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ABSTRACT

We study counting various types of configurations in certain classes of graph au-

tomata viewed as discrete dynamical systems. The graph automata models of our
interest are Sequential and Synchronous Dynamical Systems (SDSs and SyDSs, re-
spectively). These models have been proposed as the mathematical foundation for a

theory of large-scale simulations of complex multi-agent systems. Our emphasis in this
paper is on the computational complexity of counting the fixed point and the garden of

Eden configurations in Boolean SDSs and SyDSs. We show that counting these configu-
rations is, in general, computationally intractable. We also show that this intractability
still holds when both the underlying graphs and the node update rules of these SDSs

and SyDSs are severely restricted. In particular, we prove that the problems of exactly
counting fixed points, gardens of Eden and two other types of S(y)DS configurations are

all #P-complete, even if the SDSs and SyDSs are defined over planar bipartite graphs,

and each of their nodes updates its state according to a monotone update rule given as
a Boolean formula. We thus add these discrete dynamical systems to the list of those

problem domains where counting combinatorial structures of interest is intractable even
when the related decision problems are known to be efficiently solvable.

Keywords: discrete dynamical systems, cellular and graph automata, computational

complexity, enumeration problems, #P-completeness

1. Introduction

We study in this work certain classes of graph automata that can be used as an abstraction of

the classical networked distributed systems, as well as of various multi-agent systems (MAS) made

of a large number of reactive autonomously executing agents, and as a theoretical model for the

agent-based simulation of a broad variety of computational, physical, biological, social, and/or socio-

technical distributed networks and infrastructures. In this and several other, loosely related papers
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(e.g., [3, 4, 5, 6, 7, 8, 9, 10, 34, 47, 48, 45]), the general approach has been to study mathematical

and computational configuration space properties of such graph automata.

We specifically focus in this paper on determining how many configurations of certain kinds such

graph automata have, and how hard are the computational problems of counting (or enumerating)

those configurations. The main contributions of our work are as follows. We prove that counting

the number of fixed point configurations or “garden of Eden” configurations in two related classes

of graph automata, called Sequential and Synchronous Dynamical Systems, is computationally

intractable, even when (i) such a discrete dynamical system is defined over a graph that is both

planar and bipartite, and (ii) each node of a given graph automaton is required to update its state

according to a monotone Boolean function.

The rest of the paper is organized as follows. Section 2 is devoted to the necessary preliminaries

about the models that we study, namely, the sequential and synchronous dynamical systems. Section

3 outlines the main contributions of this paper, and briefly reviews the research literature related

to our work. The original results are presented in Sections 4 and 5. We show in Section 4 that

the problems of counting fixed points, gardens of Eden, and all transient configurationsa in general

Boolean Sequential and Synchronous Dynamical Systems are all #P-complete. We also state several

other consequences of the weakly parsimonious reductions used to establish the intractability of

those counting problems. In Section 5, we show that counting fixed points, gardens of Eden and

all transient configurations remains hard, even when the underlying graph of an SDS or SyDS is

required to be both planar and bipartite, and the node update rules are restricted to monotone

Boolean functions given either as oracles or as reasonably succinct formulae. The paper summary

is given in Section 6.

2. Preliminaries

In this section, we define the graph automata models studied in this paper, and their configuration

space properties. Sequential Dynamical Systems (henceforth referred to as SDSs) are proposed in

[9, 10, 11] as an abstract model for computer simulations. This model has been successfully applied

in the development of large-scale socio-technical simulation systems such as the TRANSIMS project

at the Los Alamos National Laboratory [12, 49].

Definition 1 A Sequential Dynamical System (SDS) S is a triple (G,F,Π), whose components

are as follows:

1. G(V,E) is a connected undirected graph without multi-edges or self-loops. G(V,E) = GS is

referred to as the underlying graph of SDS S. We often use n to denote |V | and m to denote

|E|. The nodes of GS are enumerated 1, 2, . . ., n.

2. Each node is characterized by its state. The state of a node vi, denoted by si, takes on a

value from some finite domain, D. In this paper, we shall focus on D = {0, 1}. We use

di to denote the degree of the node vi. Each node vi has an associated node update rule

fi : Ddi+1 → D, for 1 ≤ i ≤ n. We also refer to fi as the local transition function. The

inputs to fi are si and the states of the neighbors of node vi. We use F = FS to denote

the global map of S, obtained by appropriately composing together all the local update rules

fi, i = 1, ..., n.

aAll these types of configurations will be defined in Section 2.
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3. Finally, Π is a permutation of V = {1, 2, . . . , n} specifying the order in which the nodes

update their states using their local transition functions. Alternatively, Π can be envisioned as

a total ordering on the set of nodes V. In particular, we can view the global map as a sequential

composition of the local actions of each fi on the respective state si, where the node states

are updated according to the order Π; that is, FS = (fΠ−1(1), fΠ−1(2), . . . , fΠ−1(n)).

The nodes are processed in the sequential order specified by the permutation Π. The processing

associated with a node consists of computing the new value of its state according to the node’s

update function, and changing its state to this new value.

Definition 2 A Synchronous Dynamical System (SyDS) is an SDS without the node permutation.

In an SyDS, at each discrete time step, all the nodes perfectly synchronously in parallel compute and

update their state values.

Thus, SyDSs are similar to the finite classical cellular automata (CA), except that in an SyDS

the nodes may be interconnected in an arbitrary fashion, whereas in a classical cellular automaton

the nodes are interconnected in a regular fashion (such as, e.g., a line, a rectangular grid, or a

hypercube); for more on the classical CA and their underlying graphs (also called cellular spaces )

see, e.g., [16, 18, 21, 53, 54]. Another difference is that, while in the classical CA all nodes update

according to the same rule, in an SyDS different nodes, in general, may use different update rules.

In the sequel, we shall often slightly abuse the notation, and not explicitly distinguish between

an SDS’s or SyDS’s node itself, vi, and its state, si. The intended meaning will be clear from the

context. Likewise, we shall use the terms “(node’s) state” and “(node’s) value” interchangeably. We

shall discuss in more detail several possible interpretations of the global map F = FS , and how this

map acts on the (global) configurations of an S(y)DS S, in subsection 2.1.

Insofar as the restricted classes of Boolean update rules that we consider in this paper, the

strongest result in Section 5 is in the context of Boolean S(y)DSs defined on the star graphs and

with the node update rules restricted to monotone functions.

Definition 3 Given two Boolean vectors, X = 〈x1, . . . , xn〉 and Y = 〈y1, . . . , yn〉, define a binary

relation “�” as follows: X � Y if xi ≤ yi for all i, 1 ≤ i ≤ n. A Boolean function of n variables

f = f(x1, ..., xn) is monotone if X � Y implies that f(X) ≤ f(Y ).

S(y)DSs with finite domains are a generalization of the S(y)DSs with Boolean domains. In the

most general class of the S(y)DSs with arbitrary finite domains, there are no restrictions on the local

transition functions. All the hardness results in this paper, explicitly shown for the Boolean S(y)DSs,

clearly also hold for the more general, non-Boolean finite domains – as long as those domains’ sizes

are O(1), which we will assume throughout.

2.1. SDS and SyDS Configuration Space Properties

Much of the previous work on SDSs and SyDSs has focused on computational complexity of

determining their various configuration space properties. We briefly survey the relevant literature

in subsection 3.1. This paper expands on that prior work by addressing computational complexity

of some basic counting or enumeration problems about S(y)DSs and their configuration spaces.

Definition 4 A configuration of an SDS or SyDS S = (G,F,Π) is a vector (b1, b2, . . . , bn) ∈ Dn.

A configuration C can also be thought of as a function C : V → D. Given a configuration C, the
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state of a node v ∈ V in C is denoted by v(C); similarly, for a nonempty subset W ⊂ V of nodes,

W (C) denotes the tuple of states of the nodes v ∈W . We refer to W (C) as a sub-configuration

of C.

The global map FS of an SDS or SyDS S specifies for each configuration C the next configuration

C′ reached by S after carrying out the updates of the node states (where, in case of an SDS, these

updates are carried out in the order given by Π). Thus, the function FS : Dn → Dn is a total

function on the set of global configurations. This function therefore defines the dynamics of SDS S.

We say that S moves from a configuration C to a configuration FS (C) in a single transition step.

Alternatively, we say that S(y)DS S moves from a configuration C at time t to a configuration

FS (C) = C′ at time t + 1. Assuming that each node update function fi is computable in time

polynomial in the size of the description of S, clearly each transition step will also take polynomial

time in the size of the SDS’s description. The initial configuration of an S(y)DS S will be often

denoted by C0 in the sequel. Given an S(y)DS S with an initial configuration C0, the configuration

of S after t time steps is denoted by Ct. Similar convention applies to the states of individual

nodes at different time steps.

The configuration space (also called phase space) PS of an SDS or SyDS S is a directed

graph defined as follows. There is a vertex in PS for each global configuration of S. There is

a directed edge from a vertex representing configuration C to that representing configuration C′

if FS (C) = C′. Since any SDS or SyDS is a deterministic dynamical system, each vertex in its

configuration space has the out-degree of 1. Since the domain D of state values is assumed finite,

and the number of nodes in the underlying graph of any S(y)DS is always finite, the number of

configurations in the configuration space is also finite. If the domain size (that is, the number of

possible states of each node) is |D|, then the number of global configurations in PS is |D|n.

Definition 5 Given two configurations C and C′ of an SDS or SyDS S, configuration C is a

predecessor of C′ if FS (C) = C′, that is, if S moves from C to C′ in one global transition

step. We use the notation pred(C′) = C to denote that C is a predecessor of C′.

Definition 6 Given two configurations C and C′ of an S(y)DS S, C is an ancestor of C′

if there is a positive integer t such that FS
t(C) = C′, that is, if S evolves from C to C′ in one

or more transitions. For any t ≥ 2, a configuration C is a t-ancestor of a configuration C′ if

FS
t(C) = C′, i.e., if S starting from C reaches C′ in exactly t transition steps.

In particular, a predecessor of a given configuration C′ is trivially also its ancestor.

Definition 7 A configuration C of an S(y)DS S is a garden of Eden (GE) configuration if C

has no predecessor.

Definition 8 A configuration C of an S(y)DS S is a fixed point (FP) configuration if FS (C) = C,

that is, if the transition out of C is back to C itself.

Note that a fixed point is a configuration that is its own predecessor.

Definition 9 A configuration C of an S(y)DS S is a cycle configuration (CC) if there exists

an integer t ≥ 2 such that

(i) FS
t(C) = C; and

(ii) FS
q(C) 6= C, for any integer q, 0 < q < t.

The integer t above is called the period or length of the temporal cycle.
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In other words, C is a cycle configuration if it is reachable from itself in two or more transitions,

but not in a single transition. Both CCs and FPs are recurrent configurations; in particular, every

CC or FP is its own ancestor.

Definition 10 A configuration C of an S(y)DS is a transient configuration (TC) if C is neither

a fixed point nor a cycle configuration.

As their name suggests, transient configurations, unlike fixed points and cycle configurations,

are never revisited. We note that a GE configuration is a special case of a transient configuration:

a GE configuration is not reachable from any configuration, including itself.

Finally, we define the basic computational problems about the SDSs and SyDSs, and their

configuration space properties, that will be addressed in the sequel. The Fixed Point Existence

problem (abbreviated as FPE) is the problem of determining, given an S(y)DS (or a class of S(y)DSs

of a particular kind), does this S(y)DS (alternatively, does every S(y)DS in this class) have at

least one fixed point configuration? The Garden of Eden Existence problem (or GEE for

short) is defined analogously. The counting versions of these two decision problems ask, how many

fixed points or gardens of Eden does a given S(y)DS have? These two counting problems will be

abbreviated as #FP and #GE, respectively.

3. Summary of Results and Related Work

Given an SDS or SyDS S, let |S| denote the size of the representation of S. In general,

this includes the number of nodes, the number of edges, and the description of the local transition

functions. When D = {0, 1} and the local transition functions are given as the truth tables,

|S| = O(m + |T |n), where |T | denotes the maximum size of a table, n is the number of nodes and

m is the number of edges in the underlying graph. By the size of a truth table we shall throughout

the paper mean, for simplicity, just the number of rows in this table. Thus, for a node vi of degree

di, the size of a truth table specifying an arbitrary Boolean function is O(2di), and actually, for

any sufficiently big positive integer di, most Boolean functions on di + 1 inputs cannot be encoded

substantially more succinctly than via a truth table of size 2di+1.

Another, more common way of specifying the local transition functions is via Boolean formulae.

Unless stated otherwise, we shall assume that fi of SDSs and SyDSs considered in the sequel

are indeed given as reasonably succinctly encoded Boolean formulae of appropriate kinds. We will

discuss issues related to the choice of the local update rules’ representation, and some implications

of that choice, in much more detail in Section 5.

As mentioned earlier, we study in this paper the problems of counting the fixed point (FP)

and the garden of Eden (GE) configurations of Boolean and finite domain SDSs and SyDSs. In

particular, we prove the following results:

• the problems of counting FPs and GEs in the general Boolean (and, consequently, also in any

other finite domain) SDSs and SyDSs are #P-complete;

• these two, as well as some other, related counting problems remain #P-complete even when

the underlying graphs of Boolean S(y)DSs are required to be both planar and bipartite;

• these hardness results still hold when the node update rules of these S(y)DSs are restricted to

monotone Boolean functions;
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• moreover, the results remain valid even when only two different monotone update rules are

used, and when the average node degree in the underlying graph is less than two.

3.1. Related Work

SDSs and SyDSs investigated in this paper are closely related to the graph automata (GA) models

studied in [32, 36] and the one-way cellular automata studied by Roka in [39]. In fact, the general

finite-domain SyDSs exactly correspond to the graph automata of Nichitiu and Remila as defined

in [36]. The main difference between the graph automata in [32, 36] and the SDSs studied herein is

the sequential ordering aspect. In particular, SDSs generalize the finite sequential CA [47, 48] in

that they allow arbitrary (finite) underlying graphs, as opposed to restricting cellular spaces to the

regular Cayley graphs only [16].

Over the recent years, several researchers have considered the issue of the communication model

in discrete dynamical systems [15, 18, 24, 39, 47]. For instance, Huberman and Glance in [24]

discuss and demonstrate experimentally that certain (simulations of) n-person evolutionary games

exhibit very different, but probably more realistic, dynamics when the cells are updated sequentially

as opposed to when they are updated synchronously in parallel. Comparison and contrast of the

resulting dynamics in cellular automata and automata networks when the nodes update perfectly

synchronously vs. when they update sequentially can be found, e.g., in [18, 47].

Barrett, Mortveit and Reidys [9, 10, 34, 38] and Laubenbacher and Pareigis [31] investigate the

mathematical properties of sequential dynamical systems. Barrett et al. study the computational

complexity of several configuration space problems for SDSs. These include Reachability, Pre-

decessor existence and Permutation existence [6, 7]. Problems related to the existence of

garden of Eden and fixed point configurations are studied in [8]. In particular, the basic com-

putational complexity results for the problems of FP, GE and non-unique predecessor existence in

various restricted classes of Boolean S(y)DSs, including those with monotone Boolean update rules,

are proven in that paper. Our results in this paper can be viewed as a natural partial extension

of the work in [8]: instead of the appropriate decision problems about fixed points and gardens of

Eden in SDSs and SyDSs, we focus on studying the related counting problems.

Counting or enumeration problems naturally arise in many contexts, from approximate reason-

ing and Bayesian belief networks in AI (e.g., [40]), to network reliability and fault-tolerance (e.g.,

[50]), to statistical physics (e.g., [28, 30]). Counting problems often arise in the context of discrete

dynamical systems and theoretical models for parallel and distributed computing, as well. Indeed,

being able to efficiently solve certain counting problems is essential for the full understanding of

the underlying dynamical system’s qualitative behavior. Perhaps the most fundamental counting

problem about any dynamical system is to determine (or estimate) the number of attractors of

that system [2]; these attractors correspond to our fixed points. Counting the non-FP temporal

cycles and cycle configurations, or the garden of Eden (GE) configurations, or the sizes of basins

of attraction for different attractors, may also be of interest. For example, in deterministic dis-

crete dynamical systems that are temporal cycle-free, such as the asynchronous (that is, sequential)

discrete Hopfield networks with linear threshold update rules [22, 23], or the sequential CA with

monotone threshold update rules [18, 47, 48], the number of fixed points equals the number of

possible dynamical evolutions of the system. In the context of Hopfield networks, the interpretation

of the FP count is that it tells us how many distinct patterns a given Hopfield net can memorize
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[2, 22, 23]. In other, more general deterministic dynamical systems, the total number of possible

evolutions equals the sum of the number of fixed points and the number of non-FP temporal cycles.

Similarly, the number of GE configurations indicates what fraction of all possible configurations are

unreachable [8].

4. Complexity of Counting in General Boolean SDSs and SyDSs

The results in this section constitute an extension of the work presented in [7] and [8]. In

particular, computational complexity of decision problems about the fixed point and the garden of

Eden configurations in S(y)DSs is studied in [8]. Once NP-completeness of these decision problems

has been established, a natural next step is to determine the computational complexity of the related

counting problems.

One would intuitively expect that, for instance, counting the FPs of an arbitrary Boolean SDS

or SyDS is no easier than counting the satisfying truth assignments of an arbitrary instance of

the Satisfiability problem [14, 37]. The intuitive notion of computational hardness of counting

problems is formalized via the definition of the class #P (read: “sharp-P” or “number-P”).

Definition 11 A counting problem Ψ belongs to the class #P if there exists a polynomial time

bounded nondeterministic Turing machine (NTM) such that, for each instance I of Ψ, the number

of nondeterministic computational paths this NTM takes that lead to acceptance of this problem

instance equals the number of solutions of I(Ψ).

For an alternative but equivalent definition of the class #P in terms of polynomially balanced

relations, we refer the reader to [37].

The hardest problems in the class #P are the #P-complete problems.

Definition 12 A counting problem Ψ is #P-complete if and only if (i) it belongs to the class #P,

and (ii) it is hard for this class, i.e., every other problem in #P is efficiently reducible to Ψ.

As one would expect, the counting versions of the standard decision NP-complete problems,

such as Satisfiability or Hamilton circuit, are #P-complete [37]. What is curious, however,

is that the counting versions of some tractable decision problems, such as Bipartite Matching

or Monotone 2CNF Satisfiability, are also #P-complete [51, 52].

Definition 13 Given two problems Π and Π
′

, a parsimonious reduction from Π to Π
′

is

a polynomial-time transformation g that preserves the number of solutions; that is, if an instance

I of Π has nI solutions, then the corresponding instance g(I) of Π
′

also has ng(I) = nI

solutions.

In practice, one often resorts to reductions that are “almost parsimonious”, in a sense that, while

they do not exactly preserve the number of solutions, nI in the previous definition can be efficiently

recovered from ng(I) .

Definition 14 Given two decision problems Π and Π
′

, a weakly parsimonious reduction

from Π to Π
′

is a polynomial-time transformation g such that, if an instance I of Π has

nI solutions, and the corresponding instance g(I) of Π
′

has ng(I) solutions, then nI can be

computed from ng(I) in polynomial time.

All of our results on the computational complexity of counting various kinds of configurations in

SDSs and SyDSs will be obtained by reducing the counting problems about certain types of Boolean
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formulae that are known to be #P-complete to the problems about S(y)DSs. That this suffices

follows from the well-known property of any problem that is hard for a given complexity class; for

the record, we state that property in the Proposition below.

Proposition 1 [37] Given two decision problems Π and Π
′

, if the corresponding counting problem

#Π is known to be #P-hard, and if there exists a (weakly) parsimonious reduction from Π to Π
′

,

then the counting problem #Π
′

is #P-hard, as well.

4.1. Counting Fixed Points of General Boolean SDSs and SyDSs

We shall use reductions from the known #P-complete problems, such as the counting version of

Positive-Exactly-1-in-3-SAT (PE3SAT), to the problems of counting FPs and other types of

configurations in certain classes of SDSs and SyDSs. These reductions will establish the #P-hardness

of those counting problems about SDSs and SyDSs. We next define the variants of Satisfiability

[14, 37] that we shall use in the sequel.

Exactly-One-in-Three-Satisfiability (or E3SAT for short), is a version of 3CNF-SAT

[14] such that, first, each clause in a given Conjunctive Normal Form (CNF) Boolean formula con-

tains exactly three literals, and, second, where a truth assignment is considered to satisfy the given

3CNF formula if and only if exactly one of the three literals is true in each clause. Positive-

Exactly-One-in-Three-Satisfiability (abbreviated as PE3SAT) is further restricted: no

clause in the 3CNF formula is allowed to contain a negated literal.

Planar 3CNF SAT is a variant of 3CNF satisfiability defined as follows. Graph Gf = G(V,E)

corresponding to Boolean formula f has a distinct vertex for each variable and for each clause in

the formula. There is an edge between two vertices of Gf if and only if (i) one of those two vertices

is a variable vertex, while the other is a clause vertex, and (ii) in the formula f , the corresponding

variable appears in the corresponding clause. An instance f of 3CNF SAT is said to be planar if

and only if the corresponding graph Gf as defined above is a planar graph.

Our #P-hardness results in this section will be consequences of Proposition 1 and the following

result by Hunt et al. on the hardness of counting satisfying truth assignments of the three perhaps

most studied variants of (P)E3SAT:

Proposition 2 [25] The problems of exact enumeration of the satisfying assignments of (i) E3SAT,

(ii) PE3SAT and (iii) Planar-PE3SAT are all #P-hard.

Consider the following reduction from #PE3SAT to #FP-SDS, where #FP-SDS denotes the

problem of counting the fixed point configurations of an arbitrary Boolean SDS.

Let an arbitrary instance I of PE3SAT be given. Assume that I has n variables and m clauses.

The only assumption we make about I is that it does not have any redundant variables; that is, we

assume that each of the n variables appears in at least one clause. We construct the corresponding

instance of an SDS S = S(I) as follows. The underlying graph of S has a distinct node for each

variable xi, 1 ≤ i ≤ n, and for each clause Cj , 1 ≤ j ≤ m. The node labeled xi is connected to

the node labeled Cj if and only if, in the Boolean formula I, variable xi appears in clause Cj . In

addition, our graph has one additional node, labeled y, that is adjacent to the nodes Cj for all

indices j = 1, ...,m. Hence, each Cj has exactly four neighbors, and node y has m neighbors.

The node update functions of our SDS S are as follows:
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– Each node Cj evaluates the logical AND of the current value of the node y, the value evaluated

by the PE3SAT function of the three variables {xj1 , xj2 , xj3} that appear in the corresponding

clause Cj of I, and the current value of itself; that is, the update function of node Cj evaluates

to 1 if and only if:

(i) exactly one of the three neighboring nodes xj1 , xj2 , xj3 is in the state 1;

(ii) the node y currently holds the value 1; and

(iii) the current value of Cj itself is 1.

– The special node y evaluates the Boolean AND of its own current value and the current

values of the clause nodes Cj , 1 ≤ j ≤ m. This will enable us to argue that the node y, in

effect, evaluates the Boolean formula for the specified truth assignment (x1, ..., xn), provided that

the initial value of y is yt = 1, and, likewise, that Ct
j = 1, for all j, 1 ≤ j ≤ m.

– Each node xi evaluates the logical AND of itself and the current values stored in the clause

nodes Cj(i) such that, in the original formula I, variable xi appears in each of the clauses Cj(i)

(and in no other clauses of I).

The order of the node updates is (C1, ..., Cm, y, x1, ..., xn).

Since S has n + m + 1 nodes, the corresponding configuration space will have 2n+m+1 configu-

rations.

We observe that each of the clause nodes Cj in S has only O(1) neighbors, and, consequently,

the description of its update rule, whether given as a (reasonably succinct) Boolean formula or a

truth table, will also be of size O(1). In contrast, the node y has Θ(|V |) neighbors. However,

y updates according to a very simple rule, namely, the Boolean AND function, that can certainly

be encoded much more succinctly than via a truth table with Θ(2m) rows. Similarly, the variable

nodes, xi, also update according to the Boolean AND function, which can be encoded, if need be, in

a succinct tabular form even for those nodes that correspond to the variables in the original PE3SAT

formula that appear in more than O(1) clauses. In particular, the description of S = (GS , FS ,ΠS )

can certainly be encoded so that the size of that encoding is linear in the size of the representation

of the underlying graph GS alone, and is also polynomially related to the size of the original

PE3SAT formula I.

We claim that the reduction from #PE3SAT to #FP-SDS based on the above SDS construction

from an instance I of PE3SAT is weakly parsimonious. Both problems clearly belong to the class

#P. Since #PE3SAT is also hard for that class [25], the result below immediately follows:

Theorem 1 The problem of exactly counting the fixed points of an arbitrary Boolean SDS (and

therefore also of any more general finite domain SDS) is #P-complete.

A formal proof that the given SDS construction is, indeed, a weakly parsimonious reduction from

#PE3SAT to #FP-SDS, as well as a detailed analysis of what the resulting configuration space looks

like, can be found in our online technical report [45].

By a straight-forward modification of the given SDS construction and a similar argument to the

one in the proof of Theorem 1 (see [45]), the #FP-SyDS problem for the general Boolean and other

finite domain SyDSs is intractable, as well.

Corollary 1 The problem #FP-SyDS for the general Boolean and other finite domain SyDSs is

#P-complete.

We remark that the underlying graph in the construction above is bipartite, as there are no

lateral edges among the variable nodes or among the clause nodes, and hence only even-length
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closed pathsb are possible. Moreover, by the results of Hunt et al. in [25] on the complexity of

counting problems for the planar graphs, the underlying graph GS in our construction can be also

made planar while preserving the hardness of the counting problem #FP-S(y)DS. Likewise, as a

straight-forward corollary to the complexity results by Vadhan on counting in sparse graphs and

sparse Boolean formulae [50], a O(1) bound on the maximum node degree for the variable nodes

can be imposed, while preserving the #P-completeness of #FP-S(y)DS.

Therefore, when all these restrictions on GS are imposed simultaneously, the conclusion is

that the #FP-S(y)DS problem is #P-complete even when the underlying graph is (i) planar, (ii)

bipartite, and (iii) with only one node of degree greater than O(1). We will elaborate more on the

restrictions on an SDS’s or SyDS’s underlying graph that still maintain the hardness of counting

FPs in Section 5. Before doing so, however, we first explore several other consequences of the basic

SDS construction preceding the statement of Theorem 1.

4.2. Some Implications for Complexity of Other Configuration Space Properties

The construction of an SDS from a Boolean formula in Theorem 1 resembles of how one constructs

a Boolean circuit from a Boolean expression. That is, not only is the construction preserving the

number of solutions but, furthermore, one can view it as a very literal translation from a Boolean

formula into an SDS. Additionally, the resulting SDS has a rather simple configuration space: every

initial configuration that encodes a satisfying truth assignment of I, and initially has y0 = 1 and

all C0
j = 1, is already a fixed point, whereas all initial configurations that encode falsifying truth

assignments of I, as well as those that have y0 = 0 or at least one C0
j = 0, reach the “sink” fixed

point 0n+m+1 within two steps. These scenarios are, indeed, the only possible evolutions of S: its

configuration space has no temporal cycles whatsoever, no chains of transient configurations longer

than two, and no fixed points except for 0n+m+1 and those that are of the form (1, ..., 1, 1, x1, ..., xn),

where (x1, ..., xn) ∈ {0, 1}n is a truth assignment that satisfies the original Boolean formula I.

We summarize the implications of the construction in Theorem 1 in the Lemma below:

Lemma 1 Let an arbitrary instance I of PE3SAT be given, and let the corresponding SDS S = S(I)

be constructed from it as in Theorem 1. Then the following statements are equivalent:

(i) I is satisfiable, i.e. there exists a truth assignment to the variables appearing in I so that the

underlying PE3SAT formula evaluates to true.

(ii) SDS S has a fixed point configuration C 6= 0n+m+1.

(ii’) S has two or more fixed points.

(iii) S has a configuration C such that C 6= 0n+m+1 and C has a 2-ancestor, that is,

pred(pred(C)) exists.

(iii’) S has a configuration C 6= 0n+m+1 such that, for any k ≥ 1, C has a k-ancestor.

Proofs of these claims are rather straight-forward and will be omitted.

We recall the definition of Ambiguous-SAT, sometimes also called Double-SAT (see, e.g.,

[14]): Given an instance of a Boolean CNF formula, does it have two or more solutions, i.e.,

are there two or more satisfying truth assignments? One of the consequences of Lemma 1 is that

bWe purposefully avoid using the word “cycle” here, even though it is the more common term in the graph theory
literature, in order to avoid possible confusion between closed paths, or cycles, in the underlying graph of an SDS on
one hand, and the temporal cycles characterizing this dynamical system’s behavior (that is, the directed cycles in the
resulting configuration space), on the other.
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determining whether an SDS has more than one fixed point is no easier than determining whether

an instance of PE3SAT has a satisfying truth assignment. We notice the similarity between the

problem of non-uniqueness of FPs in an SDS or SyDS, and the Ambiguous-SAT problem, which

can also be viewed as the problem of non-uniqueness of satisfying truth assignments.

We recall that Ambiguous-SAT is NP-complete in general [14].

Definition 15 The Ambiguous-FPE problem: Given an arbitrary Boolean-valued SDS or SyDS

S, does it have more than one fixed point?

It is now immediate from Lemma 1 that the following result holds:

Corollary 2 For general Boolean and other finite domain SDSs and SyDSs, the Ambiguous-FPE

problem is NP-complete.

We conclude this section by establishing two more results on the hardness of exact enumeration in

the context of arbitrary Boolean SDSs and SyDSs. Those two results will follow from the construction

used to establish Theorem 1, and from the discussion at the beginning of this subsection.

The first of the two results is a direct corollary to Theorem 1. Namely, since the S(y)DSs

constructed from the PE3SAT CNF formulae in Theorem 1 do not have any cycle configurations,

it is immediate that |#TC| = 2m+n+1 − |#FP |. Since the class of function problems #P is closed

under taking the complement, it follows that exactly counting all transient configurations of Boolean

and other finite domain S(y)DSs is #P-complete.

Theorem 2 The problem #TC of exactly counting all transient configurations of an arbitrary

Boolean (or any other finite domain) SDS or SyDS is #P-complete.

We next focus on the complexity of enumerating only those transient configurations that are

gardens of Eden. The sequel of lemmata that follows has the purpose of establishing two facts.

One, SDSs and SyDSs constructed as in Theorem 1 tend to have a great deal of GE configurations.

Consequently, approximating the number of those gardens of Eden, denoted |#GE|, to within a

constant multiplicative factor is trivial for such S(y)DSs. (This fact, however, by no means implies

the easiness of the problem of approximate enumeration of GEs for Boolean S(y)DSs in general.)

Two, and more importantly for our purposes, determining |#GE| exactly is intractable.

Lemma 2 Let an SDS S be constructed from an instance I of PE3SAT as in Theorem 1.

Assume that I contains n Boolean variables and m clauses, where each clause is made of three

unnegated variables. Let C = (C, y, x) denote a generic global configuration, where C ∈ {0, 1}m,

y ∈ {0, 1} and x ∈ {0, 1}n. Then:

(i) Any configuration C of the form (C, y, x) = (C, 1, x) with C ∈ {0, 1}m − {1m} and any

x ∈ {0, 1}n is a GE.

(ii) Any configuration C of the form (C, y, x) = (1m, 0, x) with x ∈ {0, 1}n is a GE.

Proof. Recall that the node update ordering is Π = (C1, ..., Cm, y, x1, ..., xn).

Assume there exists a configuration C = (C, y, x) = (C, 1, x) with C 6= 1m that actually is

not a GE. Then this configuration must have a predecessor. Let C′ = pred(C). Since the node

y updates according to Boolean AND that includes its own old value, y(C′) = 1. Assume there

exists j⋆ ∈ {1, ...,m} such that Cj⋆
(C′) = 0. Then, at the next time step, the node Cj⋆

has to

reevaluate to 0: Cj⋆
(C) = 0. Consequently, since yt+1 ← yt · Πm

j=1C
t+1
j , it follows that y(C) = 0,

a contradiction. Therefore, it must be that ∀j ∈ {1, ...,m} : Cj(C
′) = 1, i.e., C’ is of the form

(C ′, y′, x′) = (1m, 1, x′), for some x′ ∈ {0, 1}n.
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Let TRUE ⊂ {0, 1}n denote the set of those Boolean n-vectors that, if used as a truth assignment

to x = (x1, ..., xn), make the given PE3SAT formula I evaluate to true : I(x) = 1. Let the

set FALSE be defined analogously. For any of the 2n (m + n + 1)-vectors of the form (C, y, x) =

(1m, 1, x), there are two exhaustive and mutually exclusive possibilities: either x ∈ TRUE, or else

x ∈ FALSE. If x ∈ TRUE, then C⋆ = (1m, 1, xtrue) is a fixed point; that is, F (C⋆) = C⋆ 6= C,

so this C⋆ cannot be a predecessor of C. On the other hand, if x ∈ FALSE, then there exists

j⋆ such that the clause Cj⋆
of formula I is falsified for this truth assignment x = (x1, ..., xn).

Hence, the corresponding clause node in the SDS S constructed from I will evaluate to zero at the

next time step, thereby coercing the node y (that gets its turn only once all the nodes Cj have

already updated their respective states) to update to zero, as well. This, however, contradicts our

assumption that y(C) = 1. Hence, a configuration of the form C = (C, y, x) = (C, 1, x) cannot

possibly have a predecessor, i.e., all such configurations are gardens of Eden.

To show that any configuration of the form C = (C, y, x) = (1m, 0, x) also must be a GE, we

observe that, since each node Cj updates according to Boolean AND on several inputs including

this node’s own current state, a candidate predecessor C’ of C must satisfy C′ = (1m, y, x′) for

some Boolean n-vector x′. If y(C′) = 1, then, since also C(C) = 1m, at the next time step the

node y would update to 1 again; hence, F (C′) cannot be of the form (C, y, x) = (1m, 0, x). But if

y(C′) = 0, that would force C(C) ← 0m, thereby violating the assumption that C is of the form

(C = 1m, y, x). Hence, each configuration of the form (C, y, x) = (1m, 0, x) is a GE. 2

An immediate consequence of the above result is that the GE configurations are, indeed, abundant

in those SDSs that are constructed from the PE3SAT formulae as in Theorem 1:

Lemma 3 Let an SDS S be constructed from an instance of a PE3SAT formula with n variables

and m clauses, as in Theorem 1. Then S has a number of garden of Eden configurations that is

exponential in both n and m.

Proof. There are (2m − 1) · 2n configurations of S that are of the form (C, y, x) = (C, 1, x),

where x ∈ {0, 1}n is arbitrary, and C ∈ {0, 1}m − {1m}. By Lemma 2, each of these Θ(2m+n)

configurations is a GE. 2

Since there are also 2n GE configurations that are of the form (C, y, x) = (1m, 0, x), the next

result is immediate.

Corollary 3 Let an SDS S be constructed from an instance of a PE3SAT formula with n

variables and m clauses, as in Theorem 1. Then at least a half of all global configurations in the

phase space of S are gardens of Eden.

As already mentioned, we would like to argue that the problem #GE-SDS of exactly counting

the gardens of Eden in an SDS constructed from an instance of PE3SAT is, in general, intractable.

To that end, we establish a one-to-one correspondence between the falsifying truth assignments

of a PE3SAT formula, and the GE configurations in the corresponding SDS of the general form

(C, y, x) = (1m, 1, xfalse), where xfalse ∈ FALSE. It will follow from that correspondence that,

in order to determine |#GE| exactly, we need to be able to exactly enumerate all falsifying truth

assignments to the underlying PE3SAT Boolean formula; the latter computational task, however,

is known to be #P-complete.

Lemma 4 Let an SDS S be defined as in the construction of Theorem 1. Then every configuration

that is of the form (C, y, x) = (1m, 1, xfalse), with xfalse ∈ {0, 1}n corresponding to a falsifying

truth assignment of the underlying PE3CNF Boolean formula, is a garden of Eden of S.
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Proof. Let C = (C, y, x) = (1m, 1, xfalse) and let’s assume there exists a configuration C’ such

that pred(C) = C′. Since the node y updates according to Boolean AND that includes its own

current value, y(C′) = 1 must hold. Similarly, for all j ∈ {1, ...,m}, Cj(C
′) = 1 must also hold.

Hence, the assumed predecessor configuration itself must be of the form C′ = (C ′, y′, x′) = (1m, 1, x′),

for some x′ ∈ {0, 1}n. Now, just like in the proof of Lemma 2, there are only two possibilities:

either x′ ∈ TRUE, or else x′ ∈ FALSE. Either possibility clearly leads to a contradiction. Hence,

C cannot have a predecessor, i.e., it must be a garden of Eden. 2

The stage has now been set for the second important result on the complexity of exact enumer-

ation of GEs and TCs in Boolean and other finite domain SDSs and SyDSs:

Theorem 3 The following two problems are #P-complete: Given an arbitrary Boolean or other

finite domain SDS or SyDS S’ with n nodes, an integer k such that 1 ≤ k < n, a subset of nodes

W ⊂ V such that |W | = k, and an arbitrary k-vector b = (b1, ..., bk) ∈ Dk, how many

– garden of Eden configurations, or

– arbitrary transient configurations

C′ such that W (C′) = b does S(y)DS S’ have?

We shall show in Section 5 that the problem #GE remains intractable when no restrictions on

the allowable states of any of the SDS’s or SyDS’s nodes are imposed – that is, when k = 0 and

W = ∅ in Theorem 3 above. That is, the exact analog of Theorems 1 and 2 holds for the problem of

enumerating gardens of Eden, as well. Moreover, the intractability of exactly enumerating FPs, GEs

and all TCs of a Boolean S(y)DS will be established even when the underlying graphs are required

to be simultaneously planar, bipartite and with |E| = O(|V |); see Theorems 4 and 5 below.

5. Counting Configurations of SDSs Defined on Planar Bipartite Graphs

We show in this section that the problems of counting FPs and GEs in Boolean SDSs and

SyDSs remain intractable, when these discrete dynamical systems are defined over very restricted

underlying graphs – in particular, when these underlying graphs are required to be both planar

and bipartite. While the hardness of these counting problems can be obtained from Theorem 1 by

imposing appropriate restrictions on the instances of PE3SAT formulae and then using the work

of other researchers on the complexity of counting in planar, bipartite and/or sparse graphs (see

discussion at the end of subsection 4.1), we prefer to prove the desired properties in an alternative

manner, that is both simpler and independent of the prior work. To that end, we now focus on

the star graphs. We observe that just about any interesting graph-theoretic problem is trivial to

solve on a star graph. Hence, the computational hardness results on various problems about general

planar, bipartite and/or sparse graphs, such as those in [25, 50], cannot be conveniently translated

into the context of computational complexity of determining various configuration space properties

of SDSs and SyDSs that are defined on the star graphs.

We will first show that counting FPs and GEs of a Boolean SDS or SyDS defined on a star

graph is, in general, #P-complete – as long as the local update rule of the central node is not

given as a truth table. Moreover, we will then prove that counting these configurations in the star

graphs remains intractable even when the central node’s update rule is given as a monotone Boolean

formula of a modest size. This is in contrast to the proven tractability of both resolving the fixed
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point existence (the FPE problem), and actually finding a fixed point, in every Boolean SDS or

SyDS all of whose nodes update according to the monotone Boolean functions [8].

5.1. Counting FPs and GEs in SDSs and SyDSs Defined on Star Graphs

We now consider SDSs and SyDSs with arbitrary Boolean update rules, but such that the un-

derlying graphs of these S(y)DSs are required to be the star graphs.

If the node update functions are encoded as the truth tables then, for general Boolean S(y)DSs

defined on the star graphs, we argue that essentially any computational problem about the con-

figuration space properties is solvable in time polynomial in the size of the S(y)DS’s description.

However, if we allow the node update rules either to be considered “black boxes” (i.e., oracles), or

else be given as sufficiently succinct Boolean formulae, then the counting problems of interest will

be shown to become intractable.

Let us first consider SDSs and SyDSs whose node update functions are given as the truth tables.

Assume node y is the center of the star, and that it is adjacent to n periphery nodes x1, ..., xn.

Since each node xi has only one neighbor and therefore depends on only two inputs (i.e., the current

values of y and itself), the table size for each xi is only O(1), and any local update rule computation

via a table search will only take O(1) time. However, the central node y has n neighbors; therefore,

assuming an arbitrary Boolean function fy = g(x1, ..., xn, y) as the node update rule of y, the

truth table for fy will have Θ(2n) rows. Hence, for an S(y)DS defined on a star graph, and assuming

an arbitrary Boolean function at the central node, the size of the overall description is Θ(2n).

When the node update functions are given as the truth-tables, then, for arbitrary Boolean SDSs

and SyDSs defined on the star graphs, counting fixed points and gardens of Eden can be easily

accomplished in time polynomial in the size of the S(y)DS representation. This is due to the

exponential (in the number of nodes) amount of storage that the central node needs for representing

its update rule as a truth table. It is fairly straight-forward to convince oneself that, in that

case, virtually every configuration space property of interest, including the problems of exactly

determining |#FP |, |#GE| or |#TC|, can be done in a number of steps that is polynomial in the

size of the S(y)DS’s encoding, Θ(2n).

These observations about arbitrary Boolean SDSs and SyDSs defined on the star graphs that

include the truth tables for each node as a part of their description can now be contrasted with the

scenario where the truth tables are not a part of the description of an SDS or SyDS. In this latter

case, the S(y)DSs are represented much more succinctly, and it turns out that (unless P = P#P) the

fundamental counting problems for such S(y)DSs become intractable. Throughout the rest of this

subsection, therefore, we assume the size of the S(y)DS’s encoding is O(n), where n is the number

of nodes, i.e. that the central node does not need to store the truth table (and then compute by

searching that table).

Clearly, if the central node has its update rule given as a “black box” (i.e., an oracle), the overall

size of the automaton’s encoding is indeed going to be O(n), as desired. We will first establish

the hardness of counting results under that assumption; subsequently, we will show that counting

remains intractable in the worst case if the central node’s rule is given as a Boolean formula, where

the size of the formula is considered a part of the overall SDS’s or SyDS’s encoding.

Let fy denote the update rule of the central node. We assume that fy is an entirely arbitrary

Boolean function on n+1 inputs. We also assume (for now) that the central node, y, has an oracle

for evaluating fy in a single unit of time.
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Theorem 4 When the truth tables are not a part of the S(y)DS description, the following counting

problems about Boolean SDSs and SyDSs: given an S(y)DS S,

(i) the problem #FP of determining the number of fixed point configurations of S;

(ii) given an arbitrary configuration C, the problem of determining the number of predecessors

of C (abbreviated as #PRED);

(iii) the problem #TC of determining the number of all transient configurations of S; and

(iv) the problem #GE of determining the number of garden of Eden configurations of S

are all #P-complete, even when the underlying graph of S is required to be a star.

Proof. We construct an SyDS S’ that, in essence, emulates an unbounded fan-in Boolean circuit

that evaluates an arbitrary Boolean-valued function f of n Boolean variables.

– The underlying graph GS = G(V,E) has n + 1 nodes, that is, one node for each input

variable xi, and one special node, y, that will, under appropriate circumstances, store the value of

f(x1, ..., xn);

– Node y is adjacent to all nodes xi (that is, the graph GS is a star), and it updates its state

according to the rule yt+1 = yt · f(xt
1, ..., x

t
n);

– Each node xi is adjacent only to the central node y, and updates its value according to

xt+1
i = xt

i · y
t.

If y0 = 0, then the node y will remain holding the value 0 after all future updates, regardless

of whether the truth assignment (x0
1, ..., x

0
n) satisfies the Boolean formula f or not. Since each

x1
i = x0

i · y
0 = x0

i · 0, it follows that all xi values will be updated to 0, regardless of their initial

values. Hence, if y0 = 0, then S’ collapses to the “sink” 0n+1 in a single step of its evolution.

On the other hand, if y0 = 1, then y1 = y0 · f(x0
1, ..., x

0
n) = f(x0

1, ..., x
0
n), i.e., the node y will

update to 1 iff (x0
1, ..., x

0
n) is a satisfying truth assignment for f . Insofar as the nodes xi are

concerned, they will evaluate to their previous values at time t = 1, whereas at time t = 2 they will

reevaluate to the same value iff y has evaluated to 1 at t = 1, and to 0, otherwise. Thus, after two

steps, the configuration reached will either be 0n+1, if the initial choice of (x0
1, ..., x

0
n) corresponds

to a falsifying truth assignment of f , or it will be of the form (y2, x2
1, ..., x

2
n) = (1, x0

1, ..., x
0
n), if

(x0
1, ..., x

0
n) is a satisfying truth assignment of f . Either way, S’ will stay at the configuration it

has reached after two transitions.

To summarize, the configuration space of S’ has no cycles or long transients, and its fixed points

are precisely 0n+1 and those configurations that are of the form (y0 = 1, x0
1, ..., x

0
n), where (x0

1, ..., x
0
n)

is a satisfying truth assignment of the corresponding Boolean function f .

It is almost immediate that, if the node values are updated sequentially instead of synchronously

in parallel, i.e., if we consider an SDS corresponding to the SyDS described above, our analysis of the

fixed points remains valid. Namely, the fixed points are invariant with respect to the choice of a node

update ordering. For the sake of definiteness, but also in order to be able to show the hardness of

counting configurations other than fixed points for SDSs defined on the star graphs, we convert the

above SyDS S’ into a concrete SDS S by specifying the node update ordering Π = (y, x1, ...., xn).

Thus the node update functions of S are

yt+1 ← yt · f(xt
0, ..., x

t
n) ;

for i = 1, ..., n

xt+1
i ← xt

i · y
t+1 ;

end for
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We omit a detailed analysis of this SDS’s behavior (the analysis is rather similar to that for

the corresponding SyDS), and summarize what the configuration space of S looks like. The fixed

points of S are precisely the “sink” 0n+1 and the configurations of the form (y0 = 1, x0
1, ..., x

0
n)

where f(x0
1, ..., x

0
n) = 1. Thus S has T + 1 fixed points if and only if the corresponding Boolean

function f has T satisfying truth assignments. We also observe that the fixed point configurations

of the form (1, x0
1, ..., x

0
n) have no incoming transients, simply because all transients lead to the

sink 0n+1. Furthermore, the configuration space of S has no cycles and no transient chains longer

than one. Since the convergence from any transient configuration to the sink 0n+1 takes exactly

one step, every TC is necessarily also a garden of Eden. We recall that every configuration C with

y(C) = 0 and different from the sink 0n+1 is a transient state. Thus, if the function f has T

solutions, then the corresponding SDS S has exactly |#FP | = T + 1 fixed points and exactly

|#TC| = |#GE| = (2n − 1) + (2n − T ) = 2n+1 − T − 1 transient configurations, each of which is

also a garden of Eden.

We also observe that, since the transition from every transient configuration leads to the sink

FP 0n+1, this fixed point configuration has the number of predecessors equal to |#TC| + 1 =

|#GE|+ 1 = 2n+1 − T .

We remark that the construction described above establishes only the hardness part for the

counting problems (i) – (iv) in the theorem. It is easy to see, however, that all these counting

problems belong to the class #P, since the corresponding decision problems can be readily seen to

be in the class NP. 2

While our primary goal in this section is to establish the hardness of (exactly) enumerating

the fixed point and the garden of Eden configurations for the Boolean and other finite domain

SDSs and SyDSs whose underlying graphs are severely restricted, the given constructions also have

some implications for the decision problems about certain S(y)DS configuration space properties of

interest. We next list a few of those properties. The hardness of the configuration space properties

below follows directly from the hardness of appropriate satisfiability problems for Boolean functions,

and the constructions in the proof of Theorem 4.

Lemma 5 When the truth tables are not a part of an SDS’s or SyDS’s description, the following

decision problems about Boolean SDSs and SyDSs are NP-complete, even when the underlying graph

is required to be a star:

(i) The Ambiguous-FPE problem: Given a Boolean S(y)DS S’, does it have more than

one fixed point?

(ii) Given a Boolean S(y)DS S’, a subset of nodes W ⊂ V such that |W | = k with k ≥ 1,

and an arbitrary Boolean vector b = (b1, ..., bk), does S’ have a fixed point configuration C′ such

that W (C′) = b ?

(iii) Given a Boolean S(y)DS S’, a subset of nodes W ⊂ V such that |W | = k where k ≥ 1,

a Boolean vector b = (b1, ..., bk), and a configuration C, does C have any predecessors that satisfy

W (pred(C)) = b ?

We recall that the tautology problem for Boolean functions (“Given an arbitrary Boolean

function f , does f evaluate to true for all truth assignments to its variables ?”) is a paradigmatic

coNP-complete problem. The SDS S in the proof of Theorem 4 will have no more than 2n − 1

transient configurations or gardens of Eden (out of 2n+1 configurations in total) if and only if S

does not have any TC or GE configurations with y = 1 if and only if f is a tautology. Hence,
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another corollary to our construction in the proof of Theorem 4 is that determining whether an SDS

defined over a star graph will have any nontrivial general transient or garden of Eden configurations

is NP-hard (where, in our example, nontrivial configurations would be those configurations C such

that y(C) = 1). One can view this corollary as an extension of the already known result on NP-

completeness of the garden of Eden existence problem for Boolean and finite range SDSs [8].

Likewise, complexity results about the existence of GEs and TCs analogous to the claims in parts

(ii) and (iii) of Lemma 5 also hold:

Corollary 4 When the truth tables are not a part of an S(y)DS’s description, the following decision

problems are NP-complete, even when the underlying graph is required to be a star: given a Boolean

S(y)DS S’, a subset of nodes W ⊂ V such that |W | = k, and an arbitrary Boolean vector

b = (b1, ..., bk), does S’ have (i) a GE configuration, or (ii) a transient configuration C′ such

that W (C′) = b ?

5.2. Counting FPs and GEs of Monotone SDSs Defined on Star Graphs

All results in the previous subsection have been shown under the unrealistic assumption that the

central node updates its state by using an oracle. Moreover, all the hardness of counting results in

this paper thus far have been shown for the SDSs and SyDSs for which the nontrivial corresponding

decision problems, such as Ambiguous-FPE, are intractable in general.

We shall now drop the oracle assumption, and assume that the central node is given its update

rule f as a Boolean formula that is a part of the S(y)DS’s description. Furthermore, we will also

choose f to be from a class of Boolean formulae for which the corresponding satisfiability problem

is tractable – thereby assuring that the related decision problems about the resulting SDS or SyDS,

such as FPE and Ambiguous-FPE, are also tractable.

The purpose of this exercise is twofold. One, we show that counting configurations of S(y)DSs

over the star graphs is, indeed, intractable – as long as the central node’s update rule is encoded

reasonably succinctly. Two, just like what has been known for the Boolean formulae and many

other combinatorial problem domains, we show in the context of discrete dynamical systems of our

interest that there is an intrinsic aspect of computational hardness that is peculiar to the counting

problems, and that does not have an analog among the corresponding decision problems.

Consider the class of Mon-2CNF Boolean formulae: each clause has exactly two literals, and

no negated variables are allowed. These formulae are a classical example where the problem of

existence of a solution (i.e., a satisfying truth assignment) is trivial, yet enumerating all satisfying

assignments is, in general, #P-complete [52]. Moreover, it has been shown much more recently that

the counting problem #Mon-2CNF remains #P-complete even if no variable appears in more than

four clauses [50]. In particular, if no variable appears in more than O(1) clauses, it immediately

follows that, given such a Mon-2CNF formula that contains n Boolean variables and some number

of 2CNF clauses with those variables, the length of the entire formula is O(n).

Now consider an SyDS or SDS as constructed in the proof of Theorem 4, except that, instead of

the central node’s update rule being treated as an oracle, this node, y, is given its update rule fy

as a Mon-2CNF formula with each variable xi appearing in only O(1) clauses (say, at most four).

Similarly, for the sake of consistency, assume that the update rules for the peripheral nodes xi (which

are just the Boolean AND functions of two variables) are also given as formulae, and considered a

part of the problem instance’s description. Now the size of such an S(y)DS’s encoding is at most
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|E|+ |fmax| · |V |, where |fmax| stands for the maximum size of an update rule formula. Under the

stated assumptions, and since |E| = O(|V |) holds for the star graphs, in our case this encoding

can be readily seen to be of a size that is only O(n). Consequently, incorporating the encodings of

the local update rules into the description of such an S(y)DS does not affect much the size of that

dynamical system’s overall description.

We can now re-state Theorem 4, only without the artificial “black box” assumption about the

nodes’ update rules:

Theorem 5 Exactly enumerating each of the following types of configurations:

(i) all fixed points;

(ii) all predecessors of an arbitrary configuration;

(iii) all transient configurations; and

(iv) precisely those transient configurations that are gardens of Eden

of Boolean and other finite domain S(y)DSs is, in general, #P-complete, even when the underlying

graph is restricted to a star graph, and each node updates according to a monotone Boolean-valued

function, where the local update rules are considered a part of the S(y)DS description, and are given

as negation-free Boolean 2CNF formulae.

We summarize the main results of this section in the following

Corollary 5 Counting each of (i) the fixed points, (ii) the gardens of Eden, (iii) the predecessors,

and (iv) the transient configurations of finite domain SDSs and SyDSs is, in the worst case, com-

putationally intractable, even when all of the following restrictions on the underlying graph and the

local update rules simultaneously hold:

– the underlying graph is planar, bipartite, and with |E| ≤ |V |;

– all local update rules are monotone Boolean functions;

– these update rules are considered a part of the SDS’s or SyDS’s description, and are given

as (monotone) Boolean formulae; and

– SDS or SyDS uses only two different update rules from the given class of functions.

6. Conclusions and Future Directions

Large-scale distributed computational and communication systems are often characterized by

the property that, while the individual components may be relatively simple and their behavior

well-understood, due to the interaction among those components and the interdependencies among

different processes taking place at different components, the overall system behavior can become

extremely complex. This, in particular, makes the design of reliable such systems rather challenging.

Equally importantly, formal verification of various properties of such systems, as well as the forecast

of their likely future behavior patterns, become very difficult.

As a step towards understanding the kind of emerging complexity in such large-scale decentralized

infrastructures, as well as towards developing a general theory of their computer simulation, we

have adopted a discrete dynamical systems perspective. The primary methodological approach to

studying properties of a dynamical system is to study its behavior, i.e., its configuration space. In

this paper, we consider certain types of graph automata as abstract discrete-time, discrete-state
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dynamical systems. We specifically focus herein on the problems of counting how many stable

configurations (FPs) and unreachable configurations (GEs) such dynamical systems have in their

configuration spaces, when each of their nodes has only two distinct states, and updates according

to a simple Boolean function of the states of its neighboring nodes. We establish that these counting

problems in Sequential and Synchronous Dynamical Systems are #P-complete, even when the

following constraints on the structure of an SDS or SyDS simultaneously hold:

• the underlying graph of this SDS or SyDS is planar, bipartite, cycle-free and very sparse on

average – in particular, this graph can be restricted to be a star;

• each local update rule is required to be a monotone Boolean function; and

• the nodes of the S(y)DS use only two different update rules (e.g., for the star graphs, one rule

for the central node, and the other rule for everyone else).

In particular, we have shown in this work that important counting problems about distributed

discrete dynamical systems are intractable when two important restrictions simultaneously hold.

One, insofar as the inter-agent local interactions are concerned, we restricted the “communication

topology”, that is, the underlying graphs of an SDS or SyDS, to the star graphs. Two, insofar

as each agent’s individual behavior is concerned, we limited the node update rules to monotone

Boolean-valued functions encoded as Boolean formulae. The importance of our results for the SDSs

and SyDSs defined on the star graphs stems from the fact that almost any computational graph-

theoretic problem of interest is trivial when the graph instances are restricted to the (ordinary,

static) star graphs. The importance of the results for the restricted local update rules lies in the

fact that the corresponding decision problems for the monotone Boolean S(y)DSs (as well as for the

monotone Boolean formulae in general) are tractable.

That there are important configuration space properties of Boolean SDSs and SyDSs that remain

intractable even when those S(y)DSs are severely restricted in terms of both the allowable underlying

graphs and the allowable local update rules is an indication that a very complex and, in general, un-

predictable global dynamics can be obtained by coupling together only rather simple, monotonically

behaving local interactions. Indeed, we have formally shown that this general observation holds true

as long as there exists a single agent in such a dynamical system that is allowed to interact with a

large number of other agents.
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