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STRUCTURING PROBABILISTIC DATA BY GALOIS LATTICES

Paola BRITO1, Géraldine POLAILLON2

SUMMARY – In this paper we address the problem of organising probabilistic data by Galois
concept lattices. Two lattices are proposed, the union lattice and the intersection lattice, corresponding to
two distinct semantics, by choosing accordingly the join and meet operators. A new algorithm is proposed
to construct the concept lattice. Two real data examples illustrate the presented approach.
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RÉSUMÉ – Organisation de données probabilistes par des treillis de Galois
Dans cet article, nous nous intéressons à l’organisation de données probabilistes par des treillis de Galois.
Deux correspondances de Galois sont établies, en définissant de façon appropriée les opérateurs de
généralisation et d'extension. Ces correspondances permettent de construire deux treillis, appelés treillis de
l’union et treillis de l’intersection, correspondant à ces deux correspondances de Galois. Un nouvel
algorithme de construction de treillis est proposé. Deux exemples sur des données réelles illustrent
l’approche présentée.

MOTS-CLÉS – Treillis de Galois, Données probabilistes, Classification conceptuelle

1. INTRODUCTION

After the definition, by Birkhoff, of Galois connections [Birkhoff, 1940], the Galois lattice
associated to an object/variable correspondence has quickly appeared as an important tool
in binary data analysis. Barbut and Monjardet [1970] emphasise the interest of Galois
connections in the study of a correspondence. Since the eighties, the importance of the
Galois lattice of a relation has started to be widely recognised. In fact, many theoretical and
algorithmic developments have been accomplished, on the one hand by the group of Wille
on Formal Concept Analysis [Wille, 1982; Ganter, Wille, 1999], and on the other hand by
Duquenne [Duquenne, Guigues, 1986]. These studies have used the lattice theory for the
analysis, organisation and interpretation of data. Galois lattices may be considered as a
clustering, allowing the structured clusters to be identified and automatically interpreted.
These lattices also reveal the links between the objects, the variables, and between objects
and variables. The Galois lattice has a formally defined structure that does not depend on
external parameters, on the ordering of instances or algorithmic details. A great deal of
research work has been accomplished recently on Galois lattices: on the reduction of the
lattice by pruning [Godin et al, 1995], [Guénoche, 1993; Mephu Nguifo, 1993],
                                                
1 Universidade do Porto, Faculdade de economia, rua Dr. Roberto Frias, 4200-464!Porto, Portugal,
mpbrito@fep.up.pt
2 SUPELEC – service informatique, Plateau de Moulon, 91192 Gif-sur-Yvette Cedex,
geraldine.polaillon@supelec.fr



78 P. BRITO, G. POLAILLON

knowledge acquisition [Wille, 1990], rule generation [Duquenne, Guigues, 1986;
Duquenne, 1987], frequent items sets [Agrawal et al, 1993], [Pasquier et al, 1999; Stumme
et al, 2001], and the extension to richer representations such as conceptual graphs
[Bournaud, 1996], imprecise and structured data [Girard, Ralambondrainy, 1999], and
fuzzy sets [Burusco, Fuentes-Gonzales, 1998; Herrmann, Hölldobler, Strohmaier, 1996;
Pollandt, 1997; Wolff, 2002].

The need to consider data that contain information which cannot be represented in a
classical data matrix, together with the objective of designing methods that produce results
interpretable in terms of the input variables, lead to the development of Symbolic Data
Analysis. Symbolic data extend the classical tabular model, where each individual takes
exactly one value for each variable, by allowing multiple, possibly weighted, values for
each variable. New variable types have been introduced, which allow us to represent
variability and/or uncertainty present in the data: multi-valued variables, interval variables
and modal variables [Bock, Diday, 2000]. A variable is called set-valued if its “values” are
nonempty subsets of the underlying domain; it is multi-valued if its values are finite
subsets of the domain and it is an interval variable if its values are intervals of a linear
order (for instance the real numbers). A modal variable is a multi-state variable where we
are given a category set for each element and a frequency or probability for each category,
which indicates how frequent or likely that category is for this element. In the case where
an empirical distribution is given, the variable is called a histogram variable. Data described
by modal variables are called probabilistic data. This kind of data often arises in many
practical applications, for instance, when it is wished to express uncertainty, or on
summarising data from a survey. The main objective of Symbolic Data Analysis is to
extend data analysis techniques to such symbolic data, in such a way that both input data
and output results may be expressed within the same formalism, based on the notion of
‘symbolic object’. Symbolic Data Analysis underwent great improvement with the
European projects “Symbolic Official Data Analysis System (SODAS)” and “Analysis
System of Symbolic Official data (ASSO)”; as the result of these projects a software
package SODAS has been developed, [Bock, Diday, 2000].

The problem of extending Galois connections and Galois lattices to symbolic data
was first addressed by Brito [1991, 1994] and further developed by Polaillon [1998(a),
1998(b); Polaillon, Diday, 1999]. In this paper, our aim is to define the tools that will allow
constructing Galois lattices directly on probabilistic data, without any prior transformation.
To do so, we use the framework of Symbolic Data Analysis, which allows representing
within the same formalism the input data and the obtained concepts.

In Section 2, we start by explaining what is meant by probabilistic data, and how it is
formalized in the context of Symbolic Data Analysis. In Section 3 we define two Galois
connections on a set of probabilistic objects, and the corresponding concept lattices, and
extend the notion of “complete symbolic object” to this data. In Section 4, we present a
new algorithm for the construction of the concept lattice. Comparisons with results
published by other authors and two applications, made on real data, are presented and
discussed in Section 5.

2. PROBABILISTIC DATA

In classical data analysis, data are represented in a rectangular matrix, where n individuals
are represented in rows and p variables in columns and each individual takes exactly one
value for each variable. However, it is often the case that this model is too simple to
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represent real data, which appear to be more complex. We consider the case where
variables are discrete and individuals present a distribution rather than a single value for
each variable. This may be a probability distribution, when data are uncertain, or a
frequency distribution when data result from aggregation.

As an example consider the case of describing towns for which the variable weather
is uncertain, and takes its different values with some probability; then in a town T the
weather will be sunny with 60 % probability, cloudy with 30 % probability or rainy with
10 % probability.

Another example arises when we want to summarise data issued from a survey, and
individual descriptions have to be aggregated. For instance, a region may be described by
saying that 50 % of people are working, 20 % are students, 10 % are retired and the
remaining 20 % are in another situation.

Variables for which a distribution is given have been called “Modal variables”
[Boc, Diday, 2000]. A modal variable Y with finite domain O = {y1, º , yk} on a set
E ={w1, w2, …}, where each ly  is called a category, is a multi-state variable where, for
each element w of E, we are given a category set Y(w) Õ  O  and, for each y Œ  Y(w) a
frequency f(y) or probability p(y) which indicates how frequent or likely that category is
for this element w. In the previous example, the domain is the set of the possible
professional status, and “student” is one category. Formally,

DEFINITION 1 [Bock, Diday, 2000]
A modal variable Y  on a set E ={w 1, w 2,…} with domain O  is a mapping
Y(w)!=!(U(w),!pw), for wŒE, where pw  is a measure (frequency, probability or weight)
distribution on the domain O of possible observation values (completed by a suitable s-
field), and U(w)ÕO is the support of pw in the domain O.

Generally, the support U(w) can be omitted from the definition and so a modal
variable can be seen as a mapping Y : E Æ M(O), from E into the family M(O) of all non-
negative measures p on O, with values Y(w) = pw.

EXAMPLE 1. Let e ={region1, region2, …, region1 0} be a set of ten regions for which the
gender distribution is known. let y = “gender” with domain o = {male, female}, such that
y!:!e Æ  m(o), y(regioni) = {male (p1(i)), female (p2(i))} is the gender frequency
distribution in regioni, i=1,…, 10. y is a modal variable. we may have, for instance,
y(region1) = {male (0.6), female (0.4)}.

Such kind of data cannot be considered within the classical paradigm of rectangular
matrices. A suitable formalism must be adopted to represent and analyse the data.
Symbolic Data Analysis provides this framework.

DEFINITION 2
An modal event is a statement of the form

e = [Y(w) R {y1(p1), y2(p2), …, yk(pk)}]
where O = {y1, y2, …, yk} is the domain of Y, and pj is the probability, frequency or weight
of yj. It is not imposed that p1 + p2 +…+ pk= 1. R is a relation on the set of distributions
on O. We shall consider the following relations:
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1. “~” such that [Y(w) ~ {y1(p1),…, yk(pk)}] is true iff k,,1,p)(p Llll ==w  ;
2. “£”such that [Y(w) £ {y1(p1),…, yk(pk)}] is true iff k,,,p)(p Llll 1=£w  ;
3. “≥”such that [Y(w) ≥ {y1(p1),…, yk(pk)}] is true iff k,,,p)(p Llll 1=≥w .

A modal object is a conjunction of modal events.

EXAMPLE 2. let again e ={region1, region2, …, region1 0} be a set of regions for which
the gender and education level distributions are known. suppose we wish to describe a
region where the gender distribution is uniform and where 30 % of the population has
only a basic education level, 50 % has secondary education level and the remaining 20 %
has superior education level. the description can be given in the form of a modal object as:

[Gender ~ {male (0.5), female (0.5)}] Ÿ
[Education ~ {basic (0.3), secondary (0.5), superior (0.2)}]

In this case, “Gender” and “Education” are modal variables, ‘~’ expresses that the
frequency distributions on the categories are exactly those given, and ‘Ÿ’ represents a
conjunction.

Each individual w Œ E is described by a modal object:
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sake of simplicity, we will also call “probabilistic” an object for which this condition is
not imposed. In fact, when p1 + p2 +…+ pk  = 1, we are in presence of a probability or
frequency distribution, while for p1 + p2 +…+ pk ≥ 1 (resp. p1 + p2 +…+ pk £ 1) we have
an upper cover (resp. lower cover) of a probability or frequency distribution.

DEFINITION 3
We define a partial order relation in the set of probabilistic objects defined on the same
variable set {Y1, º,Yp}, as follows:
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then s1 £ s2 iff pj
i £ qj

i , j=1,…,ki, i=1,..., p.

EXAMPLE 3. Consider again the previous example. Then:
[Gender R {male (0.4), female (0.6)}] £ [Gender ~R {male (0.5), female (0.7)}] .

3. GALOIS CONNECTIONS

Let us start by recalling some notions, which will be used in the sequel.

DEFINITION 4
Let A be a set and P(A) the power set of A. A closure operator on A is a mapping h!:!P(A)
Æ P(A) which is extensive, idempotent and isotone, that is:
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X Õ h(X) (extensivity)
h(X) = h (h (X)) (idempotence)
X ÕY fi h(X) Õ h(Y) (isotony)

A subset X of A is said to be closed if X = h(X).

DEFINITION 5
An anti-closure operator on a set A is a mapping h  : P(A) Æ  P(A) which is anti-
extensive, idempotent and isotone, that is:

h(X) Õ X (anti-extensivity)
h(X) = h (h (X)) (idempotence)
X ÕY fi h(X) Õ h(Y) (isotony)

A subset X of A is said to be open if X = h(X).

DEFINITION 6
Let (A, £1 ) and (B, £2 ) be two ordered sets.

A Galois connection is a pair (f,g), where f is a mapping f: AÆB, g is a mapping g:!BÆA,
such that f and g are antitone, and h=gof and h’=fog are extensive. Formally,

x £1 x1 fi f(x) ≥2 f(x1)
y £2 y1 fi g(y) ≥1 g(y1)
for any x Œ A, y Œ B, x £1 g(f(x)) and y £2 f(g(y))

h and h’ are closure operators.

DEFINITION 7
A lattice is a partial ordered set A such that for any two elements there is a join (least
upper bound) and a meet (greatest lower bound) in A. A lattice is said to be complete if
any subset of A has a join and a meet in A.
As an example, the order relation introduced in Definition 3, allows defining a lattice on
the set of probabilistic objects. In this lattice, the join and meet of a pair of objects
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DEFINITION 8 [Leclerc, 1994]
Let (P, £) be an ordered set. An element x Œ P is said to be join-irreducible if it is not
the join of a finite part of P not containing it. Dually, we define a meet-irreducible
element.

The notion of irreducible elements may be used to simplify the lattice graphical
representation [Duquenne, 1987; Godin et al, 1995].

Now, let S be the set of all probabilistic objects, with 0 £ pj £ 1.
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THEOREM 1
The couple of mappings

f : S Æ P(E)
    s  Æ extE s = { w Œ E : s(w) £ s }
g : P(E) Æ S
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i(wh), h=1,...,k}, j=1,…,ki, i=1,..., p

form a Galois connection between (P(E) , Õ) and (S , ≥).

Proof. Due to the duality on S, we have to prove that, as mappings between (P(E) , Õ)
and (S , £), f and g are isotone, h=gof is anti-extensive and h’=fog is extensive.

a) f is isotone
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and suppose that  s1 £ s2, i.e., pj
i £ qj

i , j=1,…,ki, i=1,..., p. Let w Œ f(s1), i.e., s(w) £ s1.

Then we also have s(w) £ s2, that is, w Œ f(s2). So, f(s1) Õ f(s2), that is, f is isotone.

b) g is isotone
Let A Õ B Õ E, with no loss of generality we may write A = {w1,…,wk}, B!=!{w1,!…,!wk!,
wk+1 , …, wm}.
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Then, tj
i £ zj

i, j=1,…,ki, i=1,..., p, and so g(A) £ g(B). That is, g is isotone.

c) h is anti-extensive
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Now, h(s) = g(f(s)) = { }̆̊̇ÍÎ
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d) h’ is extensive
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follows that wh Œ h’(A), " wh Œ A, that is, A Õ h’(A), h’ is extensive.

Then (f,g) is a Galois connection between (P(E) , Õ ) and (S, ≥). In other terms, g is
a so-called residuated mapping and f its associated residual mapping. It follows that h’ is a
closure operator and h an anticlosure operator [Leclerc, 1990].

EXAMPLE 4. Consider the following data array where four groups of people, w1, w2, w3
and w4 are described according to the distributions of variables Gender and Instruction:

Gender Instruction

w 1 Male (0.4), Fem.(0.6) Prim.(0.3), Sec.(0.4), Sup.(0.3)

w 2 Male (0.1), Fem.(0.9) Prim.(0.1), Sec.(0.2), Sup.(0.7)

w 3 Male (0.8), Fem.(0.2) Prim.(0.2), Sec.(0.3), Sup.(0.5)

w 4 Male (0.5), Fem.(0.5) Prim.(0.3), Sec.(0.2), Sup.(0.5)

Let A = {w1, w2}.
g(A)= { }[ ] { }[ ]Sup.(0.7)(0.4),Sec.,Prim.(0.3)nInstructio.(0.9)Fem(0.4), MaleGender ~Ÿ~

f(g(A)) = {w1, w2}.

THEOREM 2
The couple of mappings
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Proof.  We must prove that f and g  are antitone and that h=gof  and  h’=fog are
extensive.

a) f is antitone
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Then we also have s(w) ≥ s1, that is, w Œ f(s1). So, f(s2) Õ f(s1), that is, f is antitone.

b) g is antitone
Let A Õ B Õ E, with no loss of generality we may write A = {w1, …, wk}, B!=!{w1,!…,!wk ,
wk+1 , …, wm}.
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c) h is extensive

Let { }̆̊̇ÍÎ
È= Ÿ

=
)(,),(~ 11

1

i
k

i
k

ii
i

p

i ii
qyqyYs L ,

f(s) = {w1, … , wk} Œ P(E) such that s(wh) ≥ s , h = 1,…, k,

where { }̆̊̇ÍÎ
È= Ÿ

=
))((,)),((~)()( 11

1
h

i
k

i
kh

ii
hi

p

i
h

ii
pypyYs wwww L ,

and pj
i(wh) ≥ qj

i, j=1,…,ki, i=1,..., p, h=1,…,k.

Now, h(s) = g(f(s)) = { }̆̊̇ÍÎ
ÈŸ

=
)(,),(~ 11

1

i
k

i
k

ii
i

p

i ii
tytyY L ,  with tj

i = Min{pj
i(wh), h=1,...,k},

j=1,…,ki, i=1,..., p. It follows that tj
i ≥ qj

i , j=1,…,ki, i=1,..., p, i.e., s £ h(s).

d) h’ is extensive

Let AŒ P(E), A = {w1, …, wk}. g(A) = { }̆̊̇ÍÎ
È= Ÿ

=
)(,),(~ 11

1

i
k

i
k

ii
i

p

i ii
tytyYs L , with

tj
i = Min {pj

i(wh), h=1,...,k}, j=1,…,ki, i=1,..., p.

h’(A) = f(g(A)) = {w ŒE : s(w) ≥ s }

{ })(,),([ 11
1

i
k

i
k

ii
i

p

i
ii

tmtyYs LpŸ
=

=

{ })(,),([ 11
1

i
k

i
k

ii
i

p

i
ii

tmtyYs LpŸ
=

=

{ })(,),([ 11
1

i
k

i
k

ii
i

p

i
ii

tmtyYs LpŸ
=

=



STRUCTURING PROBABILISTIC DATA BY GALOIS LATTICES 85
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i(wh), h=1,...,k}, j=1,…,ki, i=1,...,p, it
follows that wh Œ h’(A), "wh Œ A, that is, A Õ h’(A), h’ is extensive.

Then (f,g) is a Galois connection between (P(E) , Õ ) and (S, £). It follows that h and
h’ are closure operators.

EXAMPLE 5. Consider again the data array of Example 4, and let B = {w2, w3}.
g(B) { }[ ] { }[ ])5.0.(Sup),2.0.(Sec),1.0.(imPrnInstructio)2.0.(Fem),1.0(MaleGender ~Ÿ~=

f(g(B)) = {w2, w3, w4}.

In fact, Theorems 1 and 2 constitute a special case of a general framework, which
could be summarised as follows: Let P(E) be the finite power set of a set E and Q a set of
descriptions, ordered by generalisation and such that each element xŒE has a description
d(x)ŒQ. If two mappings f and g are defined, where f associates to each element qŒQ the
set of elements of E that verify the description q, and g associates to each element AŒP(E)
the least general description verified by all elements of A, then (f,g) constitutes a Galois
connection between Q and P(E).

Theorem 1 is using as description space the upper cover of frequency or probability
distributions, while Theorem 2 is using as description space the lower cover of frequency
or probability distributions. In fact, we are using Choquet capacity or credibility type
distributions as description spaces [Diday, Emilion, 1997].

DEFINITION 9
A probabilistic object sŒ S is said to be complete is h(s) = s.

PROPOSITION 1 [Brito, 1991]
Let s be a complete probabilistic object and A its extent, A = f(s). Then, g(A) = s and A =
h’(A). Conversely, if A = h’(A) and s = g(A), then s is complete and A = f(s).

DEFINITION 10
Given a set of observed objects, E, a concept is defined as a pair (A , s), where A Õ E, s!Œ
S, s is complete and A = f(s).

EXAMPLE 6. Consider again Examples 4 and 5. Then (A, g(A)) is a concept whereas (B,
g(B)) is not.

Since we have proved in Theorems 1 and 2 that we obtain Galois connections between two
lattices, we get as an immediate consequence Theorems 3 and 4 below, that we state
without proof [Birkhoff, 1967; Barbut, Monjardet, 1970].

THEOREM 3
Let (f1,g1) be the Galois connection in theorem 1.
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Then the set of concepts, ordered by (A1 , s1) £ (A2 , s2) ¤ A1 Õ A2 is a lattice where meet
and join are given by:

inf ( (A1, s1), (A2 , s2)) = (A1 « A2, (g1 o f1) (s1 « s2))

sup ((A1, s1), (A2, s2)) = ((f1o g1) (A1 » A2), s1 » s2)

In the sequel, this lattice will be called “union lattice”.

THEOREM 4
Let (f2,g2) be the Galois connection in theorem 2.
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Then the set of concepts, ordered by (A1, s1) £ (A2, s2) ¤ A1 Õ A2 is a lattice where meet
and join are given by:

inf ((A1, s1), (A2, s2)) = (A1 « A2, (g2 o f2) (s1 « s2))
sup ((A1, s1), (A2, s2)) = ((f2 o g2) (A1 » A2), s1 » s2)

In the sequel, this lattice will be called “intersection lattice”.

In this section we have proved that Galois lattices can be defined on probabilistic
data. In the next section, we give an algorithm which allows obtaining the elements of these
Galois lattices. In Section 5 we apply the algorithm to obtain Galois lattices on real data.

4. ALGORITHMS

When considering binary data or discrete data, Ganter's algorithm [Ganter, Wille, 1999]
searches for closed sets by exploring the closure space in a certain order. When
considering large databases, we have chosen this algorithm, because it requires little
memory size at each step, by considering only one concept when looking for the next one.
We have implemented this algorithm using the Galois connections defined above on
probabilistic data. To reduce computational complexity, we look for the concepts exploring
the set of individuals. In fact, when treating concepts, it is equivalent to search for closed
sets on individuals or on variables.
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The description of Ganter’s algorithm can be found for instance in [Kuznetsov,
Obiedkov, 2002], where its performance is compared with other algorithms.

Theorems 3 and 4 tell us that the set of concepts constitutes a Galois lattice.
Ganter’s algorithm provides all concepts which can be found in the data set, by
enumerating vectors of individuals. Implicitly, with vectors of individuals and Galois
connections, we can obtain all concepts (A,s) of the Galois Lattice [Guénoche, 1990]. So,
by applying this algorithm directly on probabilistic data and using the Galois connections
defined in the previous section, we obtain all possible concepts and they form a Galois
lattice.

We now present an algorithm to construct the lattice. In fact, Ganter’s algorithm
enumerates the concepts, but it does not construct the lattice.

LATTICE CONSTRUCTION

The graphical representation of the Galois lattice, named Hasse diagram, is a graph where
the vertex set is the set of concepts and the edges represent the covering relation of the
quasi-order relation.

In a recent paper, Kuznetsov and Obiedkov [2002] compare the performance of
algorithms for generating concept lattices. They present several classical and new
algorithms and extend each classical algorithm adding a drawing diagram step.
Considering that:
- the performance of the algorithms depends on the type of the data,
- probabilistic data are more complex than the data considered in [Kuznetsov, Obiedkov,

2002],
- many of the algorithms are very complex to extend to probabilistic data,
- for large and dense datasets, the fastest algorithms are those proposed by [Ganter,

1999; Norris, 1978],

we choose to use Ganter’s algorithm conjointly with the following drawing diagram
algorithm.

We use the graph terminology to define our algorithm. A graph is a couple formed
by a set of vertices and a set of edges. In an oriented graph, the edges have a unique sense.
We define a path between two vertices by a list of vertices where two successive vertices
are joined with a directed edge. We denote by root of an oriented graph a vertex where no
path ends.

Our aim is to design an oriented graph with the supremum of the Galois Lattice as
root. A directed edge will refer to the inclusion order: if we have two objects such that
s1 £ s2, s2 will be the origin (also designed by predecessor) of the directed edge of these
two vertices and s1 the destination (also designed by successor).

A naïve approach is for each object s to look for the included objects si by testing
for each one if there is no object sj such that si £ sj £ s. The complexity is o( 3N ) where
N=card(E).

In order to optimise this search for large data sets, we propose an algorithm which is
an extension of the one proposed by [Sedgewick, 1999] in the context of graph
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exploration. Here, this extension allows us to add a node and explore the graph to discover
links simultaneously with a minimum number of explorations.

The general principle is the following: we have two lists: C=(c1,…,ck) is the concept
list obtained by Ganter’s algorithm and R=(r1,…, rl) the root list obtained during this
algorithm. At the end of the algorithm, this root list contains only one element: the
supremum of the lattice. For each concept ci, and for each root rj, we look if rj is included
in ci by exploring the existing graph from rj and ci is added to the root list.

Formally, we have:
The concept list contains all concepts of the Galois lattice
The root list is empty
For each concept C in the concept list
  For each root R in the root list
    Set a colour depending on C
    explore(C, R, colour)
    add C in the root list

The principle of the exploration part is the following: if rj is included in ci, we create
the node ci and an edge between ci and rj and mark all the vertices on a path from rj as
linked, else we explore the successors of rj and recursively look for inclusion. During the
process, we stop the exploration if we find a linked vertex. We use an attribute colour to
assure that for ci, we are going to explore each node of the existing graph only once. Then,
we look in this graph for included concepts only if they are not yet coloured by ci.

Formally, we have:
if R is not coloured by colour
  if R Ã C
    add the node C to the graph and an edge between C and R
    Colour R with colour
    Suppress R from root list
    for each recursively successors S of R
      Colour S with colour
      if an edge between C and S exists then suppress it
  else if R À C
    for each successor S of R
      explore(C, S, colour)

When we insert a new concept in the graph, we explore all nodes of the existing
graph only once. So the complexity of this algorithm is o(N_).

Finally, we obtain a graph, where the vertices are the concepts, which are described
both by intent and extent, and the edges represent the partial order relation between
concepts (see Definition 3). With these specifications, it is quite easy to represent
graphically the Galois lattice.

The search of all concepts of the Galois lattice and its construction with this
algorithm will be applied in the next section.

5. APPLICATIONS

In this section, we first compare the lattices obtained by the algorithms described above to
those obtained by other authors, on the basis of published examples. On the compared
examples with small data sets, we present the concepts extracted from both the intersection
Galois lattice and the union Galois lattice. Hence we can see that the two lattices are
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complementary and present quite the same information, considering two different points of
view. We further apply these algorithms to two real data sets; the first of these applications
illustrates the construction of the intersection Galois lattice, and the second application
illustrates the construction of the union Galois lattice. In all examples, the mapping f,
which defines the extent of a probabilistic object, is not explicitly indicated, it is given by
the relation R used in the complete objects that constitute the intent of the obtained
concepts.

5.1 COMPARISON WITH OTHER WORKS

The algorithms described in Section 4 have been applied to data sets used by Burusco and
Fuentes-Gonzales [1998] and Herrmann, Hölldobler and Strohmaier [1996].

5.1.1 Burusco and Fuentes-Gonzales data
The data set presented in (Burusco and Fuentes-Gonzales, 1998) describes three illnesses
Illness1, Illness2 and Illness3 on the basis of the presence of three symptoms Symptom1,
Symptom2 and Symptom3; the data matrix registers the L-fuzzy relation as follows:

Illness1 Illness2 Illness3

Symptom1 0.6 0.6 0

Symptom2 0.9 0.5 0.3

Symptom3 1 0.2 0.7

Figure 1 represents the union-lattice obtained on this data set.

Figure 1. Union concept lattice of Burusco and Fuentes-Gonzales data.
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The corresponding concepts are:
({Illness2}, a1) with
a1 = [Symptoms £ {Symptom1(0.60), Symptom2(0.50), Symptom3(0.20)}]
({Illness3}, a2) with
a2 = [Symptom1 £ {Symptom1(0.00), Symptom2(0.30), Symptom3(0.70)}]
({Illness2, Illness3}, a3) with
a3 = [Symptoms £ {Symptom1(0.60), Symptom2(0.50), Symptom3(0.70)}]
({Illness1, Illness2, Illness3}, a4) with
a4 = [Symptoms £ {Symptom1(0.60), Symptom2(0.90), Symptom3(1.00)}]

Figure 2 represents the intersection-lattice obtained on this data set. The corresponding
concepts are:
({Illness1}, b1) with
b1 = [Symptoms ≥ {Symptom1(0.60), Symptom2(0.90), Symptom3(1.00)}]
({Illness1, Illness2}, b2) with
b2 = [Symptoms ≥ {Symptom1(0.60), Symptom2(0.50), Symptom3(0.20)}]
({Illness1, Illness3}, b3) with
b3 = [Symptoms ≥ {Symptom1(0.00), Symptom2(0.30), Symptom3(0.70)}]
({Illness1, Illness2, Illness3}, b4) with
b4 = [Symptoms ≥ {Symptom1(0.00), Symptom2(0.30), Symptom3(0.20)}]

Figure 2. Intersection concept lattice of Burusco and Fuentes-Gonzales data.

In both cases, our algorithm produces much less concepts than those proposed by
Burusco's method. It should be noticed that in our case, the membership of individuals
(here, the illnesses) to the concepts is deterministic, whereas in the authors' concepts it is
fuzzy. Moreover, in our case, the values associated to categories are either minimum (for
the intersection lattice) or maximum (for the union lattice) values observed in the
corresponding extent set, and not fuzzy relations. As a consequence, the concepts cannot
be directly compared, nevertheless there seems to be no incongruence between both
results. For instance, the interpretation of concept 8 in [Burusco, Fuentes-Gonzales, 1998,
p. 113] can be found by looking at concepts ({Illness1, Illness2}, b2) and ({Illness1,
Illness3}, b3) in our intersection lattice.
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5.1.2 Herrmann, Hölldobler and Strohmaier data
The data set presented in (Herrmann, Hölldobler and Strohmaier, 1996) describes a group
of persons in a hypertension patient record database, on the basis of three fuzzy variables,
Tinnitus, Headache and Blood Pressure:

TINNITUS HEADACHE BLOOD PRESSURE

Name Often Seldom Often Seldom High Normal Low

Ann 0.8 0.2 0.9 0.1 0.8 0.2 0.0

Bob 1.0 0.0 0.0 1.0 0.6 0.4 0.0

Chris 1.0 0.0 0.1 0.9 0.9 0.1 0.0

Doug 0.3 0.7 0.7 0.3 0.0 0.6 0.4

Eve 0.6 0.4 0.7 0.3 0.0 0.8 0.2

By applying our algorithm to this data set, we obtain, in both the union and the
intersection lattice, more concepts that the authors: 32 concepts in the union concept lattice
and 25 concepts in the intersection concept lattice, while the authors obtain only 7. Taking
into account the differences in the concepts' description language, the authors' concepts
may be found among ours. For instance, concept:

c : {{Ann, Bob, Chris}{Tinnitus (often), Blood Pressure (high)}, a=0.85, s=0.11}
roughly corresponds to the following concept of the union concept lattice:

({Ann, Bob, Chris}, a7 u) with
a7u = [Tinnitus £ {often(1.0), seldom(0.2)}] ^

[Headache £ {often(0.9), seldom(1.0)}] ^
[Blood Pressure £ {high(0.9), normal (0.4), low(0.0)}]

and to the following concept of the intersection concept lattice:
({Ann, Bob, Chris}, a7 i) with
a7 i = [Tinnitus ≥ {often(0.8), seldom(0.0)}] ^

[Headache ≥{often(0.0), seldom(0.1)}] ^
[Blood Pressure ≥ {high(0.6), normal (0.1), low(0.0)}]

It should be noticed, however, that whereas Herrmann, Hölldobler and Strohmaier
consider mean values for each category in the concepts description, we consider either
minimum (for the intersection lattice) or maximum (for the union lattice) values observed
in the corresponding extent set.

5.2 CULTURAL SURVEY DATA

This data set has been obtained from a survey, made in 5 portuguese towns in 1997, on
attendance of cultural and leisure activities. The 1409 individuals in the survey database
have been aggregated according to professional activity, leading to a data set of 11
probabilistic objects describing the distribution of each variable in each professional
group. Among the large number of variables in the base, we have chosen: instruction, with
three categories - primary, secondary or superior - and football matches’ attendance with
three categories - yes, no, no answer - leading to the following data table:
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GROUP INSTRUCTION FOOTBALL

1 Students Pr(0.08), Sec(0.88),
Sup(0.03)

yes (0.51), no(0.49),
no_ans (0.01)

2 Retired Pr(0.92), Sec(0.05),
Sup(0.03)

yes (0.12), no(0.88)

3 Employed Pr(0.59), Sec(0.39),
Sup(0.02)

yes (0.22), no(0.78)

4 Small independents Pr(0.62), Sec(0.31),
Sup(0.07)

yes (0.32), no(0.67),
no_ans (0.01)

5 Housewives Pr(0.93), Sec(0.07) yes (0.10), no(0.90)

6 Intermediate executives Pr(0.17), Sec(0.50),
Sup(0.33)

yes (0.26), no(0.73),
no_ans (0.01)

7 Industrial workers Pr(0.73), Sec(0.27),
Sup(0.01)

yes (0.40), no(0.60)

8 Intellectual/Scientific
Executives

Sec(0.01), Sup(0.99) yes (0.22), no(0.78)

9 Other Pr(0.72), Sec(0.229),
Sup(0.07)

yes (0.19), no(0.80),
no_ans (0.01)

10 Manager /
Independent Profession

Sec(0.02), Sup(0.98) yes (0.28), no(0.70),
no_ans (0.02)

11 Businessmen Pr(0.08), Sec(0.33),
Sup(0.58)

yes (0.42), no(0.58)

Applying the algorithms described in Section 4 to this data set, using the Galois
connection obtained in Theorem 2 and considering the result of Theorem 4, we have
obtained an intersection concept lattice on the 11 professional groups. Figure 3 represents
this lattice, where each node is represented by the extent of the corresponding concept.
Figure 4 represents the irreducible elements of the lattice (see Definition 8).

As discussed in the Introduction, a Galois lattice may be considered as a clustering,
allowing us to identify concepts which are “interesting” for the user.

From the irreducible lattice on the Cultural Survey data, we have focused on two
groups of concepts:
- the general concepts, located at the top of the lattice;
- the specific concepts, located at the bottom of the lattice.

We find that some categories are described by exactly the same values for all
concepts. These categories are: 'primary' for the variable instruction and 'no answer' for the
variable football. For all concepts, we have: instruction_primary≥0.08 and
football_no_answer≥0. This means that all groups contain the same minimum of
individuals with a primary instruction level and that the number of no answer for going to
football matches has always a minimum of 0. These categories will not be taken into
account in the following comparisons.
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Figure 3. Intersection concept lattice of the culture data.
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Figure 4. Irreducibles of the intersection concept lattice of the culture data.

The general concepts considered are:
c69 = ({1, 2, 3, 4, 5, 6, 7, 9, 10, 11}, a69) with
a69 = [Instruction ≥ {secondary(0.02), superior(0.01)}] ^

[Football ≥ {no(0.49) yes(0.10)}]

c73 = ({1, 2, 3, 4, 6, 7, 8, 9, 10, 11}, a73) with
a73 = [Instruction ≥ {secondary(0.01), superior(0.01)}] ^

[Football ≥ {no(0.49), yes(0.12)}]

c74 = ({2, 3, 4, 5, 6, 7, 8, 9, 10, 11}, a74) with
a74 =[Instruction ≥ {secondary(0.01), superior(0.01)}] ^

[Football ≥ {no(0.58), yes(0.10)}]

By comparison, we can notice that:
- All concepts contain the same minima of individuals with a superior level of instruction.
- Concept c69 doesn't contain the individuals '8- Intellectual/Scientific Executives' and

has a minimum of a slightly higher level of secondary instruction.
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-  Concept c73 doesn't contain the individuals '5- Housewives' and has a minimum
slightly higher of individuals going to football matches.

- Concept c74 doesn't contain the individuals '1-Students', and has a minimum slightly
higher of individuals not going to football matches.

Three trends are emerging: one group with a higher value for secondary level of
instruction, one group with more people going to football matches and another with more
people not going to matches.

The specific concepts considered are:
c7 = ({3, 6, 11}, a7) with
a7 = [Instruction ≥ {secondary(0.33), superior(0.02)}] ^

[Football ≥ {no(0.58), yes(0.22)}

c14 =({1, 7, 11}, a14) with
a14 =[Instruction ≥ {secondary(0.26), superior(0.01)} ^

[Football ≥ {no(0.49), yes(0.40)}]

c22 =({6, 9, 11}, a22) with
a22 =[Instruction ≥ {secondary(0.22), superior(0.07)}] ^

[Football ≥ {no(0.58), yes(0.19)}]

c43 =({7, 10, 11}, a43) with
a43 =[Instruction ≥ {secondary(0.02), superior(0.01)] ^

[Football ≥ {no(0.58), yes(0.28)}]

By comparison, we can notice that:
- The individual '11-Businessmen' is in the extent of all concepts. He is also in the

minimum concept of the lattice. This group of individuals is particular as all minimum
values are greater than the ones in other groups. This could be interpreted as the
responses given by this group are quite homogeneous.

- The concept c7 gathers '3-Employed' and '6-Intermediate executive'. It distinguishes
itself by a high minimum of secondary instruction level.

- The concept c14 gathers '1-Student' and '7-Ind.Worker'. It distinguishes itself by a
relatively high minimum of secondary instruction level and a high minimum of
football_yes.

- The concept c22 gathers '6-Intermediate executive' and '9-Other'. It distinguishes itself
by a high minimum of football_yes and a slightly high level of instruction_superior.

- The concept c43 gathers '7-Ind.Worker' and '10-Manager / Indep. Professional'. It
distinguishes itself by a low minimum of instruction_secondary.

- The trends are that, on the one hand we have a high secondary instruction level and, on
the other hand, a high number of individuals going to football matches. In between we
find some groups between these two trends.

Conclusion: General trends and specific trends agree. On the one hand, we have
groups with a secondary level of instruction, while on the other hand, we have groups who
go to football matches. The irreducible lattice clearly represents this separation. However,
we can notice that the order on the categories of the variable ‘Instruction’ has been lost.
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5.3 EMPLOYMENT DATA

This data set has been obtained from a survey, made in Portugal in 1998 by the National
Statistical Institute, on the employment situation. The 22660 individuals in the survey
database have been aggregated according to sex and age group, leading to a data set of 12
probabilistic objects describing the distribution of each variable in the corresponding
group. The following variables have been chosen:
- Marital status: Single (S), Married (M), Widow (W), Divorced(D);
- Education: Without education (No), Primary (Pr), Secondary (Sec), Superior (Un);
- Economic activity (CEA): agriculture, cattle, hunt, forestry & fishing  (Ag), construction

(Cr), other services (Ot), real estate, renting & business activities (Re), wholesale and
retail trade, repairs (Wh), public administration (Pub), manufacturing (Man), transport,
storage & communication (Tr), hotels & restaurants (Hot), electricity, gas & water (El),
financial intermediation (Fi), mining & quarrying (Min);

- Profession: skilled agriculture and fishery workers (Sk), elementary occupations (El),
plant and machine operators and assemblers (Pla), craft and related trade workers (Cr),
professionals (Pr), clerks (Cl), service, shop & market sales workers (Serv), technicians
and associate professionals (Tech), legislators, senior officers and managers (Lge),
Armed forces (Arm);

- Searching employment: yes/no;
- Full/part time.
- The probabilistic data table is presented in the annex.

Applying the algorithms described in Section 4 to this data set, using the Galois
connection obtained in Theorem 1 and considering the result of Theorem 3, we have
obtained a union concept lattice on the 12 groups. Figure 5 represents this lattice, where
each node is represented by the extent of the corresponding concept. Figure 6 represents
the irreducible elements of this lattice. In both figures, the infimum of the lattice, whose
extent is empty, is not represented.

We have chosen to detail the interpretation of concepts c1, c3, and c19 as specific
concepts, and c18 and c30 as more general concepts.

c1 = ({Men 15-24, Men 25-34, Men 35-44, Men 55-64, Women 15-24, Women!25-34,
Women 35-44, Women 45-54}, a1) with
a1 = [Status £ {widow(0.06), divorced(0.14), married(0.95), single(0.71)}] ^

[CEA £ {agriculture, cattle, hunt, forestry & fishing(0.26), construction(0.26), other
services(0.34), real estate, renting & business activities(0.06), wholesale
and retail trade, repairs(0.18), public administration(0.09),
manufacturing(0.38), transport, storage & communication(0.06), hotels &
r e s t a u r a n t s (0.10), electricity, gas & water(0.02), financial
intermediation(0.03), mining & quarrying(0.01)}] ^
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Figure 5. Union concept lattice of the employment data
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Figure 6. Irreducibles of the union concept lattice of the employment data
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[Profession £  {skilled agriculture and fishery workers(0.23), elementary
occupa t ions (0.22), plant and machine operators and
assemblers(0.13), craft and related trade workers(0.42),
professionals(0.11), clerks(0.14), service, shop & market sales
workers(0.28), technicians and associate professionals(0.10),
legislators, senior officers and managers(0.14), armed
forces(0.02)}] ^

[Education £  {without education(0.21), primary(0.65), secondary(0.42),
superior(0.16)}] ^

[Searching    £    {search_no(1.00), search_yes(0.04)] ^
[Part/Full      £    {part time(0.18), full time(0.98)}]

This class does not comprehend elderly people (more than 65 years old). This
accounts for the lower value assigned to the category of “widow”. Also, this class has a
low value of category “part-time employed”, “agriculture, cattle, hunt, forestry &
fishing” as economic activity and “skilled agriculture and fishery workers” as
profession.
c3 = ({Men 15-24, Men!35-44, Men + 65, Women 15-24, Women 25-34, Women 35-44,
Women 45-54}, a3) with
a3 = [Status £ {widow(0.10), divorced(0.14), married(0.90), single(0.71)}] ^

[CEA £ {agriculture, cattle, hunt, forestry & fishing (0.69), construction(0.26), other
services(0.34), real estate, renting & business activities(0.06), wholesale
and retail trade, repairs(0.18), public administration(0 . 0 9 ) ,
manufacturing(0.38), transport, storage & communication(0.06), hotels &
restaurants(0.10), electricity, gas  &  water (0.02), financial
intermediation(0.02), mining & quarrying(0.01)}] ^

[Profession £  {skilled agriculture and fishery workers(0.65), elementary
occupa t ions (0.22), plant and machine operators and
assemblers(0.12), craft and related trade workers(0.42),
professionals(0.11), clerks(0.14), service, shop & market sales
workers(0.28), technicians and associate professionals(0.10),
legislators, senior officers and managers(0.10), armed
forces(0.02)}] ^

[Education £  {without education(0.42), primary(0.64), secondary(0.42),
superior(0.16)}] ^

[Searching     £   {search_no(1.00), search_yes(0.04)}] ^
[Part/Full       £   {part time(0.43), full time(0.98)}

In this class we find a high value for category “without education”, and a quite high
value of category “married”. Otherwise the economic activity in “construction” has a
rather low value, as has profession “legislators, senior officers and managers”.

c19 = ({Men 15-24, Men 35-44, Men 45-54, Women 15-24, Women 25-34, Women 35-
44}, a19) with
a19 = [Status £ {widow£0.01 divorced£0.14 married£0.94 single£0.71}] ^

 [CEA £ {agriculture, cattle, hunt, forestry & fishing (0.10), construction(0.26),
other services(0.34), real estate, renting & business activities(0.06),
wholesale and retail trade, repairs(0.18), public administration(0.09),
manufacturing(0.38), transport, storage & communication(0.08), hotels &
r e s t a u r a n t s (0.10), electricity, gas & water(0.02), financial
intermediation(0.02), mining & quarrying(0.01)}] ^
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[Profession £  {skilled agriculture and fishery workers(0.08), elementary
occupa t ions (0.19), plant and machine operators and
assemblers(0.14), craft and related trade workers(0.42),
professionals(0.11), clerks(0.14), service, shop & market sales
workers(0.28), technicians and associate professionals(0.10),
legislators, senior officers and managers(0.13) ,a rmed
forces(0.02)}] ^

[Education £  {without education(0.05), primary(0.69), secondary(0.42),
superior(0.16)}] ^

[Searching     £   {search_no(0.99), search_yes(0.04)}] ^
[Part/Full       £   {part time(0.11), full time(0.98)}]

In this class we do not find groups over 54 years old (for men) and 44 years old
(for women). For this reason, the categories “without education” and “widow” present a
very low value, and “primary education” a higher value. Also, we observe a low value for
“part time worker” and “searching for a job”, as well as for profession “skilled
agriculture and fishery workers” and economic activity in “agriculture, cattle, hunt,
forestry & fishing ”.

c18 = ({Men 15-24, Men 25-34, Men 35-44, Men 55-64, Men + 65, Women 15-24,
Women 25-34, Women!45-54, Women 35-44, Women 55-64, Women!+65}, a18) with
a18 =[Status £ {widow(0.33), divorced(0.14), married(0.95), single(0.71)}] ^

[CEA £ {agriculture, cattle, hunt, forestry & fishing (0.70), construction(0.26), other
services(0.34), real estate, renting & business activities(0.06), wholesale
and retail trade, repairs(0.18), public administration(0.09),
manufacturing(0.38), transport, storage & communication(0.06), hotels &
r e s t a u r a n t s (0.10), electricity, gas & water(0.02), financial
intermediation(0.03), mining & quarrying(0.01)}] ^

[Profession £  {skilled agriculture and fishery workers(0.67), elementary
occupa t ions (0.28), plant and machine operators and
assemblers(0.13), craft and related trade workers(0.42),
professionals(0.11), clerks(0.14), service, shop & market sales
workers(0.28), technicians and associate professionals(0.10),
legislators, senior officers and managers(0.14), armed
forces(0.02)}] ^

[Education £  {without education(0.70), primary(0.65), secondary(0.42),
superior(0.16)}] ^

[Searching     £   {search_no(1.00), search_yes(0.04)}] ^
[Part/Full       £   {part time(0.61), full time(0.98)}]

In this class we observe a quite high value for status “widow” and for category
“without education”, perhaps associated to old people. Also, a high value for “part time
worker” and for “agriculture, cattle, hunt, forestry & fishing” as economic activity.

c30 = ({Men 15-24, Men 25-34, Men 35-44, Men 45-54, Men 55-64, Men + 65, Women
15-24, Women 25-34, Women 35-44, Women +65}, a30) with
a30 =[Status £ {widow(0.33), divorced(0.14), married(0.95), single(0.71)}] ^

[CEA £ {agriculture, cattle, hunt, forestry & fishing (0.70), construction(0.26), other
services(0.34), real estate, renting & business activities(0.06), wholesale
and retail trade, repairs(0.18), public administration(0.09),
manufacturing(0.38), transport, storage & communication(0.08), hotels &
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r e s t a u r a n t s (0.10), electricity, gas & water(0.02), financial
intermediation (0.03), mining & quarrying (0.01)}] ^

[Profession £  {skilled agriculture and fishery workers(0.67), elementary
occupa t ions (0.19), plant and machine operators and
assemblers(0.14), craft and related trade workers(0.42),
professionals(0.11), clerks(0.14), service, shop & market sales
workers(0.28), technicians and associate professionals(0.10),
legislators, senior officers and managers(0.14), armed
forces(0.02)}] ^

[Education £  {without education(0.70), primary(0.69), secondary(0.42),
superior£(0.16)}] ^

[Searching     £   {search_no(1.00), search_yes(0.04)}] ^
[Part/Full       £   {part time(0.61), full time(0.98)}]

In this class we observe a quite high value for status “widow” and for category
“without education”, perhaps associated to old people. Also, a high value for “part time
worker”.

The difference between c18 and c30 lies in the fact that c18 does not comprehend
men 45-54 (included in c30), and c30 does not comprehend women 45-64, (included in
c18). This fact accounts for the slight differences in the values assigned to some of the
professionals and economic activity categories.

CONCLUSION

Galois lattices constitute a very interesting tool to discover relations between objects and
variables. In this paper we propose an extension of lattice theory in order to deal directly
with probabilistic data. We have defined two kinds of Galois connections on probabilistic
data and we have showed how we can obtain Galois lattices on these data. Two
applications with real data are presented to illustrate the theoretical results and the
proposed algorithm. As a next step it would be interesting to try to take into account the
order between categories when it exists.

The main advantage of the proposed method, comparing to other approaches, is that
it allows organising probabilistic data in a concept lattice directly, without any prior
transformation. Such prior transformations of the data not only often lead to a lost of
information, but they also result in an artificial increase of the size of the data table to be
processed.

The limitation of the method lays in the size of the resulting lattice. In fact, the
number of nodes increases exponentially with the number of objects and variables. The
lattice has to be reduced by keeping automatically relevant information. Many authors are
interested by this problem, and define lattice properties, but even with these criteria we have
a huge quantity of information, difficult to interpret.
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