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Abstract 

We prove upper and lower bounds on performance 
guarantees of approximation algorithms for the Hi- 
erarchical MAX-SAT (H-MAX-SAT) problem. This 
problem is representative of an important class of 
PSPACE-hard problems involving graphs, Boolean 
formulas and other structures that are defined “suc- 
cinctly”. 

Our first result is that  for some constant E < 1: 
it is PSPACE-hard to  approximate the function H- 
MAX-SAT to  within ratio t. We obtain our result 
using a known characterization of PSPACE in terms 
of probabilistically checkable debate systems. As an 
immediate application, we obtain non-approximability 
results for functions on hierarchical graphs by combin- 
ing our result with previously known approximation- 
preserving reductions to  other problems. For example, 
it is PSPACE-hard to approximate H-MAX-CUT and 
H-MAX-INDEPENDENT-SET to within some con- 
stant factor. 

Our second result is that  there is an efficient ap- 
proximation algorithm for H-MAX-SAT with per- 
formance guarantee 2 / 3 .  The previous best bound 
claimed for this problem was 1/2.  One new technique 
of our algorithm can be used to obtain approxima- 
tion algorithms for other problems, such as hierar- 
chical MAX-CUT, which are simpler than previously 
known algorithms and which have performance guar- 
antees that match the previous best bounds. 
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1 Introduction 
Succinct representations of graphs, Boolean formu- 

las and other structures have been studied for over 
a decade, motivated by applications in VLSI circuit 
design, scheduling, finite element analysis, and many 
other applications. A good example is the class of 
hierarchically defined graphs, proposed by Lengauer 
[11, 121 as a means of specifying VLSI layout circuits. 
The hierarchical specification of a graph may be log- 
arithmic in the size of the graph. Partly as a result 
of this, problems on hierarchical structures are often 
PSPACE-hard, motivating the study of approximation 
algorithms for functions on such succinct structures. 
Marathe e t  al. [15] were the first to  study approxima- 
tion algorithms for hierarchically specified problems, 
including problems on graphs and Boolean formulas. 

A representative PSPACE-hard problem in this 
class is the Hierarchical SAT or H-SAT problem 
[16]! which is to  determine if a hierarchically defined 
Boolean formula in CNF form is satisfiable. In this 
paper, we present both positive and negative results 
on approximation algorithms for the optimization ver- 
sion of this problem. Since the hardness of many 
other problems on hierarchical structures are based 
on a reduction from the H-SAT problem [16], our neg- 
ative result on approximating H-SAT leads to similar 
negative results for several problems on hierarchical 
graphs. Our positive result is motivated by our inter- 
est in finding techniques that can be used to  compute 
good approximate solutions for a range of hierarchi- 
cally defined problems. By analogy, we note that  in 
the case of NP-complete problems, progress on MAX- 
SAT [5, 6 ,  171 has led to  discovery of new techniques, 
such as those based on semi-definite programming, 
that  are also useful for MAX-CUT, COLORING and 
many other NP-hard problems. 
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Before describing our results and their applications 
in detail, we use a simple example to explain the 
H-SAT problem. An instance is a sequence F = 
(F1, F2, . . . , Fk)  of parameterized formulas, each of 
which is defined in part using lower-numbered formu- 
las in the sequence, as in the following example. 

Each Fi is expanded in turn to obtain E ( F i ) ,  by in- 
ductively replacing each instance of Fj ( j  < i) by 
E(F’), substituting for the parameterized variables 
of Fj (namely xl, 2 2  or x3) in the natural way, and 
renaming the remaining va,riables (21, 2 2 , ~ s  or 24) so 
that  there are distinct copies in each expansion. For 
example, 

The problem is to determine if E(F) = E ( F k )  is 
satisfiable. The running time of an algorithm for 
this problein is measured as a function of the size of 
the hierarchical specification of the formula, namely 
F = (F1, Fz ,  . . . , F k ) l  rather than the size of the ex- 
panded formula. In general, the size of the expanded 
formula E ( F )  may be exponential in the size of F .  

We prove two results, one negative and one positive, 
on the existence of efficient approximation algorithms 
for the optimization version of this problem. Let H- 
MAX-SAT(F) be the function that maps an instance 
F of H-SAT to the maximum number of satisfiable 
clauses of E(F). Let H-MAX-3SAT be the restriction 
of H-MAX-SAT to instances with at  most three literals 
per clause. 

Our first result is that  for  ,some cons t~?z t  t < 1, It i s  
PSPACE-hard to oppronmate the function H-MAX- 
3SAT to wrthrn ratio c .  To prove this, we use a re- 
sult of Condon et al. [3], which characterizes PSPACE 
in terms of resource-bounded debate systems; we re- 
duce the problem of determining if such a debate sys- 
tem accepts a language L to the problem of approx- 
imating the H-MA.X-3SAT function. As an imme- 
diate applica,tion, we obtain nonapproximability re- 
sults for functions on hierarchical graphs which were 

previously studied in [8, 13, 161. In what follows, 
we use the prefix “I-I-” to denote a problem on hi- 
erarchical instances; for example H-MAX-CUT is the 
function that maps a hierarchically specified graph to 
the size of the maximum cut of the graph. Previ- 
ously, Hunt et al. [SI gave approximation-preserving 
reductions from H-MAX-SAT to the H-MAX-CTJT 
and H-MAX-INDEPENDENT-SET problems. Com- 
bining these with our result, it follows that it is 
PSPACE-hard to approximate H-MAX-CUT and H- 
MAX-INDEPENDENT-SET to within some coilstarit 
factor. 

Our second result is that  there i s  an eficient ap- 
proxzmation algorithm for  the H-MAX-SAT problem 
wzth performance guarantee 2/3. Specifically, given 
any H-CNF formula F ,  our algorithm efficiently pro- 
duces a “hierarchical specification” of a trut11 assign- 
ment to the variables of E(F) that is guaranteed to 
satisfy at  least 2/3 the number of clauses in the opti- 
mal solution of E(F). Previously, a performance guar- 
antee of 1 /2  for H-MAX-3SAT was shown by Marathe 
et al. [7, 151. Their algorithm is based on an algo- 
rithm of Johnson [lo] for MAX-SAT; roughly, their 
method is to apply Johnson’s technique in a “bottom- 
up” manner at  each level of the hierarchical formula. 
Our algorithm builds on previous work of of Lieberherr 
and Specker [14] and Yannakakis [17] for MAX-SAT 
to obtain the improved bound. Another new feature 
of our algorithm is the use of a “lazy evaluation” of 
the hierarchical formula. This technique can also be 
used to simplify other algorithms in the literatiire for 
hierarchical problems, such as the approximation al- 
gorithms of Marathe e2 al. [Is] for H-MAX-CUT. 

Whether our algorithm can be further improved is 
an interesting problem for several reasons. Algorithms 
for MAX-SAT that have performance guarantee 3/4 
are known, but they do not have the simple greedy 
structure of our algorithm. Rather they are based on 
algorithms for max flow (Yannakakis [17]) linear pro- 
gramming (Goemans and Williamson [5]) and semi- 
definite programming (Goemans and Williamson [GI) .  
,4 naive application of these techniques tro hierarchical 
formulas would lead to a flow or programming prob- 
lem of exponential size, and herice an exponential-time 
algorithm. It does not appear to help even if the flow 
or programming problenis can be expressed hierarchi- 
cally, since both of these problems are PSPACE-hard. 
Moreover, approximating the optimal solution to a hi- 
erarchical linear programming problem within ratio t 
for any E < 1 is PSPACE-hard [15]. It would be in- 
teresting to find an efficient approximation algorithm 
for H-MAX-SAT which overcomes these problems to 
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achieve a performance guarantee of 3/4 or better. 
The rest of the paper is organized as follows. In 

Section 2 ,  we define precisely the H-SAT and H-MAX- 
SAT problems studied in this paper. We also define 
there the debate system model used in our nonapprox- 
irnability result for H-MAX-3SAT of Section 3. In Sec- 
tion 4 ,  we present our 2/3-approximation algorithm 
for H-MAX-SAT. 

2 Definitions 
2.1 Hierarchical Satisfiability 

By a CNF (kCNF) formula, we mean a Boolean for- 
mula in con-iunctive normal form (k-conjunctive nor- 
mal form), in which the clauses have positive weights. 

A hierarchical CNF (H-CNF) formula F = 
( F 1 ( X 1 ) ,  F z ( X 2 ) ,  . . . , F k ( X k ) )  is a sequence of IC non- 
terminals. The ith nonterminal is of the form 

F , ( X i )  = ( A F,,(X,”,Z,))Afi(XZ,Zi) 
11351, 

Here, X i  and 2; are ordered sets of Boolean variables, 
called the pins and the explicit variables of F;,, respec- 
tively, with ( u i X i )  n ( u l Z i )  = 0 and Zi n Z 2  = 0 for 
i # i ’ .  The explicit variables and pins together are 
called terminals. Each f i  is a CNF formula with vari- 
ables in the set Xi U Zi. The set X k  is the empty set. 
Also, for each i and j ,  1 5 ij < i and X: and Zj are 
ordered sets of Boolean variables such that X,” 5 Xi, 
Z j r Z i  and I X ~ U Z ~ ~ = ~ X i ~ ~ .  

The expanded formula E(F) of F is defined induc- 
tively, with E(F1) = Fl .  For 2 5 i 5 k ,  E(Fi) 
is obtained from F, as follows. Each occurrence of 
F;, ( X i  , 2;) is replaced by a copy of the expanded for- 
mula E ( F i J ) ,  where each occurrence of a pin in the 
set X’J  is replaced by the corresponding terminal in 
XiUZj. Also, the explicit terminals of E(Fi,) (that is, 
those variables in 2‘3) are relabeled so that they are 
distinct in each copy (see the appendix for one pos- 
sible relabelling scheme). The CNF formula E ( F k )  is 
the expanded formula E ( F ) .  

Later in our approximation algorithm, we will also 
refer to the lazy ezpunsion of F ,  denoted by E’(,?). 
This is similar to E(F), except that  all copies of an 
explicit variable z; are the same, that  is, no relabel- 
irrg is done. For example, the lazy expansion of the 
formula F of the introductory example is 

E ’ ( F )  = a(?, v z1) A (23 v 21) A (23 v za) 
A ( ~ g  V Zz V Zq) A (23 V 2 4 ) .  

We denote by SAT the set of satisfiable CNF for- 
mulas. For any CNF formula f and truth assignment 

T to the variables of f J  let w t ( f , r )  denote the sum 
of the weights of the clauses of f that  are satisfied 
by truth assignment r .  We denote by MAX-SAT the 
function that maps a CNF formula f to  max, w t ( f ,  T ) ,  

the maximum weight of any t ruth assignment of f .  
We denote by H-SAT the set of H-CNF formulas F 
such that E(F) is satisfiable. We denote by H-MAX- 
SAT the function that maps an instance of H-SAT to 
max, w t ( E ( F ) ,  T ) ,  the maximum weight of any truth 
assignment of E(F). We denote by H-MAX-kSAT the 
function H-h$TAX-SAT, restricted to the domain con- 
sisting of H-CNF formulas in which each f ;  is a kCNF 
formula. 

2 . 2  Approximation Algorithms for H- 

We next define what we mean by an approximation 
algorithm for H-MAX-SAT. In the case of the NP- 
optimization problem SAT, approximation algorithms 
compute not only the weight of a truth assignment, 
but also output a truth assignment with that weight. 
Since the number of variables in E ( F )  may be ex- 
ponential in IFI, no polynomial-time algorithm can 
always output a description of an arbitrary truth as- 
signment for E(F). Therefore, to  define what we mean 
by an approximation algorithm for H-MAX-SAT, we 
proceed as foIIows. Let A be an algorithm that  takes 
as input a H-SAT formula E and variable y of E(F). 
The algorithm outputs a value W F  and a t ruth value 
to y. We say that A is consistent if given any F ,  the 
value W F  output by A on input F, y is the same for 
all variables y of F. We only consider consistent algo- 
rithms in what follows. We denote by A ( F )  the truth 
assignment defined by A for E(F); in this way, we 
consider the algorithm A to  be a function. 

We say that A is an approximation algoi-zthnz for H- 
MAX-SAT if for all instances F of H-SAT, the weight 
of A(F) is a t  least WF.  Note that we do not require the 
weight of A ( F )  to be exactly W F ,  but rather that  W F  

is a lower bound on A(F). This is because we know of 
no efficient approximation algorithm A for H-MAX- 
S4T that8 produces the exact weight A ( F ) .  Moreover, 
if one must choose between getting the exact value 
of a low-quality truth assignment, or getting a good 
lower bound on a high-quality the truth assignment, 
the latter would appear to  be much more useful. Our 
approximation algorithm for H-MAX-SAT produces a 
weight lower bound W F  for A ( F )  that  is a t  least 2/3 
of the weight of the optimal truth assignment. We 
note that for the restricted problem H-MAX-kSAT, 
a slight modification of our algorithm produces the 
exact weight of the truth assignment A ( F ) .  

We say approximation algorithm A has perfor- 

MAX-SAT 
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mance guarantee c 5 1 if for all instances F of H-SAT, 
W F  is a t  least c times the maximumweight of any truth 
assignment for F. In this case, we also say that A is 
a c-approximation algorithm for H-MAX-SAT or that 
A approximates H-SAT within ratio c. 

The approximation algorithms for H-MAX-SAT 
considered in previous papers [7, 151 and in this pa- 
per all output a hierarchical specification of a truth 
assignment. A hierarchical specification of a truth as- 
signment of E(F) simply specifies a truth value for 
each variable in the set UZi  = ( ~ 1 ~ ~ 2 , .  . . ,  z , } .  Note 
that this assignment is of length at  most linear in I F / .  
Also, this as,signment is a truth assignment for E ’ ( F ) ,  
the lazy expansion of F .  The hierarchical specifica- 
tion determines a truth assignment E ( r )  for E ( F )  in 
the following way. Assign to each variable zj  and each 
relabeled cc’py of zj in E ( F )  the truth value of z j ,  

1 5 j 5 s. Intuitively, a hierarchically specified truth 
assignment treats all occurrences of zj as the same, 
rat,her than relabeling occurrences in different nonter- 
minals as different variables. The following fact fol- 
lows from the definitions. 

Fact 1 Let r he a hierarchically specified truth us- 
signment fo,r E ( F ) .  Then, 

w t ( E ’ ( F ) ,  r )  = w t ( E ( F ) ,  E ( r ) )  

We say that a function g is PSPACE-hard if 
PSPACE C Pg, i.e., if every language in PSPACE is 
polynomial-time reducible to  g .  By “approximating 
f within rat,io t is PSPACE-hard,” we mean that ,  if 
g approximates f within ratio t, then g is PSPACE- 
hard. 
2.3 Randomized Probabilistically Check- 

able Debate Systems (RPCDS) 
We need the following definitions pertaining to de- 

bate systems from [3 ]  in order to  describe the proof 
of our main nonapproximability result in Section 3 .  A 
randomized probabilistically checkable debate system 
(RPCDS) consists of a verifier V and a debate format 
D .  The debate format is a pair of polynomial-time 
computable functions ( f ( n ) , g ( n ) ) .  For a fixed n ,  a 
debate between two players, 0 and 1, consistent with 
the debate format ( f ( n ) ,  g(71) ) ,  contains g(n )  rounds. 
At round i 2 1, Player i mod 2 chooses a string of 
length f ( n ) .  

The verifier is a probabilistic polynomial-time Tur- 
ing machine that takes as input a pair ( z , ~ ) ,  where 
T E (0, l}*> and outputs 1 or 0. The output is in- 
terpreted as z E L or 2 $! L respectively. If z E L ,  
then Player 1 is said to have “won the debate” other- 
wise Player 0 “wins the debate”.  The aim of Players 1 

and 0 is to come up with strategies to “convince” the 
verifier that  2 E L or z $! L respectively. 

For each z of length 72, corresponding to  the debate 
format D is a debate tree. This is a complete binary 
tree of depth f ( n ) g ( n )  such that ,  from any vertex, one 
edge is labeled 0 and the other is labeled 1. A debate is 
any binary string of length f ( n ) g ( n ) .  For a fixed T of 
length n ,  a debate subtree is a tree of depth f ( n ) g ( n )  
such that each vertex at  level i has 1 child if i div 
f ( n )  is even and it has two children if i div f ( n )  is 
odd. This subtree gives the list of all “responses” of 
Player 1, against all possible “arguments” of Player 0 
in every debate. 

We define overall probability for a debate subtree 
that the verifier V outputs 1 to be the average over 
all debates rr in the tree, of the probability that V 
outputs 1 on debate rr. 

A language L has a RPCDS with error probability 
E if there i s  a pair (D = ( f ( n ) , g ( n ) ) ,  V) such that 

1. For all 2 E L ,  there is a debate subtree for which 
the overall probability that V outputs 1 is 1. In 
this case, we say that I(: is accepted by (0, V).  

2.  For each 2 $! L ,  for all debate subtrees, the over- 
all probability that V outputs 1 is a t  most t .  In 
this case, we say that 2 is rejected by (0, V ) .  

A language L is said to be in R P C D ( r ( n ) ,  q(n))  if 
there is a RPCDS which accepts L with error proba- 
bility 1/3 such that the verifier flips r ( n )  coins and 
queries q(n) bits of T .  Furthermore, t,he verifier’s 
queries are non-adaptive, that  is, the bits queried are 
completely determined by the input and the result of 
the coin flips. Condoii et al. [3]  showed that PSPACE 
= RPCD(O( logn) ,  O(1)). 

MAX-3SAT 
3 Nonapproximability of Hierarchical- 

We now prove our nonapproximability result for H- 
MAX-SSAT. 

Theorem 1 For some conbtant t < 1, zt as 
PSPA (2%-hard to approxamate H-MAX-3SAT unthan 
ratzo E .  

Proof: Consider a language L E PSPACE. L has a 
RPCDS D in which the verifier uses O(logn)  random 
bits and reads O(1) bits of the debate. Without loss 
of generality, we can assume that the debate format is 
such that f(n) = 1, that is, the players play one bit 
per round, and that g ( n )  is even. Let N = y(n ) /2 ,  
the number of rounds per player. 
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Figure 1: Construction of the H-3CSF formula F 

For a given input 1: of length n ,  we construct a H- 
SCNF formula F from the RPCDS D and z.  A truth 
assignment to  the variables of the expanded formula 
E(F) describes a debate subtree of D on x., there is 
one variable per edge in the tree. A truth value of true 
denotes that  the edge is labeled 1 and a truth value 
of false denotes that  the edge is labeled 0 .  The set of 
clauses of E(F) is composed of subformulas, one for 
each path (debate) of the debate subtree. Given any 
random bit string of the verifier, whether the verifier 
accepts or rejects on that  bit string can be expressed 
as a Boolean function of the U(1) variables that rep- 
resent the bits of the debate read by the verifier on 
that random bit string. Hence, the outcome of the 
verifier's computation on a given random bit string 
can be written as the conjunction of a constant num- 
ber, say c ,  of clauses, each clause containing exactly 
3 literals. Thus,  for a. given debate, over all possible 
U(1ogn) random bit strings there are a polynomial 
number, say p ( n )  = of clauses. These c o n -  
prise one subformula of E(F). Let these clauses be 
called a-clauses. If on a particular debate, the verifier 
accepts z with a probability p ,  the number of clauses 
satisfied 5 p ( n )  - ( l / c ) ( l  - p ) p ( n ) .  

Thus, we see that  the variables of E(]') corre- 
spond to edges of a tree, and the clauses of E ( F )  
are partitioned into subformulas, one per debate or 
path in the tree. These subformulas have the same 
structure but different variables, and all the variables 
in a subformula lie on one path of the tree. Be- 
cause of this tree structure underlying E(F') ,  F can 
be specified hierarchically in a natural way. We let 
F = (F1, FZ,.  . . , F N + ~ } ~  where each copy of F~t1-i 
encodes the portion of the debate subtree with the first 
i responses of Players 0 and 1 fixed. Thus each copy 

of F1 represents one possible debate (encoded by the 
a-clauses) while F N +  1 represents the complete debate 
subtree. 

In addition to  the a-clauses, E(F) also has clauses 
that test whether the t ruth assignment to  the variables 
of E ( F )  correspond to  a valid debate subtree. T h a t  is, 
the variables labeling the pair of edges at each branch 
of the tree should have opposite t ruth assignments, 
since these edges correspond to  the two possible bits 
that  Player 0 could write. In order to  be able to  spec- 
ify these clauses hierarchically, these clauses are again 
partitioned into subformulas, one per path in the tree. 
The clauses in one subformula are called p-clauses. 
For each branching node along this path,  if p is the 
variable corresponding to  the edge from this node on 
the path,  and q is the variable corresponding to  the 
other edge from this node, the P-clauses check that  
p # q .  Thus, the p-clauses necessarily involve not 
only the N variables corresponding to  edges at odd 
levels along one path from the root of the tree, but 
also involve the N additional variables corresponding 
to edges branching from this path.  (Recall that  nodes 
at odd levels of a debate subtree are branching, while 
nodes at  even levels of a debate subtree are not ,  where 
the root is a t  level 0.) 

We now describe F exactly. The explicit variables 

iAr. The y-variables represent the bits of the debate 
written by Player 0 while the z-variables represent the 
bits written by Player 1. (Since Player 1 starts the 
debate, there is only one edge from the root of the 
debate subtree, which is why we don't need two copies 
of zi .) The p-variables and the q-variables are the pins 
of the formula. The  actual construction of F is given 
in Figure 1. 

1 0 1 1  0 0  Of are Y1) Y2i ' " )  YN, Y1) Y2, ' " >  YN, zlr z21 ' . ' )  
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In Figure 1, a-clauses are the clauses representing 
the computation of the verifier over all random bit 

@-clauses are 
strings on the debate qNpkqN-1pN-1 0 ’ ‘ q l p !  and the 

&Y VPil) A (PU VP,’) 
N 

i=l 

Each a-clause has a weight 1. The clauses pp V pi’ 
and 13,” V 2 , each have - weight equal to the number of 
occurrences of p: or p? in the a-clauses. The proof 
that this reduction is “approximation preserving” is 

Previously, Hunt et al. [8] gave approximation- 
preserving reductions from H-MAX-SAT to the H- 
MAX-CUT and E-I-MAX-INDEPENDENT-SET and 
H-MAX-2SAT problems (see [8] for definitions of the 
hierarchical graph problems). Combining these with 
Theorem 1, we obtain the following corollary. 

given in the appendix. 0 

Corollary 2 For some constant t < 1, zt as 
PSPACE-hard to approzzmate H-MAX-2SAT,  H- 
M A X -  CUT and H- M A  X -  INDEPENDEN T-  SE T to 
wzthzn ratzo t. 

4 2/3-Approximation Algorithm for 

Our algorithm builds on ideas of Lieberherr and 
Specker [14] and Yannakakis [17]. We actually de- 
scriobe our algorilhm for a weighted version of H- 
MAX-SAT i n  which clauses may be labeled with bi- 
nary weightt;. To rnotivate our approach, we first de- 
scribe the al.gorithm of Lieberherr and Specker [14]. 
We then show in a series of examples how we build 
on their approach to obtain our algorithm. The de- 
tailed description of our algorithm and a proof of its 
correctness can be found in the appendix. 

The algorithm of Lieberherr and Specker is proba- 
bilistic, and i;akes as input a three-satisjiable CNF for- 
mula. A CNF formula is three-satisfiable if any three 
of its clauses can be simultaneously satisfied. The ex- 
pected number of clauses of the input that are sat- 
isfied by the Lieberherr-Specker algorithm is at  least 
a fraction 2 /3  of the optimal. Their algorithm actu- 
ally achieves the same bound on the following slightly 
more general type of CNF formula. We say a CNF 
formula is good if it does not contain (i) a pair of unit 
clauses of the form U and V ;  or (ii) a triple of clauses of 
the form U ,  v’ and 5 V V’. Given a good CNF formula 
F ,  assign z the value true with probability 2 / 3  if the 
unit clause I(’ occurs in the formula, with probability 
1/3 if the unit clause occurs in the formula and with 

H-MAX-SAT 

probability l / 2  otherwise. From the fact that  F is 
good, it follows that every clause in the formula has a 
probability 2 2/3 of being satisfied. This randomized 
algorithm can be made deterministic by a well-known 
procedure, known as the method of conditional expec- 
tations [17]; we omit the description ofthis method in 
this abstract. 

The Lieberherr-Specker algorithm can be extended 
to work not just for good formulas, but for the general 
MAX-SAT problem, and it can also be extended to H- 
MAX-SAT. Before looking at  the actual algorithm for 
H-MAX-SAT, let us look at  a few examples. 

Example 1 Consider the set of clauses S = {x) y1 5 V 
i j z , . } ,  which is not good. One can check that us- 
ing Lieberherr and Specker’s algorithm, the expected 
number of clauses satisfied will be less than 5 ( 2 / 3 ) ,  
that  is, less than 2/3 of the weight of all clauses. 

We can convert the set S into an equivalent set of 
clauses S’ such that S’ is good. By equivalent, we 
mean that under any truth assignment of variables of 
S, the weight of S is the same as the weight of S’ under 
the same truth assignment. This conversion is inspired 
by an algorithm of Yaniiakakis [17], who shows how a 
2-CNF formula can be converted into an equivalent 
2-CNF formula with no unit clauses, using max flow. 
Yannakakis uses this to obtain a 3/4-approximation al- 
gorithm for MAX-2SAT. Our conversion algorithm is 
simpler than that of Yannakakis and does not achieve 
as good a performance guarantee, but it has the ad- 
vantage that it will extend to hierarchical formulas. 

To obtain S’, we replace every pair of clauses of the 
form z and Z of equal weight w by a single clause true 
with weight w. Also, given three clauses of the form 
x, y and 5 V y ,  each with weight w ,  replace the three 
clauses by two clauses xVy and true each with weight 
w.  Thus the set S is equivalent to the set of clauses 
S’ = {x v y, true, true}. 

Applying Lieberherr and Specker’s algorithm to S’, 
we obtain a truth assignment with expected weight 
11/4 which is greater than 2 / 3  times the weight of 
all clauses in S’. Since an optimal solution for S’ is 
also an optimal solution for S, the value of the above 
assignment is at least 2/3 the weight of the optimal 
solution for S. 

Example 2 We now consider a H-CNF formula F = 
( FI , FZ , F3) where 

Fl(~1, ~ 2 )  = A (21 V 22)  A 21 A (21 V T I )  

F2(23) = Fl(Z3,.2) A 2 2  

F3(0)  1 Fz(z3)  A 23 A 23 
Expanding, we get 
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In this example, although the clauses at the indi- 
vidual levels are all good, the expanded formula is not 
even two-satisfiable. As a first step, we “push up” to 
higher levels all clauses of size 1 and 2 which contain 
only pins so that each clause of length 1 or 2 a t  any 
level contains a t  least one explicit vertex. The H-CNF 
formula F ,  after this has been done, is as follows: 

F ~ ( z I , . I : ~ )  = 21 A (2, V 2 1 )  

Fz(z3) = F1(:Q> 2 2 )  A -72 A ( 2 3  v 22)  

F3(fl) = Fz(z3) A 23 A 23 A -73 

Then, we make each level (ignoring nonterminals) 
good, applying the method of the previous example. 
This step yields a new formula F’ = (F;) Fil F i )  as 
follows. 

F ; ( z l ,  Z2) = 21 A (21 v z1) 
Fi(T3) = Fi(23, 2 2 )  A 2 2  A (23  v 22) 

E(F’)  

Pi(@) = F i ( z 3 )  A 43 A true 

Expanding, we get 
= Zl,l A (21,l v 23)  A (23 v 22,J) A -7?,1 

A Z3 A true. 

We see that still E(F‘) is not good. The problem 
is due to pairs of clauses of the form U V p ,  U ,  where 
U is an explicit literal and p is a pin. To correct this 
problem, we do the following for each level in turn,  
starting with F l .  For each pair of clauses of the form 
5 v p and I ) ,  each with weight w where 2: is an explicit 
literal and p is a pin literal, we replace these clauses by 
the clauses p V ii and p )  each with weight w and then 
push the clause p to the level where p gets replaced by 
an explicit literal. Let F” = (Fi’> Fi‘> F;’) be the CNF 
formula obtained by performing all the operations 011 
F .  Then F” is given by 

F l / ( z 1 ,  .7:2) = (IC1 v z1) 
Fi’(X3) = F;’(z3,22) A ( 2 2  v 23) 
P[(@) = F;’(z3) A Z3 A 2true 

E(,?”) 
Expanding, we get 

= (23 v 21) A (z2 v 2 3 )  A 23 A 2true 

E(F”) is clearly good. So, the Lieberherr-Specker al- 
gorithm can be applied to  get a truth assignment of 
E(F”) with expected weight a t  least 2/3 of the total 
weight. 

There are still some problems to be overcome, since 
in general E(F”)  may be of size exponential in IFI. 
The first observation we use is that  i t  is sufficient to  
work with the lazy expansion E‘(,‘‘), because this is 
also guaranteed to be good. Moreover, fact 1 shows 
t,hat a truth assignment for E’(F’‘) is a hierarchical 
specification of a truth assignment for E(F”) with the 
same weight. (In our example, the lazy expansion of 
F” has t.he same size as the expansion of F”, but in 
general it may be much shorter.) However, even the 
lazy expansion of a hierarchical formula F can be of 
size exponential in 18’. Therefore, before computing 
the lazy expansion of F, we simply remove arbitrary 
literals from clauses of F with more than three literals, 
until these clauses have exactly three literals. Then, 
in the lazy expansion of F there are only a polynomial 
number of distinct variables (namely explicit variables 
{ -71~ 2 2 ,  . . . zZn}) and there are only a polynomial num- 
ber of possible distinct clauses of length at most three 
over this set of variables. Hence, the lazy expansion 
of F is of size polynomial in lFI. 

To summarize from these examples, our approxima- 
tion algorithm first converts a 13-CNF formula F into 
a H-CNF formula H such that E ( H )  is good, as in 
Example 2 .  Furthermore, E(F) and E ( H )  are equiv- 
alent; that, is, have the same weight with respect to  
any truth assignment. Then clauses of H of length 
greater than three are shortened to be of length ex- 
actly three and the lazy expansion of the resulting 
formula is computed. A truth assignment for this for- 
mula, computed using the deterministic version of the 
Lieberherr-Specker algorithm, is a hierarchical specifi- 
cation of a truth assignment for E(H), and hence for 
E(F), and has weight a t  least 2/3 of the total weight 
of E(H). Therefore, it has weight a t  least 2/3 of the 
optimal truth assignment of E(F). 

The lazy evaluation E’(F)  of a hierarchical formula 
F can be computed in polynomial time, by comput- 
ing each E’(Fi) in turn,  starting with i = 1. Once 
E’(F1). . . . !  E’(,?,-1) are computed, E / ( F i )  is com- 
puted as follows. First, E’(Fi,) is substituted for each 
nonterminal Fi, of Fi ~ just as in the construction of the 
properly expanded formula E(Fi), except that  all du- 
plicates of an explicit variables zi get the same name, 
namely zi. The resulting formula has size polyno- 
mial the size of the hierarchical specification, since it 
is obtained by the substitution of a linear number of 
formulas, each of polynomial length. Then, for each 
clause that appears more than once, say with weights 
w1, . . . , w1, replace the 1 copies with one copy that has 
weight zu1 + . . . + w1. 

Finally, we note that once our algorithm has com- 
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puted a truth assignment, say T ,  it outputs the total 
weight of the satisfied clauses in the formula that was 
obtained from H by shortening clauses to be of length 
at  most 3 .  1.n fact, the total weight of the clauses of 
H that  are satisfied may be greater than this, because 
a clause of 1f with greater than three literals may be 
satisfied by 7- even if the three literals remaining in the 
shortened clause are assigned to false. It is for this 
reason that 1;he weight output by our algorithm on in- 
put F may be less than the actual weight wt(F, T )  of 
the truth assignment T output by our algorithm. 

The deta.ils of the algorithm are given in the ap- 
pendix. 

5 Conclusions and Open Problems 
We have shown that that  for some constant E < 1, it 

is PSPACE-:hard to approximate H-MAX-SAT within 
ratio t. This result, combined with approximation- 
preserving reductions of Marathe et al. [8], also im- 
plies that for some E < 1, it is PSPACE-hard to ap- 
proximate the hierarchical graph problems H-MAX- 
CUT, H-MAX-INDEPENDENT-SET and H-MAX- 
2SAT within ratio E .  It  is an open problem whether 
this lower bound for H-MAX-INDEPENDENT-SET 
can be improved to n-'. (The standard (non- 
hierarchical) MAX-INDEPENDENT-SAT problem is 
NP-hard to approximate within a factor of n-', for 
some E < 1 [11 41.) 

We have also presented a polynomial time approxi- 
mation algorithm for H-MAX-SAT with performance 
guarantee 2/3. Our algorithm builds on ideas of 
Lieberherr and Specker and Yannakakis in a non- 
trivial way, extending their approach for MAX-SAT to 
H-MAX-SAT. Another new contribution of our algo- 
rithm is the use of the lazy evaluation of a hierarchical 
formula. We note that the lazy evaluation idea can be 
used to obtain a very simple 1/2-approximation algo- 
rithm for H-MAX-SAT, as follows. Given a H-CNF 
formula F ,  simply shorten all of the clauses of F to 
be of length 1. Then compute the lazy evaluation of 
the resulting formula to obtain an instance of SAT. 
Finally, apply Johnson's algorithm to this instance to 
obtain a hierarchical specification of a truth assign- 
ment of F .  

Lazy evaluation is also useful in describing sim- 
ple approximation algorithms for hierarchical graphs. 
The lazy eva.luation of a hierarchical graph is defined 
in a manner similar to our definition for hierarchical 
formulas, and is always polynomial in the size of the 
hierarchical (description of the graph (in contrast with 
hierarchical formulas where the lazy evaluation can 
be exponential in size if the length of clauses is not 
bounded, as in Example 3 of Section 4.) A simple 1/2-  

approximation algorithm for H-MAX-CUT can be ob- 
tained in a manner similar to the algorithm described 
in the last paragraph for H-MAX-SAT. The result- 
ing algorithm is similar to,  but simpler than, the l /2- 
approximation algorithm of Marathe et al. [15] for H- 
MAX-kSAT. 

Our algorithm for H-MAX-SAT only outputs a 
lower bound on the weight of the solution output,  not 
its exact weight. Can the exact weight of the hierar- 
chically specified solution output by our algorithm for 
H-MAX-SAT be computed efficiently, or is there a dif- 
ferent 2/3-approximation algorithm that outputs the 
exact weight of the solution obtained? (Recall that  
for the restricted problem H-MAX-kSAT, the exact 
weight of the solution output by our algorithm can be 
efficiently computed.) 

All known approximation algorithms for PSPACE- 
hard problems on hierarchical structures output a hi- 
erarchical specification of a solution. Therefore, if one 
wants to improve on the current best approximation 
algorithms for H-MAX-SAT and other hierarchically 
specified problems, the following questions are impor- 
tant. First, for the H-MAX-SAT problem, can one 
prove good bounds on the worst-case ratio between the 
best hierarchically specified solution and the optimal 
solution'? Our algorithm for H-MAX-SAT shows that 
the best hierarchically specified solution has weight 
at  least 2/3 of the weight of the optimal solution. 
Whether this is tight is not known. 

A related problem is to develop an efficient approx- 
imation algorithm for H-MAX-SAT or H-MAX-kSAT 
that outputs a hierarchical specification of a truth as- 
signment with weight greater than 2/3 of the weight of 
the optimal hzerarchzcally speczfied truth assignment. 
The hope is that ,  if the output of the approxima- 
tion algorithm is measured against the weight of the 
best hierarchically specified truth assignment of the 
H-CNF formula, and not the weight of the best over- 
all truth assignment, a better performance guarantee 
can be achieved. 

Finally, are there approximation algorithms with 
reasonable performance guarantees for H-MAX-SAT, 
or for hierarchical graph problems, that  output a so- 
lution other than a hierarchically specified one? 

References 
[l] S .  Arora, C.  Lund, R. Motwani, M. Sudan, and 

M. Szegedy, Proof Verification and Hardness of 
Approxzmation Problems, Proc. 33rd Symposium 
on Foundations of Computer Science, IEEE Com- 
puter Society Press, Los Alamitos, 1992, pp. 14- 
23. 

221 



[2] A .  Cohen and A .  Wigderson! Disper.sers, De- 
term in z s t 7 c A m pl zfica t ion ~ a n d Weak Random 
Sources, Proc. 30th Symposium on Foundations 
of Computer Science, IEEE Computer Society 
Press, Los Alamitos, 1989, pp. 14-19. 

[3] A .  Condon, J .  Feigenbaum, C.  Lund, and P. Shor,  
Random Debaters und  the Hardness of Approxi- 
nLating Stochastic Functions, Proc. 9th Confer- 
ence on Structure in Complexity Theory. IEEE 
Computer Societ,y Press, Los Alamitos, 1994. 
pp. 280-293. 

[4] 17. Feige, S.  Goldwasser, L .  Lov&sz, M .  Safra, 
and M.  Szegedy, Approximating Clique is Almost 
IVP-ConLplete: Proc. 32nd Symposium on Foun- 
dations of Computer Science, IEEE Comput,er 
Societ,y Press, Los Alamitos, 1991, pp. 2-12. 

[5] M .  Goemans and D. Williamson, AVew 3/4-Ap- 
prozzmatron Algorzth,ms for M A X  SAT; Proc. 3rd 
Conference on Integer Programming and Combi- 
natoria.1 Optimization, SIAM, 1993, pp. 313-321 
An updated version is to  appear in SI4M J .  Dis- 
crete Math. 

[ti] M .  Goemans and D. Williamson, .878-Approrc- 
imatiori Algorithms for MAX- CUT and M A X -  
2SAT, Proc. 26th Symposium on Theory of Com- 
puting, ACM, New York, 1994, pp. 422-431. 

[7] H. Hunt 111, M. Marathe, V. Radhakrishnan, D. 
Rosenkrantz, and R. Stearns, A Unified Approach 
f o r  Prooiiag Both Easiness a n d  Hardness Results 
fo'r Succinct Specificatzons, Manuscript 1994. 

[8] H. Hunt 111, M. Marathe, R .  Stearns, and V. Rad- 
11 alir i s h  an,  0 7 7  th e CO m p  [ear t y a rid .4pp roxi nz a- 
bzlzly of Perrodzc and Hzeraichrcal Specifications. 
Manuscript ~ 1994. 

[9] R,. Impagliazzo and D.  Zuckerman, How to Re- 
cycle Random Bits, Proc. 30th Symposium oil 
Foundations of Computer Science, IEEE Com- 
puter Society Press, Los Alamitos, 1989, pp. 248- 
253. 

[ lo] D.  S .  Johnson, Approxzmatzon algorithms fo r  
Coiiihnutorzal Pi,oDlems, J .  Comput. System Sci. ~ 

9 (1974)) pp. 256-278. 

[ll] T. Lengauer, Ezploitzng Hzerarchy zn VLSI De- 
srgia,  Proc. Aegean Workshop on Computing, 
Lecture Notes in Computer Science, Vol. 227, 
Springer-Verlag, New York, 1986, pp. 180-193. 

[12] T Lengauer and K Melhorn, The HILL Sys- 
tem A Design Environment for the Hzerarchacal 
Specificatzon, Compactzon, and Samulataon of In- 
tegrated Circuzt Layouts, Proc MIT Conference 
on Advanced Research in VLSI, P Penfield Jr 
ed Artech House Company, 1984, pp 139-149 

[13] T Lengauer and K Wagner, The Correlatzon Be- 
tulten the Complexrtzes of the Non-Hzerarchacal 
and Hzeiarchical Versions of Graph Problems, 
J Comput System Sci , 44 (1992), pp 63-93 

[14] I i  Lieberherr and E Specker Complexity of 
Partial Sat7sfaction I I ,  T R  293, Department of 
EECS Princeton University, 1982 

[15] SI \larathe, H Hunt 111, and S Raw, 
The Complesity of Approxzmatang PSPACE- 
Complete Problems for  Hzerarchacal Speczfica- 
tions, Proc 20th International Colloquium on 
Aiutomata,  Languages, and Programming, 1993, 
pp 76-87 

[16] 11 XIarathe, H Hunt HI, R Stearns, and V 
Radhakrishnan, Hzerarchical Speczficatzons and 
Polynomzal- Tame Approxzmatzon Schemes for  
PSPA CE-Complete Problems, Proc 26th Sympo- 
sium on Theory of Computing, AGM, New York, 
1994 pp 468-477 

[17] 11 Yannakakis, On the Approxzmatzon of Maxa- 
m u m  Satzsfiabzlzty, Proc 3rd Symp on Discrete 
Algorithms, ACM, New York, 1992, pp 1-9 

222 



6 Appendix 
In Secticin 6 .1 ,  we give t,he proof of the non- 

approximability result of Theorem 1. In Section 6.2 
we present cur approximation algorithm in detail, and 
prove that it runs in polynomial time and has a per- 
formance guarantee of 2/3.  

In what fs3llows, we use the following scheme for re- 
labeling explicit variables which appear multiple times 
in a non-terminal Fi. This scheme is consistent with 
the example given in the introduction. The distinct 
copies of vaxiable zk in E(Fi )  are labeled Zk,ri, for 
f k  = 1, 2 , .  .. Before starting the expansion of Pi, 
rk is initially set to  1. For each nonterminal Fi, 
in turn,  if .Fi, contains m distinct copies of z j ,  la- 
beled ~ j , ~ ,  , , . , zj , , , , ,  then these copies are relabeled 
zjbrk,  . . . , ~ j , ? . , + ~ - l  and Tk is updated to  T k  +m. Also, 
if Fi, contains one copy of z j  , labeled zj , then this copy 
is relabeled z j l rk  and T k  is updated to  T k  + 1. 

6.1 Correctness of Non-approximability 

To complete the proof of Theorem 1, we show 
that the reduction given there is “approximation- 
preserving.” That  is, we show that if IC E L then 
there is an assignment to  the variables of E(P) with 
weight 7 ~ ( n ) 2 ~ ,  whereas if z L ,  then the weight of 
the best assignment is a t  most ( k -  + 6 ) ~ ( n ) 2 ~ ,  where 
k is a constant less than 1. Note that the number 
of a-clauses is p ( n ) a N .  Also, the total weight of all 
/?-clauses is [ i p ( n ) P .  

First suppose that IC E L .  Then there exists a de- 
bate subtree T such that the verifier accepts on all 
debates (paths of 7‘) and all random bit strings. We 
claim that in this case, E ( F )  is satisfiable. A sat- 
isfying truth assignment is obtained by assigning all 
copies of y: to  0 (false) and y’ to 1 (true) for all i 
and by assigning values to  variables of the form z ; , ~  
according to  the debate subtree T Clearly all a-clauses 
are satisfied because the verifier always accepts. Also, 
all /?-clauses are sakisfied because in any copy of the 
/?-clauses, the pair p: and p’ are replaced by a pair of 
variables, one of which is a copy of yf and one of which 
is a copy of y’. Therefore, all clauses of the formula 
are satisfied if IC‘ E L .  Thus there exists an assignment 
t o  the variables such that  the weight of the clauses 
satisfied is 7 ~ 1 ( n ) 2 ~ .  

Next, suppose that IC 6 L .  We first show that for 
any assignment T to  the variables such that the weight 
of the satisfied clauses is w ,  there exists an assignment, 
T’ which satisfies clauses of weight 2 w and also sat- 
isfies all p-clmses. 

Suppose that T assigns the same value to  the vari- 
ables substituted for pins pp and p t  in some copy of 

Construction 

F1, say variables $, and Y!,~. Now, if we change 
the value of yf,, , some a-clauses Containing y?,, or gp,T 
become false and one more /?-clause will be satisfied. 
Since the weight of the @-clause is eqiial to  the num- 
ber of @-clauses containing y:,, or $‘,, the net change 
in weight as a result of changing the assignment of 
y:,, is nonnegative. Thus without loss of generality, 
we can consider only truth assignments which satisfy 
all /?-clauses. Thus, for all i and 7’: and yi,, are 
assigned different values and so the truth assignment 
determines a debate subtree. 

By the definition of language acceptance of a 
RPCDS, we know that the overall probability that 
the verifier accepts z is 5 1/3. By definition of over- 
all probability, this implies that  if the variables of 
E(F) are assigned so as to  satisfy all P-clauses, then 
the number of a-clauses satisfied 5 k ~ ( n ) 2 ~ ,  where 
k = 1 - 2/(3c).  Hence the total weight of any solu- 
tion of the H-YSAT formula is a t  most ( I C  + G ) ~ ( n ) 2 ~ .  
Thus, it is PSPACE-hard to  approximate H-MAX- 
YSAT within ratio ( k  + 6)/7 of optimal. 

6.2 Details of the 2/3-Approximation Al- 
gorit hm 

We now present the details of the approximation al- 
gorithm for H-MAX-SAT, which was sketched in Sec- 
tion 4. 

Input: A €1-CNF formula F = ( F l ,  Fz,  F3, . . . , Fn). 
Output: A hierarchical specification of a truth as- 
signment for E(F), and a lower bound on the weight 
of this truth assignment. 

Step I: [Conversion of 17 to G where E’(G) is good 
and is of size polynomial in IF\.] 
for 1 5 i 5 n do 

Let 
Fi = Fj, A Fj2 A ‘ ‘ A Fj, A f ;  

Assume that for all j < i ,  we have computed a set 
of clauses f ; ,  a new formula H,j and a number vj”. 
(Here, j” is the set of clauses “pushed up” from Fj as 
in Example 2 and is the weight of the true clauses 
obtained when converting Fj ;  we maintain the weight 
of these clauses rather than explicitly inclitding them 
in the formula.) For each nonterminal Fj that  appears 
in F;] let hp be the set of clauses obtained by replacing 
the pins in j” by the terminals (explicit variables or 
pins) of Fi.  

Let 
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and We have 

(Thus, as in Example 2 ,  f,! is the set of clauses of 
after clauses from lower levels are “pushed u p ” )  not 
counting true clauses, and w,’ is the total weight of 
true chuses.) We split f: into two parts, f: and f /  
f,” contains all clauses off,! whose length i s  1 or 2 such 
that all literals in the clause are pins. Every clause in 
f,” of length 1 or 2 has a t  least one explicit literal. 

Let the set of explicit literals of Fi be ZL = 
{zl,zzI.. . , z , }  and the set of pins be Xi = 
{ x ~ , x z ,  . . . ~ x T } .  In what follows, z’ will always rep- 
resent an explicit literal (of the form z or 2 )  and p will 
represent pin literals (of the form z or 2 ) .  Also, any 
clause with weight 0 is dropped. 

(a) Repeat until no change: If f,” contains two unit 
clauses of the form z and 2 with weights wl and 
‘wz, let w = min(wl,wz). Change the weights of 
the two clauses to  w1- w and w2 - w respectively. 
Also, let v: = vi* + w .  

(b) Repeat until no change: If ft contains three 
clauses of the form w 1 ,  va and zj1 VzTa with weights 
w l l  w2 and w3> let w = min(w1, w2, wy). Change 
the weights of the three clauses to w1- w ,  w2 - w 
and w3 - w resp. Add the clause v1 V va with 
weight w to  f,” and let = U,? + w .  

( e )  Repeat, until no change: If f,” contains two 
clauses of the form v and < V p with weights w1 
and w2, let w = min(w1, w2). Change the weights 
of the two clauses to  w1 - w and w2 - w resp. 
Also, add the clause p with weight w to f,“ and 
the clause v V j5 with weight w to  f,”. 

(d) Repeat until no change: If there are two iden- 
tical clauses C1 and Cz in either f,” or J’,” ~ with 
weights tu1 and wz1 delete clause Cz and change 
the weight of C1 to wl + w2. 

Let the set of clauses obtained by applying steps 
(a)-(d) to f,” and f,” be hi and f: respectively. Let 

endfor 

Let H = (NI ~ H a , .  . . , H,) 

Step 11: We now perform the following contraction 
operations. 
for 1 5 i 5 12 do 

Assume that for each j < i ,  we have computed a 
new formula Gj . 

(a) For each clause in hi,  if the clause contains more 
than 3 literals, arbitrarily choose any 3 of them 
and delete all the remaining literals from the 
clause. 

(b) Repeat until no change: If there are two identical 
clauses CI and C2 in hi ,  with weights w1 and w2, 

delete clause Ca and change the weight of C1 to 
w1+ w2. 

Let the set of clauses obtained in this way from h; 
be gi and let 

Gi = Gj, A Gj, A . . . A Gj, A g; 

endfor 

Let G = (GI,  Ga, . . . , Gn)  be the new converted H- 
SAT formula. 

Step 111: Compute E’(G) and apply the determin- 
istic version of the Lieberherr-Specker algorithm to 
this CNF formula. Output the truth assignment com- 
puted, and its weight. 

In the next sequence of lemmas, we prove that this 
algorithm has performance guarantee 2/3 and runs in 
polynomial time. 

Lemma 3 For any assignment r of the variables of 
F ,  

w t ( E ( F ) ,  r )  2 + wt(E(G),  r )  
and the weight of the optimal solution of F ,  that is, 
 fop^, satisfies 

Also,  IGI 2s bounded b y  a polynomial in  IFI. 

Proof :  

that  the following equations are true for level i. 
Let  hop^ be the optimal solution for H .  We claim 

k 
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It is obvious that equation 1 is true by definition 
o f  f i .  By thle construction of set hi and f f ,  the two 
sets of clausl?s f i  x f t  U f;" and hi U f :  U {true} are 
equivalent where the true clause has a weight 

k 

1=1 

Hence equation 2 IS true. The last inequality follows 
since gi is obtained from hi by deleting some literals 
from the clauses of hi .  Hence under any truth assign- 
ment, the weight of the clauses satisfied in hi is a t  
least the weight of the clauses satisfied in gi. 
Claim: For all i ,  

Wt(E(F i ) ,  7 )  = W t ( E ( H i ) ,  7 )  + W t ( f i P ,  T )  + uz* 

and 

Proof: 
on level i .  

E(G1) = g l  and the result follows iisiiig equations 

Now, let us  assume the result to  be true for all j < i .  

We prove the following claims by induction 

BASIS When i = 1, E(F1) = f l ,  E ( H 1 )  = 

(1)-(3).  

Then we have 
k 

Wt(E(Fi) ,  T )  = Wt(E(Fj , ) ,  .) + W t ( f i ,  .) 
1=1 

k k 

1=1 

k 

+ 7 4 ,  + W t ( f i ,  T )  
1=1 

using ecln:; (I)-( 2) 
k 

= W t ( E ( H j , ) ,  .) + w t ( h ,  T )  

+ W t ( f : ,  7 )  + U%* 
Wt(E(Wi ) ,  T )  + W b ( f ; P >  T )  + U' 

1=1 

= 

Also, using the induction hypothesis and eqn ( 3 ) ,  

,w t (E(Hi ) ,  T )  2 wt(E(Gi ) ,  7 )  

0 
Using the above claims, we have 

W t ( E ( F ) , T )  = , w t ( E ( F , ) , r )  = Wt(E(H,),T) + U: 
2 wt(E(GV1) ,  T )  + 
= w t ( E ( G ) ,  T )  +U: 

and hence, 

Now, let t be the maximum number of terminals 
defined at  any level. Since for all i ,  f ,  is a CNF for- 
mula without duplicates such that the length of each 
clause is 5 2,  I f : \  is bounded by a polynomial in t .  
So, we can see that I f ; /  and consequently Ig;l are also 
polynomially bounded. Since the number of terminals 
t 5 IFI, IC1 is bounded by a polynomial in IFI. 0 

Corollary 4 An approxzmatzon algorzthm for  G 
whose solutzon as at least 2 /3  the wezght of all clauses 
an E ( G )  gives a 2/3-app,proxzmatzon algorzthm for  F .  

Proof: 
G such that 

Let T be a truth assignment for variables in 

w t ( E ( G ) , T )  2 2/3 wi 
C , E E ( G )  

Lemma 3 shows that 

2 U ;  + 2 / 3  wi 

2 
2 -FOPT 3 

Hence the proof. 

Lemma 5 gi satisfies the following properties 

( a )  If v E g i ,  then 6 $! g i .  

(6 )  If v1 E gi and u2 E gi, then V I  V g2 

(c) If 'U E gi, then 6 V p  $! gi. 

gi 

(d) P 4 si and ri1 v PZ 4 gi. 

The proof is immediate from the construction of gi. 

Lemma 6 E'(G)  is good and has size polynomial in 
IFI. 
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Proof E’(G) has size polynomial in IF1 since the 
variables of E’(G) are the explicit variables of F and 
all clauses of E’(G) have length at most, three. Thus, 
the number of clauses of E’(G) is bounded by a poly- 
nomial in the number of explicit variables of F ;  and 
hence by a polynomial in IF1 

To see that, E’(G) is good, recall that  a CNF for- 
mula is good if it, does not, contain (i) a pair of unit 
clauses of the form U and 5; or (ii) a triple of clauses 
of the form w ,  U’ and G V G’. From the definition of the 
lazy expa,iisiori and Lemma 5, it is straightforward to 
see that  E’(G) satisfies this criterion. 0 

Theorem 7 The above algorithm t s  a 2/3-upp?orl- 
mataoii algoi itliin for  H-MAX-SAT 

Proof: Obvious from the above lemmas and corol- 
lary. 0 
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