
On Approximation Algorithms for Hierarchical MAX-SAT

S amee t A gar w al’
sameet@cs.wisc.edu

Computer Sciences Department
University of Wisconsin
1210 West Dayton St .

Madison, WI 53706

Abstract

We prove upper and lower bounds on performance
guarantees of approximation algorithms for the Hi-
erarchical MAX-SAT (H-MAX-SAT) problem. This
problem is representative of an important class of
PSPACE-hard problems involving graphs, Boolean
formulas and other structures that are defined “suc-
cinctly”.

Our first result is that for some constant E < 1:
it is PSPACE-hard to approximate the function H-
MAX-SAT to within ratio t. We obtain our result
using a known characterization of PSPACE in terms
of probabilistically checkable debate systems. As an
immediate application, we obtain non-approximability
results for functions on hierarchical graphs by combin-
ing our result with previously known approximation-
preserving reductions to other problems. For example,
it is PSPACE-hard to approximate H-MAX-CUT and
H-MAX-INDEPENDENT-SET to within some con-
stant factor.

Our second result is that there is an efficient ap-
proximation algorithm for H-MAX-SAT with per-
formance guarantee 2 / 3 . The previous best bound
claimed for this problem was 1/2. One new technique
of our algorithm can be used to obtain approxima-
tion algorithms for other problems, such as hierar-
chical MAX-CUT, which are simpler than previously
known algorithms and which have performance guar-
antees that match the previous best bounds.

* Agarwal’s research supported by University of Wiscon-
sin Computer Sciences Department research funds.

‘Condon’s research supported by NSF grant CCR-
9257241 and by inatching grants from AT&T Foundation
and IRM.

Anne Condont
condon@cs.wisc.edu

Computer Sciences Department
University of Wisconsin
1210 West Dayton St.

Madison, WI 53706

1 Introduction
Succinct representations of graphs, Boolean formu-

las and other structures have been studied for over
a decade, motivated by applications in VLSI circuit
design, scheduling, finite element analysis, and many
other applications. A good example is the class of
hierarchically defined graphs, proposed by Lengauer
[11, 121 as a means of specifying VLSI layout circuits.
The hierarchical specification of a graph may be log-
arithmic in the size of the graph. Partly as a result
of this, problems on hierarchical structures are often
PSPACE-hard, motivating the study of approximation
algorithms for functions on such succinct structures.
Marathe e t al. [15] were the first to study approxima-
tion algorithms for hierarchically specified problems,
including problems on graphs and Boolean formulas.

A representative PSPACE-hard problem in this
class is the Hierarchical SAT or H-SAT problem
[16]! which is to determine if a hierarchically defined
Boolean formula in CNF form is satisfiable. In this
paper, we present both positive and negative results
on approximation algorithms for the optimization ver-
sion of this problem. Since the hardness of many
other problems on hierarchical structures are based
on a reduction from the H-SAT problem [16], our neg-
ative result on approximating H-SAT leads to similar
negative results for several problems on hierarchical
graphs. Our positive result is motivated by our inter-
est in finding techniques that can be used to compute
good approximate solutions for a range of hierarchi-
cally defined problems. By analogy, we note that in
the case of NP-complete problems, progress on MAX-
SAT [5, 6 , 171 has led to discovery of new techniques,
such as those based on semi-definite programming,
that are also useful for MAX-CUT, COLORING and
many other NP-hard problems.

2 14
1063-6870/95 $04.00 0 1995 IEEE

mailto:sameet@cs.wisc.edu
mailto:condon@cs.wisc.edu

Before describing our results and their applications
in detail, we use a simple example to explain the
H-SAT problem. An instance is a sequence F =
(F1, F2, . . . , Fk) of parameterized formulas, each of
which is defined in part using lower-numbered formu-
las in the sequence, as in the following example.

Each Fi is expanded in turn to obtain E (F i) , by in-
ductively replacing each instance of Fj (j < i) by
E(F’), substituting for the parameterized variables
of Fj (namely xl, 2 2 or x3) in the natural way, and
renaming the remaining va,riables (21, 2 2 , ~ s or 24) so
that there are distinct copies in each expansion. For
example,

The problem is to determine if E(F) = E (F k) is
satisfiable. The running time of an algorithm for
this problein is measured as a function of the size of
the hierarchical specification of the formula, namely
F = (F1, Fz , . . . , F k) l rather than the size of the ex-
panded formula. In general, the size of the expanded
formula E (F) may be exponential in the size of F .

We prove two results, one negative and one positive,
on the existence of efficient approximation algorithms
for the optimization version of this problem. Let H-
MAX-SAT(F) be the function that maps an instance
F of H-SAT to the maximum number of satisfiable
clauses of E(F). Let H-MAX-3SAT be the restriction
of H-MAX-SAT to instances with at most three literals
per clause.

Our first result is that for ,some cons t~?z t t < 1, It i s
PSPACE-hard to oppronmate the function H-MAX-
3SAT to wrthrn ratio c . To prove this, we use a re-
sult of Condon et al. [3], which characterizes PSPACE
in terms of resource-bounded debate systems; we re-
duce the problem of determining if such a debate sys-
tem accepts a language L to the problem of approx-
imating the H-MA.X-3SAT function. As an imme-
diate applica,tion, we obtain nonapproximability re-
sults for functions on hierarchical graphs which were

previously studied in [8, 13, 161. In what follows,
we use the prefix “I-I-” to denote a problem on hi-
erarchical instances; for example H-MAX-CUT is the
function that maps a hierarchically specified graph to
the size of the maximum cut of the graph. Previ-
ously, Hunt et al. [SI gave approximation-preserving
reductions from H-MAX-SAT to the H-MAX-CTJT
and H-MAX-INDEPENDENT-SET problems. Com-
bining these with our result, it follows that it is
PSPACE-hard to approximate H-MAX-CUT and H-
MAX-INDEPENDENT-SET to within some coilstarit
factor.

Our second result is that there i s an eficient ap-
proxzmation algorithm for the H-MAX-SAT problem
wzth performance guarantee 2/3. Specifically, given
any H-CNF formula F , our algorithm efficiently pro-
duces a “hierarchical specification” of a trut11 assign-
ment to the variables of E(F) that is guaranteed to
satisfy at least 2/3 the number of clauses in the opti-
mal solution of E(F). Previously, a performance guar-
antee of 1 /2 for H-MAX-3SAT was shown by Marathe
et al. [7, 151. Their algorithm is based on an algo-
rithm of Johnson [lo] for MAX-SAT; roughly, their
method is to apply Johnson’s technique in a “bottom-
up” manner at each level of the hierarchical formula.
Our algorithm builds on previous work of of Lieberherr
and Specker [14] and Yannakakis [17] for MAX-SAT
to obtain the improved bound. Another new feature
of our algorithm is the use of a “lazy evaluation” of
the hierarchical formula. This technique can also be
used to simplify other algorithms in the literatiire for
hierarchical problems, such as the approximation al-
gorithms of Marathe e2 al. [Is] for H-MAX-CUT.

Whether our algorithm can be further improved is
an interesting problem for several reasons. Algorithms
for MAX-SAT that have performance guarantee 3/4
are known, but they do not have the simple greedy
structure of our algorithm. Rather they are based on
algorithms for max flow (Yannakakis [17]) linear pro-
gramming (Goemans and Williamson [5]) and semi-
definite programming (Goemans and Williamson [GI) .
,4 naive application of these techniques tro hierarchical
formulas would lead to a flow or programming prob-
lem of exponential size, and herice an exponential-time
algorithm. It does not appear to help even if the flow
or programming problenis can be expressed hierarchi-
cally, since both of these problems are PSPACE-hard.
Moreover, approximating the optimal solution to a hi-
erarchical linear programming problem within ratio t
for any E < 1 is PSPACE-hard [15]. It would be in-
teresting to find an efficient approximation algorithm
for H-MAX-SAT which overcomes these problems to

215

achieve a performance guarantee of 3/4 or better.
The rest of the paper is organized as follows. In

Section 2 , we define precisely the H-SAT and H-MAX-
SAT problems studied in this paper. We also define
there the debate system model used in our nonapprox-
irnability result for H-MAX-3SAT of Section 3. In Sec-
tion 4 , we present our 2/3-approximation algorithm
for H-MAX-SAT.

2 Definitions
2.1 Hierarchical Satisfiability

By a CNF (kCNF) formula, we mean a Boolean for-
mula in con-iunctive normal form (k-conjunctive nor-
mal form), in which the clauses have positive weights.

A hierarchical CNF (H-CNF) formula F =
(F 1 (X 1) , F z (X 2) , . . . , F k (X k)) is a sequence of IC non-
terminals. The ith nonterminal is of the form

F , (X i) = (A F,,(X,”,Z,))Afi(XZ,Zi)
11351,

Here, X i and 2; are ordered sets of Boolean variables,
called the pins and the explicit variables of F;,, respec-
tively, with (u i X i) n (u l Z i) = 0 and Zi n Z 2 = 0 for
i # i ’ . The explicit variables and pins together are
called terminals. Each f i is a CNF formula with vari-
ables in the set Xi U Zi. The set X k is the empty set.
Also, for each i and j , 1 5 ij < i and X: and Zj are
ordered sets of Boolean variables such that X,” 5 Xi,
Z j r Z i and I X ~ U Z ~ ~ = ~ X i ~ ~ .

The expanded formula E(F) of F is defined induc-
tively, with E(F1) = Fl . For 2 5 i 5 k , E(Fi)
is obtained from F, as follows. Each occurrence of
F;, (X i , 2;) is replaced by a copy of the expanded for-
mula E (F i J) , where each occurrence of a pin in the
set X’J is replaced by the corresponding terminal in
XiUZj. Also, the explicit terminals of E(Fi,) (that is,
those variables in 2‘3) are relabeled so that they are
distinct in each copy (see the appendix for one pos-
sible relabelling scheme). The CNF formula E (F k) is
the expanded formula E (F) .

Later in our approximation algorithm, we will also
refer to the lazy ezpunsion of F , denoted by E’(,?).
This is similar to E(F), except that all copies of an
explicit variable z; are the same, that is, no relabel-
irrg is done. For example, the lazy expansion of the
formula F of the introductory example is

E ’ (F) = a(?, v z1) A (23 v 21) A (23 v za)
A (~ g V Zz V Zq) A (23 V 2 4) .

We denote by SAT the set of satisfiable CNF for-
mulas. For any CNF formula f and truth assignment

T to the variables of f J let w t (f , r) denote the sum
of the weights of the clauses of f that are satisfied
by truth assignment r . We denote by MAX-SAT the
function that maps a CNF formula f to max, w t (f , T) ,

the maximum weight of any t ruth assignment of f .
We denote by H-SAT the set of H-CNF formulas F
such that E(F) is satisfiable. We denote by H-MAX-
SAT the function that maps an instance of H-SAT to
max, w t (E (F) , T) , the maximum weight of any truth
assignment of E(F). We denote by H-MAX-kSAT the
function H-h$TAX-SAT, restricted to the domain con-
sisting of H-CNF formulas in which each f ; is a kCNF
formula.

2 . 2 Approximation Algorithms for H-

We next define what we mean by an approximation
algorithm for H-MAX-SAT. In the case of the NP-
optimization problem SAT, approximation algorithms
compute not only the weight of a truth assignment,
but also output a truth assignment with that weight.
Since the number of variables in E (F) may be ex-
ponential in IFI, no polynomial-time algorithm can
always output a description of an arbitrary truth as-
signment for E(F). Therefore, to define what we mean
by an approximation algorithm for H-MAX-SAT, we
proceed as foIIows. Let A be an algorithm that takes
as input a H-SAT formula E and variable y of E(F).
The algorithm outputs a value W F and a t ruth value
to y. We say that A is consistent if given any F , the
value W F output by A on input F, y is the same for
all variables y of F. We only consider consistent algo-
rithms in what follows. We denote by A (F) the truth
assignment defined by A for E(F); in this way, we
consider the algorithm A to be a function.

We say that A is an approximation algoi-zthnz for H-
MAX-SAT if for all instances F of H-SAT, the weight
of A(F) is a t least WF. Note that we do not require the
weight of A (F) to be exactly W F , but rather that W F

is a lower bound on A(F). This is because we know of
no efficient approximation algorithm A for H-MAX-
S4T that8 produces the exact weight A (F) . Moreover,
if one must choose between getting the exact value
of a low-quality truth assignment, or getting a good
lower bound on a high-quality the truth assignment,
the latter would appear to be much more useful. Our
approximation algorithm for H-MAX-SAT produces a
weight lower bound W F for A (F) that is a t least 2/3
of the weight of the optimal truth assignment. We
note that for the restricted problem H-MAX-kSAT,
a slight modification of our algorithm produces the
exact weight of the truth assignment A (F) .

We say approximation algorithm A has perfor-

MAX-SAT

2 16

mance guarantee c 5 1 if for all instances F of H-SAT,
W F is a t least c times the maximumweight of any truth
assignment for F. In this case, we also say that A is
a c-approximation algorithm for H-MAX-SAT or that
A approximates H-SAT within ratio c.

The approximation algorithms for H-MAX-SAT
considered in previous papers [7, 151 and in this pa-
per all output a hierarchical specification of a truth
assignment. A hierarchical specification of a truth as-
signment of E(F) simply specifies a truth value for
each variable in the set UZi = (~ 1 ~ ~ 2 , . . . , z , } . Note
that this assignment is of length at most linear in I F / .
Also, this as,signment is a truth assignment for E ’ (F) ,
the lazy expansion of F . The hierarchical specifica-
tion determines a truth assignment E (r) for E (F) in
the following way. Assign to each variable zj and each
relabeled cc’py of zj in E (F) the truth value of z j ,

1 5 j 5 s. Intuitively, a hierarchically specified truth
assignment treats all occurrences of zj as the same,
rat,her than relabeling occurrences in different nonter-
minals as different variables. The following fact fol-
lows from the definitions.

Fact 1 Let r he a hierarchically specified truth us-
signment fo,r E (F) . Then,

w t (E ’ (F) , r) = w t (E (F) , E (r))

We say that a function g is PSPACE-hard if
PSPACE C Pg, i.e., if every language in PSPACE is
polynomial-time reducible to g . By “approximating
f within rat,io t is PSPACE-hard,” we mean that , if
g approximates f within ratio t, then g is PSPACE-
hard.
2.3 Randomized Probabilistically Check-

able Debate Systems (RPCDS)
We need the following definitions pertaining to de-

bate systems from [3] in order to describe the proof
of our main nonapproximability result in Section 3 . A
randomized probabilistically checkable debate system
(RPCDS) consists of a verifier V and a debate format
D . The debate format is a pair of polynomial-time
computable functions (f (n) , g (n)) . For a fixed n , a
debate between two players, 0 and 1, consistent with
the debate format (f (n) , g(71)) , contains g(n) rounds.
At round i 2 1, Player i mod 2 chooses a string of
length f (n) .

The verifier is a probabilistic polynomial-time Tur-
ing machine that takes as input a pair (z , ~) , where
T E (0, l}*> and outputs 1 or 0. The output is in-
terpreted as z E L or 2 $! L respectively. If z E L ,
then Player 1 is said to have “won the debate” other-
wise Player 0 “wins the debate”. The aim of Players 1

and 0 is to come up with strategies to “convince” the
verifier that 2 E L or z $! L respectively.

For each z of length 72, corresponding to the debate
format D is a debate tree. This is a complete binary
tree of depth f (n) g (n) such that , from any vertex, one
edge is labeled 0 and the other is labeled 1. A debate is
any binary string of length f (n) g (n) . For a fixed T of
length n , a debate subtree is a tree of depth f (n) g (n)
such that each vertex at level i has 1 child if i div
f (n) is even and it has two children if i div f (n) is
odd. This subtree gives the list of all “responses” of
Player 1, against all possible “arguments” of Player 0
in every debate.

We define overall probability for a debate subtree
that the verifier V outputs 1 to be the average over
all debates rr in the tree, of the probability that V
outputs 1 on debate rr.

A language L has a RPCDS with error probability
E if there i s a pair (D = (f (n) , g (n)) , V) such that

1. For all 2 E L , there is a debate subtree for which
the overall probability that V outputs 1 is 1. In
this case, we say that I(: is accepted by (0, V).

2. For each 2 $! L , for all debate subtrees, the over-
all probability that V outputs 1 is a t most t . In
this case, we say that 2 is rejected by (0, V) .

A language L is said to be in R P C D (r (n) , q(n)) if
there is a RPCDS which accepts L with error proba-
bility 1/3 such that the verifier flips r (n) coins and
queries q(n) bits of T . Furthermore, t,he verifier’s
queries are non-adaptive, that is, the bits queried are
completely determined by the input and the result of
the coin flips. Condoii et al. [3] showed that PSPACE
= RPCD(O(logn) , O(1)).

MAX-3SAT
3 Nonapproximability of Hierarchical-

We now prove our nonapproximability result for H-
MAX-SSAT.

Theorem 1 For some conbtant t < 1, zt as
PSPA (2%-hard to approxamate H-MAX-3SAT unthan
ratzo E .

Proof: Consider a language L E PSPACE. L has a
RPCDS D in which the verifier uses O(logn) random
bits and reads O(1) bits of the debate. Without loss
of generality, we can assume that the debate format is
such that f(n) = 1, that is, the players play one bit
per round, and that g (n) is even. Let N = y(n) /2 ,
the number of rounds per player.

217

Figure 1: Construction of the H-3CSF formula F

For a given input 1: of length n , we construct a H-
SCNF formula F from the RPCDS D and z. A truth
assignment to the variables of the expanded formula
E(F) describes a debate subtree of D on x., there is
one variable per edge in the tree. A truth value of true
denotes that the edge is labeled 1 and a truth value
of false denotes that the edge is labeled 0 . The set of
clauses of E(F) is composed of subformulas, one for
each path (debate) of the debate subtree. Given any
random bit string of the verifier, whether the verifier
accepts or rejects on that bit string can be expressed
as a Boolean function of the U(1) variables that rep-
resent the bits of the debate read by the verifier on
that random bit string. Hence, the outcome of the
verifier's computation on a given random bit string
can be written as the conjunction of a constant num-
ber, say c , of clauses, each clause containing exactly
3 literals. Thus, for a. given debate, over all possible
U(1ogn) random bit strings there are a polynomial
number, say p (n) = of clauses. These c o n -
prise one subformula of E(F). Let these clauses be
called a-clauses. If on a particular debate, the verifier
accepts z with a probability p , the number of clauses
satisfied 5 p (n) - (l / c) (l - p) p (n) .

Thus, we see that the variables of E(]') corre-
spond to edges of a tree, and the clauses of E (F)
are partitioned into subformulas, one per debate or
path in the tree. These subformulas have the same
structure but different variables, and all the variables
in a subformula lie on one path of the tree. Be-
cause of this tree structure underlying E(F') , F can
be specified hierarchically in a natural way. We let
F = (F1, FZ,. . . , F N + ~ } ~ where each copy of F~t1-i
encodes the portion of the debate subtree with the first
i responses of Players 0 and 1 fixed. Thus each copy

of F1 represents one possible debate (encoded by the
a-clauses) while F N + 1 represents the complete debate
subtree.

In addition to the a-clauses, E(F) also has clauses
that test whether the t ruth assignment to the variables
of E (F) correspond to a valid debate subtree. T h a t is,
the variables labeling the pair of edges at each branch
of the tree should have opposite t ruth assignments,
since these edges correspond to the two possible bits
that Player 0 could write. In order to be able to spec-
ify these clauses hierarchically, these clauses are again
partitioned into subformulas, one per path in the tree.
The clauses in one subformula are called p-clauses.
For each branching node along this path, if p is the
variable corresponding to the edge from this node on
the path, and q is the variable corresponding to the
other edge from this node, the P-clauses check that
p # q . Thus, the p-clauses necessarily involve not
only the N variables corresponding to edges at odd
levels along one path from the root of the tree, but
also involve the N additional variables corresponding
to edges branching from this path. (Recall that nodes
at odd levels of a debate subtree are branching, while
nodes at even levels of a debate subtree are not , where
the root is a t level 0.)

We now describe F exactly. The explicit variables

iAr. The y-variables represent the bits of the debate
written by Player 0 while the z-variables represent the
bits written by Player 1. (Since Player 1 starts the
debate, there is only one edge from the root of the
debate subtree, which is why we don't need two copies
of zi .) The p-variables and the q-variables are the pins
of the formula. The actual construction of F is given
in Figure 1.

1 0 1 1 0 0 Of are Y1) Y2i ' ") YN, Y1) Y2, ' " > YN, zlr z21 ' . ')

218

In Figure 1, a-clauses are the clauses representing
the computation of the verifier over all random bit

@-clauses are
strings on the debate qNpkqN-1pN-1 0 ’ ‘ q l p ! and the

&Y VPil) A (PU VP,’)
N

i=l

Each a-clause has a weight 1. The clauses pp V pi’
and 13,” V 2 , each have - weight equal to the number of
occurrences of p: or p? in the a-clauses. The proof
that this reduction is “approximation preserving” is

Previously, Hunt et al. [8] gave approximation-
preserving reductions from H-MAX-SAT to the H-
MAX-CUT and E-I-MAX-INDEPENDENT-SET and
H-MAX-2SAT problems (see [8] for definitions of the
hierarchical graph problems). Combining these with
Theorem 1, we obtain the following corollary.

given in the appendix. 0

Corollary 2 For some constant t < 1, zt as
PSPACE-hard to approzzmate H-MAX-2SAT, H-
M A X - CUT and H- M A X - INDEPENDEN T- SE T to
wzthzn ratzo t.

4 2/3-Approximation Algorithm for

Our algorithm builds on ideas of Lieberherr and
Specker [14] and Yannakakis [17]. We actually de-
scriobe our algorilhm for a weighted version of H-
MAX-SAT i n which clauses may be labeled with bi-
nary weightt;. To rnotivate our approach, we first de-
scribe the al.gorithm of Lieberherr and Specker [14].
We then show in a series of examples how we build
on their approach to obtain our algorithm. The de-
tailed description of our algorithm and a proof of its
correctness can be found in the appendix.

The algorithm of Lieberherr and Specker is proba-
bilistic, and i;akes as input a three-satisjiable CNF for-
mula. A CNF formula is three-satisfiable if any three
of its clauses can be simultaneously satisfied. The ex-
pected number of clauses of the input that are sat-
isfied by the Lieberherr-Specker algorithm is at least
a fraction 2 /3 of the optimal. Their algorithm actu-
ally achieves the same bound on the following slightly
more general type of CNF formula. We say a CNF
formula is good if it does not contain (i) a pair of unit
clauses of the form U and V ; or (ii) a triple of clauses of
the form U , v’ and 5 V V’. Given a good CNF formula
F , assign z the value true with probability 2 / 3 if the
unit clause I(’ occurs in the formula, with probability
1/3 if the unit clause occurs in the formula and with

H-MAX-SAT

probability l / 2 otherwise. From the fact that F is
good, it follows that every clause in the formula has a
probability 2 2/3 of being satisfied. This randomized
algorithm can be made deterministic by a well-known
procedure, known as the method of conditional expec-
tations [17]; we omit the description ofthis method in
this abstract.

The Lieberherr-Specker algorithm can be extended
to work not just for good formulas, but for the general
MAX-SAT problem, and it can also be extended to H-
MAX-SAT. Before looking at the actual algorithm for
H-MAX-SAT, let us look at a few examples.

Example 1 Consider the set of clauses S = {x) y1 5 V
i j z , . } , which is not good. One can check that us-
ing Lieberherr and Specker’s algorithm, the expected
number of clauses satisfied will be less than 5 (2 / 3) ,
that is, less than 2/3 of the weight of all clauses.

We can convert the set S into an equivalent set of
clauses S’ such that S’ is good. By equivalent, we
mean that under any truth assignment of variables of
S, the weight of S is the same as the weight of S’ under
the same truth assignment. This conversion is inspired
by an algorithm of Yaniiakakis [17], who shows how a
2-CNF formula can be converted into an equivalent
2-CNF formula with no unit clauses, using max flow.
Yannakakis uses this to obtain a 3/4-approximation al-
gorithm for MAX-2SAT. Our conversion algorithm is
simpler than that of Yannakakis and does not achieve
as good a performance guarantee, but it has the ad-
vantage that it will extend to hierarchical formulas.

To obtain S’, we replace every pair of clauses of the
form z and Z of equal weight w by a single clause true
with weight w. Also, given three clauses of the form
x, y and 5 V y , each with weight w , replace the three
clauses by two clauses xVy and true each with weight
w. Thus the set S is equivalent to the set of clauses
S’ = {x v y, true, true}.

Applying Lieberherr and Specker’s algorithm to S’,
we obtain a truth assignment with expected weight
11/4 which is greater than 2 / 3 times the weight of
all clauses in S’. Since an optimal solution for S’ is
also an optimal solution for S, the value of the above
assignment is at least 2/3 the weight of the optimal
solution for S.

Example 2 We now consider a H-CNF formula F =
(FI , FZ , F3) where

Fl(~1, ~ 2) = A (21 V 22) A 21 A (21 V T I)

F2(23) = Fl(Z3,.2) A 2 2

F3(0) 1 Fz(z3) A 23 A 23
Expanding, we get

219

In this example, although the clauses at the indi-
vidual levels are all good, the expanded formula is not
even two-satisfiable. As a first step, we “push up” to
higher levels all clauses of size 1 and 2 which contain
only pins so that each clause of length 1 or 2 a t any
level contains a t least one explicit vertex. The H-CNF
formula F , after this has been done, is as follows:

F ~ (z I , . I : ~) = 21 A (2, V 2 1)

Fz(z3) = F1(:Q> 2 2) A -72 A (2 3 v 22)

F3(fl) = Fz(z3) A 23 A 23 A -73

Then, we make each level (ignoring nonterminals)
good, applying the method of the previous example.
This step yields a new formula F’ = (F;) Fil F i) as
follows.

F ; (z l , Z2) = 21 A (21 v z1)
Fi(T3) = Fi(23, 2 2) A 2 2 A (23 v 22)

E(F’)

Pi(@) = F i (z 3) A 43 A true

Expanding, we get
= Zl,l A (21,l v 23) A (23 v 22,J) A -7?,1

A Z3 A true.

We see that still E(F‘) is not good. The problem
is due to pairs of clauses of the form U V p , U , where
U is an explicit literal and p is a pin. To correct this
problem, we do the following for each level in turn,
starting with F l . For each pair of clauses of the form
5 v p and I) , each with weight w where 2: is an explicit
literal and p is a pin literal, we replace these clauses by
the clauses p V ii and p) each with weight w and then
push the clause p to the level where p gets replaced by
an explicit literal. Let F” = (Fi’> Fi‘> F;’) be the CNF
formula obtained by performing all the operations 011
F . Then F” is given by

F l / (z 1 , .7:2) = (IC1 v z1)
Fi’(X3) = F;’(z3,22) A (2 2 v 23)
P[(@) = F;’(z3) A Z3 A 2true

E(,?”)
Expanding, we get

= (23 v 21) A (z2 v 2 3) A 23 A 2true

E(F”) is clearly good. So, the Lieberherr-Specker al-
gorithm can be applied to get a truth assignment of
E(F”) with expected weight a t least 2/3 of the total
weight.

There are still some problems to be overcome, since
in general E(F”) may be of size exponential in IFI.
The first observation we use is that i t is sufficient to
work with the lazy expansion E‘(,‘‘), because this is
also guaranteed to be good. Moreover, fact 1 shows
t,hat a truth assignment for E’(F’‘) is a hierarchical
specification of a truth assignment for E(F”) with the
same weight. (In our example, the lazy expansion of
F” has t.he same size as the expansion of F”, but in
general it may be much shorter.) However, even the
lazy expansion of a hierarchical formula F can be of
size exponential in 18’. Therefore, before computing
the lazy expansion of F, we simply remove arbitrary
literals from clauses of F with more than three literals,
until these clauses have exactly three literals. Then,
in the lazy expansion of F there are only a polynomial
number of distinct variables (namely explicit variables
{ -71~ 2 2 , . . . zZn}) and there are only a polynomial num-
ber of possible distinct clauses of length at most three
over this set of variables. Hence, the lazy expansion
of F is of size polynomial in lFI.

To summarize from these examples, our approxima-
tion algorithm first converts a 13-CNF formula F into
a H-CNF formula H such that E (H) is good, as in
Example 2 . Furthermore, E(F) and E (H) are equiv-
alent; that, is, have the same weight with respect to
any truth assignment. Then clauses of H of length
greater than three are shortened to be of length ex-
actly three and the lazy expansion of the resulting
formula is computed. A truth assignment for this for-
mula, computed using the deterministic version of the
Lieberherr-Specker algorithm, is a hierarchical specifi-
cation of a truth assignment for E(H), and hence for
E(F), and has weight a t least 2/3 of the total weight
of E(H). Therefore, it has weight a t least 2/3 of the
optimal truth assignment of E(F).

The lazy evaluation E’(F) of a hierarchical formula
F can be computed in polynomial time, by comput-
ing each E’(Fi) in turn, starting with i = 1. Once
E’(F1). . . . ! E’(,?,-1) are computed, E / (F i) is com-
puted as follows. First, E’(Fi,) is substituted for each
nonterminal Fi, of Fi ~ just as in the construction of the
properly expanded formula E(Fi), except that all du-
plicates of an explicit variables zi get the same name,
namely zi. The resulting formula has size polyno-
mial the size of the hierarchical specification, since it
is obtained by the substitution of a linear number of
formulas, each of polynomial length. Then, for each
clause that appears more than once, say with weights
w1, . . . , w1, replace the 1 copies with one copy that has
weight zu1 + . . . + w1.

Finally, we note that once our algorithm has com-

220

puted a truth assignment, say T , it outputs the total
weight of the satisfied clauses in the formula that was
obtained from H by shortening clauses to be of length
at most 3 . 1.n fact, the total weight of the clauses of
H that are satisfied may be greater than this, because
a clause of 1f with greater than three literals may be
satisfied by 7- even if the three literals remaining in the
shortened clause are assigned to false. It is for this
reason that 1;he weight output by our algorithm on in-
put F may be less than the actual weight wt(F, T) of
the truth assignment T output by our algorithm.

The deta.ils of the algorithm are given in the ap-
pendix.

5 Conclusions and Open Problems
We have shown that that for some constant E < 1, it

is PSPACE-:hard to approximate H-MAX-SAT within
ratio t. This result, combined with approximation-
preserving reductions of Marathe et al. [8], also im-
plies that for some E < 1, it is PSPACE-hard to ap-
proximate the hierarchical graph problems H-MAX-
CUT, H-MAX-INDEPENDENT-SET and H-MAX-
2SAT within ratio E . It is an open problem whether
this lower bound for H-MAX-INDEPENDENT-SET
can be improved to n-'. (The standard (non-
hierarchical) MAX-INDEPENDENT-SAT problem is
NP-hard to approximate within a factor of n-', for
some E < 1 [11 41.)

We have also presented a polynomial time approxi-
mation algorithm for H-MAX-SAT with performance
guarantee 2/3. Our algorithm builds on ideas of
Lieberherr and Specker and Yannakakis in a non-
trivial way, extending their approach for MAX-SAT to
H-MAX-SAT. Another new contribution of our algo-
rithm is the use of the lazy evaluation of a hierarchical
formula. We note that the lazy evaluation idea can be
used to obtain a very simple 1/2-approximation algo-
rithm for H-MAX-SAT, as follows. Given a H-CNF
formula F , simply shorten all of the clauses of F to
be of length 1. Then compute the lazy evaluation of
the resulting formula to obtain an instance of SAT.
Finally, apply Johnson's algorithm to this instance to
obtain a hierarchical specification of a truth assign-
ment of F .

Lazy evaluation is also useful in describing sim-
ple approximation algorithms for hierarchical graphs.
The lazy eva.luation of a hierarchical graph is defined
in a manner similar to our definition for hierarchical
formulas, and is always polynomial in the size of the
hierarchical (description of the graph (in contrast with
hierarchical formulas where the lazy evaluation can
be exponential in size if the length of clauses is not
bounded, as in Example 3 of Section 4.) A simple 1/2-

approximation algorithm for H-MAX-CUT can be ob-
tained in a manner similar to the algorithm described
in the last paragraph for H-MAX-SAT. The result-
ing algorithm is similar to, but simpler than, the l /2-
approximation algorithm of Marathe et al. [15] for H-
MAX-kSAT.

Our algorithm for H-MAX-SAT only outputs a
lower bound on the weight of the solution output, not
its exact weight. Can the exact weight of the hierar-
chically specified solution output by our algorithm for
H-MAX-SAT be computed efficiently, or is there a dif-
ferent 2/3-approximation algorithm that outputs the
exact weight of the solution obtained? (Recall that
for the restricted problem H-MAX-kSAT, the exact
weight of the solution output by our algorithm can be
efficiently computed.)

All known approximation algorithms for PSPACE-
hard problems on hierarchical structures output a hi-
erarchical specification of a solution. Therefore, if one
wants to improve on the current best approximation
algorithms for H-MAX-SAT and other hierarchically
specified problems, the following questions are impor-
tant. First, for the H-MAX-SAT problem, can one
prove good bounds on the worst-case ratio between the
best hierarchically specified solution and the optimal
solution'? Our algorithm for H-MAX-SAT shows that
the best hierarchically specified solution has weight
at least 2/3 of the weight of the optimal solution.
Whether this is tight is not known.

A related problem is to develop an efficient approx-
imation algorithm for H-MAX-SAT or H-MAX-kSAT
that outputs a hierarchical specification of a truth as-
signment with weight greater than 2/3 of the weight of
the optimal hzerarchzcally speczfied truth assignment.
The hope is that , if the output of the approxima-
tion algorithm is measured against the weight of the
best hierarchically specified truth assignment of the
H-CNF formula, and not the weight of the best over-
all truth assignment, a better performance guarantee
can be achieved.

Finally, are there approximation algorithms with
reasonable performance guarantees for H-MAX-SAT,
or for hierarchical graph problems, that output a so-
lution other than a hierarchically specified one?

References
[l] S . Arora, C. Lund, R. Motwani, M. Sudan, and

M. Szegedy, Proof Verification and Hardness of
Approxzmation Problems, Proc. 33rd Symposium
on Foundations of Computer Science, IEEE Com-
puter Society Press, Los Alamitos, 1992, pp. 14-
23.

221

[2] A . Cohen and A . Wigderson! Disper.sers, De-
term in z s t 7 c A m pl zfica t ion ~ a n d Weak Random
Sources, Proc. 30th Symposium on Foundations
of Computer Science, IEEE Computer Society
Press, Los Alamitos, 1989, pp. 14-19.

[3] A . Condon, J . Feigenbaum, C. Lund, and P. Shor,
Random Debaters und the Hardness of Approxi-
nLating Stochastic Functions, Proc. 9th Confer-
ence on Structure in Complexity Theory. IEEE
Computer Societ,y Press, Los Alamitos, 1994.
pp. 280-293.

[4] 17. Feige, S. Goldwasser, L . Lov&sz, M . Safra,
and M. Szegedy, Approximating Clique is Almost
IVP-ConLplete: Proc. 32nd Symposium on Foun-
dations of Computer Science, IEEE Comput,er
Societ,y Press, Los Alamitos, 1991, pp. 2-12.

[5] M . Goemans and D. Williamson, AVew 3/4-Ap-
prozzmatron Algorzth,ms for M A X SAT; Proc. 3rd
Conference on Integer Programming and Combi-
natoria.1 Optimization, SIAM, 1993, pp. 313-321
An updated version is to appear in SI4M J . Dis-
crete Math.

[ti] M . Goemans and D. Williamson, .878-Approrc-
imatiori Algorithms for MAX- CUT and M A X -
2SAT, Proc. 26th Symposium on Theory of Com-
puting, ACM, New York, 1994, pp. 422-431.

[7] H. Hunt 111, M. Marathe, V. Radhakrishnan, D.
Rosenkrantz, and R. Stearns, A Unified Approach
f o r Prooiiag Both Easiness a n d Hardness Results
fo'r Succinct Specificatzons, Manuscript 1994.

[8] H. Hunt 111, M. Marathe, R . Stearns, and V. Rad-
11 alir i s h an, 0 7 7 th e CO m p [ear t y a rid .4pp roxi nz a-
bzlzly of Perrodzc and Hzeraichrcal Specifications.
Manuscript ~ 1994.

[9] R,. Impagliazzo and D. Zuckerman, How to Re-
cycle Random Bits, Proc. 30th Symposium oil
Foundations of Computer Science, IEEE Com-
puter Society Press, Los Alamitos, 1989, pp. 248-
253.

[lo] D. S . Johnson, Approxzmatzon algorithms fo r
Coiiihnutorzal Pi,oDlems, J . Comput. System Sci. ~

9 (1974)) pp. 256-278.

[ll] T. Lengauer, Ezploitzng Hzerarchy zn VLSI De-
srgia, Proc. Aegean Workshop on Computing,
Lecture Notes in Computer Science, Vol. 227,
Springer-Verlag, New York, 1986, pp. 180-193.

[12] T Lengauer and K Melhorn, The HILL Sys-
tem A Design Environment for the Hzerarchacal
Specificatzon, Compactzon, and Samulataon of In-
tegrated Circuzt Layouts, Proc MIT Conference
on Advanced Research in VLSI, P Penfield Jr
ed Artech House Company, 1984, pp 139-149

[13] T Lengauer and K Wagner, The Correlatzon Be-
tulten the Complexrtzes of the Non-Hzerarchacal
and Hzeiarchical Versions of Graph Problems,
J Comput System Sci , 44 (1992), pp 63-93

[14] I i Lieberherr and E Specker Complexity of
Partial Sat7sfaction I I , T R 293, Department of
EECS Princeton University, 1982

[15] SI \larathe, H Hunt 111, and S Raw,
The Complesity of Approxzmatang PSPACE-
Complete Problems for Hzerarchacal Speczfica-
tions, Proc 20th International Colloquium on
Aiutomata, Languages, and Programming, 1993,
pp 76-87

[16] 11 XIarathe, H Hunt HI, R Stearns, and V
Radhakrishnan, Hzerarchical Speczficatzons and
Polynomzal- Tame Approxzmatzon Schemes for
PSPA CE-Complete Problems, Proc 26th Sympo-
sium on Theory of Computing, AGM, New York,
1994 pp 468-477

[17] 11 Yannakakis, On the Approxzmatzon of Maxa-
m u m Satzsfiabzlzty, Proc 3rd Symp on Discrete
Algorithms, ACM, New York, 1992, pp 1-9

222

6 Appendix
In Secticin 6 .1 , we give t,he proof of the non-

approximability result of Theorem 1. In Section 6.2
we present cur approximation algorithm in detail, and
prove that it runs in polynomial time and has a per-
formance guarantee of 2/3.

In what fs3llows, we use the following scheme for re-
labeling explicit variables which appear multiple times
in a non-terminal Fi. This scheme is consistent with
the example given in the introduction. The distinct
copies of vaxiable zk in E(Fi) are labeled Zk,ri, for
f k = 1, 2 , . .. Before starting the expansion of Pi,
rk is initially set to 1. For each nonterminal Fi,
in turn, if .Fi, contains m distinct copies of z j , la-
beled ~ j , ~ , , , . , zj , , , , , then these copies are relabeled
zjbrk, . . . , ~ j , ? . , + ~ - l and Tk is updated to T k +m. Also,
if Fi, contains one copy of z j , labeled zj , then this copy
is relabeled z j l rk and T k is updated to T k + 1.

6.1 Correctness of Non-approximability

To complete the proof of Theorem 1, we show
that the reduction given there is “approximation-
preserving.” That is, we show that if IC E L then
there is an assignment to the variables of E(P) with
weight 7 ~ (n) 2 ~ , whereas if z L , then the weight of
the best assignment is a t most (k - + 6) ~ (n) 2 ~ , where
k is a constant less than 1. Note that the number
of a-clauses is p (n) a N . Also, the total weight of all
/?-clauses is [i p (n) P .

First suppose that IC E L . Then there exists a de-
bate subtree T such that the verifier accepts on all
debates (paths of 7‘) and all random bit strings. We
claim that in this case, E (F) is satisfiable. A sat-
isfying truth assignment is obtained by assigning all
copies of y: to 0 (false) and y’ to 1 (true) for all i
and by assigning values to variables of the form z ; , ~
according to the debate subtree T Clearly all a-clauses
are satisfied because the verifier always accepts. Also,
all /?-clauses are sakisfied because in any copy of the
/?-clauses, the pair p: and p’ are replaced by a pair of
variables, one of which is a copy of yf and one of which
is a copy of y’. Therefore, all clauses of the formula
are satisfied if IC‘ E L . Thus there exists an assignment
t o the variables such that the weight of the clauses
satisfied is 7 ~ 1 (n) 2 ~ .

Next, suppose that IC 6 L . We first show that for
any assignment T to the variables such that the weight
of the satisfied clauses is w , there exists an assignment,
T’ which satisfies clauses of weight 2 w and also sat-
isfies all p-clmses.

Suppose that T assigns the same value to the vari-
ables substituted for pins pp and p t in some copy of

Construction

F1, say variables $, and Y!,~. Now, if we change
the value of yf,, , some a-clauses Containing y?,, or gp,T
become false and one more /?-clause will be satisfied.
Since the weight of the @-clause is eqiial to the num-
ber of @-clauses containing y:,, or $‘,, the net change
in weight as a result of changing the assignment of
y:,, is nonnegative. Thus without loss of generality,
we can consider only truth assignments which satisfy
all /?-clauses. Thus, for all i and 7’: and yi,, are
assigned different values and so the truth assignment
determines a debate subtree.

By the definition of language acceptance of a
RPCDS, we know that the overall probability that
the verifier accepts z is 5 1/3. By definition of over-
all probability, this implies that if the variables of
E(F) are assigned so as to satisfy all P-clauses, then
the number of a-clauses satisfied 5 k ~ (n) 2 ~ , where
k = 1 - 2/(3c). Hence the total weight of any solu-
tion of the H-YSAT formula is a t most (I C + G) ~ (n) 2 ~ .
Thus, it is PSPACE-hard to approximate H-MAX-
YSAT within ratio (k + 6)/7 of optimal.

6.2 Details of the 2/3-Approximation Al-
gorit hm

We now present the details of the approximation al-
gorithm for H-MAX-SAT, which was sketched in Sec-
tion 4.

Input: A €1-CNF formula F = (F l , Fz, F3, . . . , Fn).
Output: A hierarchical specification of a truth as-
signment for E(F), and a lower bound on the weight
of this truth assignment.

Step I: [Conversion of 17 to G where E’(G) is good
and is of size polynomial in IF\.]
for 1 5 i 5 n do

Let
Fi = Fj, A Fj2 A ‘ ‘ A Fj, A f ;

Assume that for all j < i , we have computed a set
of clauses f ; , a new formula H,j and a number vj”.
(Here, j” is the set of clauses “pushed up” from Fj as
in Example 2 and is the weight of the true clauses
obtained when converting Fj ; we maintain the weight
of these clauses rather than explicitly inclitding them
in the formula.) For each nonterminal Fj that appears
in F;] let hp be the set of clauses obtained by replacing
the pins in j” by the terminals (explicit variables or
pins) of Fi.

Let

223

and We have

(Thus, as in Example 2 , f,! is the set of clauses of
after clauses from lower levels are “pushed u p ”) not
counting true clauses, and w,’ is the total weight of
true chuses.) We split f: into two parts, f: and f /
f,” contains all clauses off,! whose length i s 1 or 2 such
that all literals in the clause are pins. Every clause in
f,” of length 1 or 2 has a t least one explicit literal.

Let the set of explicit literals of Fi be ZL =
{zl,zzI.. . , z , } and the set of pins be Xi =
{ x ~ , x z , . . . ~ x T } . In what follows, z’ will always rep-
resent an explicit literal (of the form z or 2) and p will
represent pin literals (of the form z or 2) . Also, any
clause with weight 0 is dropped.

(a) Repeat until no change: If f,” contains two unit
clauses of the form z and 2 with weights wl and
‘wz, let w = min(wl,wz). Change the weights of
the two clauses to w1- w and w2 - w respectively.
Also, let v: = vi* + w .

(b) Repeat until no change: If ft contains three
clauses of the form w 1 , va and zj1 VzTa with weights
w l l w2 and w3> let w = min(w1, w2, wy). Change
the weights of the three clauses to w1- w , w2 - w
and w3 - w resp. Add the clause v1 V va with
weight w to f,” and let = U,? + w .

(e) Repeat, until no change: If f,” contains two
clauses of the form v and < V p with weights w1
and w2, let w = min(w1, w2). Change the weights
of the two clauses to w1 - w and w2 - w resp.
Also, add the clause p with weight w to f,“ and
the clause v V j5 with weight w to f,”.

(d) Repeat until no change: If there are two iden-
tical clauses C1 and Cz in either f,” or J’,” ~ with
weights tu1 and wz1 delete clause Cz and change
the weight of C1 to wl + w2.

Let the set of clauses obtained by applying steps
(a)-(d) to f,” and f,” be hi and f: respectively. Let

endfor

Let H = (NI ~ H a , . . . , H,)

Step 11: We now perform the following contraction
operations.
for 1 5 i 5 12 do

Assume that for each j < i , we have computed a
new formula Gj .

(a) For each clause in hi, if the clause contains more
than 3 literals, arbitrarily choose any 3 of them
and delete all the remaining literals from the
clause.

(b) Repeat until no change: If there are two identical
clauses CI and C2 in hi , with weights w1 and w2,

delete clause Ca and change the weight of C1 to
w1+ w2.

Let the set of clauses obtained in this way from h;
be gi and let

Gi = Gj, A Gj, A . . . A Gj, A g;

endfor

Let G = (GI, Ga, . . . , Gn) be the new converted H-
SAT formula.

Step 111: Compute E’(G) and apply the determin-
istic version of the Lieberherr-Specker algorithm to
this CNF formula. Output the truth assignment com-
puted, and its weight.

In the next sequence of lemmas, we prove that this
algorithm has performance guarantee 2/3 and runs in
polynomial time.

Lemma 3 For any assignment r of the variables of
F ,

w t (E (F) , r) 2 + wt(E(G), r)
and the weight of the optimal solution of F , that is,
 fop^, satisfies

Also, IGI 2s bounded b y a polynomial in IFI.

Proof :

that the following equations are true for level i.
Let hop^ be the optimal solution for H . We claim

k

224

It is obvious that equation 1 is true by definition
o f f i . By thle construction of set hi and f f , the two
sets of clausl?s f i x f t U f;" and hi U f : U {true} are
equivalent where the true clause has a weight

k

1=1

Hence equation 2 IS true. The last inequality follows
since gi is obtained from hi by deleting some literals
from the clauses of hi . Hence under any truth assign-
ment, the weight of the clauses satisfied in hi is a t
least the weight of the clauses satisfied in gi.
Claim: For all i ,

Wt(E(F i) , 7) = W t (E (H i) , 7) + W t (f i P , T) + uz*

and

Proof:
on level i .

E(G1) = g l and the result follows iisiiig equations

Now, let us assume the result to be true for all j < i .

We prove the following claims by induction

BASIS When i = 1, E(F1) = f l , E (H 1) =

(1)-(3).

Then we have
k

Wt(E(Fi) , T) = Wt(E(Fj ,) , .) + W t (f i , .)
1=1

k k

1=1

k

+ 7 4 , + W t (f i , T)
1=1

using ecln:; (I)-(2)
k

= W t (E (H j ,) , .) + w t (h , T)

+ W t (f : , 7) + U%*
Wt(E(Wi) , T) + W b (f ; P > T) + U'

1=1

=

Also, using the induction hypothesis and eqn (3) ,

,w t (E(Hi) , T) 2 wt(E(Gi) , 7)

0
Using the above claims, we have

W t (E (F) , T) = , w t (E (F ,) , r) = Wt(E(H,),T) + U:
2 wt(E(GV1) , T) +
= w t (E (G) , T) +U:

and hence,

Now, let t be the maximum number of terminals
defined at any level. Since for all i , f , is a CNF for-
mula without duplicates such that the length of each
clause is 5 2, I f : \ is bounded by a polynomial in t .
So, we can see that I f ; / and consequently Ig;l are also
polynomially bounded. Since the number of terminals
t 5 IFI, IC1 is bounded by a polynomial in IFI. 0

Corollary 4 An approxzmatzon algorzthm for G
whose solutzon as at least 2 /3 the wezght of all clauses
an E (G) gives a 2/3-app,proxzmatzon algorzthm for F .

Proof:
G such that

Let T be a truth assignment for variables in

w t (E (G) , T) 2 2/3 wi
C , E E (G)

Lemma 3 shows that

2 U ; + 2 / 3 wi

2
2 -FOPT 3

Hence the proof.

Lemma 5 gi satisfies the following properties

(a) If v E g i , then 6 $! g i .

(6) If v1 E gi and u2 E gi, then V I V g2

(c) If 'U E gi, then 6 V p $! gi.

gi

(d) P 4 si and ri1 v PZ 4 gi.

The proof is immediate from the construction of gi.

Lemma 6 E'(G) is good and has size polynomial in
IFI.

225

Proof E’(G) has size polynomial in IF1 since the
variables of E’(G) are the explicit variables of F and
all clauses of E’(G) have length at most, three. Thus,
the number of clauses of E’(G) is bounded by a poly-
nomial in the number of explicit variables of F ; and
hence by a polynomial in IF1

To see that, E’(G) is good, recall that a CNF for-
mula is good if it, does not, contain (i) a pair of unit
clauses of the form U and 5; or (ii) a triple of clauses
of the form w , U’ and G V G’. From the definition of the
lazy expa,iisiori and Lemma 5, it is straightforward to
see that E’(G) satisfies this criterion. 0

Theorem 7 The above algorithm t s a 2/3-upp?orl-
mataoii algoi itliin for H-MAX-SAT

Proof: Obvious from the above lemmas and corol-
lary. 0

226

