall that the subscrigtdenotes a built-in successor. The following gives us
an idea as to the power of Transitive Closure logic.

Proposition 1 (Immerman 1983/1988, [29, 30]¥ C[FO] = TC;[FO] = NL.

Remark.It may be noticed that we are rather liberal with notationhsas TC,
allowing it to denote a global relation, an operator and aclogdopefully, the
meaning should be clear by context.

2.1.2 Alternating graphs and Alternating Reachability

An alternating graphA is a structure over the signatuse; = (E,U), where the
relation symbol€E andU are binary and unary, respectively. In an alternating
graph the unary relatiob partitions the vertices into those that are existential
(-U), and those that are universal) There is an alternating path in an alternat-
ing graphA, from vertexx to vertexy, iff:

e X=Y,o0r

e X is existential, and there iszasuch that(x, z), and there is an alternating
path fromztoy, or

e X is universal, and, for alt such thatE(x,z), there is an alternating path
from ztoy.

Definition. Define AR to be the global binary relation on graphs expregsaln
ternating reachability. Specifically:

AR = {{(x,y) : there is an alternating path #h from xtoy} : A € STRUC(021) }

Let Y be some formula whose only free variables are among thoZeandl
y. A formula ARAX, yW](T,V) is interpreted as true in the case that, in the graph
specified byl (X,y), there is an alternating path framoVv. (Again, itis customary
to permit additional free variables . Again, it is unnecessary for the same
reason as given for TC.)
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Definition. LetX,y, be j-tuples of variables. Let, j” < j anduy,...,uj,vi,...,Vj
be variables, andj/,1,...,Uj,Vj;1,...,Vj be variables or constant symbols. De-
fine:

e +AR[FO] to be the set of formulae of the form:
dug... Uj/E|V1 Vi AR[)\)_(,VLIJ] (U,\_/)
wherey is quantifier-free, and

e +AR™[FO] to be the set of formulae of the form
Juz...up3vi...vjr AR[AX, Y] (T, V)
wherey is in the closure under boolean operators of formulagAR™[FO].

We define+AR*[FO] to beJ;.,,£AR'[FO]. In the presence of two distinct
constants;zAR™1[FO] collapses to the class of formulae of the form
AR[AX, yY(1,v) for ¢ € £AR™M[FO] (proof similar to that for TC).

Recall that the subscrigtdenotes a built-in successor. The following gives us
an idea as to the power of Alternating Reachability logic.

Proposition 2 (Immerman 1983, [29]))ARL[FO] = AR:[FO] = P.

2.1.3 Hypergraphs and Path Systems

We consider &ypergraph 7 to be a structure over the signatare= (R), where
Ris a ternary relation symbol. A vertgxs said to beR-accessibl¢or justacces-
sible) from a vertexx iff:

e X=Y,or

e there existy, 2, both accessible from such thaR(z,z,y).

A hypergraphH is said to beecommutativeexactly when, for alk, y, z, we have
R(x,Y,2) iff R(y,X,2). Itis said to bedeterministiciff, for all x,y, there exists at
most onez such thaR(x,y, z).

Definition. Define PS to be the global binary relation on commutative hype
graphs expressing accessibility. Specifically:

PS={{(x,y): yis accessible ift(, fromx } : H is a commutatative hypergraph

lwhat we refer to as a hypergraph would perhaps be betteridedas alirected3-uniform
hypergraphtaking into consideration more standard definitions.

12



Let ¢ be some formula whose only free variables are among tho3e Yof
andz. A formula PSAX,y,zy)(T,V) is interpreted as true in the case that, in the
commutative hypergraph specified yX,y, z), v is accessible from. (Again, it
Is customary to permit additional free variablegjinAgain, it is unnecessary for

the same reason as given for TC.)

Definition. Letx,y, be j-tuples of variables. Left, j” < janduy,...,uj,v1,...,Vj
be variables, and;.,1,...,Uj,Vj41,...,Vj be variables or constant symbols. De-
fine:

e +PS!FO] to be the set of formulae of the form
duz... Uj/E|V1 LV PSAX,y,2¢](T,v)
wherey is quantifier-free, and

e +PS™FO] to be the set of formulae of the form
duz... Uj/E|V1 LV PSAX,y,zy](4,v)
wherey is in the closure under boolean operators of formulaeR8"[FO].

We define+PS‘[FO] to be ., =PS[FO]. In the presence of two distinct
constantsPS™1[FQ] collapses to the class of formulae of the form
PSAX, yg|(T,v) for ¢ € +PS"[FO] (proof similar to that for TC).

Recall that the subscrigtdenotes a built-in successor. The following gives us
an idea as to the power of Path System logic.

Proposition 3 ([40]). PSL[FO] = PS;[FO] = P.

2.1.4 Least Fixed Point logic

Let Y(P,X) be a first-order formula with freg-ary relation symboP whose only
free variables are those of theuplex. Then, over a structurg, Y may be seen
as a functionf4 : P(|A|') — P(].A]') defined by:

fa(R) ={x: AR WRX)}

If Y does not contain negated instances of the free relation aykf.e. is P-
positive), then the functioriy is monotone, satisfyinR C f4(R). Given aP-
positive, we define inductiverLpSl =@ and thereaftelp'fq+1 = fA(Lp';l). Since

f is monotone and! is finite, we are guaranteed that this sequence of relations
must reach a fixed-poimt WheI’E‘LIJjKl = quA (foralli > K). This relation is denoted

W3-

13



Definition. Given a formulay(P,X) with free j-ary relation symboP and includ-
ing free variables of thg-tuple X, and anothejj-tuple of variables or constants
U, we may apply the Least Fixed Point operator LFP to genebaddrmula
LFP[APXy](1). This formula’s free variables are those freajithat are not irx,
and those ofl. The formula is interpreted as true on a structdréunder some
valuation of its free variables) exactly whare ;.

Least Fixed Point logic LFFFO] is the closure ofO under the Least Fixed
Point operator.

Remark.It may be noted that we have allowed free variablegiithat are not
among the variables of in contrast with the situation with the Lindstrom logics
of the previous sections. It seems particularly unnatarapiecify LFP with such
free variables forbidden, moreover, we will make use of thetater chapters. It
suffices to say that these additional variables could baddem by being forced
into the outer tupl@, as described for Transitive Closure logic.

2.1.5 Stratified Fixed Point logic

Definition. LetRbe a fregj-ary relation, ana& be aj-tuple of variables. Le}’ < j
anduy,...,uy be variables, andj1,...,u; be variables or constant symbols.
Define:

e JLFPL[FO] to be the set of formulae of the forau; ... u; LFPARXY](T)
whereU is first-order with no universal quantifiers and with negatimly
of atomic formulae, and

e JLFP™L[FO] to be the set of formulae of the forfu; . .. uy LFPARXY] (1)
wherey is first-order with no universal quantifiers but may contaisigive
or negative occurrences of formulaefFP™[FO] that do not contaifR.

We naturally definedLFP*[FO] to beJ;.,,ILFP'[FO]. In the presence of
two distinct constants]LFP™1[FO] collapses to the class of formulae of the
form LFP]ARxY](T,V) for ¢ € ILFPM[FO] [22].

We note thaBLFP*[FO] is often known asStratified Fixed Point logiSFP.
The following gives us an idea as to the powesbfP.

Lemma 4 (Grohe 1997, [22]) £PS"[FO] = ILFPM[FO).

2.2 Program Schemes

We will examine several classes of non-deterministic paogschemes with while
loops, originally seen in [2]. These program schemes were bban attempt to
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imbue logic with the tools of computation, whilst keepingtlogic well-behaved,
e.g, with recursive syntax. Unlike Turing Machines, which cartgon strings
encoding some structure, these schemes compute on a stfucta similar man-
ner to a formula of logic being interpreted on that structitewever, the syntax
of computation is often more easily followed, and this mayehadvantages in
simplifying proofs. For example, the recursion of while peamay be considered
more natural than that of fixed point logics. Such advantagetargely cosmetic,
but, in studying objects of computation, forms of memory bamdded that would
be most bizarre added directly to conventional logic. Imddhis, new logics can
be defined without obvious parallel in conventional logicow¢ver, that which
is not obvious is not necessarily untrue, and several ieawdt known tying these
new logics with their better known, conventional countetpa

2.2.1 Introducing NPS

Definition (Syntax of NPS [2]) Each program schenpec NPS(1), over signa-
tureg, involves a set of input-output variableg, a set of free variablég, and a
finite sequence dp| instructions, where each instruction, other than the finst a
last, is of one of the following forms:

e an assignment instruction of the form:= g’ , wherev € Vi, andq € Vi U
Vi U{c: cis a constant symbol af}, or

e a guess instruction of the form Wssv , wherev € Vj, or

¢ while loops of the form ‘WHILE t DO 1 OD’ , wheret is quantifier-free
FO(o) with free variables amon¥i, UV;, and wherert is a sequence of
instructions of one of the forms listed.

The first instruction is NPUT(Vjo), and the last OTPUT(Vjo). All instructions
begin a new line, and all, except while loops, take up onlyloree While loops
take up 1+ |1] lines, wher€|t| is the number of lines in, in the obvious way.
We consider sub-routinasto be sequences of instructions of the types in the list,
i.e. program schemes without an input instruction at the begmaind an output
instruction at the end.

The program schemgse NPS(m+ 1) are defined exactly as the schemes of
NPS(1), except that schem@se NPS(n) (for m' < m) may take the place of ex-
tensional relations in the tests in while loops. We define NlSe i, NP S(i).

In terms of semantics, the assignment instructions andewbops behave
in the obvious way, and the guess instruction non-detestigailly assigns an
element of the universe to the variable in question. At the sf computation, the
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input-output variables are @ssed, as just specified. A computation is deemed
accepting if, and only if, it reaches the (finalu@PuT line. It follows that non-
accepting computations are forever trapped in while lodpgppose a program
scheme € NPS(m) involves preciselyfree variablegs, . . ., z. Then, computing
on a structured, we write (A,a;...,&) = p, or A =p(ag,...,q), iff p makes it

to the output instruction when computing drunder the free-variable assignment
(z,...,z) = (aq,...,a) € |A|".

Note that free variables may not be ‘used’ during computaiiothat they can
not have values assigned to them. However, input-outpidivas of schemes in
NPS(m) may appear as free variables in schemes of strictly lowatssthat ap-
pear in tests in their while loops. In this manner, prograimestes of NPfn)
are evaluated ‘top-down’, entering sub-routines to evalaay required tests in-
volving such schemes of NRP®) (wherem’ < m).

Definition ([2]). Let the lines orz denote ari-tuple, and the line oW denote a
j-tuple. Suppose the program schepne NPS(1) involvesi free variableg and

J input-output variables. Then a configuration gd, computing on a structuté,
isan(i+ 1+ j)-tuple(z1,v) giving the values of the free variables, the number
of the line just executed, and the values of the input-outpritibles.

Each such program schempe NPS(1), computing over a structuré of size
n, gives rise to a graph:

e whose vertices are thp|.n(+)) possible configurations,

e and in which there is an edde, c') iff p, executing a single instruction, can
move from configuratior to configuratiorc'.

It may be asking too much to specify this graph in quantifieefFO, especially
sinceA may not havep| distinct constants to play the part of the line numbers. We
will actually specify a variant of it, namely the grag} , with n"+lPI=1 vertices,
where the|p|-sub-tuplew = (wy, ..., W, ) represents a certain line according to
the following scheme:

e if wp =w, thenw represents line 1,

if wy # w» butw, = w3 thenw represents line 2,

if Wy # Wop, Wy # W3 butws = wy thenw represents line 3,

if Wi £ Wo, ..., Wip_o # W|p|_1 but wjp_; = W thenw represents line
|p|—1, and
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o if wy # Wy, ..., W1 # Wp thenW represents lingp.

Let the the lines o denote an-tuple, the line onu, v denotej-tuples, the hat
onw denote dp|-tuple, and the line oR, y denote(i + |p| + j)-tuples.

Proposition 5([2]). Supposg € NPS(1) is as in the definition, and thali(X,V)
is a quantifier-free first order formula expressing the edgation of92l. The
following are equivalent:

e AEp(2)

AE WL, . Wi W1 = W2 A
AW, Wi W ;A\I\/Z/\..._/\V\/m'_l # W, A
30,V TCARYW]((Z W, -, W), 1), (Z W], ..., W[, V)

Proof. Follows immediately from the definition Q}fq, together with the existen-
tial semantics of NP&). Note that the bizarre constraints on the are simply

our means of encoding the first and last lines. As can be seearewnot too inter-
ested in what the input-output variables are at the stareadaf the computation,
i.e.U andv, respectively. O

Recall that the class NRE8n) is as NP$m), but with a built-in successor
available. The following gives us an idea as to the power cENP

Theorem 6([2]). For m> 1, TC™[FO] = NPSm), and, consequently,C*[FO] =
NPS. Furthermore, for m> 1, TCJ'[FO] = NPS;(m) = TC5[FO] = NPS = NL.

Proof. The first part follows from the fact that there is a programesobprc €
NPS(1) that expresses the relation TC, combined with the previooggsition,
by induction. The second part follows from tN&-completeness of the Transitive
Closure problem. O

Remark.The class NPSappears to be devoid of any memory, and it may seem
surprising, in that light, that NPS= NL. However, NPS has memory, in the form
of the constant number of input-output variables. MoregWes constant number

of variables may collectively attainVel values, computing on a structure of
sizen. This is of similar order to the number of different tape cguafations on an
NL-Turing Machine, which is log.|Q|.|Z['°9", whereQ is the set of states aril

the alphabet. Th&lL-Turing Machine has constant alphabet and logarithmieally
bounded number of tape squares, while the classMBSlinearly-sized alphabet
and constant number of memory-variables.
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2.2.2 Shorthands

We can build other useful instructions from those that weshpwssibly requiring
the introduction of additional new variables. Specifically

e If p,qarej-tuples of variables or constants, then consjalergto be short-
hand forpy =i A ... Apj =q;.

e If vis aj-tuple of variables angis a j-tuple of variables or constants, then
considewv :=qto be shorthand fov, :=qs ; ... ; vj :=Q;.

e Consider loor FOREVERtO be shorthand for:
WHILE v; =v; Do OpD.
e Consider Et THEN Do 1 FI to be shorthand for:

GUESSV1, Vo
WHILE v4 = v, DO LOOPFOREVER OD
WHILE vi ZVo At DO T; vi1:=Vv, OD

Of course, it may come to pass that a computation entering atatement gets
trapped in an endless loop. This may seem undesirable, thoé# not affect us:
owing to our existential semantics, we only require tahepath leads through
the conditional.

e Considen/ :# v (wherev,V are distinct variables) to be shorthand for:

GUESSV
IFv=V THEN DO LOOP FOREVER FI

Sometimes we will want the computation to evaluate the digjon of a fixed col-
lection of possibilities. It may not be possible to writegbalirectly in quantifier-
free tests in WAILE loops. In the following, the labels word1, ..., wqgrdct as
local dummy ‘variables’.

e Let wordl, ..., worg be words representing certain possibilities. Con-
sider:

EITHER(wordl, ..., worg)
IF word1l THEN Do 13 FiI

IF wordj THEN Do Tj Fi

to be shorthand for:
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GUESSV,...,V;
IFvi =vo THEN DO 11 FI
IF V1 # Vo AVo =Vv3 THEN DO T2 FI

IFVy#VoA...AVj_2 #Vj_1AVj_1=Vj THEN DO Tj_1 FI
IFVy#VoA...AVj_1#Vj THEN DO T; FI

The BTHER construction allows us to choose between any finite number of
possibilities. Note that, in thelEHER shorthand, we have no need for an ‘Else’
construction, since all possibilities for the antecedeata@vered. In all use of
shorthands we will require that the variables we introduciaé longhand do not
appear elsewhere in the program schemes involving thosthalnds, lest we lose
their information. This may ultimately require the intradion of new variables
to our program schemes. We only need a fixed number of newblasifor this,
and we will usually be sloppy, omitting these variables whering out program
schemes involving shorthand.

2.2.3 Shorthands on successor structures

In the presence of a successor relagsang we will use the following shorthands:

e V = cycsucdV) to be shorthand for:

IF v=maxTHEN DoV = minOD
IF v# maxTHEN Do
GUESSV
IF V' # sucqv) THEN DO LoopP FOREVERFI FI

In contrast tasucg which is a partial functiongycsuccis a total function. More-
over, it is a bijection.

e V :=inv.cycsucqv) to be shorthand for:

GUEssV
IF v # cycsucgV) THEN DO LooP FOREVER FI

e For variablej-tuplesv,V, conside% := cycsucdV) to be shorthand for:

IF vj # maxTHEN Do
(\/1,...,\/]-_1) = (V1,...,Vj-1)
Vj == cycsucqvj) Fi
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IF (vj = max) A (Vj_1 # max) THEN Do
(\/1,...,\/]-_2) = (V1,...,Vj—2)
Vj_1 = cCycsucqy;-1)

\/j ‘= minFi

IF (vj =max A...A(vi =max THEN Do

(V- ,Vj) == (min,...,min) Fi

e Forvariablej-tuplesv,V, conside® := inv.cycsucgV) to be shorthand for:

IF vj # min THEN Do
(V15 Vj_g) = (V1,.-,Vj—1)
v == inv.cycsucgv;) Fi
IF (vj = min) A (vj—1 # min) THEN Do
(\/1,...,\/]-_2) = (V1,...,Vj—2)
Vj_1 == inv.cycsucqvj-1)

\/j = maxFI

IF (vj =min) A...A(v1=min) THEN DO

(V,---,Vj) i= (max...,max Fi

2.2.4 Adding a stack: introducing NPSS

We can increase the power of our program schemes by intnogleeirtain types
of memory. In [2], the authors considered adding a stack.

Definition (Syntax of NPSS[2]) The syntax of NPSQ) is as that of NP§L),
with the addition of two new instructions:

e a push instruction ‘BsH V', where

v € Vijp UVs U{c: cis a constant symbol af} , and

e a pop instructionv:=PoFP' , wherev € Vi;.

Again, the program schemes of NP@$t 1) are those whose tests in while loops
may include schemes from strictly lower strata as extemsiiations.
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For semantics, the push instruction should be viewed asimgishe value
of the given variable (or constant) to the stack, and the psfruction should
be viewed as an assignment instruction removing the cutopnélement of the
stack. If the stack is empty, the pop instruction leavesatsable unchanged.

The following gives us an idea as to the power of NPSS.

Theorem 7([2]). Form> 1, PS"[FO] = NPSSm), andPS‘[FO] = NPSS Fur-
thermore P'[FO] = NPS§(m) = PS{[FO] = NPSS =P.

2.3 Turing Machines

Turing Machines compute on strings and not structures.derahat we can con-
sider the Turing complexity of problen3 C STRUC(0), we will need to have a
standard encoding of structures over a signatureet o = (Ry,...R;j,cy,...Cj),
where the arities oRy, ..., R;j areay, ..., aj respectively.

Over an ordered structuté € STRUC(0) of sizen, we will code eactR;
by a stringbin(R;) over{0,1} of lengthn®. For a number &< r < n& —1, let
T be thea;-tuple that representsin n-ary. SinceA is ordered, thig represents
an a;-tuple 7 over A. Let therth? entry ofbin(R) be a 1 iffa € R, and a 0
otherwise. We code eadh by a stringbin(c;) of lengthn, as if¢; were a unary
relation with one member. Finally, we consid®n(A) to be the concatenation
bin(R)...bin(R;)bin(cy)...bin(cy).

We consider Turing Machines to have a one-way infinite tapaefstate se@
and uniform alphabef = {zera one blank}. The read/write head is initially over
square 1. Given a (non-deterministic) Turing Machinand a stringv € {0, 1}*,
we write T | w, iff T enters the accept state, at some point in its computation,
when it is given inputv over squares 1 tw| with all other squares blank.

We say that a (non-deterministic) Turing Machifeaccepts a probler@ C
STRUC(0o) iff, for all structuresA € STRUC(0o), and for all orderings afl, we
have:

T | bin(A) & A€Q

2This should really be + 1, since otherwise we would be considering the first entiyiafR; )
to be indexed by the number zero. This is an occupationalrtiazfavariously considering the
setZn to be{1,...,n} or {0,...,n—1}. We largely use the former for the chapters on program
schemes, and the latter for the chapters on constraintssaiis.
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Chapter 3
Adding a Priority Queue

We now consider the situation where we have a priority queuenemory. A
priority queue allows us to send elements to memory taggdéid avnumerical
weight. We are free to choose from a range of weights polyatiyabounded in
the size of the structure on which we are computing, but we omdy retrieve
from the maximal (non-empty) weight. We will consider a edyi of semantic
variations, and will, therefore, be no more specific at tiigpas to the properties
of the priority queue. However, we are in a very differentiafton from before,
because now we deal with both elements of structures and ensmBuch is the
power of the inclusion of numbers, that we will find ourseldegaling with Turing
Machines and complexity classes directly, as opposed tdsitiam logics that
capture complexity classes only on ordered structures. &geed free variables
in NPS and NPSS in order to build the stratification withinghdnierarchies.
We do not need that variety of stratification here. Therefemece we are only
concerned with decision problems, we will have no need fee frariables here,
and we dispense with them for the sake of a simpler exposition

Since we will deal in a range of queue weights that is polyradigrbounded
in the size of the structurd on which we are computing, we will have interest
in the numbers 1..,n, wheren = ||A||. We allow ourselves the first and last of
these, 1 and, as constants that we may refer to by name.

Definition. For eachk > 0 , the program schemes of NPSHEQ over a signa-
ture g, involve two finite sets of variables, a 3étof element variables and a set
N of numeric variables. A program schermpes NPSPQKk) consists of a finite
sequence of instructions, where each instruction, otfaer tihe first and last, is of
one of the following forms:

e an assignmentinstruction of the form:=q', wherepeV andqe V uU{c:
cis a constant symbol af} or pe N andqe NU{1,n}

e a guess instruction of the form @Wssv' , wherev e V

22



e an increase (numeric successor) instructiwck m , whereme N
e apush instruction ‘BSHVv,my, ..., my’t whereyv e V andmi,...,my € N
e a pop instructionv:=PoP wherev e V.

e while loops of the form ‘WHILE t DO 1 OD’ , wheret is quantifier-free
FO(0) with free variables amonyg or quantifier-freed=O((1, n)) whose free
variables are amonly, and where is a sequence of instructions of one of
the forms listed.

The first instruction isNiPUT(V, N), and the last OTPUT(V, N). We further define
NPSPQ to beJ,NPSPQK).

As hinted at before, the stratification here — dimengiohthe queue — is quite
different from the stratification we have seen thus far, Whvas based on nestings
of negation. With a priority queue, we will have sufficientihgoutational power
[at what would have been the first level of that nesting] toreqtiire stratification.

The assignment and guess instructions, and the while |bepsyve as before.
Observe that in each case there are two modes of use: onesréda¢lements,
the other to numbers. We do not allow the guessing of numariables simply
because itis unlikely to be useful. The instructiol@k mincreases the numbaer
by one, under the convention thatdr nis 1. This ensures thatitr is a function,
like cycsucg and in contrast teucc The push instruction sends the element in
question to the priority queue tagged with weidktuple (m1, ..., my), i.e. the
current value of those numeric variables. It is for this ozethatk is considered
the dimension of the queue. We will consider a number of @dtiare semantics
for the pop instruction:

u  The pop removes, deterministically, the last element tcelne t the queue
at whatever is the maximal non-empty weight. This semariads to a
potentially unbounded queue size, and hence will be raféoras semantics

u.

b  The pop removes, deterministically, the last element tcelne t the queue
at whatever is the maximal non-empty weight, and then scalibsther
entries at that weight. This is equivalent to the conditibattthe queue
has only one space at each weigle, new pushes would overwrite. This
semantics leads to a (polynomially-)bounded queue sizkhance will be
referred to as semantids'!

Iwhenk = 0 there are non's.
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u+ As with ‘v, but the maximal weight is also returned. This requires pop
syntax p,my,..., Mg =: POP. We refer to this as semanticg+'.

b+ As with ‘b, but the maximal weight is also returned. This also recgipep
syntax p,my1,...,myi =: POP. We refer to this as semantics+'.

As before, the pop instruction leaves its variable unchdnfjghe queue is
empty. Also as before, thenbPUT instruction non-deterministically assigns el-
ements of the structure td. The numeric variabledl are set initially to 1.
Again, we consider an accepting computation of a prograrara€eip on a struc-
ture A to be any one that reaches)@uUT, and we denote thigd = p. We refer
to each of the four alternative semantics above specifitailguperscript, e.qg.
NPSP@* (k). Again, we will refer to the classes endowed with successtir w
the subscrips, e.g.NPSPQ* (k).

We will use the following shorthands, specific to schemes BERQ:

e Consider BrRm=m To m’Do 1 NEXT to be shorthand for:

m:=m

WHILE m# m’ Do
T
INCRmMOD

T.

e Consider Ircr mto be shorthand for:

m:=1m:=m

INCR Y

WHILE m # mDo
m’ :=m
INCRM OD

m:=m’.

e Consider BrRm=m DowNTo m’ Do 1 NEXT to be shorthand for:

m:=

WHILE m# m’ Do
T
DECRmMOD

T.

Note that FOR loops are inclusive with respect to their limits.

e Considem:=m +m’ to be shorthand for:
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m:=m
FormM” =1 Tom’ Do INCR m OD.

e Considem:=m —m’ to be shorthand for:

m:=1
DECRmM; DECRmM
FormM"” =m DowNTo m’ Do INCR m OD.

Henceforth, we will feel free to put arithmetic terms suchmas- m” as limits
in FOR loops.

Letmbe aj-tuple (my,...,m;) of numeric variables. Considextr mto be
shorthand for:

IF (mj=n)A...A(mp=n) THEN DO INCRmy;...;INCRmM; OD
IF(mj=n)A...A(Mg=n)A(Mp#n)THEN DO INCRMp;...; INCRmM; OD

IF mj #nTHEN Do INCRm; OD

Let 1 andn! be thej-tuples of 1s andhs, respectively. We have that¢r m
returns the lexicographic next number, subject to the catiwee that NCR (n}) =
(11). Define DEcRmanalogously. Sums and differencesjdtiplesm andm are
defined in the natural way. However, we will insist that weereattempt the sum
or difference of g-tuple andj’-tuple whenj # j'.

Computing over a structutd, with ||A|| = n, we find we have been granted
basic modulon arithmetic. This is ostensibly weaker than an ordering @f th
elements of4, but it will ultimately allow us to build such an order.

Remark.For eachj, 1) represents the number 1, in moduﬂbarithmetic, and
n' represents the additive identity (zero). So, for exampleRI1! = 1! + 1) =
(1,...,1,2), where 2 isNCR 1.

3.1 Asingle weight:k=0

The bottom level in our apparent hierarchy merits briefrdatta. In the presence
of a single weight, it is apparent thiat- (respectivelyu+) is no stronger thab
(respectivelyy).

Lemma 8. NPSPQ(0) = NPSs(1) = NL

Proof. We already have the second equality; we prove the first.
(NPS5(1) € NPSPQ(0)). Trivially, we will have for anyp € NPS(1), that
alsop € NPSPQ(0).
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(NPSPQ(0) € NPS(1)). The priority queue may hold only one element
at any time, and, as such, behaves like an extra elemenbiari&urthermore,
the ability to count in NPSPEI0) may be simulated by the successor relation of
NPS(1). Specifically, ifo € NPSPQ(0) involves|V| element variables and\|
numeric variables, then we constrgéte NPS;(1) with [V|+ |N|+ 3 variables.
Our simulation is made somewhat more complicated by ouremtion that pop-
ping from an empty queue leaves the variable unchangedsthisy we need the
extra variables/, v’ (we usev =V’ to signify that the queue is non-empty). We
constructp’ thus:

|NPUT(V]_, VIV V4L - aV\V\+|N\quueU9v,7V”)
VAV
Tsim

/
OUTPUT(V]_, R 7V|V|7V\VH—1: R vV\VH—|N\quU6U9\/7\/ )

Wheretgn is the body ofp (i.e. with the input and output lines removed), with
the following substitutions:

e Convert all instances of variables to variablesy ;.

Convert all instances of the numeric constant 1 (respdgtimgto the ele-
ment constanmnin (respectivelymay).

Convert all instances of NCR my’ tO: “Vjy|j := CyCSUCEV)y|4i)".

Convert all instances of BSH Vi’ to: ‘Vgueue:= Vi ; V :=V"".

Convert all instances of/f := PoP' to:

IFV =V’ THEN DO
V| = uneue; \/ ;é \// Fl

It should be clear that we have, for all structures A = piff A =p'. ]
Lemma 9. NPSPQ(0) = NPSS(1) =P

Proof. We already have the second equality; we prove the first.

(NPSS(1) € NPSPQ(0)). Trivially, any p € NPSS(1) is such thafp €
NPSPQ(0).

(NPSPQ(0) € NPSS(1)). The priority queue’s single weight here acts as
a stack. We may use a similar, though simpler, reduction ab ofi the previ-
ous lemma: we no longer need the variableg” in any capacity, and we leave
instances of ‘BsH Vi’ and ‘v; ;== POP' in p unchanged ip’. O

26



Remark.The previous lemmas are somewhat misleading. We had poovier
free variables in NPS and NPSS, but we have none in NPSPQ. rEheps
results, therefore, can only authoritatively refesemtencesf NPS;and NPS§,
i.e.those schemes without free variables. The only reason wefaaivariables
from NPSPQ is to simplify our exposition. The previous lensmauld hold in
generality, if we were to allow free variables in NPSPQ.

When we are deprived of the successor relation, we find NFPSBGNPS(1)
(respectively, NPSP€J0)ZNPSS 1)), since the parity problem may be expressed
in the former, through counting, but not in the latter. Of @y we will have the
inclusions

e NPSPQ(0) C NPSPQ(0) = NPS(1) and
e NPSPQ(0) C NPSPQ(0) = NPSS(1).

We conjecture that these inclusions are proper, and incpdati that NPSP&0)
is contained within LFR- COUNT[FO], which is known to be strictly contained
in P [31].

3.2 The Hamilton Path problemisin NPSPQ

We proceed by examining the power of the program schemes 8R@P and, in
particular, one of their numbeyp with the ability to accept th&lP-complete
Hamilton Path problem. The Hamilton Path probfeHP is exactly the class of
digraphs that have a directed path containing each veriastlgonce. The fol-
lowing is part of the program scherpgp € NPSPQ'(2) that non-deterministically
builds an order on such a structure.

1. INPUT(V1, Vo, My, Mp, M)

2. FORmp=1TonDo

3. GUESsv;

4. FORm=1TonDo

5 PUSH v1,mp,m NEXT NEXT

Our method is simple enough: we produteopies ofn guessed vertices, each
copy occupying weightsi,1) to (i,n) for 1 <i < n. These could be genuine
orders, but only if we haven’t picked some element twice eAline 5, the queue

2In contrast to TCAR,PS etc., which we initially defined as global relations, wérdeH P
as a decision problem.
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looks like this (entry followed by weight):

A=~

Xn o (n,n)
N
’>/<.n\ (1,n)

At line 6, we proceed by consuming— 1 copies of oum guessed elements to
see if some element is repeated. First we look at the last angylast element,
Xn, Stored at weightn,n), then we look throughin,n— 1) to (n,1), elements
Xn-1,-...,X1, to see if it is repeated. Next, lines 11-13, we remove theesadad
(already checked) elemext at weight(n— 1,n) and repeat the process for—
1,n—1)to(n—1,1). If we do thisn—1 times, finding no element guessed twice,
then we know we do indeed have a genuine order left in weights) to (1,n).

(If the first element had been repeated we would have alreiadg\kered that; we
only needn— 1 iterations here.)

6. FORMm =1Ton—1Do

7. Vo .=PoOP

8. FORMp=m Ton—-1Do

9. v1 .= POP

10. IFvi =Vvo THEN DO LOOPFOREVERFI NEXT
11. IFmp#n—1THENDO
12. FOrRmz=1Tom Do
13. Vo = POP FI NEXT NEXT NEXT

For any computation that gets past line 13 the queue will liak

> (1,n)

X1 (17 1)
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where we know that, ..., X, is an ordering of the vertices. We will now search
along it for a Hamilton path:

14. vq := PoP

15. ForRmp=1Ton—-1Do

16. vo:=vq

17. vi:=PopP

18. IF —=E(vy,v2) THEN DO LOOP FOREVERFI NEXT
19. QUTPUT(V1, V2, My, Mp, Mg)

It is because we can non-deterministically guess all ondsrihat there will be an
accepting computation if, and only if, the structure has alitan path. For all
digraphsg, we will have§ |= pyp iff G € HP.

The schem@yp computes in such a way that, on all inp@tst only uses any
weight at most once. Consequenflyp also accepts the Hamilton Path problem
under semanticls. Clearly,pyp can undergo minor syntactic changes to produce
a program scheme that acceptB for semanticsi+ andb+, too.

3.3 NPSP@ C NPspace

With the polynomially-bounded memory of NPSE,Qhe following is almost
immediate.

Proposition 10. NPSPQ@ C NPspace.

Sketch Proof.The proof is by simulation. Fop € NPSP(Q we will construct
a non-deterministic Turing Machink, together with an exhibited bouridsuch
that, for all structuresd (of sizen), and all orderings ofd, the following are
equivalent:

e AED.
e T | bin(A).
e T | bin(A) with the read/write head never leaving the filssquares.

Note that equivalence of the last two guarantees Tha an NPspace machine
since there exists sonhe(dependent on the maximum relation arity of the signa-
turec) s.t. |bin(A)| = O(n").

If pe NPSPCE(k) and involvesj program scheme variables (element or nu-
meric) then we need to record at mo&t- j items, corresponding to the entries
on the priority queue and the assignments of the variablgs af any point of
the simulation. Each of thes® + j items may take at most possible values,
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so each of these items may be written s tape in logn) squares. We do not
give full details ofT’s simulation, but note that the amount of tape space redyuire
to hold all these® + j items isO((n 4 j)log(n)). It follows that we may take

| :=k+j+1. O

Corollary. NPSPQ C NPspace.
Proof. The inclusion NPSP&C NPSPQ is trivial. ]

3.4 Expanding alphabets

At present there are precisatydistinct symbols that we can send to the queue,
namely the elements of the structure on which we are comgutitowever, we
can expand this alphabet by always pushing and poppingles, instead of sin-
gle variables. In this way we potentially increase our wogkalphabet ta!
symbols.

LetVvbe aj-tuple of variables. We work in semantigsbut our results apply to
semanticai+, and also to NPSS. A similar method may be used for semantics
andb+, although at the cost of more weights. The method by whickamesults
for semanticsl transfer to semantidswill be explored later.

e Consider ‘RISHV, M to be shorthand for ‘BsHvj,m ; ...; PUSH vy, .

e ConsiderV:= PoF' to be shorthand forv; := PoP ; ...;vj := PoP' (note
the reverse order).

By these methods, we can push and pop tuples as if they wagke silements.
We can now set up special symbols by the use of a certain chomersuppose
we wanti special symbol#/4, ..., M;, then we can achieve this, in a rather sloppy
manner, by always pushing and poppifig- 1)-tuples(vy,...,Vi+1), using the
convention:

e (V1,...,Viy+1) Wherevy = v, is the element;.

o (V1,...,Vi+1) Wherevy # Vo A Vo = vz is the symboM;.

o (Vi,...,Vir1) Wherevy # Vo A...AVi_1 # V; AV; = Vi;1 IS the symboM;_1.

e (V1,...,Viy1) Wherevy £ Vo AL AV, # Vi41 IS the symbolM;.
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Note that all(i + 1)-tuples are defined. Henceforth we will assume a finite set of
special symbols at our disposal.

Given a program scheme in which we are always pushing andim®pp
tuples, we may drop the line over the variables, and use it@iohly when re-
ferring to somej’-tuple of ‘variables’ each of which is actually jatuple of real
variables. This should not cause too much confusion. THig@gult in our hav-
ing variablesv that can hold values that do not represent actual elementeof
universe on which we are computing. Such special charaatfirsonstitute the
symbol set\.

3.5 Pushing and Popping Numbersin NPSP@' NPSPQ.

For program schemes of NPSE@ NPSPQ, considerV := elemenfm)’ to be
shorthand for

V:=min

FORmM =1 Tom-—1 Do

GUESsV

IF V' # sucqv) THEN DO LOOP FOREVER FI
V.=V NEXT

and ‘m:= positionv)’ to be shorthand for

V :=min
m:=1
WHILE V #v Do
GUEssV/
IF V"’ # sucqV) THEN Do Loop FOREVER Fi
INCRM
vV :=Vv' 0D

The instructiornv := elementm) assigns to the mth element of the universe,
conversely the instructiom := positionv) assigns tan the position of the ele-
mentv in that order.

For j-tuplesm= (my,...,m;j) andv= (vy,...,V;j):

e Considew :=elementm) to be shorthand for, := elementmy) ; ...;vj:=
elementm;).

e Considerm := positionV) to be shorthand fom, := positionvy) ; ...;
m; := positionv;j).
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3.5.1 NPSPQ" (k) = NPSPQ(k).
Lemma 11. NPSPQ* (k) € NPSPQ(K).

Proof. The proof is by simulation. For afi € NPSPQ™" (k) we construct @’ €
NPSPQ (k) such that, for all structures, we haveA = piff A = p'.

The program schem@ will involve all the variables op together with a new
k-tuple of element variableg,. Wherep pushes and pops single variables,
will always push and pogk + 1)-tuples of variables (of which the trailifgtuple
contains the weight).

e Convert all instances of BsHv,m , in p, to the following inp’:

Vm := elementm)
PUSH (V,Vy), M

e Convert all instances ofv;m:= PoF' , in p, to to the following inp’:

(V,Vm) := PoP
m:= positionVy)

Corollary. NPSPQT (k) = NPSPQ(k)
Proof. The converse inclusion NPSE®) C NPSPQ™" (k) is trivial. O

3.5.2 NPSPA" =NPSPQ.
Lemma 12. NPSPQ@* (k) € NPSPQ(2k).

Proof. The proof is broadly similar to that of the previous lemmat \Wwe will
require more than single weights to store tke- 1)-tuples of that proof. For all
p e NPSPQ* (k) we construct @ € NPSPQ(k) such that, for all structures,
we haveA = piff A Ep'.

The program schem@ will involve all the variables op together with a new
k-tuple of element variableg, = (V& ..., V).

e Convert all instances of ®sHv,m , in p, to the following inp’:

PUsH v, (M, 1¥)
PusH WK, (M, 11 n)

PusH v, (m,n, 1k 1)
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e Convert all instances ofv;m:= PoF' , in p, to to the following inp’:

(V,Vm) := PoP
m:= positionVpy)

Corollary. NPSPQ@* =NPSPQ
Proof. The inclusion NPSPE&k) C NPSPQ* (k) is trivial. O

3.6 NPSPJd(k) C NPSPQ'(K)

Intuitively, semantical appears at least as strong as semaiftids is relatively
straightforward to prove this.

Lemma 13. NPSPQ@(k) C NPSPQ'(K).

Proof. The proof is by simulation. For ap € NPSPQ@ (k) we construct g’ €
NPSPQ'(k) such that, for all structured, we haveA = piff A E=p'.

The program schemg will involve all the variables of together with two
newk-tuples of numeric variablas/,m’ and a new element variable Assume
thatM is a special marker symbol not used @yBuild p’ from p by adding the
following lines to the beginning (afteNPuUT):

For™ =1KTo nkDo
PusH M, M NEXT

This sends a copy of the markerto every weight on the queue. Finally, convert
all instances of v, m:= PoP' , in p, to the following inp’.

m = nk
vV = PopP
WHILE I # 1KAV = M Do
DEcCrM
vV ;= PoprP OD
IFV # M THEN DO
vi=V
WHILE V # M Do
vV :=PopP OD Fi
Form’ =m To nkDo
PusH M, m’ NEXT
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The given subroutine counts, top-down, the number of empighis in the queue
of p — these contain jud¥l in the queue op’. When it finds something other than
an M, it stores this inv then removes everything else at that weiglg, until it
reaches anothdvl. The situation where the queue pfis empty is dealt with
by the conditional/ # M in the sixth line. Finally, arM is returned to each of
the weights of the queue @ above and including the weight of the retrieved
element. O

Corollary.
e NPSPQ(k) € NPSPQ(K)
e NPSPQ* (k) C NPSPQ'™* (k)
e NPSPQ@* (k) C NPSPQ™ (k)

Proof. Our proof is equally valid for these statements. O

=

Remark.lt may seem that our method is unnecessarily complicatesimolating
semanticd with semanticsi, when popping from the queue at a certain weight,
why do we not simply then pop everything else off at that saragt (foregoing
any need for the markeévl)? This method would generate very simple proofs
for the last two statements of the corollary, and a relagieglsy proof of the first
statement of the corollary. However, it would not easily ppleed in the case of
the statement of the theorem.

3.7 NPSPQd(k) C NPSPQ'(k+2).

Lemma 14. NPSPQ(k) C NPSPQ'(k+2).

Proof. We prove the inclusion by simulating the successor relatWa take any
schemep € NPSPQ(k), and construct a schenpée NPSPQ'(k+ 2) such that,
for all structuresA, A Epiff A Ep/.

Assume, without loss of generality, thatinvolves element variableg and
numeric variabledN, and thatvy,v> ¢ V andmy,mp,mg ¢ N. Givenp we will
constructp’ by adding a special start-routine, a special end-routimé aaending
push and pop instructions, as well as successor tests ie l@oips.

LetV' =V U{vy,vo} andN' = NU{my,mp, mg}. Thenp’ will be:

INPUT(V',N)
Tstart; Tp: Tend
OuTtpPuT(V/,N’)

We will now meet the sub-routin€Sar, Tp, Teng, and explain why each one
performs the function that will be claimed of it.
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3.7.1 Start-routine: Tstart

We will add a sub-routinas;at to the start, that builds an order ovéis n el-
ements. We will simply guess an order, as we digirp, and we will put this
putative order in the Weighl(SL", 1,1) to (1", 1,n). Tstart Will first send a special
marker symboM to each of these weights via:

Formy =1 TonDo
PusH M, (1%,1,m;) NEXT

We then add lines 2-13 of the schemg that solved the Hamilton Path problem,
with the proviso that weight tuplesm, mp) in pyp become(lk,ml,mz) iN Tstart.
Any computation that gets throughart will leave the queue looking like:

o (1%1,n)
M (1K 1,n)

X1 (1k7 17 1)
M (1%1,1)

wherexy, ..., X, is an ordering of the elements 4f

3.7.2 Simulation ofp: Tp.

The main body of, the sub-routine,, is that bit that actually simulates It will

use higher weights of the forifm, n,m), where the line omn specifies &-tuple.
Before we get to the main simulation, we will push a speciatk@asymbolM’

to weight(n, n, 1¥) to ensure that we never stray into the lower weights, in which
the order is contained, during the simulation. Thus:

PusH M/, (n,n, 1K)
For the actual simulation:
e Convert all instances of ‘®sHv,M to: ‘PUSHV,(n,n,m)’.
e Convert all instances ofv:= PoF' to the following inp’:

V1:=V; V.= PoP
IFv=M’ THEN Do PusH v, (n,m, 1) Fi
Vi=vp

35



The simulation of pop is rather complicated because ther@igrogram scheme
p must leave a pop unchanged when the queue is empty. But wketutue
associated witlp is empty, the queue associated withstill contains entries in
the lower weights beneat¥t’.

We may also have to evaluate quantifier-free successoraguefithe form
vV = sucqv), that might appear in a test for a while loop, immediatelyobefhe
test of that while loop. Letb be a propositional formula that involves the atom
V = sucqv):

e Convert all instances of WILE ®(V = sucqv)) Do T OD to:
TSUCC; WH”_E CD(mz - n) DO T,TSUCCOD

Wheretgyccis the sub-routine:

m:=1m: =1
WHILE my #n Do
GUESSVy

PUSH vy, (15,1, my)
IFvi =vTHEN DO
INCR M
GUESSVy
PUSH vy, (1,1, my)
IFvi =V THENDO My :=nFI FI
INCR M, OD

Observe that andv are free in the sub-routine. What is happening in the while
loop in the added sub-routine is that we are guessing whabywe to be an order.

If it is the order that we guessed at the start, then= niff V' = sucgv). We will
check later that all these guessed ‘orders’ are not onlyigerarders, but also the
same as the first. In this manner, each instane€-efsucgv) in ® becomes a test
of my = n. There may be any constant number of tests of the fdrmsucqv),
involving different variable pairs: each one of these wallise its own copy of the
TsuccSUb-routine to appear before, and in, the while loop.

3.7.3 End-routine: Teng

Once the simulation g is accomplished we will want access to the lower weights
to verify that these ‘orders’ we have been guessing are unifothe same. We
will want to pop everything on the queue down to, and inclgdihe markeM’.
Teng Will therefore begin:

WHILE vy # M’ Do vy := Pop ObD.
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At this point the queue will look like:
Yn,s

yn1 (1%1,n)

{zsx

wheresis the number of times that we needed to check successoequefivhile

loops. We already know thai, .. ., x, is an order of the elements — what we must
now check is that:

e X1=¥Y11=...=VY15s
[ ]

® Xn=Y¥Yn1=-...=VYns
SOTeng CONcludes:

FOrRm=1Ton
vi .= PopP
WHILE v1 # M Do
Vo i=V;
v1 .= PoP
IF v1 # vo THEN DO LOOP FOREVER FI OD NEXT

Corollary. NPSPQ'" = NPSPQ" = NPSPQ = NPSPQ.

Proof. NPSPQ" C NPSPQ@T is trivial;, NPSPQ" C NPSPQ was proved

in Lemma 11; NPSP®C NPSPQ' was proved in the previous lemma; and,
NPSPQ C NPSPQ'™ is trivial. O
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Remark.Whilst we have NPSPHC NPSPQ, there is no reason to think that
NPSPQ@ C NPSPQ. NPSPQ can simulate NPSP®up to a point, as we will
see, but if there is a super-polynomial number of successts in a scheme of
NPSPQ, then we can not use our method to simulate in NP&PQ

3.8 NPspace C NPSPQ

Let Q C STRUC(0) be some problem ifNPspace. Then there exists a positive
integerk and a non-deterministic Turing machifesuch that, for all structureg
(of sizen), and all orderings ofi, the following are equivalent:

e T | bin(A).
e T | bin(A) with the read/write head never leaving the filssquares.

e AcQ.

Let Q be the set of states af, including start statgs and accept statg,.
In addition to variables ranging over the elementd pive will want to enlarge
our alphabet such that we also have:

e The set of pair§l = {(zeraq), (oneq), (blank g) : g € Q}.

e The special symbolk, R, andU. These will track the movement df's
read/write head.

e The marker symbd\l.

SinceQ is fixed this will not be a problem.

Let I C N2 be such that(ys, 1), (Y2,q2)) € [ iff y1 =y». I appears to be a
rather unusual set, but we will need to verify such pairs exireue in our given
simulation.

LetA C M?U (N x {L,R}) be such that:

o ((y1,01),(Y2,02)) € Aifthere is atransition rule of from (y1,01) to (y2,02).

¢ ((y,q),R) € Aif there is a transition rule that moves the read/write head
Right from(y,q).

¢ ((v,0),L) € Aifthere is a transition rule that moves the read/write heeftl L
from (y,q).

A is, therefore, our visualisation dfs transition rules.
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Theorem 15. NPspace C NPSPQ.

Proof. We aim to prove this by simulation. We will construct a pragracheme
pa € NPSPQ(k+ 1) such thatd = pq if, and only if, A € Q. Then® weights of
the form(1,m) will mimic the n squares of the Turing machiffe The line orm

will always refer to &-tuple. pg will be:

INPUT(V,Vq,V,V, V', TR T )
Thin(A)s Tsims Tend
OUTPUT(V, Vg, V,V, V', M, T 1)

We will now meet the sub-routin€gn(4), Tsim, @ndTeng, and explain why
each one performs the function claimed of it.

3.8.1 Preparation:Tbin(A)

First we will write the marker symbd¥ to the weightg(1,1X) to (1,n%). Before
we can simulate the computation ©fwe must writebin(A) to the queue. We
will do this by randomly writingzerg oneor blank, together with the start state
s, Simultaneously to the weight rangés 1¥) to (1,n¥) and (n,1¥) to (n,nk).
The n* entries in the rangél, 1) to (1,n%) will represent then® squares of the
Turing tape at the start of computation. We let the variableange over these
tape squares in the following.

Form= (1¥) To (nX) Do

PusH M, (1,m)

EITHER(Zero, One, Blank)

|F Zero THEN Do PuUsH (zerags), (1,m); PUSH (zerags), (n,m) Fi

IF One THEN Do PusH (oneqgs), (1,m); PUSH (onegs), (n,m) FI

|F Blank THEN Do PusH (blank gs), (1,m); PusH (blank gs), (n,m) Fi
NEXT
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This will leave the queue looking like:

—
(Vo) (k)

(y(l)k; gs) (n,1)

—=

(ygka qs) (17 nk)
M (1,

0000 (1,19
M

where eachy € {zerqoneblank}. We will consume the top copy in weights
(n, 1¥) to (n,n¥) to check thay?,, ...,y is an encodingin(A).

If ois a signature with relatiorR;, Ry, ..., R;, of aritiesay, ay, ..., a; then the
coding of Ry will take the weights(n, 1¥) to (n,1¢+n®), the coding ofR, will
take the weight$n, 1X+n? + 1) to (n, 1K+ n? +n? 4 1) etc. Fori <k, note that
thei’th power ofn is represented by theary vectorn' that has a 1 in positions
1<i"<k—iandamin positionsk—i < i’ <k.

We will explicitly give the method whew = o, = (E?), i.e. on graphs. In
the sequence),, ..., y%, we must ensure that all apart from the fitdentries are

blank We must then ensure that the firétentries code the edge relation of the
graph. Recall that? = (1,...,1,n,n)3.

ForRM=n* DowNTo 1¥+n2+ 1K Do
v.= Pop
IF v # blank THEN DO LoOP FOREVER FI NEXT
FoOrR M= n2 DowNTo 1¥K Do
V.= PopP
IF v=Dblank THEN DO LoOP FOREVERFI
(V1,...,V) :=elementmy,...,my)
|F E(Vk—1,Vk) AV=zeroTHEN DO LOOP FOREVER FI
IF —E(Vk_1,Vk) AV=o0neTHEN DO LoOP FOREVER FI NEXT

3\We retain the line on thi-ary n to distinguish it from the binarg? = (n,n).
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Any computation that gets through that will leave the quewking like:

Vo
M (1,n%
B (1,19
M (1,19
~~

wherey),....,y% is necessarily a copy dfin(A) — which we consider to b&'s
tape on input. The superscript O refers to time 0.

3.8.2 Simulation: Tsjm

Throughout the simulation we will keep track of the positminT’s read/write
head in a numeric variabletuple m ,, and the state will be remembered in a
single variablevg.

In simulating thath step ofT we first guess what type of movewill perform
at that stage. We will verify later that these were valid cksiin the computation.
There are two basic cases: either moving the read/write; heachanging the
entry at the read/write head’s current position. We can ratenteft from position
1% and if we move right from positiomk we may assume we do not have an
accepting computation.

In the first case we write the symbRlor L to the weight(1,m ), depending
on whether the read/write head is to move right or left. We raghthe position
of the read/write head as storedTm , either adding one, or subtracting one.
Afterwards we guess what will be the entriesTd$ tape at timea + 1 and write
them, together with the current state storedsnto all the weights(1,1¥) to
(1,n). We will want the tape-entries we have guessed to be exaeilyame as at
timei, written beneath them on the queue (except for the intraclusbmewhere
of a symbolR or L). We will only verify that this is the case at the end of the
simulation.

In the second case we write the symhbto the weight(1,m ). We then
choose a new state to go into, amendig@ccordingly. We then guess the entries
of T's tape at tima + 1 and write them, together with the new state storedg,jn
to all the weightg1, 1) to (1,n¥). In this case we will want the tape-entries to be
the same as at tineexcept possibly for the weight,m ), i.e., for entries split
by aU symbol. We will verify this at the end of the computation.

This simulation will continue until we guess that we go inte taccept state

Ca-
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WHILE Vq # 0a DO

3.8.3

EITHER(RIight, Left, Unmoved)
IF Right THEN Do
IF Ty = n* THEN DO LOOP FOREVERF
PUSHR, (1, /)
INCR Yy, FI
|F Left THEN DO
IF Ty = 1 THEN DO LOOP FOREVERF
PUSH L, (1,1 )
DeECRM  FI
IF Unmoved THEN DO
PUSHU, (1,M /)
GUESSVg; IFvg ¢ Q THEN DO LOOP FOREVERFI
Form= (1¥) To (n¥) Do
EITHER(Zero, One, Blank)
IF Zero THEN Do PUSH (zeravg), (1,m) FI
IF One THEN Do PusH (ongvy), (1,m) Fi
IF Blank THEN Do PusH (blank vg), (1,m) FI NEXT OD

Verification: Teng

We now move into the verification, in which we check that weéhatfected a
legitimate computation.

If t is the length of the simulated computation, then at this f{peach weight
(1,m) of the queue, representing timth square of the Turing tape, will have a
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stack on it looking something like

(ytmv Oa)
(Y hath)

(&L g+
R
(Vi 9°)
(ygrl;qh+1)
U
(v, o)

(y&.ah)
(y]:’Lm qS)
M

Note that entrieRR, L, U, or, indeed,M may never be adjacent. We will read
these entries off such that we can consider three adjacentat At any point the
variablesv,V,V’ will hold descending successive entries on the stagky will

be:

Form= nk DownTo 1K Do
v := PoP; V := Pop; V' := blank
WHILE V' #4 M Do

V' := Pop

Tcheck

v:=V;V =V OD NEXT

In the case that V' ¢ {L,R,U}, we will simply check that the tape-entry in
is the same as i. This is not quite the conditiom= V/, since each such entry
on the queue is a pair of tape entry and state, but it is theitondv,V') € T, i.e.
the tape entries containedvrandv’ are the same — even if the states are different.
In the case that € {L,R,U } we do nothing.
WhereV is the symboR we check thaty*1,q+1) and(y',q) (in vandVv’,
respectively) are the same. It is actually consequent osimwlation method that

4The gs with superscript should be considered as representdtisense state irQ, just as
theys with superscript are representative of ond zdra one blank}. Thegs with subscripte.g.
Us, 0a, are actual states.
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g1 =q. We must also check wheth&rhas a transition rule in statg reading
y' to move right.

We do analogously whevi is L.

WhereV is the symboU we check thaT has a transition rulgy',q'), (Y1, g*1))
(stored in(v,Vv")) in A.

ThusTtcheckWill be:

IFv,V ¢ {L,RU} THEN DO

IF (v,V') ¢ A THEN DO LOOP FOREVERFI FI
IFV = RTHEN DO

IF vV THEN DO LOOPFOREVER FI

IF (\,R) ¢ A THEN DO LooP FOREVERFI
IFV =L THEN DO

IFv#V' THEN DO LOOP FOREVERFI FI

IF (v,L) ¢ A THEN DO LOOP FOREVERFI
IFV =U THEN DO

IF (v,vV') ¢ A THEN DO LooP FOREVERFI FI

The result follows. O
Corollary. NPspace C NPSPQ
Proof. Recall NPSP@= NPSPQ. O

3.9 A polynomial-time restriction of NPSPQJ'.

Definition. A program scheme € NPSPQ'(k) is said to bepolynomially step-
boundedf there exists g such that, for all structured, p acceptsA if, and only
if, p acceptsA within n! steps. Let:

{p : pe NPSPQ'(k) andp is polynomially step-boundef

Proposition 16. NPSPQ),, € NPSPQ.

Proof. We prove this by simulation. The idea is that we can nevengitéo use
a weight more than once. Given some& NPSPQ'(K) o1y, and thej that is the
polynomial power of its step bound, we will construcpac NPSP(’j’(kjL i),
such that, for all structures, A = piff A =p'.

Let the line orm indicate aj-tuple. Assuménis a numeric variable tuple not
involved inp.

Givenp we construcp’ by
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e adding, after every line, except the last, the instructions

INCRM _
IFmMm=n! THEN Do LooOP FOREVER FI.

(mwill act as a step-counter ipl), and
e converting all instances ofUBH v, (my, ..., M) to PUSH V, (my, ..., Mg, ).
]
Corollary. NP C NPSPQ

Proof. The simulation method we used in proviNgspace C NPSPQ' will also
proveNP C NPSP(,,. The result follows from the previous lemma. ]
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Chapter 4

Adding Universal Quantification

4.1 Introducing APS(1)

The schemes of NPS have existential quantification buitbiough their guess
instruction. NP®1) is devoid of any notion of universal quantification. The
higher strata, NP@n), have some notion of universal quantification, through
negation of existential quantification, but have no fagitd combine both types
of quantification within while-loop recursion. We considiee effect of explicitly
adding universal quantification. We are, once more, wittloeiistack.

Definition (Syntax of AP31)). The syntax of AP&L) is as that of NPS(1), ex-
cept the extant GESs instruction is renamedGUESS, and a new instruction
VYGUESsis added, with identical syntax.

The schemes of NR3) accepted a structure, expanded with values for the
free variables, iff there existed some accepting compratie. at each point the
program went through aAGUESS v, there existed an assignmentisuch that
thenceforth the scheme made it to output. The schemes of( HPfcept an
expanded structure iff:

e at each point the program goes throughGUESSYV, there exists an assign-
ment tov such that thenceforth the computation makes it to output, an

e at each point the program goes througiiGUEss v, we have that for all
assignments te the computation thenceforth makes it to output.

These instructions have an appealing semantic charaatterisn terms of the
configurations of a schenpee APS(1). When computing on a structurg, we
can construct an alternating greqzélt@f’q just as we constructe@’,, but with the
additional information that a configuratiq@,w, 01) is universaliff W represents
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line |, and the instruction on linfl + 1) is avGUESS. Observe that, for the edge
relation ofASi, there is no difference betweelGUESS andVGUESS, since in
each case the configuration can move to any configuratiorstidentical except-
ing the guess for the pertinent variable. Let the the linez danote an-tuple,
the line onu, v denotej-tuples, the hat ow denote dp|-tuple, and the line oR, y
denote(i + |p| + j)-tuples.

Proposition 17. Suppose € APS(1) has i free variables and j input-output
variables, and thatp(X,y) is a quantifier-free first order formula expressing the
edge relation oﬂSf’q, then the following are equivalent:

e A=p(2)

AE WL, . Wi W = W2 A
AW, -, W, V\/17E\A/2/\..._/\V\/|p|_17§V\/‘p‘ N
30,V ARAR YWJ((Z W, ..., W), 1), (Z W], ..., W, V)

Proof. Follows immediately from the semantics of APL$ and the definition of
ASQ. Recall that the bizarre constraints on the are our encoding of the first
and last lines. O

Just as acceptance in NP is a reachability (transitive closure) problem, so
acceptance in APQ) is an alternating reachability problem.

Corollary. APS(1) C +ARY[FO].

Not only can the schemes of APB be recast as formulae of AfFO], but
a scheme of APA) can express the Alternating Reachability relation. In orde
to prove this, we will have use for another shorthand thavaslable to us in the
presence of our new instructiGiGUESS.

e Letwordl, ..., word be words representing certain possibilities. Consider:

ALL(wordl, ..., word)
IF wordl THEN DO 11 FI

IF wordj THEN DO T; FI

to be shorthand for:
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VGUESSVy,...,Vj
IFvi =vo THEN DO 11 FI
IF (V1 # V2) A (V2 = Vv3) THEN DO T2 FI

IF (Ve # Vo) A A(Vj—2 #Vj—1) A(Vj—1=Vj) THEN DO Tj_1 FI
IF (V1 #V2) A...A(Vj—1 #Vj) THEN DO Tj FI

ALL is the universal counterpoint to the existentia EER. When a program
scheme meets an'BHER instruction it will accept iff one of those choices leads
to acceptance; when a program scheme meets theimstruction, it will accept
iff all of the choices lead to acceptance.

Proposition 18. There is a program schenpr(u,v) € APS(1) with two free
variables that expresses the relatigiR. Formally, for all alternating graphsA,
and vertices aa' € A:

A= par(a @) iff A= AR(a,d) (thereis an alt. path ind from a to &)

Proof. We will constructpar. First we note that the relation AR,v) may be
written in LFP[FO] as LFRAPxy](u, V), whered(P,x,y) :=

(x=1y)V (IsP(x,s) AU (s) AE(s,y)) V (ISP(x,s) AU (S) A [VTE(s,1) — P(r,y)])
This can be re-written ap(P,x,y) =
(x=y) VIsPx,s) A ([FU(s) AE(s,y)] V [U(s) AVI(=E(s,r) VP(r,y))])

Note that thedsquantifies everything to its right. We will denote the two gorcts
after that quantification as Left and Right. Thus:

e LeftisP(x,s), and
e Rightis([-U(s) AE(s,y)]V[U(S) AVr(=E(s,r)VP(r,y))]).
Lettar(U,V,X,Y,S 1) be the sub-routine involving free variables:

X:=Uy:i=V
WHILE x# y Do
JGUESSS
ALL (Left,Right)
IF Left THEN Doy :=sFI
IF Right THEN DO
IF -U(s) AE(s,y) THEN Do x:=YyFI
IF =(-U(s) AE(s,y)) A—U(S) THEN DO LoOP FOREVER Fi
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VGUESST
IF =(=U(s) AE(s,y)) A—E(s,r) THEN DOX:=YyFI
IF =(=U(s) AE(s,y)) ANE(s,r) THEN DO x:=r FI OD

We now separ(u,V) to be:
o INPUT(X,Y,I,S); TAR; OUTPUT(X,Y,I,S)

par evaluates whethefu,v) is in AR from the outside-in, hence andy are
initially set tou andv, respectively. Each path of the computation succeeds only
when the variables andy become equapar mimics exactly LFRAPxy|(u, v):
indeed if the rank ofu,v) in LFPAPxy](u,v) is j, i.e. (u,v) € ¢! but (u,v) ¢
Pi—1, thentar will go through the while loop [a maximum of] times. O

Proposition 19. ARY[FO] C APS(1)

Proof. Take any formula¢ € ARY[FQ]. Then ¢ is of the form
Jug...up3ve...vjr ARAX Y| (T,V), wherey is quantifier-free. We construct
Pe € APS(1) such that, for all structured, A = py iff A |=¢.

Let py be:

INPUT(X,Y,S,T, U1, .. S Ujr, Ve, . ,Vj//)
JGUESS Uy, .. SUj, V1,

OUTPUT(X,Y,S,T, Uq,...,Uj,V1,...,Vjr)

L
Theorem 20. APS(1) = ARY[FO]
Proof. Follows from the previous two propositions. ]
Corollary. APS(1) = ARY[FO] = LFP[FO] = AR*[FO].
Proof. ARY[FO] = LFP[FO] = AR*[FQ] is proved in [16]. ]

4.2 Introducing APSS1)

Here we consider the situation where we augment the scheheBS(1) with
a stack for memory. We will find that we can quantify over thacktin a way
that was not possible with NPSS. Consequently, order wilbeca problem, and
we quickly establish that we subsuri®space. We will have no need for free
variables to generate stratification: as with NPSPQ, weedisp with them.
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Definition (Syntax of APS$1)). Notwithstanding the forbidding of free vari-
ables, the syntax is that of ARE), with the RusH and Pop instructions of
NPSS1).

Definition. Suppose the program scheme APSS1) involvesj variables. Then
a configuration op, computing on a structuré, is a sequencé, |, w) giving the
values of the variables, the number of the line just exegwtrd the contents of
the stack\y € |A[*).

Each such program scherme computing on a structurd, gives rise to an
infinite alternating grapbﬂ92[, defined as in the previous section. We say there is
afinite alternating pattbetween configurations ¢’ in ASfZl, if there is ani € w
such thatc,c’) € Y'(P,x,y), wherey is as in the proof to Proposition 18.

For some structurd, letT” 4 be some subset ¢fL|*. Then for some signature
o, letT be the global sefl 4 : A € STRUC(0)}.

Definition (Recognising Stacks\We say that the global sétis recognisableff
there is gpr € APSS1) such that for allA the following are equivalent:

e For allv, there exist¥ andw € |A|* such that there is an alternating path
in AGY from configuration(v, 1,w) to configuration(V, |pr |, w).

e wely.

Suppose thatr is the subroutine constructed fropa be removing the input
and output instructions. We are stating that, for ed¢hhe uniform subroutine
Tr, when confronted with a staak, finishes (.e. does not loop forever) if, and
only if, we 4. This is independent of the values of all input-output Valea
going intotr. Essentiallyg; recognisesv.

If a subroutine, computing oA, recognises a stack with contemts= |A|*,
without ever popping off more than the top entrigs(|w/| < |w|), then it fol-
lows that that subroutine will recognise any word(im' }.|A|*. This suggests that
sometimes recognition only relates to the top portion ofdtwetents of a stack.
This motivates the cartesian product in the following:

Lemma 21. Let M; be a special marker symbol. The following is recognisable as
the stack:

{{M1,X1,..., %, M1 : X1,...,X, is an ordering of A| }.|A|" : A€ STRUC(O)}
* indicates cartesian produét

where the ‘.| A

There is potential for ambiguity here: Byl|* we mean any possible finite string afal
elements ofd, i.e. anything that could possibly be pushed to the stack, as @gjpwsjust those
symbols (encoded as tuples) thepresenkelements ofA.
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Proof. Recall thatA is our set of additional special symbols. Therefore A iff
X represents hona fideelement of the structure on which we are computing. We

v1 :=PoP; IF v1 # M1 THEN DO LOOP FOREVER Fi
VGUESS V2
IF v, ¢ A THEN DO
v1 .= PopP
WHILE vy # Vo DO
vi1 .= PoprPOD
vq .= PoP
IF vy =V, THEN DO LOOP FOREVERFI
WHILE vi # V2 A v1 %= M Do
v1 .= PopP
IFvy =Vo THEN DO LoOPFOREVERFI OD FI

The subroutine works by checking that evdrgna fideelement appears once
(lines 4-6), and only once.e. not again (lines 7-11), between two markbfts
The following schemg accepts the global set of the lemma:

INPUT(V1,V2)

Torder
OUTPUT(V1,V2).

O

We will also define the following subroutimg,s, Which pushes a random
(non-deterministic) number of random (non-determin)stimices (excep¥l;) to
the stack:

JGuEessV,V’
WHILE V # V' Do
JGUESsSW
IFW =M1 THEN LOOP FOREVER FI
PUsSHW
JGuessV,V' Ob

4.3 The ACCEPT instruction.
With the inclusion of a universal side to our semantics, wi kave need of

an AccePT instruction which, as its name suggests, tells the comiputéd im-
mediately accept. Any program schegpiethat involves an ACEPT instruction
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should be considered shorthand for a scheraeAPSS1) in the following way.
Assume, w.l.0.g., that’ involves variable sé¢ and thatvi,v» ¢ V. Let 1’ bep/
without the input and output instructions. Construfrom t’ via the substitutions:

e All testst in while loops inT’ become tests; # v At inT.
e Allinstances of AACEPTIN T becomev; ;= Vv, in T.
Thenp should be considered as:

INPUT(V, V1, V2)

Vi iF£ Vo

WHILE v; #Vv>, DO T OD
OuTPUT(V,V1,V2)

Note that, once1 = v», the program can never get trapped in an infinite loop, and,
consequently, must make it to output.

4.4 APSS(1)=APSS1)
Lemma 22. APSS(1) C APSS(1).

Proof. We prove the inclusion by simulating the successor relatia take any
schemep € APSS;(1), and construct a schenpé € APSS1) such that, for all
structuresA, A =piff AfE=p'.

Assume, without loss of generality, th@involves element variablég, with
v1,Vo,v3 ¢V, and does not use the marker symbial Givenp, we will construct
p’ by adding a special start-routine, and amending pop instns as well as
successor tests in while loops.

LetV' =V U{v1,v2,v3}. Thenp' will be:

INPUT(V')

PUsH M1

Tpush

PUSH M1

ALL (CheckOrder, Continue)

IF CheckOrder HEN DO Tgrger; ACCEPTFI
IF Continue THEN Do FI

To

OuTpPuT(V)
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wheret, is the, as yet undefined, subroutine that actually mimpicSbserve how
we are using the AL instruction to use the stack twice, once for verification of
the order, and again for whatever we want to do in the restettmputation.
The stack is no longer readable only once, as it was with NP$&e that the
ALL choice ‘Continue’ is a dummy, in that any computation thébfes that path
will continue through the rest of the program.

We will now meetr,.

4.4.1 Simulation ofp; 1,

Any computation that gets to this sub-routine will havig as the top element of
the stack. Assuminil; is not a symbol op, we can use it to ensure that we never
stray into the bottom part of the stack, where the putatideois held, during our
simulation ofp. In constructing,, we first remove the input and output lines (of
p). Next we,

e convert all instances of/:= POP' to:

V1=V
v.= Pop
IFv=M1 THEN DO PUSHV;Vv:=vq FI

We may also have to evaluate quantifier-free successoraguefithe form
vV = sucqv), that might appear in a test for a while loop, immediatelyobefhe
test of that while loop. Le® be a propositional formula:

e Convert all instances of ‘WiLE ®(V = sucqv)) Dot OD’ to:

Tsucc
WHILE ®(vy = Vo) DO T; Tsycc OD

Wheretsyccis:

ALL (CheckSuccv, Continue)

IF CheckSuccv HEN DO
WHILE v; # M1 Do vq := Pop OD
WHILE v # Vv Do vy := Pop OD
Vo = PoP
IEV, =V THEN DO ACCEPTFI
LoorPFOREVERFI

IF Continue THEN Do FI
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Observe that’ andv are free in the sub-routine.

The subroutine works by splitting the computation, bothokiveg thatv' =
sucdv) (consuming the stack in the process) and continuing the atatipn with
the stack intact. O

Corollary. APSS(1) = APSS1)
Proof. The converse APS8) C APSS(1) is trivial. ]

4.5 NPspace C APSS(1)

We will ultimately prove this by simulation of a non-detemstic Turing Ma-
chine that uses no more thafitape squares (for sonk, on inputbin(.A), where
||A]| = n. First, we will need some technical lemmas, which are stédethe
case when the signatureds, i.e. for graphs. Similar lemmas may be obtained
for other signatures. Lehbe such that X m < nk, then we identifym with the
lexicographiamth variablek-tuplev, with respect to the built-in successor.

Lemma 23 (Recogniséin(9)). Let M; and M, be special marker symbols. The
following is recognisable as the stack (the brackets ard¢hstic, and appear, as
the commas, purely for clarity):

{{T, 0, M2),(2,05,M2),..., (N, a5, M2),M1}.|G*
1§ € STRUG(02), a7...05 =bin(§), a5 7, ..., 0 = blank}

Proof. Lettingv = (vy,...,V), we definetp;,:

(v,V, V') ;== Pop
IFV#1VV'#M; THEN DO LOOP FOREVERFI
W:=V o
WHILE V# nk Do
(v,V, V") .= Pop
|F V= sucqWw) THEN DO LOOP FOREVERFI
IF V' % M THEN DO LoOP FOREVERFi
IFV>n2AV #blank THEN DO LOOP FOREVER FI
IF E(Vk_1,V) AV =zeroTHEN Do LoOP FOREVER Fi
IF =E(Vk_1,Vk) AV = 0neTHEN DO LOOP FOREVER FI
w:=vOD
V' := Pop; IF V' # My THEN Do LooP FOREVERFI

Thenp, as NPUT(V,V, V' W); Tpin; OUTPUT(V,V, V' W), recognises the global set
of the lemma. 0
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Lemma 24 (Read/Write Head Right)Let M; and M, be special marker symbols.
The following is recognisable as the stack (the bracketsanthetic, and appeatr,
as the commas, purely for clarity):

{ {(m7am7M2)7"'7(R7GW7M2)7(I7GI7M2)7"'7(m_ 17am7M2>7M17

(M+ 1,057, M2), .., (K, 0, M), (1, 0, M2), ..., (T, 0m, M2), M1 }.[G*

:§ € STRUG(02), Of;...,0 ¢ € X}

Proof. We definet; _right in two parts. One part will check that the numbars
to m— 1, andm+ 1 to m behave correctly; that the markers are placed properly;
and that thexs are in>. The other part will check that thees match in the two tape
lists, i.e. eachaT that appears before the filst; is equal to theuT that appears
between the first and secoMys. In the following, the variablegp will hold
the number of the first entry of the first tap®)( andUpgiomWill hold the number
of the last entry of that tapen(— 1).

DefineTcheck formto be:

v,V , V') := Pop

IF(vieN)V...V(WweN)V(V&Z)V (V' #Myz) THEN DO
LooPFOREVERFI

Tiop .=V

Upottom:= INV.CYCSUCTop)

(Ww,w,w’) := Pop

WHILE V # Upgttom DO
v,V V") .= Pop
|F W # cycsucgVv) THEN DO LOOP FOREVER FI.
IFV ¢ 2V V' # My THEN DO LOOP FOREVER FI
w:=vOD

V' := Pop; IF V' # M1 THEN DO LOOP FOREVERFI

(v,V,V') := Pop
IF(vieN)V...V(WweN)V(V&Z)V(V #My) THEN DO
LooP FOREVER FI
|F V# cycsucqUop) THEN DO LOOP FOREVERFI
WHILE V # Tgop DO
(v,V,V') := Pop
|F W # cycsucgVv) THEN DO LOOP FOREVER FI.
IFV ¢ 2V V' # My THEN DO LOOP FOREVER FI
w:=VvOD
V' := Pop; IF V' # M1 THEN DO LOOP FOREVERFI

The first half of the sub-routine (12 lines) checks the fornthef stack up to, and
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including, the firstM1. The second half (last 9 lines) does the same up to, and
including, the secont¥l;.
DefineTcheckcontentO be:

VGUESSW

IFwi € AV...VW € A THEN DO ACCEPT FI
(v,V,V') ;== Pop

Tiop :=V

Upottom := INV.CYCGSUCETop)
IFV=W THEN DO Vfjrstq :=V FI
WHILE V#W Do

(v,V,V') := Pop

Vfirsta .=V OD

WHILE V # Upottom DO
(v,V,V") ;= Pop OD
V' := Pop

(v,V, V') ;== Pop
IFV=W THEN DO Vsecona :=V FI
WHILE VW DO

v,V V') .= Pop

Vsecona :=V OD

IF Vfirs’[q % Vsecondx THEN DO LOOP FOREVER Fl

The three lines culminating in the middi¢’‘:= PoP’ remove down to, and in-
cluding, the firsiM;.
We now givet; jy_right

ALL (CheckForm,CheckContent)
IF CheckForm HEN DO Tcheckform F!
IF CheCkCOHtent mEN DO Tcheckcontent Fl

Now, p, as:

INPUT(V, Vv, \//aV_V7V\/7V\//7Vfirsta7Vseconak)

Tr jw—right
— A /
OuTPUT(V,V, V', W,W W’ Vfirsta, Vsecond: )

recognises the global set of the lemma. O
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Lemma 25 (Read/Write Head Left)Let M; and My be special marker symbols.
The following is recognisable as the stack (the bracketsanthetic, and appeatr,
as the commas, purely for clarity):

{ {(maamaMZ)a"'7(ﬁaa_ﬁaM2)7(I7u17M2)7"'7(m_ 1,am,M2),M1,
(M—=1,05-1,M2),..., (N, 05, M2), (1,a1,M2),..., (M= 2,05, M2), M1 }.[G[*

: G € STRUG(02), ag,...,0¢ € z}
Proof. We construct, ,,_jeft In @ similar manner ta; sy_rignt - O
Proposition 26. NPspace C APSS(1)

Proof. We aim to prove this by simulation. As before, and w.l.0.ge, assume
thatQ € NPspace is a graph problem. Similar lemmas to those previous may be
obtained for other signatures. Suppdde NPspace is accepted by the Turing
MachineT, with space bound af on inputbin(A), where||A|| = n. We con-
structpg such that, for all graph§, and for all orderings of, bin(§) € Q iff

S E pa.

We will consider our alphabet expanded to include|t@e+ |Z| symbols rep-
resentingl’s states and alphabet; we also assume the additional maykdyols
M1 andM,. We will storeT’s state in one variable,: let gs andg, be the distin-
guished start and accept states. Once afjashow we envisagd’s transition
rules (f. section 3.8)pq will be:

|NPUT(\_/,\/,\//,V_V,V\/,V\//,Vfirsta,Vsecon@(,Vq,\/q)
Vg :=0s
PUsH M1
Tpush
PUSH M1
ALL (CheckBin,Continue)
IF CheckBin THEN DO Tpj, ; ACCEPTFI
IF Continue THEN DO Fi
WHILE Vq # 0a DO
(v,V V") := Pop; PUSH (V,V,V’)
EITHER(RIight,Left,Unmoved)
IF Right THEN Do
IF (Vg,V,R) ¢ A THEN DO LOOP FOREVER Fi
PUSH M3, Tpush PUSH M3
ALL (Verify,Continue2)
IF Verify THEN DO Ty jy_right ; ACCEPTFI
IF Continue2 HEN Do FI Fi
IF Left THEN DO
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IF (Vg,V,L) ¢ A THEN DO LoOP FOREVER Fi
PUSH M1; Tpush PUSH M1
ALL (Verify,Continue2)
IF Verify THEN DO T, y_jeft ; ACCEPTFI
IF Continue2 HEN Do FI FI
IF Unmoved THEN Do
v,V V') := Pop
JGUESSW, v,
IF(vq, V', Vg, W) ¢ A THEN DO LOOP FOREVER Fi
Vg := Vg ; PUSH(V, W, V") Fi
ODp
OUTPUT(V,V, V', W, W , W', Vtirsta, Vsecond: Vs V)

4.6 Summary

Below, we summarise the results of this chapter, and thequsy
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NPSPQ@(0) C NPSPQ(0) = NPS(1) = NL
NPSPQ(0) € NPSPQ(0) = NPS§(1) = P
NPSP@P(k) C NPSPQ(k)
NPSPQ(k) C NPSPQ'(k)
NPSPQ@*" (k) € NPSPQ(2k)
NPSPQ@" = NPSPQ
NPSPQ*(k) = NPSPQ(K)
NPSPQ@t = NPSPQ
NPSPQ" = NPSPQ" = NPSPQ = NPSPQ
NPspace @~ C NPSPQ
NP C NPSPQ,, < NPSPQ C  NPspace
LFP = APS(1)
P = APS(1)
NPspace C APSS$(1) = APSY1)

Figure 4.1: Summary of Results
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Chapter 5

Classes of Structure on which
P = +PSFO]

In [42], various classes of structu@zwere studied, on which, for sonke

NPSSk) = PS[FOJ captures exactl. The method used in the proofs involved
building a canonical order in NP3K— 1), whereupon, since NP3 = P on
ordered structures, the result followed. The following isamsequence of that
work:

Proposition 27 ([42]). Let C be any class of structures, and kety,z be vari-
able j-tuples. Suppose there are formula@R ..., Wn,X,y,2z) € £+P[FO] and
W(Wy, ..., Wn) € PS[FO] such that, for allA € C:

e Ris commutative iR andy, and deterministic iz, i.e.,

AlE YW, ..., WnXYZ RW,...,Wn,X,Y,2) < R(wy,...,Wn,V,X,2)

AE YWy, .. WXy 32 Rw, ... ,Wm, X, Y,2) — 312 Rws, ..., Wm,X,Y,2)
o A E Y(wy,...,wy) if, and only if

in the deterministic, commutative Hypergraph specified by
R(Wy,...,Wm,X,¥,2) on |(A,wi,...,Wm)|!, we have, for all us |A],
u) = (u,...,u) is accessible from .
o A E 3wp, ..., WmP(Wi,...,Wp).
ThenP = £PS"kIH1[FQ] on the clas<C.
Any tuple (wy, ..., W) s.t. A = W(wy, ..., Wyn) may be consideredgenerat-

ing tuple forA. Generating tuples will be denot¢g;, . ..,gm), and their underly-

ing generating seftgs, . ..,gm} asG.
The principle results of [42] were:
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e Onthe class of locally-ordered strongly connected digsapk= +-PS![FO].
e On the class of planar triangulatiofs= +PS[FO].

In these cases, the constructionygfas in the proposition, is fairly straightfor-
ward. However, if we are prepared to sacrifice a few levels RS [FO], we can
disregard) altogether.

Given some relatiolR € +PS[FO], as in the proposition, there must neces-
sarily be some € P§‘+3[FO] that will satisfy the required conditions. We may
takeW(wy, ..., Wny) :=

YU PSAX,Y,2 R(W1, ..., Wim, X,Y,2)] (w1, ul)

Since we may write thgu as—3u-, Re +PS[FO] indeed implies that
P € £PSH3[FO.
The following is now immediate:

Corollary. Let C be any class of structures, and bety,z be variable j-tuples.
Suppose there is a formula(Ry, ..., wm,X,y,2) € £PS[FO] such that, for all
A € C, there exists a generating tuplgs, . ..,gm) € |A|™ such that:

e R(g1,-..,0m,X,Y,2) is commutative irx andy, and deterministic iz
e Forallu e |A], ul is R-accessible frorfg; ).

ThenP = £PS4[FQ] on the clas<.

5.1 Finitely generated sets

Intuitively, a setA on which some partial functions are defined is described as
m-generated if it has a (generating) subsaenalements such that all elements of
A may be obtained by (possibly nested) applications of thasgapfunctions on
the elements of this subset.

WhenF is a finite set of partial functions, each of some finite antg, will
want to define the sdt* of all functions that can be created from thosd-iy
repeated relabelling and substitution. So lon§ a®ntains a non-unary function,
F* must be infinite (even under equivalent relabellings), sinavill have func-
tions of all arities. Throughout this chapter we will use adketed superscript to
indicate the arity of variable tuples or partial functioridius, whilst for an ele-
mentx, X< denoteghe ktuple ofxs, the notatiok) specifies a variablk-tuple,
whose different positions may hold different values.
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Definition. For some finite structurd, letF = {fy,..., f;} be partial functions
of respective aritiesy,...,a; (i.e. fl(al) AR — A, .. fj(a") L AR — A
ThenF* is defined inductively via:

] f]_(V]_,...,Val>,..., fj(V]_,...,Vaj) e F*.

e (Projection/Reordering.) If € F* of aritya, anda’ < a, thenlet{ny,...,na}
and{n},...,n,} be subsets d of ordera anda, respectively. If we have
afunctionp: {ny,...,na} — {n},...,n,}, thenf’ € F*, of arity &, where:

(Vg -, Vg ) i= T (Vp(ng)s -+ Vp(na))

e (Composition.) Iff, f’ € F*, with respective aritiea, @, thenf” € F*, of
arity (a— 1+ &), where:

f”(v1,...,Va_1,Va, -, Vara—1) i= F(V1,.. ., Va1, ' (Va, - - -, Vaya—1))

Projection/Reordering is nothing more than relabellinghaf variables. Be-
cause of the Reordering rule, we have no need to explicitiytime compositions
that occur other than at the right hand end of the outer péutiation. The mini-
mum depth of nestings of Composition in a partial functfoa F* will be known
as therankof f in F*.

Definition. LetF = {fy,..., f;} be a set of functions of respective arit&s. . ., ;.
Letor = (fy,..., fj) be the associated signature. Then:

e STRUC(og, m) is the class of finite structures oveg, such that, for all
A € STRUC(og, m), there exists a generating sub&t {gi,...,0m} C
|A|, such that, for every € |A|, there exists an arity, a f() ¢ F*, and a
W) = (wy,...,w) € G, such thau = (W),

STRUC(og, m) is said to be the class of structures that canmbgenerated
by the set of partial functions.

5.1.1 F contains a singlek-ary partial function fo.

Theorem 28. For each m, we have th& = +PS*FO] on the class
STRUC(O'{fO},m).

Proof. Let k be the arity of the partial functiorfp, and letx,y,z be variable
(k+ 1)-tuples. We will define a deterministic, commutative Hypaph rela-
tion R(w,...,wm,X,Y,2), in quantifier-freeFO, such that, for all structured €
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STRUC(ay1,3,m), there existgy, .. .,dm € |A| such that, for alli € [A], uktlis
accessible frong;**1. We may then appeal to the Corollary of Proposition 27.

We will specify R(wy,...,Wm,X,¥,2) asR(X,y,2), where the entries of,y,z
may be among the variableg, ..., wn. We will defineR over (k+ 1)-tuples
from ({P,Q,S L} & |A|)k+1,

The symbold, Q, andSare used for switching rules, andrepresents blank.
(Note that we can enlarge our alphabet to include theseap®anbols in pre-
cisely the manner we did in Section 3.4. Thus, each ‘varialediscuss here,
will, in point of fact, be a quintuple of actual variables.)

We begin with the ‘start’ rules:

o RIWE™), (W), (P wy)).
o RI(P.ULwi), (PUR L w), (PR L wipq)] forl<i<m.
We now progress to the ‘active’ rules:
Switching:
o R[(P,UK ) (PUkT M) (Q,k=T xM)] forx!) € |A]', andi < k.
o R[(Q,L% T x1), (Q,UkT x)), (S KT x1)] for %) € A", andi < k.
Concatenation:

o RI(P.UM M) (Q Uil yy (PUkI-T g gy for 0 € |A],
vy e |AJ, andi+j <k

Production:
o R(Q,U,xk=0y (sl k=0, (P,L1 2)] fori+ j =k, andfo(X,y) =z
and the ‘finish’ rule:
o R[(P,LK1 %), (S LK1 x), (xXt1)] for x e | A.

Finally, we consideR to be the symmetric closure of the above rulies,for all
)—((k+1)’y(k+1)72(k+1),

RxKHD) glktd) HrD)y o ReyplktD) glkiD) HlkiD)y).

This ensures the commutativity Bf

Ris clearly deterministic irtktY), and can be written in quantifier-fréeO.
We will now prove that, for all € |A|, u** is accessible frongs“L. It follows,
from the start and finish rules, that this is equivalent togbestion of whether
(P,LUK1 u) is accessible from the collectig®, L1, g1),..., (P,U*1 gm).
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We know that, for each suadh, there exists a partial functiof") e {fo}*,
and tuple(wy, ..., W) € {g1,...,gm}", such thau = f()(wy,...,w;). We prove
(P,LUk"1 u) is accessible by induction on the rankfd¥).

(Base Case.) When the rank 8f) is 0, thenr < k, and it follows thatu =
fo(wi,..., W) for somews,...,w; € {01,...,gm}. We may accessP, LI u)
from (P,UX1,g1),...,(P,L*1, gm) by repeated use of Switching, then repeated
Concatenation, and finally a single application of Produrcti

(Inductive Step). Assuming it works for rardk we prove it works for rank
5+ 1. If () is of rankd+ 1, then it follows from the definition of rank, and the in-
ductive hypothesis, that= fo(wx, ..., W), where(P,LU< 1 wy),... (P,LK 1 w;)
have been accessed (simeg...,w; are generated by partial functions of strictly
lower rank). Again, we acced®, "1 u) by repeated use of Switching, then
repeated Concatenation, then a single application of Rtamu O

5.1.2 F contains multiple partial functions.

Theorem 29. Let F be a finite set of partial function symbols. For each m, we
have thatP = +PS*FO] on the clasSSTRUC(oF, m).

Proof. We reduce this case to the previous. Suppgosentainsj partial functions
of respective aritiesy,...,a;. Leta=maxXay,...,a;}. We aim to construct a
single partial functionfg, of arity (a+ j), that simulates all the functions .
wi) = (w,...,w;j) will represent functiond; to fj according to our ubiquitous
scheme:

o if wi =w, thenw)) representd;,

o if Wi # W» butw, = ws thenw!l) representds,

.

o if Wy # Wo, ..., Wj_2 # Wj_1 butwj_; = w;j thenw!)) representd;_1, and
o if Wy #Wo, ..., wj_1 # w;j thenw(l) represents;.

Supposew representsf; whose arity isa. Consider fg (X&), y(@-3) W) to be
fi(x@)), if f; is defined ak®), and undefined otherwise.

Sincej is fixed, this construction ofr can be specified in quantifier-fré®.

]
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5.1.3 An application: finitely generated groups

We say that a finite groupl is m-generated if there exists a setrafgenerating
elementss = {gi,...,0m}, such that for every € H we have somg € G* such
thatx =y y (wherex is the usual Kleene star). Clearly, all groups of ordem

arem-generated.

Corollary. For each m, on the class of m-generated finite grougS*[FO] = P.
Corollary. On the class of finite simple groupsPS*[FO] = P.
Proof. Recall that finite simple groups are 2-generated [3, 39]. O

Despite finitely generated groups being a paradigm for osiesys, it should
be noted that the results of the previous section go well heypoups; beyond
single functions, and beyond associativity.

5.2 Hamiltonian Outerplanar graphs

A graph is said to beuterplanarif it can be drawn in the plane with all its vertices
on the outer face. Such a drawing will be called an OP-drawing

Definition. A Hamilton cycle in a grapl§, where||G|| = n, is a sequencgy. of
distinct verticesy; (for 1 <i < n) such that, for XKi < n, E9(vi,vi+1), and also
ES (Vn, V7).

We consider @amiltonian outerplanar graptHOP) to be an antireflexive,
undirected, outerplanar graph with a Hamilton cycle. Wetdig noting some
basic properties of outerplanar graphs that have a Hantitole.

Lemma 30.

(i) Consider anHOP graph G, with Hamilton cycle g¢ Then, in anyOP-
drawing of§, syc must be on the outer face.

(ii) ForanyHOPgraphg, the subgraph given by any Hamilton cycle is unique.

(i) G has a uniqué®P-drawing in the plane, up to combinatorial isomorphism.

Proof. (i) Note that any OP-drawing @ty is combinatorially equivalent to the
n-gon (1= ||§||). Thus,s,yc Must appear on the outer face of any OP-drawing.
(i) Consider a grap§ with two Hamilton cyclessyyc ands, that give rise
to different subgraphs. In any OP-drawing$fsyyc and s’CyC must be drawn as
distinct n-gons over the same vertices. Yet not both can be on the cater f
violating part(i) .
(iii) The unigue Hamilton cycle subgraph dictates the unique @RAdg.
]
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» X

Proof forwards Proof backwards

Figure 5.1: Diagrams for Lemma 31.

We make use of this unique OP-drawing by now referring, ungodusly, to
theouter face.

Lemma 31. There is a formula(x,y,z) € j:PS°’[FO] that holds on aHOP G if,
and only if, x and z are the distinct neighbours of y, on thepfzce.

Proof. We first defineP(x, z,y,w) € =PS'[FO], intended to mean that there is a
path fromx to z avoiding bothy andw. We defineP as the Transitive Closure
(though in Path System logic) of the following form@a

B(p,a,y,W) = PAYAP#AWAQF#YAQ#WAE(P,Q)

Thus,
P(x,zYy,w) := PSAp, p,q0](x,2)

Now, §(x,y,2) =

E(xY) AE(Y,2) AX# 2\
Yw[(w# XAW # ZAE(y,w) — =P(X,Z,y,w)]

We now prove thax andz are the distinct neighbours gf on the outer face of,
if, and only if, § = ¢(X,y, 2).

(Forwards.) Ifixandzare the distinct neighbours gbn the outer face, then the
first three conjuncts af are clearly satisfied. Furthermore, the edge between any
distinctw andy must cut across the OP-drawing®{see Figure 5.1). It follows
that all paths fronx to zmust go through eitheror w. HenceS§ = ¢(x,y, 2).
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(Backwards.) Supposeandz are not the distinct neighbours ywbn the outer
face. Ifx andz are not distinct, oy is not adjacent to both, then we fail on one of
the first three conjuncts df. So, assumg andz are distinct, ang is adjacent to
both, butx andz are not the two neighbours gfon the outer face. If we choose
some distinciv that is such a neighbour, then there is clearly a path fxamz
avoiding bothy andw (see Figure 5.1). In any case = ¢(x,y, 2). O

Theorem 32. On the clas$HOP, P = £PS[FO].

Proof. We will define a deterministic, commutative Hypergraph tiela
R(W1, W2, W3, X1,%2,Y1,Y2,21,22), in =PS*[FO] s.t. for all structures; € HOP,
there exist®)1,d2,9s € |G| such that, for alli € |G|, u? is accessible frony;2. We
may then appeal to the Corollary of Proposition 27, with 2.

The rules will be the symmetric closure of:

R{(wy, W), (Wy, W), (Wi, Wa)]
R{(W2,W2), (W2, Wa), (W2, W3)]
R{(W,X), (X, Y), (Y, 2)] if d(W,x,y) Ad(X,Y,2) (Where¢ is as in Lemma 31).
RI(W, X), (W, %), (X, X)] if w7~ X.

That the rules are deterministic, commutative, and can itewin =P S*[FO|
is straightforward. It is also clear that, starting with aniygo, g3 such that
$(01,02,03), all vertices are accessible: froga we accesg), (somenext vertex
on the outer face — which determines whether we are movirgkelise or anti-
clockwise around a certain OP-drawingd)f thengs (thenext vertex on the outer
face — now direction is set), then all the way round the owdee funtil we reach
the final vertex on the Hamilton cycle (before we regglagain). 0

Remark.We can easily extend our result to hamiltonian outerplamaplgs that
are not undirected or not antireflexive, by consideringrthedirected, antireflex-
ive versions. Specifically change all instance&6f,y), in the prior discourse, to

(E(XY) VE(Y, X)) AXF#Y.
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Chapter 6

Dichotomies in Boolean Constraint
Satisfaction

6.1 Introduction

Let o range over all relational signatures. We define the relatidiass of boolean
structures BOL.

BooL = {A : Aisao-structure and|A||l =2}

We denote tuples of variables (resp. boolean constantg)ld) b.g.x (resp.t).
These tuples are not of a uniform arity.

Definition. For.A € BooL, and each with the question as to whetler ¢,

e the problem &Tnc(A) has inputh := IxQ(x),

the problem Q& yc(A) has input, for soma > 1, of the form,

b := VX1 IX2VX33X4 . .. VXon 13X2n12Q(X1, X2, - - -, Xon 4 2)

the problenTl,,1-SATNc(A) has input,

¢ = VX13dX2VX33X4. . .VX2n+1Q(X1, Xo... X2n+1)

the problenTl,, 2-SATNc(A) has input,

b := VX1 IX2VX33Xg . . . VXon 1 13X2n12Q(X1, X2, - - -, Xon 4 2)

the probleniy,,1-SATNc(A) has input,

¢ = X1 VX2dX3VXy. . .E|X2n+1Q(X1,X2. . .X2n+1)
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e the problen®,2-SATNc(A) has input,
¢ 1= IX1VX2IX3VX4. .. VXon12Q(X1, X2 . . . Xon+1)

where, in each cas€) is a conjunction of positive atoms.
The problems 8r¢(A) etcare defined analogously, but with the two boolean
constants 0 and 1 built-in to the signature.

It is clear thatln;2-SATNc(A) (respectively,Zon:1-SATnC(A)) is in the
complexity cIasS'IEn ) (respectively,ZZPn +1)- In fact, it follows from [43] that
they are complete for those classes, for certhitit is also clear thaffl1-SAT yc(A)
is tractable, for all4, since we may check each extensional relation indepengentl
one-by-one, for an invalidating assignment. Indeed, ifrttaximum arity of a re-
lation in A is a, then the complexity of13-SATNc(A) is O(n?), wheren is the
size of the input. It follows, by similar argument [43], tHa$n1-SATNC(A) (re-
spectivelyXon2-SATnc(A)) is in the complexity clasBl Sn (respectiverZZPn 1)

The comments of the previous paragraph apply equally to tbelgmsIT;-
andZ;-SAT ¢, i.e.in the situation where the Boolean constants are available.

Definition. For a relatiorR, of arity a, define:

e J-FORM(R) to be the set of formulae formed from the closure of the atoms
R(x) (wherex is ana-tuple of not necessarily distinct variables), under con-
junction and existential quantification.

e M>-FORM(R) to be the set of formulae of the forkx¢(x,y), whered
3-ForRM(R).

e V/3-FORM(R) to be the set of formulae formed from the closure of the
atomsR(x), under conjunction, existential quantification, and ursaéquan-
tification.

We defined-REL (R) to be the set of relations expressible by formulag-FORM(R),
when reading the variables lexicographically. We do lilsenfor,-REL (R) and
V/3-REL(R). These sets are sometimes known as relational clones [14].

We may refer to boolean relations by some propositional tdanthat ex-
presses them, reading the propositional variables lexégdcally, e.g. [AV B
expresse$(0,1),(0,1),(1,1)}; [A+# B| expresse$(0,1),(1,0)}.

Definition. A relationR, of arity a, is:
(i) O-valid iff it contains the tuplg0?).

(i) 1-valid iff it contains the tuplg12).
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(iii ) horniff it may be expressed by a propositional formula in CNF veheach
clause has at most one positive literal.

(iv) dual horniff it may be expressed by a propositional formula in CNF veher
each clause has at most one negative literal.

(v) bijunctiveiff it may be expressed by a propositional formula in 2-CNF.

(vi) affineiff it may be expressed by a propositional formula that isdbejunc-
tion of linear equations ovei,.

Given atemplatel, over signature involving relatior®, . . ., R;, of respective
aritiesay, ..., aj, we construct the relatioR" thus:

e If A hasj’ < j non-empty relations, then I& be theith non-empty relation
of A.

o LetR* =R, x... xR,

This construction will enable us to consider signatureswitultiple relations,
as though they only had one. This is because each of the sbugéts from the
previous definition hold over all the relations.4ff, and only if, they hold folRA.
Note that all the relations ofl, except possibly the empty relatignare present
in 3-REL(Ry).

Theorem 33(I-1ll: Schaefer [38], and IV: Dalmau/Creignou et al [15,]1L4

l. SATc(A) is tractable if R satisfies any of condition@ii ) — (vi), and is
NP-complete otherwise.

ll. SATNc(A) is tractable if Rt satisfies any of conditiong) — (vi), and is
NP-complete otherwise.

lIl. QSAT(A) is tractable if R satisfies any of conditioni ) — (vi), and is
Pspace-complete otherwise.

IV. QSATc(A) is tractable if R! satisfies any of conditior(gi ) — (vi), and is
Pspace-complete otherwise.

We will briefly consider the methods involved in proving teetichotomies.
When the boolean constants are present, Schaefer was ahketanyR* not in
classeqdi) — (iv), and construct the ternary boolean not-all-equal relatidrich
is known to give rise to aNP-complete &1, andPspace-complete Q&T. When
constants are not present, there are the degenerate c@8sesdfl-validity, which
become trivial. For the other tractable sub-classes of latepA, we clearly have
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that SaTnc(A) is polynomially reducible to 8rc(A), guaranteeing its tractabil-
ity in the no-constants scenario. It remained for him to prtvat T¢(A) is
polynomially reducible to 8rnc(A) for thoseA not in classesi) — (vi). He did
this by simulating the boolean constants. Call a relaRgncomplementativé,
for all tuplesx in Ry, the tuplex’, obtained fromx by swapping the Os and 1s, is
also inR4. Schaefer proved the following:

Lemma 34([38]). For some R, notin classesi) — (vi), either[A], [-A] € 3-REL(Ry),
or [A# B] € 3-REL(Ry ) and Ry is complementative.

Before going further, we will need the following lemma.

Lemma 35([15]). If R4 is complementative, then all relationsW3-REL(Ry)
are complementative.

Proof. We prove this by induction on the term-complexitydo€ V/3-REL(Ry ).
The base case is trivial. For the inductive step, note that:

e R(x) andR(x") complementative, implieRA R (x,x’) complementative.
e R(x) complementative, impliesx;R(x) is complementative.

¢ R(x) complementative, impliegx; R(x) is complementative.
U

We can now sketch Schaefer’s result, and method.

Proposition 36. If R* is in none of the classés) — (vi) above, therBATc(A) <p
SAT NC(A)-

Proof. By Lemma 34, we need to consider two cases.

(Case 1.) We havéy;Q1(y1,b), IyoQo(Yo,a) € 3-FORM(R?) expressingX], [-X],
whereQ; andQg are positive conjunctive. We are now in a position to sinaulat
the constants 0 and 1, for, given an ingth(x, 0, 1) for SATc(A), we know,

Ixd(w,0,1) & Ixdadb d(x,a,b) AJy1Q1(y1,b) A3yoQo(Yo,a)

The latter formula is an input for8 nc(A), when the inner existential quantifiers
are drawn out, putting it in prenex form.

(Case 2.) We haveyQ'(y,a,b) € 3-FOrRM(R*) that expressefA # BJ, and
R% is complementative. It follows that,

Ixd(x,0,1) € SATC(A) < IxJadb d(x,a,b) AIyQ'(y,a,b) € SATNC(A)
since¢ must be complementative (by Lemma 35). O

The problem of removing the constants in % was not attended to by

Schaefer. It was finally settled many years later by Dalm&i, [dnd, indepen-
dently, by Creignou et al. [14].
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6.2 Technical results

Before progressing, we will need a number of technical lesima

Lemma 37 (Quantifier Re-ordering)Let the variables & not appear inx. The
following are equivalent on all boolean structures for adigunctive positive Q:

JIx3avb B(a,b) A Q(a,x)

Vb3x3a B(a,b) A Q(a,x)
If, and only if:

e Bis@(empty), singleton{(0,0),(1,0)},{(1,1),(0,1)}, or
e B containg(0,0) and(0,1).

e B contains(1,0) and(1,1).

Proof. If Bis @, singleton,{(0,0),(1,0)}, or {(1,1),(0,1)} then both sentences
will be false irrespective of.

If B contains bott{0,0) and(0, 1), it may easily be verified that both sentences
are equivalent. The case whd&eontains bott{1,0) and(1,1) is symmetric.

The remaining possibilities fd are{(0,0), (1,1)} and{(1,0),(0,1) }, which
will be each false in the former sentence, but may be truedrdtter e.g.if Qs
logically valid). O

Given the booleak-tuplest; = (ti,...,tX) andty = (t3,...,t5) we definet; @
tp to be(ti +t3,...,t5+tX) where the addition is modulo 2.

Lemma 38 (0-affine case. [13])Let R be a boolean relation of arity k. The
following are equivalent:

(a) RisO-valid and affine.

(b) Ok e R, and, for all assignments, t, € R, we have; ©ty € R.

Definitions. For a relatiorR of arity k, and any seT = {iy,...,i;} of j positions
0<ip<...<ij <k we defineR|T to be thej-ary relatiordx, . .. S R(X1, ..., %),
where{ly,...,lk—j} ={1,...,k} — T. Observe thaR|T is in 3-REL(R).

For anyt € {0,1}KandT c {1,...,k}, we definet|T as the assignmetit e
{0,1}ITl that agrees with in the positions indexed b7 .

Let R be a relation of aritk, andt € {0, 1}" an assignment. We say thais
j-compatiblgw.r.t. R) if, for every subseT C {1,...,k} (of size|T| < j), we can
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find some assignmetite Rsuch that andt’ agree in the positions indexed by
This is equivalent to the condition that apyary sub-tuple of can be extended to
somek-aryt’ in R. Clearly this is trivially true when is itself inR; the interesting
cases are when it is not.

The notion ofj-compatibility is key in characterising horn logical rédats.

Lemma 39(horn case. [15])Let R be a boolean relation of arity k. The following
are equivalent:

(a) Ris horn.
(b) forall ty,t; € R, we haveg Aty € R.

(c) forevery TC {1,...,k}, and for every| T |-compatible (w.r.t. IR') assign-
mentt € {0,1}/T/ notin RT, we have that contains at most a singfe

Lemma 40 (Adapted from [15]) If R* is 0-valid and non-Horn, then there is a
relation § definable in3-ReL(R") such that:

€S #3
(0,0,0,0) (0,0,0,1)
(0,1,0,1)

(0,0,1,1)

Proof. SinceR" is non-horn, we may guarantee to break ge)tof the previous
lemma. This implies that there is a subset of indites {1,...,k} and a|T|-
compatible assignmentnot in R|T that contains at least two zeros. We may
benefit from dwelling on what exactly this means. It guarastes somé¢T |-ary
relationR|T, in 3-REL(R*), and a|T|-tuplet s.t.

o t¢R|T,
e for anyt’ that agrees with in all but one positiont’ € R|T, and
e t contains at least two zeros.

We therefore considé®|T (vs,.. ., V7)) and two indicesx, B € Z7| at whicht has
zeros. Note thatcan not be all zeros, sin¢eis 0-valid yett ¢ R|T. Letl’ be the
set of indices at whichis one. Finally, let” be the set of indices, other tharj,

at whicht is zerd. We obtainS}(x, v, Vg, y) fromR[T (v1,...,vjr|) by substituting

it is possible that” is empty, in which cassj\‘ will actually be a ternary relation. This will
cause no problems, and will come out in the wash in Lemma 42.
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all variablesy; s.t.i € I’ by the variabley and substituting all variablegs.t.i € 1”
by the variablex.

We already know that0,0,0,1) ¢ $ and we have assumed thrits 0-valid,
hence(0,0,0,0) € S;‘\‘ Since(0,0,0,1) ¢ § we will have(0,1,0,1),(0,0,1,1) €
§ by the |T|-compatibility, since these two assignments each only ghahe
value of a single variable iR|T. O

Lemma 41 (Adapted from [15]) If R* is O-valid and non-affine, then there is a
relation &} definable in3-ReL(R*) such that:

€S ¢S

(0,0,0,0) (0,1,1,0)
(0,1,0,1)
(0,0,1,1)

Proof. SinceR is 0-valid and affine, it follows from Lemma 38 that there are
assignmentg,, t, € Rsuch that; ©t; ¢ R FOrR(xy, . .., Xx), define:

o Voo={v:ve {x1,...,x} visOintgand Ointy }
e Vor={v:ve{xs,...,x} visOintyand 1int; }
o Vip={v:ve {x1,....x} vislintgand Ointy }
o Viz={v:ive {x1,....x} vislintgand 1inty }

Let ﬁ(yoo,ym,wo,yll) beR(xy,...,x) with the substitutiongoo for Voo, Yo for
Vo1, Y10 for V1o, andy1; for V11. The claimed properties follow immediately.[]

Lemma 42. If R* is 0-valid and non-Horn and non-affine, then there is a relation
S\, definable in8-ReL (R*) such that:

€S, ¢Sy

(0,0,0,0) (0,0,0,1)
(0,1,0,1) (0,1,1,0)
(0,0,1,1)

Proof. 5‘;“ =SIAS) O
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6.3 A dichotomy theorem forl,-SAT e

It follows from Schaefer’'s work and [43] thait,-SAT ¢(A) is tractable ifR* is in
any of the classegii ) — (vi), and5-complete otherwise. Borrowing much from
Dalmau, we will show thalfl,-SAT yc exhibits the same dichotomy.

Our proof rests on the following:

Proposition 43. LetA € B. If R4 is neither horn, dual horn, affine, nor bijunctive,
thenM»-SAT c(A) is polynomially reducible t@12-SATNc(A).

If R4 is neither 0-valid nor 1-valid, we may appeal to Schaeferthud for
simulating the constants. This may only result in more exisal quantifiers on
the inside of the input instance, which will not jeopardise being inI'IZP. How-
ever, if we need formulae with universal quantifiers to siaelthe constants, then
we find ourselves potentially outsidl'é;, with more than a single alternation of
quantifiers in the input instance.

Recall that we are only concerned witt that are non-horn, non-dual-horn,
non-bijunctive, non-affine, and either 1-valid or O-valid/e will consider four
cases.

6.3.1 Case 1 R*is0-valid and not 1-valid.

In this case we have the constant O for free, SRééa, . . .,a) expresseg-Al.
Let < be the boolean relatiof(0,0), (1,0), (1,1)}.

Lemma 44. If R* is 0-valid, non-horn, non-affine, and not 1-valid, thef iS
definable in3-REL (R*).

Proof. We consider two further possibilities for the relatiﬁj’ql above.
o If % also containg0,0, 1,0), thenS3 = Haﬁu(a, a,b,c) AR%(a,...,a).
o If %1 does not contaif0,0,1,0), thenS; = Haﬂa’ﬁu(a, a,c,b)AR%(a,...,a).
]

In both case§§ is of the form3awQs(w, b, ¢), whereQsis positive conjunctive.
Note that/A] is expressed bycS(b,c).

Lemma 45. If R4 is 0-valid, non-horn, non-affine, and not 1-valid, th€h-
SATc(A) polynomially reduces tbl2-SAT Nc(A).
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Proof. Given an inputyx13x2Q(x1,X2,0, 1) for M2-SATc(A), observe,

VX]_E|X2 Q(X]_, X2, 0, l)
& Wxgdxdadb  Q(xg,Xp,a,b) AVe S(b,c)
AR (a,...,a)
& VXiIxpdadb Q(X1,X2,8,b) AVc3Iw Qs(w, b, c)
ARA(a,...,a)
& VxpVedxpdadb  Q(x1,X2,a,b) Adw Qs(w, b, c)
AR (a,...,a)

Note that the final line is a valid input fdlio-SATNc(A). The final equivalence
holds by the Quantifier Re-ordering Lemma, wh= 3w Qs(w, b, ). O

6.3.2 Case 2 R*is 1-valid and not 0-valid.

This is the symmetric case of the previous (where zero isaoepl with one, and
vice-versa).

6.3.3 Case 3 R% is 0-valid and 1-valid, but not complimenta-
tive.

SinceR* is 0-valid, 1-valid, and yet not complimentative, theres¢sia tuple in
RA s.tts complement is not iR*. Let| index the set of positions at whiths
zero and let] index those positions at whidhis one. IfR4(vq,...,v) is ak-ary
relation, consideQaom(a,b) to beR* under the substitution for all variables
indexed byl andb for all variables indexed by. QatomiS atomic, and it expresses
SZ. We now have thatbS3(a, b) expressefA], andvaSi(a, b) expresse§-A).

Lemma 46. If R4 is 0-valid, non-horn, non-affine, 1-valid, but not complementa
tive, thenM,-SAT ¢ (A) polynomially reduces tblo-SAT Nc(A).

Proof. Given an input/x13x2Q(x1,X2,0, 1) for M»-SATc(A), observe,

VX]_E|X2 Q(X]_, X2, 0, l)
& VxpIxpJadb Q(x1,%2,8,b) AVY S(a,b)
AVa S(&,b)
& Vxp3dxpdadb Q(X1,%2,a,b) AVD' Qaom(a,b’)
AVa Qatom(&', b)

& VxVb'va'axpdadb  Q(xp,x2,a,b) A Qatom(ad b)
A Qatom(&, b)

The final line is a valid input foF1,-SATNc(A). The final equivalence holds via
two applications of the Quantifier Re-ordering Lemma. O
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6.3.4 Case 4 R4 is 0-valid and 1-valid, and complimentative.
In this caséSi‘u will look like:

€S, #S.

(0,0,0,0) (0,0,0,1)
(0,1,0,1) (0,1,1,0)
(0,0,1,1)
(1,1,1,1) (1,1,1,0)
(1,0,1,0) (1,0,0,1)
(1,1,0,0)

Note thatvd3aS] (a,b,c,d) expresse$B # C|. SinceS, € 3-ReL(RY), it fol-
lows that[A # BJ is expressed bydJaiwQ,,(w,a, b, c,d), whereQ,,, is positive
conjunctive.

Lemma 47. If R* is 0-valid, non-horn, non-affine, 1-valid, and complementstiv
thenM»-SAT c(A) polynomially reduces tbl,-SAT Ny (A).

Proof. Given an input/x13x2Q(X1,X2,0, 1) for M2-SATc(A), observe,

VX13Xo Q(Xla X2, 07 1)
& VxgIxpdbde  Q(xg,Xa,b,C) /\Vdﬂagu(a, b, c,d)
& WxgIxedbde  Q(xg,X2,b,c) AVdIadwQyu(w,a, b, c,d)

Now this is not, in general, equivalent to:
Vx1¥d3xz3b3c Q(X1, X2, b, ¢) A JadwQy(w, a, b, c,d)

because, wheh = c, that formula may be true, but the previous ones are always
false. However, we claim that:

Vx13x23b3c Q(Xy1,X2, b, €) A VdIadwQy,(w, a, b, c,d)
is equivalent to
¥x1Vdvd'Ixp3b3c Q(x1, X2, b, ¢) AJadwQy,(w, a,b, ¢, d) AJa'IwQ,(w,a', b, c,d’)

which is an input fof12-SAT yc(A). It remains for us to prove this equivalence.
(forwards.) This direction is trivial. For each givan in both formulae: any
b, c, X, that witness the first formula will also witness the second .
(backwards.) For each given in both formulae: ifd # d’, it follows that any
true valuation of the second formula hasz c. This ensures that, if the second
formula is true, that the first formula will also be, witnedd®y someb #Ac. O
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Theorem 48. M,-SATnc(A) is tractable if R is horn, dual horn, bijunctive, or
affine, and ig15-complete otherwise.

Proof. We knowTl12-SAT ¢ has the proposed dichotomy. Trivially, the tractability
of My-SAT(A) implies the tractability of1,-SATnc(A). Furthermore, we have
proved, forR* outside the listed classes, tiiag-SAT c(A) polynomially reduces
to thePspace-completel1,-SAT N (A). The result follows. O

Corollary. For i > 2, M;-SATNc and Zj-SAT yc exhibit the same dichotomy as
M2-SAT N and QSAT .

Proof. Let j > 1. Our manipulation of the innermost universal quantifierthie
pertinent’13 or N4 formulae, such that we build equivalent one§lis will clearly
also work onfyjy1 or Myj4» (resp. 2zj,1 or Zpj) formulae to obtain equivalent
ones inllyj (resp. 2»j—1). Consequently, our proof is equally valid for these
problems. O

Remark.We are left with the class of probleris-SAT nc. As noted before, these
are inNP, and they exhibit the same dichotomy asr{c.

Remark.A similar proof to this dichotomy theorem appears in [27]eTRsult is
also inferred in [18].

Some recent work has been undertaken in alternation-bdu@QdeSP, by
Chen [12]. He studies certain templates for which the coriglef the prob-
lem collapses to cdP-completeness for all levels of the polynomial hierarchy
above or equal tdl,.
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Chapter 7

Quantified Constraints on Graphs

7.1 Introduction

The uniform constraint satisfaction probleras used in Artificial Intelligence, is
usually defined as follows (sexg.[32]).

e Input: a finite set of variables, a finite domain of value$, and a set of
constraints{C(S,),...,C(&)} where eact§ is ang;-tuple of (not neces-
sarily distinct) variables fromh and eachC(S) is ana;-ary relation over
T.

e Question: is there an assignment to the variables over thehothat mu-
tually satisfies all of the constraints?

It is clear thafT, together with the relationS,, ..., S, is a first-order structurég
(over some signature of the form(ﬁl, ..., S¢)). Itis also clear that the question
we are posing of this structure concerns the existence ahalsineous solution
to a conjunction of atomic relational constraints. Therefove will prefer to use
the following formulation of the uniform CSP (seeg.[5]).

e Input: a structur@ and a sentenog = Ix Q(X), whereQ is a conjunction
of positive atoms.

e Question: doe§ = ¢?

In this thesis we will be concerned only with then-uniformvariant of CSP,
which is a family of problems parameterised by the templatéhus, for each
templateT, CSRT) is the decision problem with:

e Input: a sentencé = Ix Q(X), whereQ is a conjunction of positive atoms.

e Question: doeg = ¢?
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Note that the well-knowiNP-complete problems 3/8 (satisfiability of a for-
mula in conjunctive normal form with exactly three literpksr clause) and 3-Q.
(graph 3-colourability) correspond to constraint satstan problems. The prob-
lem 3-Q3AT is a popular generalisation of 3a% to quantified formulae, which
Is Pspace-complete. In this context, it makes sense to generalisstnt satis-
faction problems tguantified constraint satisfaction problems

Definition ([5]). Thenon-uniform quantified constraint satisfaction probletth
templateT, denoted by QCSE), is the decision problem with:

e Input: a sentency of the form
VX13IX2VX33X4.. . . VX2 13Xon1 2Q(X1, X2, . . ., X2n42)
(for somen > 1), whereQ is a conjunction of positive atoms.
e Question: doe§ = Y?

3-Q3AT is easily recast as a QCSP, but we will be more interestedaniant
problem. LetB3 g be the boolean structure with a single ternary not-all-equa
relation

NAE3 = {(0,0,1),(0,1,0),(1,0,0),(1,1,0),(1,0,1),(0,1,1)}

The problem QCSEB3 A¢) is known to bePspace-complete [38].

Much effort has gone into identifying th& for which CSRT) is tractable
(e.g.[32, 34]) andNP-complete €.g9.[33]) . It has been conjectured in [19] that
CSRHT) is always either tractable, dtP-complete. (Indeed, it has even been
conjectured in [8] where this separation lies.) Howeveg, ghand classification
into dichotomy remains incomplete. Some partial resukkskawown: many years
ago Schaefer proved the dichotomy fbrranging over boolean domains [38].
That was recently extended to domains of size 3, through adstbf universal
algebra, by Bulatov in [7]. Of greater interest to us is thehdtomy theorem for
undirected, antireflexive graphs of Hell and NeSetfil.e¥Iprove in [25] that an
undirected templat& gives rise to a CS{) that is tractable, ifl" is bipartite,
and a CSPT) that isNP-complete otherwise. This dichotomy extends trivially
to all undirected graphs, since templates with self-loojsgive rise to a trivial
CSP. Bang-Jenson, Hell and MacGillavray prove a similahaticmy theorem
for tournament templates in [4]. Specifically, they provattE SRT) is tractable,
if T is a tournament with at most one (directed) cycle, and tha(@pis NP-
complete, ifT is any other tournament. Both of these graph dichotomy teané
proved by non-constructive means.

Following on from Schaefer’'s work [38], Dalmau [15] and @m=ou et al.
[14] eventually proved a dichotomy (tractableRzpace-complete) for QCSP on
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boolean domains. A trichotomy (tractabMf-complete oPspace-complete) has
been proved for QCSP on templates where all graphs of petiongaappear as
relations [5]. A significant body of tractability resultshbeen established for
QCSP, largely along the same lines as for CSP, in [5, 11]. Kewao far, no
overarching polychotomy for QCSP has been conjectured.

It is well known from work by Chandra and Merlin [9], on the ptem of
Conjunctive Query Containmefrom database theory, that (existential positive)
conjunctive queries are directly related to the existerfceomomorphism be-
tween structures. Defining constraint satisfaction pnoislén terms of structure
homomorphism became popular after the seminal paper by Bedevardi [19].
The non-uniform homomorphism problenith templateT, denoted kbMm(T), is
the decision problem with:

e Input: a structured.

e Question: doed -7 ?

If K3 is the 3-clique, then it is clear thatd#1(X3) is the problem of graph 3-
colourability.

We define theanonical query 4 associated withl to be the existential quan-
tification of the conjunction of the facts @f. For exampleX3 has the canonical

query
bk, = I3z E(x,y) AE(Y,x) AE(Y,2) AE(Z,Y) AE(Z,X) AE(X,Z).

Howm(T) and CSRT) are essentially two views of the same problem. Specifically,
they are equivalent under the bijective (up to structu@hisrphism and labelling
of variables) reduction(A) = ¢4, i.e. A € HoM(T) iff ¢4 € CSRT).

In this chapter, we introduce a new problemrmrAHom (T), which is to QCSFT)
what Hom(T) is to CSRT). Itis defined in terms o&lternating-homomorphism
from a partitioned structure to a non-partitioned templ&te also give a charac-
terisation of this problem through the existence of winrstgtegies in a certain
game. Such a method has been used independently by Elgeim (11, 10, 12]).

7.2 Preliminaries

7.2.1 Structures and Logic.

We consider only finite, non-empty structures. letaind T be such structures
overa. We denote the universe, or domain /by |A|, and the cardinality ofA|
by ||A||. For each relatiolR of g, with arity &, R* C |A|3 is the interpretation
of R overA. When it does not lead to confusion we may be sloppy in idgntf
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R andR*. A structureA is connectedf, and only if, it isnotthe disjoint union of
some structured’ andA”. An isolated elementf a structureA is one that does
not appear in any tuple of any relation.af

A homomorphism fromA to T is a functionh : |A| — |T| such that, for all
relationsR; of o, with arity a;, and for all (xi,...,Xs) € |A|%, we have that
RA(Xq,...,%y) implies R7 (h(x1),...,h(xy)). If there exists a homomorphism

from A to 7, then we writeA -7, If we have bothA -"~T andT -4 then
we described and7T as homomorphically equivalent.

A guantifier-free first-order formul@ is positive conjunctivé it is a conjunc-
tion of positive atomsi,e. of the form,

Q(x) = Riy (x1) AR (X2) A ARy, (X)),

where, for every K j <n, R, is a relational symbol frong, andx; is a tuple of
variables of suitable length.€., of the same length as the arityRf). Note that
a variable may occur more than once in a given tuple.

7.2.2 Alternating-homomorphism problems.

Forne N, letk, = {U1,E2,Us3,E4,...,Uani1,Eoni2} be a set of unary symbols
that do not occur iro. Define ann-partitioned structureld overao to be a finite
structure over the signatuceJk, such that the interpretation of the symbols from
Kp IS a partition of the structure:e.,

o B =UiLo(|U2i11| U|E2i12]); and,
e forany 0<i < j <n, the setdJyi 1, Esiyo, Uzj+1 andEyj, o are pairwise
disjoint.

We write S to denote the-structure underlying3. We write’B[y; (respectively,

Bk ) to denote the substructure®f induced byJ; (respectivelyE;). When this

does not cause confusion, we wide(respectivelyE;) for the sake of brevity.
We say there is aalternating-homomaorphisiinom then-partitioned structure

B overo to the (non-partitionedy-structureT, and we writeld At 7if, and only
if,

e for all functionsfy, : Uy — |7,

e there exists a functioff, : E; — |7/, such that,

e for all functionsfy,,,, : Uzni1 — |77,
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e there exists a functiof,, , : Eony2 — |7/, such that,
o fu Ufg,U... fu,, U fE,,, IS @ homomorphism frorfiy to 7.
A partitioned structuras one that is1-partitioned, for some.

Definition (Alternating-homomorphism problemYhe non-uniform alternating-
homomorphism problemvith templateT, denoted by AT-Hom(7), is the deci-
sion problem with:

e Input: a partitioned structurgg.

e Question: doeg AL.T?

Examples.Consider the grapB with vertices{a, b, c,d} and edge set
{(a,b),(b,a),(c,d),(d,c)}. We define three partitioned structures which hgve
as their underlying graph:

e B1 such that); = {a},E> = {b},Uz = {c},E4 = {d}.
e 7 such that); = {a},E; = {b},U; = {c},E> = {d}.
e B3 such that); = {a},Eg = {b},U; = {c},E10= {d}.

These partitioned structures are depicted in Figure 7.1.

The above partitioned structures are equivalent in theestag, for any struc-
tureT, if for any one of them there exists an alternating-homorhm to7, then
there exists also an alternating-homomorphisri toom the others. This leads
us to define the followingewrite scheme to transform ampartitioned structure
B to arewrite-reducedpartitioned structure, denoté&gl.

1. If all relations of8y are empty,i.e. all elements o8y are isolated, then
set3 to be the singleton withSg| = {0}, all relations ofSy; empty, and
E2 = {0}. Otherwise

2. Remove all isolated elementsPf

3. Supposép is the disjoint union ofn connected substructurg, ..., Pm.
For each I< | <m, construc; from B, thus:

(&) while there is a minimal < n such thaly ;1 is empty, move every
element ofEyj > into Epj, for alli < j <nand every element &f,;j 3
intoUzj4q, foralli < j<n-1.
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Figure 7.1: Three Partitioned Graphs.

(b) while there is a minimai < n such thatEy is empty, move every
element ofEyj ;2 into Epj, foralli < j <nand every element &foj 1
intoUpj_q, foralli < j <n.

4. SetB tobePB ... w P,

5. Remove as many empty partitions as possible, so obtaamingpartitioned
structure (for some’ < n).

The rewrite scheme is deterministic, up to the order in whighconnected sub-
structures are considered, and®as well-defined. We say that two partitioned
structures) andsp’ arerewrite-equivalentf = . In figure 7.1, the structures
PB1, P2, andPs are all rewrite equivalent, arfi, is rewrite-reduced. Note that,
for any33, we can compute its rewrite-reducgdin polynomial time.

Two partitioned structure® and?3’ are said to b@roblem-equivalenif, for
all templatesT, we havep € ALT-HoMm(T) iff P’ € ALT-Hom(T).

Proposition 49. Let 3 and 3’ be two partitioned structures. 8 and‘p’ are
rewrite-equivalent then they are problem-equivalent.

Proof. Itis easy to see that the rewrite rules preserve the existeinalternating-
homomorphism. O
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Note the converse does not hold as the following example show
Example.Consider the 1-partitioned digraphs:

e B4 with domain{x,y, z}, edge se{(x,y), (z,y)}, and partitiondJ); = {x},
E2={y.z}.

e Bs: with domain{x,y}, edge sef(x,y)}, and partitiondJ; = {x}, Ex =
{y}-

Whilst they are not rewrite equivalent, they are problemiejant. 34 is equiv-
alent to the sentencédy3zE(x,y) A E(y, z) ands is equivalent to the sentence
Vx3yE(x,y). Both sentences have the same class of finite models.

We note, for any}3 and its rewrite-reduce§, that their underlying structures
Sy andsg differ by possibly only some isolated elemerfig andsg are homo-

morphically equivalent, and, for all templatgsSy N_giff 8@ hoT

7.2.3 QCSP versus AT-HOM.

In this section, we show that QCSP andrAHoM are essentially the same prob-
lem.

Theorem 50. Let T be a finiteo-structure. The problem@CSRT) and
ALT-HoM(T) are equivalent under logspace reduction.

Proof. We will modify the bijective reductiom(A) = ¢ 4, mapping a structure to
its canonical query, that proved the equivalence aivHand CSP in the intro-
duction to this chapter. Fromwe build the functiors from partitioned structures
to prenex quantified formulae whose quantifier-free partositive conjunctive.
Given a partitioned structuf, consider the canonical queq))gq3 of its underly-
ing structureSy. Given this existential querq;gqy we produce the query by
replacing all instances alx, for variablesx that correspond to elementsPfin a
universal partition, by/x. The maps(*3) = ¢y is bijective (up to isomorphism of
the rewrite-reduce@ and labelling of variables) and, along with its inverse, may
be computed in logarithmic space. It follows directly fronetdefinitions thas
ands ! are reductions between QCERB and AL.T-Hom (7). ]

Just as we refer to the canonical query of a non-partitiotettsire, so we
will refer to the canonical query of a partitioned structassbeing the sentence it
reduces to, as in the previous theorem.

Example.Let T be any graph. The partitioned structure and sentence ofé-ijd
give rise to equivalent instances of, respectivelyrAlom(T) and QCSRT),
that reduce to one another in logarithmic space. The seatisnthe canonical
guery of the partitioned structure, as just defined.
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Vx3y3z E(x,y) AE(Y,X) AE(Y,2) AE(Z,y) ANE(Z,X) AE(X,2)

Figure 7.2: Canonical sentence of a Partitioned Structure.

7.2.4 Alternating-homomorphisms as winning strategies.

We give a game characterisation of QCSP. The game we are tbhdefine
corresponds exactly to a standard model-checking gantekiatsvn as a Hintikka
game [20]. We define this game in order to use the game pariarstdsequent
proofs.

Definition (Game for QCSR)Let 3 be ann-partitioned structure and a (non-
partitioned) template. Thep, 7)-gamegoes as follows. Opponent plays on the
universal partitions and Proponent plays on the existep#iditions. They play
alternate partitions, in ascending order, until all thetipans have been played.
ForO0<i<n:

e OpponentU-move): for every elementin partitidp; . 1, Opponent chooses
an element ir7, that is, Opponent gives a functioppi1 : Uzi+1 — |T].

e Proponen{E-move): for every element in partitidep; 2, Proponent chooses
an element ir7, that is, Proponent gives a functi@noyi o : Egi 2 — |T].

If, at any stage of the game, the function defined by the unfahe moves of
both playersppp U prooUoppsU.. ., is not a partial homomorphism froSy

to 7, then Opponent wins. Otherwise this finite game will finiskthasome ho-
momorphism fromSq; to T having been constructed, and Proponent wins. It is
Proponent’s aim to construct such a homomorphism, and ipjgo@ent’s aim to
stop her. (In deference to the conventions of Ehrenfeuchisée games, Propo-
nent is considered female, and Opponent male.) Note that,9bme point the
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partial function defined by the play can not be extended toradmorphism no
matter how either side plays, then Opponent must necegsanlthe game.

A strategy specifies how Opponent or Proponent are to plagngivhat has
been played before:

¢ (Proponent) A strategy for partitidiy; 2 in the (I3, 7)-game is a function
O'E2i+2 . E2i+2 X |_|)\<i(E2)\+2 X ‘T) X (Uz)\_,_l X T) — 7.

e A strategyo for Proponent in thé3, T7)-game is the union of her strategies
for all the existential partitions, viZJ <, OE,, , ,-

e (Opponent) A strategy for partitiody; ;1 in the (3, 7)-game is a function
TU2i+1 . U2i+1 X I'I;\<i(E2)\ X ‘I) X (UZ)\+1 X ‘I) — 7.

e A strategyt for Opponent in thé3, 7)-game is the union of his strategies
for all the universal partitions, viz Jy <, Tu,, ., -

A winning strategyor Proponent is a strategythat beats all Opponent strategies
T.

Theorem 51. Let‘B be a partitioned structure, angl the corresponding canon-
ical query. The following are equivalent.

(i) paLa.
(i) Proponent has a winning strategy in tfigs, 7)-game.
(i) T = ogp.

Proof. The equivalence dfi) and(iii ) follows from Theorem 50. Itis well known
that Proponent has a winning strategy in #@-model-checking game dipy:, T)

if, and only if, 7 |= ¢ [20]. The game we define is the model-checking game
restricted to sentences in prenex form whose quantifier{ieat is positive con-
junctive. The equivalence d@fi) and(iii ) follows. O

7.2.5 Graphs

A digraph is a structure over the signature containing alsibhmary relatiorE.
An undirected graph is one whose edge relation is symmetric.

Definitions.
(Cligues.) Letn > 1. LetX, be the(antireflexive) n-cliquethat is the graph

with vertices{0,1,...,n— 1} such thatll distinctvertices are adjacent. Lé(tﬂe'(
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be thereflexive n-cliquethat is the graph with vertice®,1,...,n— 1} such that
all vertices are adjacent (wheg= j, we call the corresponding edgeelf-loop.

(Paths.) LetP, be the undirected antireflexivepath,i.e. with vertices
{0,1,...,n—1} suchthak(i, j) iff j=i+1orj=i—1. Itfollows thatthe 1-path
P1is X1 and the 2-patkP; is XK.

(Cycles.) LetDe, be the directed antireflexive-cycle, i.e. with vertices
{0,1,...,n—1} such thatE(i, j) iff j =i+ 1 modn. Let C, be the undirected
antireflexiven-cycle, i.e. the symmetric closure dbC,,. It follows thatCs3 is the
3-cliqueXs.

It is proved in [5] that, fom > 3, QCSRX}) is Pspace-complete. It follows
immediately that AT-HOM(X,,) is alsoPspace-complete, fom > 3.

An induced sub-digrapB’ C § is aretract of § iff there is a homomorphism
h: G — Gs.t. 9 is the image oh. A graphg’ is acoreif it contains no proper
retracts. For an arbitrary digragh we define aore of G to be any minimal (w.r.t.
size) retract that is itself a core. It is well-documentedy([26]) that the core of
a digraph is unique, up to isomorphism.

A bipartite graph is an undirected graph that is 2-colowaBlgraph is bipar-
tite iff it has eitherX; or X2 as its core. Note that bipartite graphs are antireflexive.

7.3 Basic graph results

Most of these results are given for digraphs; we will speaifycconsider undi-
rected graphs in the next section. When we discuss dugfeseernverticesx and
y, these may be oriented either way, or not at all (double gdges

7.3.1 Restricting partitions

We define restrictions on the input partitioned structurétwiwill ultimately lead
to tractability.

Definitions (restricting partitions) Let 3 be a partitioned digraph. We say that
B is in Z1-form (respectively,l,-form), if the only non-empty partition i€,
(respectively, if the only non-empty partitions are amdiy, Ez}). If P is in

in My-form and there is at most one vertexUn, then we say thalg is in M-
fan form If, moreover, the vertex € U; exists, and is adjacent to some vertex
y € E, then we say thas is in strict Mo-fan form Finally, we say thaf3 is in
Mo-multifan form if B is the finite disjoint union of structures Imy-fan form.

Note that, if3 is in Z;-form, then’B is a fortiori in My-fan form. Any‘B in
Mo-fan form, but not in strict1,-fan form, has a rewrite-reducégin >1-form.

88



Figure 7.3: A Partitioned Graph in striCty-fan form.

Proposition 52 (IM,-multifan form). Let7J be a digraph. The restriction of
ALT-HOoM(T) to inputs inMy-multifan form isNP-complete, whenevéiom(T)
is NP-complete.

Proof. Let 3 be the disjoint union off3y,...,Bm all in My-fan form. Note that
B € ALT-Hom(T) iff Pj € ALT-HOM(T), for1<i<m.

(Membership ofNP) For each 1< i < m, if 3; is not in strictl,-fan form,
then itis equivalent t@g; in Z;-form, and we may simply guess a homomorphism
and verify in polynomial time. If3; is in strictl,-fan form, we test all possible
maps for the single element Wy, guessing the rest of the homomorphism and
verifying in polynomial time.

(NP-hardness) If33 is in Z;-form, theny € ALT-Hom(T) if, and only if,

Sy € HOM(T). Hence, AT-HoM(T) is NP-hard provided that Bm(T) is NP-
complete.
]

We will find, for a wide range of templatég, that every input which is not
in Mo-multifan form can be discarded. This will be because infjgitsot in M-
multifan form are either easily seen to be no-instancesiatfAom(7), or to be
equivalent to the rewrite-reducéd which is in My-multifan form. Further, we
will find that we can split up input$ in My-multifan form into their constituent
Mo-fan components (as in the previous proof). Thus, strustur€l,-fan form
are central to our discourse. Such a structure appearsume-1g3.

Remark.The ‘converse’ of Theorem 52, that the restriction afrAHom(7) to

M»-multifan form beingNP-complete implies &M (T) is NP-complete, does not

in general hold. For example, taketo be (the disjoint union)Xsw X' The

self-loopX’" makes HOM(K3w K" trivial (every instance is a yes-instance).

However:

Proposition53. The restriction ofALT-HOM(ﬂcg&JCJCrff) to M,-multifan form is
NP-complete.
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Proof. Membership ofNP follows as in the first part of the proof to the previous
proposition. For completeness, we give a reduction fromNRecomplete 3-
colourability problem Hbm(XK3).

Let G be an input for the problem &M (XK3). Let Gy, ..., Gm be the connected
components off and letxs, ..., Xm be some sequence of vertices in these respec-
tive components.

We construct an input for &r-Hom (K3 w K1) thus:

e For each componers};, construct a partitioned grapf; (in M»-fan form)
whose underlying graph has vertic€s| W {y;} (wherey; is a new vertex)
and edge sd&% w{(x;, Vi), (¥i,%)}, and whose partitions at# := {y;} and
Es :=|Gil.

e Set]3 to be the disjoint unio31U... UPm.

Clearly B is in My-multifan form: we claim thag € Hom(XK3) if, and only if,
P € ALT-Hom(Kzw K.
(forwards.) Supposg € Hom(X3). For each of the connected componeits
there must be a homomorphignto K. It suffices to ShOV\fl that there is a winning
re

strategy for Proponent for each of the gan®, X3 X7 ). If Opponent plays

y; to the self-loop ofKrlef, then Proponent may play the remaindeflifto the

same self-loop to win. If Opponent playsto one of the vertices of the triangle
K3, then Proponent plays to an adjacent vertex on the triangle, and may play
the remainder of3; according to [a cyclic permutation of] the homomorphism
to win.

(backwards.) Suppos € ALT-Hom (K3 K "): which implies that for
each3; there is a winning strategy for Proponent in the game‘binxgwﬂcrff).
It suffices to show that this must imply the existence of a hmoigphism from
eachg; to X3. This is immediate, for suppose Opponent playsyhe® some
vertex in the triangleks, then the remainder dB; must be played to the trian-
gle, since3; is connected, and so the winning strategy provides the sanes
homomorphism. O

7.3.2 Basic results.

Proposition 54 (reflexive clique) If T is a reflexive clique, theALT-Hom(T) is
trivial. Specifically:*3 € ALT-HOM(T), for every.

Proof. If T is a reflexive clique, then for ari3, all functions from8g to T will
be homomorphisms. O

Definition (e.g[6]). A dominatingvertexzin a digraptU is one s.t. foralive |7,
bothE” (w,z) andE” (z,w) hold. (It follows that(z,z) € E”.)
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Up| — Uy Uz @ Up| — Uy
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Casef(ii) Case(iii )

Figure 7.4: Types of forbidden edges in the last two casesagd3ition 55.

Proposition 55 (dominating vertex) Let T be a digraph in which there exists a
dominating vertex z. ThedLT-HOM(T) may be decided in logarithmic space.

Proof. We consider three cases.

(i) If Tis a reflexive clique, then &r-Hom(7T) is trivial (Proposition 54).

(i) T is not a reflexive clique, but is reflexive. In this c&8ec ALT-HOM(T)
iff B has no edges between distinct vertizes U; andy € U; (for anyi, j, see
Figure 7.4). This property can clearly be checked in lobarit space; we prove
its correctness. Let andb be distinct vertices of s.t. =E” (a, b).

(=) By contraposition: if]3 has an edge between distinct vertices U; and
y € Uj, then Opponent may play on a andy on b to win, proving’p ¢
ALT-Hom(T).

(<) If P has no edge between vertices U; andy € Uj, then Proponent may
follow the strategy of playing all existential vertices teetdominating ver-
tex z. This will overcome all Opponent strategies.

(iii ) T is not a reflexive clique, and is not reflexive. In this c8kse ALT-HoMm(T)
iff ‘B has no edges between (not necessarily distinct) vertiees; andy € U
(for anyi, j, see Figure 7.4). The proof proceeds as in fiart with all instances
of the word ‘distinct’ dropped. O

Lemma 56 (not a reflexive clique)Let T be a digraph that is not a reflexive
clique, and lef3 be a partitioned digraph. If there is an edg€elirbetween distinct
vertices xc U; and ye Uj (for any i, j) then’P is a no-instance oALT-HoMm(7).

Proof. By assumption, there are verticgandb in T that are not adjacena(nay
be equal td). Opponent playa for x andb for y and wins. O
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Lemma 57 (antireflexivity). LetT be an antireflexive digraph. If there is an edge
in B between nodes & Ej and yec Uj (for i < j) thenp is a no-instance of
ALT-HoMm(T). If there is an edge ifi3 between (not necessarily distinct) nodes
x € Uj and ye Uj (for any i, j) then‘p is a no-instance oALT-HOM (7).

Proof. In the first case, Proponent has chosen some veiteX for x. Opponent
also chooses for y and wins. Similarly, in the second case, Opponent chooses
the same vertegfor bothx andy. O

Lemma 58(isolated vertex)Let T be a digraph with an isolated vertex s, and let
‘B be a partitioned digraph. If there is an edge‘fhbetween x U; and yc E;
(for any i, j), or between »xc Uj and ye Uj (any i, J), then‘}3 is a no-instance of
ALT-Hom(T).

Proof. We prove the first case; the second may be done similarly. lkega of
what is played before, when Opponent playsn s, there is no way that partial
function can extend to homomorphism, regardless of whespdtrent will map,
or has mapped;. O

Proposition 59 (isolated vertex) If T is antireflexive and has an isolated vertex,
thenALT-HOoM(T) andHoM(T) are logspace equivalent.

Proof. The reduction of lbM(T) to ALT-HOM(T) is trivial.

We reduce AT-HoM(T) to Hom(T) as follows. LetN be a fixed no-instance
of HoM(7) (say,T augmented with one vertex adjacent to every verter) off B3
has an edge as in the previous lemma then we know that it iSrastence and we
reduced to N. If B has no such edge then every element in a universal partition
is isolated. Thus, Opponent’s moves have no bearing on Rers moves, and
we may disregard every element occurring in a universaitfart Indeed, the
rewritten-reduced grap® will be in Zi-form. We reduce} to its underlying
graphSsy. O

It is important that” be antireflexive, to guarantee the existence diNan the
previous proof. The following proposition is a cousin of firevious.

Proposition 60. If 7 has an isolated vertex, thekLT-HOoM(T) andHom(T) are
equivalent under logspace Turing reductions.

Proof. Again, the reduction from Hm(T) to ALT-HOM(T) is trivial.

We give the reduction &r-Hom(T) to Hom(T). If B has an edge as in the
previous lemma then we reject the inputfithas no such edge then we reduce it
to the underlying grapBqy. O

Example.The problem AT-HoM(X3wWX;) is NP-complete. It is equivalent to
HoMm(X3), which in turn is the well-knowiNP-complete problem 3-GL.
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7.3.3 Non-connected templates.

Lemma 61 (forbidden paths and non-connected templates} T be a non- con-
nected graph. If there is a path B between any x E; and ye U; (for i < j),
thenP is a no-instance oALT-HOM(T). If there is a path inf]3 between any
x € Uj and ye Uj (for any i, j), then is a no-instance oALT-HoMm(7).

Proof. We prove the first case; the second may be done similarly. 8vbePro-
ponent playx, Opponent need only play in another connected component to
win. O

Lemma 62 (forbidden paths yieldlo-multifan form). If there is no path in a
partitioned digraphf3 between any x E; and ye U; (for i < j), or between any
x € Uj and ye Uj (for any i, j), then the rewrite-reduceg will be in M>-multifan
form.

Proof. Consider3 with all isolated vertices removed, and split into disjaonh-
nected components. It suffices to prove that each of theadlis-fan form.

For any such componefl/, let 0< i < nbe the largest integer such thé  ;
is non-empty. It follows that there is ane Uy, 1, and that all other elements of
B’ are in existential partitions of index at leasti22, for otherwise there would
be a path that violates our assumptions. The rewrite rulgsbmapplied to move
x to Uy and all other vertices in the componenBg The result follows. O

Note that we can determine in polynomial time whether or raiggaph7 has
any of the paths of the previous lemma.

Lemma 63 (non-connected)Let T be a digraph that is not connected, then
ALT-HOM(T) isin NP.

Proof. Let i be a partitioned input digraph. If there are any of the patt¥ i
as in Lemma 61 then we may reject the instance. Otherwisellaifs from the
previous lemma that the rewrite-reducgdis in Mo-multifan form, and we can
use the algorithm of Theorem 52. O

Proposition 64 (non-connected)Let T be a digraph that is not connected. If
HoMm(T) is NP-complete thelLT-HOM(T) is NP-complete.

Proof. By Lemma 63, AT-HOM(T) is in NP. HoMm(T) reduces trivially to
ALT-HOoM(T), and completeness follows. O

Remark.As in the remark after Theorem 52, the ‘converse’ of the mesipropo-

sition is not in general truei.e. there areJ such that kbm(7) is tractable but
ALT-HoM(T) is not. For example, whefi= K3w X', ALT-Hom(T) is readily
seen to bé&lP-complete. (Membership follows from Lemma 63 and complessn

follows from Proposition 53.)
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7.4 Quantified H-colouring

7.4.1 Bipartite templates.

Lemma 65 (forbidden paths and bipartite templatépt H be a bipartite graph.
If there is a path ir3 between any x Ej and ye Uj (for i < j), then‘ is a no-
instance ofALT-HoM (J). If there is a path irf3 between any x U; and ye U;
(for any i j), then®}3 is a no-instance oALT-HOM ().

Proof. We prove the first case; the second may be done similarlyalbet any
vertex inH on which Proponent plays If ais an isolated vertex, then Opponent
wins (cf. proof of Lemma 58). Assume thatis not isolated. If the path ifi3
betweerx andy is of even length, then Opponent playsnb, whereb is adjacent
to a. A winning strategy for Proponent would imply the existentan odd cycle
in H. This contradicts the fact th&{ is bipartite, thus it follows that Opponent
wins. If the path in3 is of odd length, then Opponent play®n a and wins by
the same argument. O

Lemma 66 (Mo-multifan form and bipartite) Let H be a bipartite graph. IfH
has no isolated vertices then, for afjyyin My-multifan form, the following are
equivalent:

() P23
(i) P2,
(i) S K2

Proof. If P is the disjoint union ofB1,..., By all in My-fan form, recall that
B e ALT-Hom(T) iff B; € ALT-HOM(T), for 1 <i<m.

For each®3; in Mo-fan form. When3; has no vertex itJ, the result holds
trivially. Otherwise, letx be the unique vertex ib;. Again, if x is isolated then
B can be rewrite-reduced f3; in Z1-form. So, assume th&s; is in strictMy-fan
form, and thak is adjacent to somgin E.

e (i) = (ii): Given a winning strategy for Proponent in théJ;, H()-game,
we construct a winning strategy for Proponent in (g%, X»)-game. Sup-
pose, w.l.o.g., that Opponent plays theon the 1 inXK,. All remain-
ing moves are Proponent’s. So, Proponent chooses any horpbisio
h:H — X3, and a vertexa in H such thath(a) = 1. She then plays the
rest of the vertices (all iie2) according to the stratedyo o (where she as-
sumes Opponent played tkeo a in the oracle-game ofi3;, H)). Sinceh
is a homomorphism, any outcome of the gamén H) under strategy
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that is a homomorphism will lead to an outcome of the gaméinKs)
under strategy o o that is a homomorphism. We know that, under strategy
o, all outcomes of3;, H) are homomorphisms, so the result follows.

e (ii) = (i): Given a winning strategy for Proponent in thé3;, X,)-game,
we construct a winning strategy for Proponent in (B, 3{)-game. Sup-
pose Opponent plays theon a vertexa in H. We know thata is not iso-
lated, and has a distinct neighbduiLeth’ : X, — H be the homomorphism
{(1,a),(2,b)}. All remaining moves are Proponent’s. Proponent now plays
the rest of the vertices (all i) according to the stratedy o o (where she
assumes Opponent played th# 1 in the oracle-game ofi3i, X2)). The
argument concludes as before.

e (ii) < (iii ): Since each; is in strictM,-fan form, the result follows imme-
diately from the symmetry dk.

O

Theorem 67 (bipartite) LetH be a bipartite graph. The probledLT-HOM (H)
is tractable.

Proof. We propose the following algorithm to solva AHoMm ().

The input] is first scanned to check whether it has any of the forbiddémspa
of Lemma 65. If there are any, then the input is rejected.

If there are none of the forbidden paths drdas an isolated vertex, then we
evaluate Fbm(J() on inputSy. That this is correct follows from Proposition 59;
that it is tractable follows from Hell and NeSetfil's diatomy theorem [25].

Otherwise, if there are none of the forbidden paths &fithas no isolated
vertex, then we check wheth8s; is 2-colorable, and answer accordingly. This
is clearly polynomial: we prove its correctness. We know thg3 has none of
the forbidden paths, then it is rewrite-equivalent to thaumed)s in Mo-multifan

form, by Lemma62. In particulaﬁ‘itj{ if, and only if,ipi“ﬂf. By Lemma 66,
we know tha3 3l 3¢if, and only if, Sg N_%¢,. Moreover, by definition ofg, Sg
is the same a8y up to possibly some isolated vertices. Herﬁf,&Kz if, and

only if, S Ko, It follows thatg3 AL if, and only if, Sy -5y, O

7.4.2 0Odd Catherine Wheels

We have already met the problem QO ¢ ), known to bePspace-complete.
Let Byag be the boolean structure with singleary not-all-equal relation

NAE":= {0,1}"— {(0"), (1"}
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For alln > 3, QCSR B ar) is Pspace-complete, by a trivial reduction from
QCSRBRae)-

Definition. We consider an undirected grapfi to be anodd catherine wheel
(OCW) if it is isomorphic to some graph constructed as follows. For sorke
take the(2k+ 1)-cycle Cox.1, together with(2k+ 1) undirected path$?, ..., P
(each of any finite length, wher&; is considered the 0-path). Constrigcby
identifying an end of each paftPl with vertexi of Coy.1.

As in that construction, an OCW may be given an ordering aed2k + 1)-
cycle, which we will call disting. An OCW may have up to.22k+ 1) distinct
listings, corresponding to orientation of the cycle, tbgetwith position of the
zero (first) vertex. We will usually refer to a listing by a cesponding sequence
of paths.

Definition. For an undirected graph, and a subsek C |G| define:
e d(x,y) to be the length of the shortest pathgrirom x to y,
e d(Ay) =min{d(x,y) : x € A}, and,
e D({p.q}) =maxd({p,a},y) :y € [S]}.

D({p,q}) is minimal such that there is an’-walk (for somem < D({p,q}))
from {p,q} to every vertex off. We will only be concerned witD({p,q}) when
p andq are adjacent vertices on the cycle of an OCW.

Definition. For any OCWW, define:
myw = min{D({p,q}) : p,qadjacent on the cycle 6% }
A D-minimal listing®?, ..., P of W is one in whichD({k,k+ 1}) = myy.
A D-minimal listing is one in which the maximal distance frone thertices

{k,k+ 1} is minimised. These middle verticksindk+ 1 will eventually play the

role of TRUE and FALSE in a reduction from QCSEBASL). It is the following

property ofD-minimal listings that is important.

Lemma 68. Given a D-minimal listing??,...,P% of an OCW ‘W, i.e. one in
which D({k,k+1}) = myy = m, there exists:

e ate |W|s.t. there is an m-walk from t to k, but no m-walk from t te k,
and

e an se |W| s.t. there is an m-walk from s totkl, but no m-walk from s to k.
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Figure 7.5: An OCW and its twB-minimal listings.

Proof. Let the respective lengths of the patPisbe ;. It follows that:
m =D({kk+1})

= max{ Ao+Kk,
A+k—1], Aok +k—1],
)\k—1+17 )\k+2+17
)\|(7 )\k+1 }

We consider three cases.

(existsi, 1 <i <k, s.t.m=A;+ [k—1].) Take such a brandfthat has a vertex
at maximal distance fronfk,k+ 1}. This vertex will be at the end of the path
Pi. Label this vertex, and its neighbour, the penultimate vertex aldhgs. (If
the path?' is K1, i.e. there is no path leaving the cycle, then considerl on
the cycle to be the ‘penultimate’ vertex). It follows thaetk will be anm-walk
fromt to k but not tok+ 1 (by maximality ofm, together with the fact thatmust
be closer tk thank+ 1). It also follows that there will be am-walk from s to
k+ 1 but notk (we can not go the long way round the cycle, and any backstgppi
increases the walk by an even amount).

(existsi, k+1 <i <2k, s.t. m= Aj+[i —k—1].) This case is symmetric to
the previous.

(previous cases fail, anmth = Ao+ k.) This is the case in which the ultimate
vertex of PO is theuniquevertex at maximal distanaa from {k,k+ 1}. In this
case, we make two claims:

(i) there exists Ki <ks.t.m—1=A;+ [k—1], and
(i) there existk+1<i<2ks.t.m—1=A+[i—k—1].

For the first claim, if no sucl exists, then we do not havelxminimal listing,
sinceD({k+ 1,k+2}) < D({k,k+1}). (If the vertex O is always considered
at the top of a drawing oV, then this represents rotating the wheel one place

97



3 2 3 2 3 2

Figure 7.6: The listing oWg is D-minimal, but only the rightmost listing 6fV4
is D-minimal.

anticlockwise.) The proof of the second claim is symmetie may now take
andsto be the ultimate vertices on some paths that fulfill the #wad and first
criteria, respectively. The proof concludes as with thevijoes cases. O

Before we go on, we will need the following.

Lemma 69 (e.g.[25]). For all vertices x of thg2k+ 1)-cycleCy. 1, there is no
(2k—1)-walk from x to x, but there is @k — 1)-walk from x to all distinct vertices

y.

Proof. That there is no walk from to itself follows by a parity argument, together
with the fact that the walk can not go round the entire cycle. \dw construct a
(2k—1) walk from vertex 0 to any vertex4 i < 2k, whereafter we may appeal to
symmetry. Ifi even, then walk backwards (anticlockwise) untd attained, in an
odd number of moves, and waste the even number of moves regavalking
between and some neighbour. ifodd, then walk forwards (clockwise) untils
attained, in an odd number of moves, and waste the remainovgsras before.
]

Pspace-completeness.
Theorem 70. If Wis anOCW, thenALT-HOM(W) is Pspace-complete.

Proof. SupposéV has a(2k+ 1)-cycle, and letmy = m be given. The proof is
by direct reduction from QCSEBIIL). It is based on that given in [5]. Leit
be an instance of QCEB241). Without loss of generality, we assume tigat
has at least one universal quantifier: if there is none wemmoduce a dummniy
Supposeb hasv variables ana clauses: we will construct a partitioned greh
such thath € QCSRBIL) iff B € ALT-Hom(W).

1This restriction is actually unnecessary in the reductieruse, but it saves us considering as
a special case the situation where there are no universatiied variables.
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Figure 7.7: Underlying Graph in reduction from QC(Si%",jEl). The dotted lines
are(2k — 1)-paths; the double dotted lines arepaths.
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To build the underlying grapBgy, we first takev copies of the(2k+ 1)-gon
Caky1, one for each variable. Consider each of thgdet- 1)-gonsC,  , to have
identified vertexw;, and labelled twin vertices, y; farthest away irel, , ; from
w; (itis irrelevant which way round; andy; are). Attach to eacli?fi2k .1 anm-path
fromy;, and label the end-vertex on this path Now identify thew;s as a single
vertexw. (A case involving pentagons, with= 4, is shown in the top half of
Figure 7.7.) We now take further copies ofCx. 1, one for each clause. Each
vertex of each of thes@k + 1)-gons represents a variable in the clause. For each
variabley; in such a clause, add @k — 1)-path from the vertex representing
to thex; previously introduced. The case in Figure 7.7 kas 2, with clauses
(v1,V1,V1,V2,v3) and (Vo,V3,V4.V4,V4). It remains for us to partition the vertices
of 8y. There is nothing in partitioll;, andw is on its own in partitiorE;. Now
we read the quantifiers i, from the outside. For each existentially quantified
variablevi, we addz, its path, and all the rest @, . ;, to the next strictly higher
existential partition. For each universally quantifiediahble vi, we add just; to
the next available universal partition. We then add the oést’s path, and all
the rest ofCh, , ;, to the next existential partition. When we have gone thhoaity
the quantifiers ofh, we add all of the remaining verticese. those in the clause
(2k+1)-gons, and in the paths that reach them, to the next avaitedidéential
partition.

This construction is clearly polynomial. It remains for ogtrove its correct-
ness. Note that Proponent can not successfully play af teesociated with some
clause(2k+ 1)-gon to a single vertex oV (if she plays off the cycle she clearly
loses; if she plays on the cycle she loses by Lemma 69).

(¢ € QCSP(BZN":,%) — B € ALT-HOM(W)). We give Proponent’s strategy in
the gamée*3, W). She should playw on some vertex 0 on th@k + 1)-cycle of W
such that this gives rise to@minimal listing of W. Whenever Opponent plays a
z in W, there will be ammwalk such that; may be played on one of verticksr
k+ 1 of the cycle ofW. These vertices represenkUE and FALSE respectively.
Since, no matter whether the universal variables are trdalse, there is a val-
uation of the existential variables that gives the clausestall-equal valuation,
Proponent may ensure that not gllassociated with each clause are mapped to
TRUE (respectively, ELSE). She should play this valuation, finally playing each
clause(2k + 1)-gon and the path to it according to Lemma 69, ensuring homo-
morphism.

(P € ALT-HOM(W) — ¢ € QCSRB2D)). If wis not played to a vertex 0
in the (2k+ 1)-cycle of W such that this gives B-minimal listing, then Opponent
may play any universa (by assumption there is at least one) to some vertex in
W that does not have anrwalk to eitherk or k+ 1, and Proponent loses. (Such a
vertex exists by minimality oim.) Thus, in a winning strategyy must be played
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to some 0 on thé2k + 1)-cycle that gives rise to B-minimal listing. Note that
now Proponent must play eaélx,y;} to {k,k+ 1}, with which being played to
which specifying truth or falsity of variablg. Thereafter, for any play &, there
is anmwalk to eitherk or k+ 1 (TRUE or FALSE respectively), by the definition
of m over aD-minimal listing. For certairz there is am€m-walk to k but not to
k+ 1, and vice-versa, as guaranteed by Lemma 68. This ensateBribponent
must answer to all valuations of the universal variablesaly, when the clause
(2k+ 1)-gons are reached, if Proponent can extend to homomorpkigm,not
all the x;js of each clause were played kqrespectivelyk + 1), and we have a
not-all-equal assignment O

Corollary. Let§ be a (undirected antireflexive) connected graph that hasguen
cycle, which is of odd length. Thé&LT-HoM(§) is Pspace-complete.

Proof. Such a graply is of form similar to an OCW, but with trees affixed to
the vertices of the odd cycle, instead of paths. The compésteresult holds for
such graphs under exactly the same reduction. (The lengthabf a tree should
be considered the maximal depth from its root on the odd ¢ycle O

7.4.3 A trichotomy theorem

Theorem 71. The class of antireflexive undirected graphs with at mostayaée
exhibitsALT-HoM-trichotomy. Specifically:

e If H is bipartite, thenALT-HOM () is tractable.

e If 3 has an odd cycle and is not connected, therT-HoMm () is NP-
complete.

¢ If H has an odd cycle and is connected, themr-Hom(XH) is Pspace-
complete.

Proof. We have just proved the final part. The first part is proved iadrbm 67.
The second part is a consequence of Proposition 64, and kteINaSetfil’s Di-
chotomy Theorem [25]. O

Remark.The same trichotomy holds on the class of antireflexive @otird graphs
with exactly one cycle. This is because bipartite graphs coayain even cycles.

7.5 Closure properties

We examine some closure properties on templates that magdukfar proving
Pspace-hardness. Later we look at the question of problem equicalen QCSP.
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7.5.1 Indicator construction

Hell and Nesetfil defined three graph constructions te@tbeir dichotomy the-
orem for undirected graphs in [25]. One of them is known adildecator con-
struction An Indicator is a digraph with two identified vertices and .

Definition (Hell and NeSetfil [25]) The indicator constructiofi* of a digraphJ
with respect to IndicatofJ, i, j) is the graph with vertex séf|; and, edge set:

{(a,b) : existshomh:J — T s.t.h(i) =aandh(j) =b}.

Remark.In the case of undirected graphs it makes sense to consitietnati-
cators(J,i, j) that have an automorphism swappinand j. This ensure thad™
remains undirected whéhis undirected. For an example of this construction, see
Figure 7.8.

Lemma 72 (Hell and NeSetfil [25]) Let T be an undirected graph and.i, j)
an indicator that has an automorphism swapping i and j.HHM(T*) is NP-
complete thetdom(T) is NP-complete.

Their result readily extends to digraphs; we extend it to @CS

Theorem 73(Indicator Construction)Let§ be a digraph andJ, i, j) an indicator.
e If CSRG*) is NP-complete thelttSRG) is NP-complete.
o If QCSRG") is Pspace-complete theilQCSRG) is Pspace-complete.

Proof. We prove the first claim by reducing C&%) to CSRS). The proof
broadly follows that of Hell and NeSetfil. Let:= ||J||. Take the canonical query
0 of J and remove the two existential quantifiersf@and j. It is now of the form:

9(27 Z,) = HY1E|YZ ce HYm—ZQ(Za Zla Y1,¥2,... ,Ym—2)7

where Q is positive conjunctive. It follows directly from the defiiins that
EY" (a,b) holds if, and only if,

9 ): G(Z/a, Z,/b) = HY1E|YZ cee HYm—zQ(a7 bv Y1,Y2,- - aYm—2>-

Hence, given an instance of C&P), we can replace each occurrenceEdt, Z)
by 6(z,Z), ensuring that variables introduced are new variables.eNpoecisely,
letz,, ..., 7z, be (notnecessarily distinct) variables amangnd letd :=
3zA\{_1E(z,_,.z,) be an instance of CSB*). We have§* = ¢ iff § =,
where
;
P =3z /\ (ElyllzlyIZ e Ely'm—Z)Q(Zkzplv Zk2i7yllvyl27 T vylm—Z)'

=1
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AN

C: = Ks

Figure 7.8: Example of the indicator construction.

Note thaty can be built fromp in polynomial time (remember that the indicator
is a fixed graph). Both CSB) and CSRG*) are inNP, so it follows immediately
thatNP-completeness of the latter impli&i®-completeness of the former.

We use the same method to prove the second claim, by redu8RJ*) to
QCSR9). We have seen that the edge relatiorfgotan be defined in existential
positive conjunctive first-order logic of. Thus, by replacing in the same way
each occurrence &(z Z) by 6(z Z), where every variable apart fromandZ is
a new one, we get a quantified formuj)a The proof concludes as before, but for
Pspace instead of\NP. O

We now have an alternative proof, based on that in [25], ofdHewing.

Corollary. Forevery undirected cyclé .1 (k> 1), the problemALT-HOM (Co 1)
is Pspace-complete.

Proof. Recall that AT-HOM (K2 1) is Pspace-complete. FOE := Cox. 1, choose
the indicator(J,i, j) to be the undirected2k + 1)-path from the vertex to the
vertex j. It follows from Lemma 69 thag* = K. 1. The result follows from
Theorem 73. The cade= 2 is depicted in Figure 7.8. O

Remark.In [25], Hell and NeSetfil introduced two other graph ciastions.
When ¥ is a core, they defined the graph&” [respectively,{"\] with respect
to sub-indicator] [respectively, edge-sub-indicatgf]. We do not go into the
details of these constructions here. They proved that rethédom(H™) or
Hom(H") beingNP-complete implies &Mm(JH) is NP-complete. We note that
this result is unlikely to extend to IA-Hom (QCSP) in the case of the sub-
indicator construction. That is, &-HoMm (H™) beingPspace-complete does not
imply ALT-HoMm (%) is Pspace-complete, under the assumption tN&t =~ Pspace.
We do not prove this here.

103



7.5.2 Adding a vertex to a core.

Definition. Let H be an antireflexive cord.é. any core other than the self-loop

JCrff). Let H* be H with a new vertex added, adjacent to all vertices &f, but
not adjacent to itself (so it does not introduce a self-loGrmally:

o |HT| = |H|w{y}.
o BT =ENU{(xY),(y.X) : x € H}.
We aim to establish that(* is a core.

Lemma 74. Any homomorphism HH+ — H™* is such that there is an automor-
phism i of T that swapsy and hy).

Proof. We may assumB(y) # y. We prove thah(y) is [forward- and backward-
Jadjacent to all vertices df{* except itself. If that is the case then the function
that leaves all vertices unchanged, but swamsdh(y), will be an automorphism.

Supposén(y) were not adjacent to everything " (except itself), and that
its neighbours constitute the proper subgr&ghc H* — {h(y)}. Sincehis a
homomorphism, it follows that(3) C H’, so we have:

h(30) € 3" —{h(y)}.

Now, y itself may or may not be in the imad€X). We consider both cases
separately.

[y ¢ h(3H).] We haveh(J) is a proper subgraph 6, and we are done since
this contradictsH being a core.

[y € h(H).] See Figure 7.9. It follows that there is a homomorphism

h': H — h(H) — {y} U{h(y)},

defined byh' (x) := h(x) except wher(x) =y, in which casé' (x) := h(y). Whilst
h(H) is not actually a subgraph 6f, W () is, and it is proper since it has the
same cardinality als(JH). This contradict$H{ being a core, and we are donel]

Lemma 75. KT is a core.

Proof. Suppose there were a homomorphisrfrom H* to a proper subgraph
H' c H*. Since we know there is an automorphisnofthat swaps andh(y),
we may assume w.l.0.g. thiay) = y. But that implies thah mapsXH to a proper
subgraph of itself, which contradici$ being a core. O

Theorem 76. Let H be a core. TherALT-HOM(XK) is logspace reducible to
ALT-HOM(H™).
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Figure 7.9: The casg € h(H) in Lemma 74. Note tha#{"-h(H") must be
non-empty.

Proof. Given an input for ALT-HoM(H), we constructld’ as an input for
ALT-HOM(JH ™) such thatd € ALT-HoMm () iff P’ € ALT-Hom (3 ™). We con-
structd’ from P by introducing a new existential partitidty beforeU; (we may
renumber later). Inté&g we place a copy di{ ", adding an edge from theof that
H™ to all the existential vertices @B. Our proof rests on the equivalence of the
following:

(i) Proponent has a winning strategy in the gaméphH ™).

(i) Proponent has a winning strategy in the gaméphH+) where Opponent
is forbidden to playy 2.

(iii) Proponent has a winning strategy in the gamépni).

In the gamgR’, H ™), Proponent must play the copy ®f" in Eg to itself in the
template. Thereafter, Proponent may never playythis the template, sinc& "
is a core. The equivalence @f) and(iii ) follows.

The equivalence ofi) and ii) follows from the fact thay is adjacent to ev-
erything in{*, so Opponent gains no advantage in playing it. O

2Note thaty is not necessarily well-defined fH* until Proponent plays the copy 6t* in 5’
on to the templaté{+.
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¥ H*

Figure 7.10: An example of the reduction used in Theorem T&nH = Cs.
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Corollary. The graphs associated with tfi2n+ 1)-gonal pyramids give rise to
Pspace-completeALT-HOM problems.

Proof. The graph associated with tii2n+ 1)-gonal pyramid i€23,, ;. The case

of the pentagonal pyramid appears in Figure 7.10. O

7.5.3 Asufficient condition for ALT-Howm problem equivalence.

It is well known that, for any digrapl§ whose core isH, we have Fbm(G) =
HoMm(XH), i.e, for all digraphsD we haveD € Hom(9) iff D € HoM(H). This
result does not extend toLA-HoOM.

Example.Let § be X3 X3, therefore its coré{ will be X3. Consider a parti-
tioned grapH)d whose underlying graph is the directed 3-patfts. Placing the
two end-nodes in partitiod; and the middle node in partitioB,, we will have
B € ALT-HOoM (H) whilst P ¢ ALT-HOM(SG). This is because, fap :=

vxvz3y E(x,y) ANE(Y, 2),

we haveXs = ¢, butXs W X3 .
However, we propose a digraph construction that presehesilternating-
homomorphism problem.

Definition. Given a digrapl and specified verteg, we construc§ ™ by dupli-
catingthe vertexg. Specifically:

e |579=|G|u{d'}, and
ES" —ESU{(g.%): (g% €ES} U{(xg): (xg) € EY)
u{(g.9),(d,9).(d,9) :iff (9,9) € ET}.

Theorem 77. For all digraphs G, and any ge G, the problemsALT-HOM(9)
and ALT-Hom(G19) are equal, i.e. for all partitioned digraph we havep €
ALT-Hom(9) iff 8 € ALT-HOM(GT9).

Proof.

e (Forwards) We prove that a winning strateg§or Proponent in thé3, G)-
game can be translated to a winning strategyor her in the(]3,579)-
game.

The strategyo’ will tell Proponent that, if Opponent ever plagsin the
game on(B, §79), she should behave in the game(@h G) exactly as if he
had played om. Sinceg andg’ are adjacent texactlythe same vertices in
G*9, any play of the]3, §)-game that results in homomorphism must yield
a play of the(*]3, 579)-game that results in homomorphism.

107



e (Backwards) We prove that a winning strategfpr Proponent in th¢3, 579)-
game can be translated to a winning strategfor her in the(*3, §)-game.
Indeed, if we takes and substitiute all instances gf for g, then we will
have such a strategy, for the same reason as before.

O

Definition. For then-clique X, defineX,, to be X, with any single edge re-
moved.

Corollary. For all n > 4, the problemALT-HOM (X}, ) is Pspace-complete.
Proof. Observe thak(; = X\ 9,, for anyg € Kn_1. O

Corollary. The graphs associated with tk2n+ 1)-gonal bipyramids give rise to
Pspace-completeALT-HOM problems.

Proof. The graph associated with tH@n + 1)-gonal bipyramid is(C3, )™,
wherey is the vertex of23 1 adjacent to everything but itself. O

7.5.4 Why that condition is not necessary: equivalence in &g-
ments of FO.

Definition.
e LetFO\{=} be first-order logi¢-O deprived of the binary equality relation.

e LetposconjFO be the fragment dfO involving formulae in prenex form,
whose quantifier-free portion is positive conjunctive.

e Let 3-posconjFO be the existential fragment gioscon j-FO.

Note the trivial containments-poscon -FO C posconjFO C FO\{=} C
FO. These containments are readily seen to be proper; we wilir¢o this later.

J-posconjFO is closely related to the problems CSP and\Md Indeed, it
follows from the definition of CSP that, for any two templafeandJ’, CSRT) =
CSRT) iff T andT" agree on all sentences #fposconj-FO. Similarly, it fol-
lows from the definition of QCSP that QCEP) = QCSRY’) iff T andJ’ agree
on all sentences gioscon fFO. We also have, from the definition of theo
problems, that lém(T) = Hom(T”) iff T is homomorphically equivalent t@',

i.e.we have botir 77 andJ” -7, This is equivalent to the condition that
andJ” have isomorphic cores. The concept of core gives us a comobialzchar-
acterisation of what it is to b&-poscon j-FO-equivalent. Such a characterisation
seems harder for the logmoscon |-FO: in the world of QCSP and &r-Howm.
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However, such a characterisation is at hand with the 16@&{=}, but first we
must define the pertinent Ehrenfeucht-Fraisse game. Owrsdiqn is based on
that for the standarBO-game given in [31].

Definitions. Let.A andB be digraphs. ThEO\{=}"-game on a paifA, 0o, B, Bo)
is played by two players, Spoiler and Duplicator, whtpairs of pebbles oven
rounds. A position in such a gamekaonfiguration, is a pair of partial functions
(a,B), where

e a: {vi...,w} — |A],and
o B: {vi,....w} — |B|,

and we further have thatom(a) = dom3). The domains ofx and 3 are the
pebbles that have already been played. From some positiof;), for the next
move, Spoiler picks some pebhléwhere 1< i < k) and chooses to play it in
either|A| or |B|. If the former [resp. latter], then he adds the p@aira) to a;
[resp. (vi,b) to Bj] and Duplicator adds the pav;,b) to 3; [resp. (vi,a) to aj],

So obtaining the new positiofwj 11, 3j+1). Note thaty; may already have been
in dom(aj) = dom(Bj), i.e. the pebblé may already have been played, in which
case some former paifs;, &) € aj and(v;,b’) € Bj will have been removed. The
initial position of the game i$ao, Bo). Spoiler wins if at any point the relation
a~1oB C |A| x |B| does not satisfy:

(x) Etad) < E3(b,b) forall (ab),(@,b)ecatop

If Spoiler does not win, then Duplicator wins.

TheFO\{=}-game on A, 0o, B, Bo) is played similarly, but with an unbounded
number of pebble pairs and an unbounded number of moves. nfdass that
(ao, Bo) is anw-configuration with potentially infinite domain: though wgrif the
initial position were infinite. Since we are concerned wittité digraphs, this will
never happen.

The quantifier-rankyr of a formulaFO\{=}3 is defined inductively thus: if
¢ is quantifier-free theqr(¢) = O; if ¢ = —¢’ thengr(¢) =qr(¢’); if d =’ A $”
thengr(¢) = max{ar(¢’),qr(¢”)}; and if = Iv’ thenqr(d) = gr(¢’) + 1.

Let FO\{=}}" be that fragment oFO\{=} whose formulae involve only
the variablesvs,...,w and whose quantifier-rank is at mast For (a,B) a
k-configuration andp € FO\{=}}" a formula whose free variables are among
dom(a) = dom(P) we considewp to be true on(A,a) [resp. (B,B)] if ¢ is true
on A [resp. B] under free variable assignmemt[resp. ]. Letting (a,f) be a
k-configuration, we write:

SQuantifier-rank is defined identically iFO.
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o (A,a)="(B,B) iff AandB agree on allformulae ¢fO\{=}}" (whose
free variables are amortpm(a) = dom(B)), and

o (A,0)~(B,B) iff Duplicator has awinning strategy for the\ {=}-
game on(A,a,B,B).

Letting (a, ) be anw-configuration, we write:

o (A,0)=(B,B) iff A andB agree on all formulae dfO\{=} (whose
free variables must be amodgma) = domf3)), and

e (A,0)~ (B,B) iff Duplicator has a winning strategy for tHeO\{=}-
game onA,a,B,B).

Lemma 78. There are only finitely many inequivalent formulad=af\ {=}".

Proof. We prove the result for digraphs: it is easily extended tatianty (finite,
relational) signatures. We proceed by inductiomon

(Base Case.) Fan= 0, the formulae we can write are boolean combinations
of E(vi,vj) (fori,j € {1,...,k}). We may consider ang € FO\{=}? to be a
propositional formula in thes€ propositional variables. We may rewrite this in
CNF to obtain a formul& < FO\{:}E s.t. for all digraphs, G = ¢ < ¢’. The

number distinct clauses for a formula®\ {=} in CNF is bounded by, so

it follows that the number of inequivalent formulae in CNFoisunded by %2'(2.
The result for base case follows.

(Inductive step.) Assume it is true fon. Any formula¢ € FO\{=}""" is
a boolean combination of formulae of the form ¢’ with ¢’ € FO\{=}". It
follows from the inductive hypothesis that the number ofguigalent such for-
mulaed is finite, sayc, and that therefore the number of inequivalent formulae in
FO\{=}""1is bounded above by?2 O

Proposition 79 (Methodology) Let A and B be digraphs and letag, 3p) be an
intial k-configuration. Then the following are equivalent:

(i) (A,a0) ~' (B,Bo)
(“) (.A,GO) gE‘ (B7BO>

Proof. (Based on that fofO in [31].) We proceed by induction an. For the base
case,m= 0, Duplicator wins the zero-round game @A, ao, B, Bo) iff 0(51 oBo
satisfieg ) iff (A,0p) and(B, Bo) agree on all quantifier-free formulge(whose
free variables, indeed, only variables, arelom(ag) = dom(Po)).

Inductive step(i) = (ii) (by contraposition). Suppose the proposition is true
for m, but that(A,ap) and(3B,Bo) disagree on some formudac FO\{:}km“. If
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¢ were of the form~¢’ [resp.$’ A $”] then they would disagree @ [resp. one of
¢’,¢"], so we may assume w.l.0.g. thiat= Ivi¢’ (1 <i < k) and that A,ap) = ¢
and (B,Bo) = —¢. In playing theFO\{=}""*-game on(A,ao, B, Bo), Spoiler
begins by playing a witness fdr in A, but, no matter where Duplicator replies,
we will end up with a positiorias, 1) s.t. (A,a1) = ¢’ and(B,B1) = —¢’. Since
the quantifier-rank o’ is m, it follows from the inductive hypothesis that Spoiler
wins theFO\ {=}-game on(A, a1, B,B1), and we are done.

Inductive step:(ii) = (i). Suppose thatA,ag) =" (B, Bo), and let Spoiler
take his first move in thEO\{:}’k“*l-game on(A,ap,B,Bo). Let him place a
pebblei on an element ofd, so defininga;. Remembering that there are only
finitely inequivalent formulae oFO\{=}}", let ® be the conjunction of all of
these formulae thatA,a,) satisfies. We know thatA, ap) = 3vi®: so by as-
sumption(B,Bo) = 3vi®P. Let Duplicator play her pebbleon a witness foav; ®
in B. Thus(A,a1) and(B, 1) both satisfyd. Since® is a complete description
of everything satisfied byA, a1) in FO\{=}}, it follows that(A,a1) =" (B,B1),
and the result follows from the inductive hypothesis. O

Corollary. LetA andB be digraphs and lefog, Bo) be an initialw-configuration.
Then:

e (A,00) ~ (B,Bo) iff (A,a0)=(B,Bo).
o (A,aq) ~MIHIBI(B By) iff (A, 00) ~ (B,Bo).

Proof. The first part follows immediately from the previous propimsi and the
definitions. The second part follows from the fact that Degador need only find
an answer for thgA|| + || B|| positions Spoiler can play: thereafter she may copy
previous replies. O

We now introduce the converse of the vertex duplicationwehave already
seen.

Definition. If a digraphA possesses two verticesa’ such that{x: E(a,x) €

EA)} = {x:E(&,x) € E*} and{x: E(x,a) € E*} = {x: E(x,&) € E*}, thenA

may befoldedto the graphA—* by collapsing the vertices andx to a single
vertexx (alternatively, removing vertey.

A digraph that has no potential folds is said todtdf. (Similar definitions for
fold, and stiff graph, appeae.g, in [26].)

Theorem 80. The following are equivalent, for all digraphs, B:

(i) A and3B agree on all sentences BO\{=}.
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(ii) Duplicator wins theFO\{=}-game on(A, B).

(iii) There exists a stiff such that bottd andB may be put through a sequence
of folds to derive [isomorphic copies df}

Proof. We already have the equivalence(dfand(ii).

((iii ) — (ii).) Suppose 4 : A — Candfg : B — C are the surjective collapsing
functions for the respective sequences of folds. FoFthg{=}-game on A, B),
if Spoiler plays in|A| [resp.|B|] then Duplicator should answer with any vertex
be |B|s.t fg(b)=fs(a) [resp. any vertexa c |A| s.t. f4(a) = fg(b)] (the
existence of such vertices is guaranteed by surjectivitf,;ofnd fz). This is a
winning strategy by the definition of folding and, its inveysluplication.

((ii) — (iii ).) Suppose Spoiler plays aJA|| + ||B|| distinct vertices. Duplica-
tor must be able to answer. Supp@se. .., was answered withy, .. .,a"|AH
andby, ..., by g was answered with, . .., bﬁBH. In A repeatedly collapse vertices

a;,a; to a single vertex ifef = &;. Continuing until there are no more vertices to
collapse, we ultimately build a stif 4. In B repeatedly collapse vertices bj to

a single vertex iffol = b’j, so obtaining a stiff. It follows by transitivity that
Duplicator has a winning strategy in tk©\ {=}-game onC4,Cx). Let Spoiler
play all the positions ir€, and let Duplicator make her reply. The so obtained
a~1o B that satisifes*) must also satisfy:

1

injectivity: Va,a' € G4 VbeCq (ab),(d,b)ca o = a=4a

(for otherwiseA¢ is not stiff sincea may be folded t&'), and
surjectivity: Vbe Gz Jac Gy (ab)calop

(for otherwiseCs is not stiff). It follows thata—! o B is an isomorphism, and the
result follows. O

Corollary ([26]). Every digraph§ has a unique [up to isomorphism] stiff induced
subgraph that it can be put through a sequence of folds toilmbta

Proof. TakeA = B = § in the previous proof. O

We will now unambiguously refer to thatiff-graph-withing as the one which
G reaches through a maximal sequence of folds. We have seestitfigraphs-
within characterisé¢=O\ {=}-equivalence in exactly the way that cores charac-
terised-poscon jfFO-equivalence. This gives us a new proof of Theorem 77, in
which we proved that, for all digrap§sandg € G, ALT-HOM(G) = ALT-HOM(G79).
Since Gt9 may be folded tog, it follows that they share the same stiff-graph-
within. 1t is now clear thai§g and G9 agree on all sentencdsO\ {=}, which
certainly includes all sentences jpbdscon j-FO.
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It remains for us to ask whether or not stiff-graphs-withapture equiva-
lence in QCSPj.e. whetherposcon jFOactually coincides wittFO\{=}. It
turns out not to be so; we demonstrate the proper contairsagmvscon -FO C
posconjFO C FO\{=} C FO.

Examples.

K3 and X3 w K3 give rise to the same CSP probleng. are equivalent in
3-poscon |-FO, but do not give rise to the same QCSP problem, sitxe@dyE(X,y) A
E(y,2) is true in the former, yet false in the latter. It follows thaposcon FO
can not express that property.

Ko = PoandP4 give rise to the same QCSP problems. (In fact, it follows from
Lemmas 58 and 66 that there are precisely three classesHAM = QCSP
problem for bipartite templat@: specifically,T having no edges; dF has an
edge and an isolated vertex; ®rhas an edge and no isolated vertic8s. and
P4 are both in the last class.) Consider the sentetee,y, ZzE(w,x) AE(X,y) A
E(y,z) A—E(z x). This is false in the former, but true in the latter. If follewhat
the property can not be expressegwsconj-FO.

Finally, consider the queryxvy E(x,y) VX =Y. This can not be expressed in
FO\{=} sinceX3 andX, disagree on it, yet agree on all sentenceBOf {=}.

7.6 Results concerning tournament templates

7.6.1 Template is a directed cycle.

We consider the case where the templates a directedn-cycle DC,. Such a
graph is a tournament only when= 3, but the method easily generalises.

Definition. An oriented pathis a list of verticesv,...,vm and, for 1<i < m,
exactly one of the edgds(v;,vi11) or E(vi+1,Vi). Thenet lengthof this oriented
path is the number of instances of eddgs;,vi1) (forward-edges) minus the
number of instances of edgE$vi;1,Vi) (backward-edges). An oriented path in a
digraphg is a (not necessarily induced) subgrapl$dhat is an oriented path.

In a directednh-cycle any oriented path between a vertex and itself must hav
net length Omod n Furthermore, any path between a vertex and its forward-
neighbour must have net lengtiribd n and every vertekasa forward-neighbour.
These facts will allow us once again to consider only pariid inputs in1,-
multifan form since:

Lemma 81. Forn > 3,

o if there is a path i3 between any x Ej and yec Uj (for i < j), then
B ¢ ALT-HOM(DCy), and
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e if there is a path i3 between any x U; and ye U; (any i, j), then ¢
ALT-HOM(DECy).

Proof. We prove the first claim, the proof of the second is similarthi path
has net length @od n then, if Proponent playa for x, then Opponent plays the
forward-neighboub of a for y, and wins. If the path has net length other than
0 mod n then, if Proponent playa for x, then Opponent also playsfor x, and
again wins. O

Theorem 82.1f T is a directed n-cycle theALT-HOM(T) is tractable.

Proof. If the inputl3 has any of the paths of the previous lemma, then we have a
no-instance. We may therefore assume fdditas no such path, and is equivalent
to the rewrite-reduce in My-multifan form. We may further splf into its
Mo-fan form component3; (1 <i < m), for somem, and solve separately for
each.

SinceT is rotationally symmetric, eadi,-fan structuré; admits an alternating-
homomorphism tdr iff the structuresﬁ admits a homomorphism to. It is
known that the problem &IM(7) is tractable [4], and the result follows. O

7.6.2 Template is a digraph with source and sink.

In a digraph, a source (respectively, sink) is a vertex witdegree (respectively,
out-degree) 0.

We consider the case where the tempfats a digraph with both a source
and a sink. In such cases we need only consider inputs;ifiorm since:

Lemma 83. For any i, j,

o if there is a forward-edge if3 between any x Ej and ye Uj, then}3 ¢
ALT-Hom(T),

o if there is a backward-edge #$ between any x Ej and ye Uj, then’3 ¢
ALT-Hom(T),

o if there is any forward-edge if3 between any x U;j and ye Uj, then
B ¢ ALT-HOoMm(T), and

o if there is any backward-edge # between any x U; and ye Uj, then
B¢ ALT-HOM(T).

Proof. For the first and third claims, Opponent playfr y and wins. For the
second and fourth claims, Opponent playsr y and wins. O
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The following should be seen as a generalisation of Praposio.

Proposition 84. If T is an antireflexive digraph with both a source and a sink,
thenALT-HOM(T) is logspace equivalent tdom (7).

Proof. Use the reduction of Proposition 59 (we have the same foendaiges
here as we did there). O

Definition. An n-tournament is a digrapB with vertex set{0,...n— 1}, such
that, for alli, j € Zp, exactly one oE(i, j) or E(j,i) is an edge off. The unique
n-tournament which contains no directed cycle as a subgmgmown as the
transitiven-tournament, and will be denot&d,.

Corollary. If T is the transitive n-tournament thexLT-HoMm (T?) is tractable.
Proof. 7%, has both a source and a sink. So, the result follows from teeiqus
theorem, and the fact thatd#1(T?) is tractable [4]. O

7.6.3 Tractable tournament ALT-HoOM problems.
The tournaments Ty, 5

We examine the tournamen,, , which are constructed from the directed 3-
cycle by repeatedly adding a sounsetimes. (The superscript suggests this
unique cycle.)

Definition. We defineTy,, 5 inductively:
o Let T :=JY =De3 , the directed 3-cycle..

e From T build 7+1) by adding a new sourcé.e.,
1T+ | = |70 {r +3}4 andET" Y = ET" W {(r +3,i) :i € [TO]}.

o LetTY =T,

Since we have dealt with the case of the directed 3-cycle,omsiderm > 0,
i.e.whenTy, . - has a source.

Lemma 85. For m> O:

e If there is a directed edge i between x E and yc Uj (i < j), then

B ¢ ALT-HOM (T, 5).

47("), being a tournament with+ 3 vertices, will already have vertex numbers @ to2.
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o If there is a directed edge if8 between x U; and ye U; (any i, j), then

B ¢ ALT-HOM (T, 5).

e If there is a directed edge i3 from xe Ej toye U; (i < j), thenP ¢

ALT-HOM(T},, 3).

Proof. The first two parts follow from the antireflexivity afy,. 5, by Lemma 57.
For the final part, if Opponent playsto the source ofT,,, 5, Proponent can have

no reply forx. O

Let 3 be a partitioned digraph, we define its couﬁir'nnductively:

o FromP") we build P+ by removingall sources that are in existential
partitions.

° ‘,]N3 = ‘,]3(m)

Let Ex( — ‘B) be those existential vertlces‘I;Blthat are not |rﬂ3 and IetEx(‘B)
be those existential vertices A that are also iM3 (since’P C P these are the
existential vertices oﬁp) Let PrEx(*B) be those vertices df in existential par-
titions to which there is a directed paffom some vertex in a universal partition.
LetUn(P) be the set of universal vertices Bt We refer to the vertices afy,, 5
that are not in the 3-cycle as thal of T, 5

We will benefit from examining which vertices of the undenigigraphSy
have been removed in the gra&g. It should be clear that verticesn(3) and
PrEx(3) can never be removed, and are, therefpretected Let us consider the
sub-partitioned-grapfi§1 of 3 induced by the existential vertices that are not pro-
tected.31 may be put through our given inductive scheme, iterativeipaving
sourcesntimes, so obtalnlng31 It should be clear thaqs‘ is that subgraph of8
induced by the sdt n(*B) U PrEX(*B) U |S~l| Apart from the universal vertices
and those existential vertices that are protected, ourtaarm®n is that given for
proving the tractability of dm(T,, 5) in [4]. All of the sets we have defined

should now be considered as subset$pofthough some may be subsets‘Bf
too). Before going on we will benefit from the following lemma

Lemma 86. In a winning strategy for Proponent df3, Ty, 5), if Opponent plays
all his vertices to the3-cycle, then Proponent must play all of the vertices of
Ex(B) [in 3] to the 3-cycle.
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Proof. Again, let3; be the sub-partitioned-graph gf induced by those exis-
tential vertices that are not protected. Recall tifats the subgraph ofg in-
duced byun(‘) UPrEX() U |8q3,vl|, as in the previous paragraph. Ba(33) is

PrEx(B)uU \8551|. Since universal vertices are played to the 3-cycle, ibfed that

all vertices ofPrEx(J3) must be played to the 3-cycle. Furthermore, if any vertex

of |S \ [in 9] could be played to the tail afy,, 5, then this could not be extended

my3 — by definition off31 — so this could not
be a winning strategy for Proponent 8§, 7., ;). The result follows. O

to a homomorphism frory, to Ty

Lemma 87. Assume tha?l]3 has none of the edges of Lemma 85. Then Opponent
can win the game of3, 71, ) iff he can win it whilst never playing in the tail of
rJ'U

’ m+3

Proof. Since edges o8 from universal partitions only point toward verticet
higher existential partitions, if Opponent plays in théttaén he allows Proponent
to answerx with anything on the 3-cycle, whereas, if he plays on the @eche
limits Proponent to a single adjacent vertex of the 3-cyitis.clear that Opponent
gains nothing by playing in the tail. O

Theorem 88. The problem#LT-HOM (T}, 5) are tractable.

Proof. We already have the result for=0. Form> 0 we will solve ALT-HOM (T}, )
by taking any inpufg for that problem, and constructing a givi& We will prove

P € ALT-HOM(T},, 5) iff P’ € ALT-HoM(TY), whereupon we may appeal to the
known tractability of AT-Hom(T%), and our result will follow.

If B has any of the edges of Lemma 85 then we deféo be any set no-
instance of AT-Hom (TY) (e.g.the transitive 4-tournamef, with all vertices in
Eo). If B has none of those edges then we‘géto be‘ﬁ, via the construction
already described. It remains for us to prove that this isembr It is trivially
correct if3 has any of the edges of Lemma 85: we assume it does not.

(B € ALT-HOM(T}, 3) = P € ALT-Hom(TY).) For a winning strategy
for Proponent in the game @83, 7y, 5), we clalmo is also a winning strategy for
her in the game offg, T%). This follows immediately from Lemma 86.

(B € ALT-HOM(T3) = ‘B € ALT-HOoM(T},,3).) From a winning strategy
o for Proponent in the game c(r’fi?,Tg), we construct a winning strategy in
the game or{’, 7., ;) where Opponent only plays in the 3-cycle. In that game
on (B, Ty, 3), when Opponent plays on the 3-cycle, then Proponent anstwers
vertices iNEx(B) according tao, and then mapEx(g — ) to the tail of T 3
The result follows from Lemma 87. D
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The tournaments T3,

These tournaments are analogous to the tournandgints but are constructed
by the repeated addition of a sink, rather than a source.lltivie by a similar
argument that, for alin, ALT-HOM (77, 5) is tractable.

The result

Theorem 89. If T is a tournament with at most one cycle thear-Hom(7) is
tractable.

Proof. It follows from standard results about tournaments (seglf@lt 7 is either
transitive or isT3 with a succession of sources and/or sinks added hiéis both a
source and a sink then we can reduce the problemam (), which is known to
be tractable [4]. If it has no sink, then it is one of the toumeatsTy . , above. If
it has no source, then itis one of the tournam@jts,, above. O

7.6.4 NP-complete tournament ALT-HoOM problems.

Bang-Jenson, Hell, and MacGillavray proved that, for aftpurnament, that
has at least two distinct cycles o (Ty) is NP-complete [4].

Theorem 90. Let T be a tournament with more than one cycle and a source and
sink, thenALT-HoM(T) is NP-complete.

Proof. Follows from Proposition 84 , together with [4]. O

7.6.5 Pspace-complete tournament ALT-HoOM problems.

A 2-walk Tournamen{2wT) is a tournamenf in which, for all distincti, j € T,
there is a directed 2-walk fromtoy.

Theorem 91. For every2wT T, ALT-HoM(T) is Pspace-complete.

Proof. Note that||T|| > 2. Also, sinceT is a tournament, there can be no 2-
walk from any vertexx € T to itself. Using the directed 2-path from verteio
vertex | as indicator, we find thal* is X 5. Pspace-completeness follows from
Theorem 73. 0

We conclude by proving that the class a¥2s is infinite.
Definition. Form> 5, define the Tournamef®,,, ; thus:

o [Thn1l=1{0,....2m}
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Figure 7.11: The tournamem‘f’l. The 2-jump dotted edges point anticlockwise;
all other edges point clockwise.

(i,j):1,] € Zomy1 S.t. i+1=jmod2n+1}U
(i,j):1,] € Zomy1 St i—2=jmod 2n+1}U
—{(i,j):1,] € Zoms1 st. i+3=jmod In+1}U
(i,j):1,] € Zomy1 St i+4=]jmod 2n+1}U
(i,j):1,] € Zomy1 St i+5=]jmod 2n+1}U

—{(i,j):i,] € Zoms1 s.t. i+m=]jmod 2n+1}

It may easily be verified thalh,,, ; is a tournament. Note that this is partly a
consequence of the odd number of vertices: if we had an evabauof vertices
under a similar construction we would either have vertice&tigoined by an edge
or vertices joined by a double edge. Observe the aberratitre@-jumps: if we
draw edges on a regul@m+ 1)-gon with the vertices enumerated clockwise,
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then all edges point in a clockwise direction, except theirigs which point
anticlockwise (see Figure 7.11.)

Lemma 92. For all distinct vertices jj € Th.,. ;, there is a directe@-walk from

ito ], ie.T5,.  isa2wT.

Proof. We will prove that there is a directed 2-walk from vertex O &zle of the
vertices 1...,2m. We may then appeal to symmetry.

It will suffice to show that every number 1.,2mis the sum (mod+ 1) of
exactly two elements of the sgt, —2,3,4,5,....m}. So: 1=3-2;2=4-2; 3=
5—2 (this is whym > 5), henceforth we may use the positive numd&s.., m}
for 6 = 3+ 3 through to Jn=m+m. O
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Chapter 8

Conclusions and Further Work

8.1 Program Schemes

Most of our results for program schemes augmented withipriqueue are far
from tight, and those that are tight are unsurprising. ltaisdito see how a Turing
machine simulation might prove that NPSP{3 contained in a space-bounded
(or time-bounded) complexity class. This is because tredithe potential mem-
ory of the priority queue in NPSPseems to be unbounded. We give no better
upper bound to NPSPXhan the class of recursively enumerable languages. For
better lower bounds for NPSPQour simulation method can go no further than
NPspace, since we rely on the fact that we can enumerate the tapeesjtimough
a constant number of variables (which may encode only a paotyal quantity
of numbers). A similar problem arises in the case of a betteet bound for
APSS1).

We suggest that an indirect method may be more likely to d;geerhaps
like that used to prove C NPSS(1) — via the path system problem —in [2].

8.2 Classes of Structure on whictl? = +PS[FO]

Grohe had proved in [23] thd& = LFP[FO] on the class of 3-connected planar
graphs. Since triangulations are 3-connected planar graipth it is known tha

= +PYFO] on the class of triangulations [42], it is natural to questichetherP

= LFP[FO] on the class of 3-connected planar graphs. Thus far, we ladled f
to adapt Grohe’s method to settle this question.
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8.3 Quantified Constraints on Graphs

The method used to prove tiapace-completeness of &-Hom(H), whereH
is an odd catherine wheel, may be applied to presce-completeness for sim-
ilar templates. An obvious extension is for graphs that amestructed like odd
catherine wheels, but where any bipartite graph (not justed may be appended
to each position on the odd cycle.

For quantifiedH-colouring, we conjecture the following extension to Theo-
rem71.

Conjecture 93. The class of antireflexive undirected graphs exhibits-AOM-
trichotomy. Specifically:

e If H is bipartite, then AT-Hom () is tractable.

e If 3 is not bipartite, and is not connected, themtAHom(H) is NP-
complete.

e If His not bipartite, and is connected, theoTAHOM () is Pspace-complete.

In order to prove this, it would remain for us to prove thattTAHom(H)
is Pspace-complete, wherdH is antireflexive, undirected and connected, and has
more than one odd cycle.

It is well-known that common cores characterise equivatepbscon j-FO-
theories (CSP/ Hm), i.e. two templatesT, T’ have the same core iff they agree
on all sentences al-poscon |-FO. Similarly, common stiff-graphs-within char-
acterise equivalerftO\{=}-theories. We know of no such characterisation for
equivalence oposconj-FO-theories (QCSP/ &r-Hom). It would be interest-
ing to isolate some characteristic on two templates thattgxapecifies whether
they give rise to the same QCSP problem.
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