
International Conference on Machine Learning 1998, ICML 98 1

Structural machine learning with Galois lattice and Graphs.

Michel Liquiere Jean Sallantin

Lirmm, Lirmm,

161 rue ADA 161 rue ADA

34392 Montpellier cedex 5 34392 Montpellier cedex 5

France France

Liquiere@lirmm.fr Sallantin@lirmm.fr

Abstract

This paper defines a formal approach to learning
from examples described by labelled graphs. We
propose a formal model based upon lattice theory
and in particular with the use of Galois lattice.
We enlarge the domain of formal concept
analysis, by the use of the Galois lattice model
with structural description of examples and
concepts. Our implementation, called "Graal"
(for GRAph And Learning) constructs a Galois
lattice for any description language provided that
the two operations of comparison and
generalization are determined for that language.
We prove that these operations exist in the case
of labelled graphs.

1. INTRODUCTION

The Galois lattice is the foundation of a set of conceptual
classification methods. This approach defined by Barbut
and Monjardet (Barbut, 1970), was popularized by (Wille,
1982), (Wille, 1992), who used this structure as the
kernel of formal concept analysis.

Wille proposed considering each node of a Galois lattice
as a formal concept. Each node has two parts: the
extension (a subset of the examples) and the intention (the
description). In addition, the lattice gives the relations
(generalization/specialization) between concepts. An
advantages of this formalization is a good description of
the concept space. Additionallly, there are many methods
for the construction of such lattice (Step search (Chein,
1969) depth first search (Bordat, 1986), incremental
construction (Ganter, 1988), (Missikoff, 1989)).

In the context of machine learning, the automatic
construction of such a hierarchy can be viewed as an
unsupervised conceptual classification method as seen in
(Michalski, 1982) because we give a general method and
look for all the concepts that can be extracted from the
examples.

In this way, research space is not limited by the use of
parameters although this method cannot be used in all
practical applications. Its advantage is that we can study
precisely the impact of biais and heuristic.

An important limitation of the method using the Galois
lattice is the classical propositional description of the
examples (Wille, 1982), (Ganascia, 1993), (Mephu
Nguifo, 1994), (Carpineto, 1994) . There is a great deal of
research on the extension of the description language:
valued attributes (Wille, 1989), (Carpineto, 1994), term
(Daniel-Vatonne, 1993), graph (Liquiere, 1989), (Godin,
1995).

In the case of structural description, the actual methods
use a two step mechanism.

1) the goal of the first step is to find structures
repeated in the set of descriptions of the examples.

2) the second step uses the structures found and
changes the description of the example. Each structural
description is converted in a list of binary attributes (one
attribute by structure). An attribute is true if the
associated structure appears in the example.

• in our work (Liquiere, 1989), (Liquiere, 1994),
we used labelled graphs, and the goal of our first step was
to find repeated paths and trees in the description of the
examples.

• in the work of (Daniel-Vatonne, 1993), the
description language is based upon rooted tree (term) and
the first step research path.

• Godin, Mineau (Godin, 1995) uses a similar
method with conceptual graphs.

The first step research repeated triplet graphs (graph like
<Object>-relation-<Object>). This limits the complexity
of the research. The second step finds sets of triplet
graphs viewed in the same set of examples, but the link
between the nodes are overlooked. So the structural
descriptions of the examples are not exploited.

In this paper we give a general one step mechanism,
without changing the description of the examples. This
mechanism uses a generalization operation and we specify
this operation for different classes of description
languages.

mailto:Liquiere@lirmm.fr
mailto:Sallantin@lirmm.fr

2

This paper is organized as follows.

A generalized method of learning from examples is
presented in section 2.

In section 3, we specify this model for description with
labelled graphs.

Then, we study the complexity of the operation in the
case of descriptions with labelled graphs, in section 4

Finally, in section 5 we give an example of the results
found.

2. THE GALOIS LATTICE AS A
CORRESPONDANCE BETWEEN TWO
LATTICES

Using lattice theory, the formal framework is based on the
use of two lattices as in (Ganascia, 1993). This model,
uses lattice results given in (Birkoff, 1967) and (Barbut,
1970). This approach was used in machine learning
(Ganascia, 1993), but only in propositional description.

Ganascia writes: “this framework is adequate to represent
classical top-down induction systems .. but it is too
restricted to formalize first order logic languages …”

 In fact, this approach can be used for structured
description as well. Thus there is an unifying method for
many types of description language.

2.1 Two isomorph lattices

This formalization is based on the use of two lattices: the
description lattice D and the instance lattice I.

• The instance lattice I, corresponds to the set of
parts of the training set ξ and is ordered by the inclusion
relationship which is noted ⊃ where A ⊃ B means that A
is included in B. Given two elements a and b, the least
upper bound - and the greatest lower bound- corresponds
to the classical union -i.e ∪ − and intersection -i.e ∩ −.

• The description lattice D contains all the
possible descriptions ordered by a ³ relation. This
relation ³ corresponds to the generalization relationship.

³ : D × D → {true, false} for two descriptions
d1, d2∈D, d1 ³ d2 means that d1 is more general than

d2. Let us just consider that it structures the description

space with a partial ordering.

If ³ is a pre-order (antysymmetry property not fulfilled),
we can define the equivalence relation. ≡ : D × D
→ {true, false}, d1 ≡ d2 iff (d1 ≥ d2) and (d2 ≥ d1)

Because D is a lattice, two elements of D have a
least upper bound. We note d1∧d2 this bound. This is

the least general generalisation of d1 and d2.

We have ∧: D × D → D, if d³d1 and d³d2 then d³

d1∧d2.

This is a generalization operator (Plotkin, 1971), as
defined in (Muggleton, 1994). For a set of description
S,”A minimal generalization G of S is a generalisation of

S such that S is not a generalisation of G, and there is no
generalization G' of G such that G is a generalization de
G’ “.

2.2 Galois lattice.

Let us begin by building two correspondances between the
lattice I and D.

First there is a mapping d between set ξ and the description
space D: d: ξ→D, for ei ∈ ξ, d(ei)∈ D is the description of

the example ei.

For example:

• with a propositional description, d(ei) is a list of

attributes.

• in case of structural description, d(ei) can be a graph.

Now, from this simple description mapping, we can build
two correspondences between I and D.

The correspondance α: D -> I associates each
description d of D the set of all instances of the training set
ξ which are covered by d.

α(d)={ei∈ξ| d³d(ei)}

Properties 1

1) d³d' <=> α(d) ⊇ α(d')

2) α(d1∧d2) = α(d1) ∪ α(d2)

Proof in appendix

The correspondance β: I -> D is equivalent to
making the least general generalization for the description
of all the elements of H ⊆ ξ. This means that:

β(H)= ∧e∈Η d(e)

Theorem 1 The correspondance α et β defines a Galois
connection between I and D.

Proof in appendix, see also (Ganascia, 1993).

Now we have a generalization of the classical definition of
concept.

For a set of example ξ, for a description space D, for an
instance space I, a concept C is a pair [Ext × Int] with:

• Int ∈D | Int=β(Ext)= ∧e∈Extd(e)

• Ext∈Ι | Ext=α(Int)={ei∈ξ| Int ≥ d(ei)}.

All the concepts are ordered by the superconcept-
subconcept (generalisation-specialisation) relation ³c.

[E1, I1] ³c [E2, I2] iff E1 ⊇ E2 and I1 ³ I2

With ³c, the set of all concepts has the mathematical

structure of a complete lattice and is called the Galois
Lattice of the context (ξ , d, D).

3

3. DEFINITION OF THE ORDER (³) AND
GENERALIZATION OPERATION (∧)
FOR LABELLED GRAPHS

In section 2, we proposed a formal model. In this model
we defined two basic operations ³ and ∧. If these
operations verify different properties (order, generalization
operator), then the concept space is a Galois lattice.

Our goal is to use this model for structural description,
more precisely for graphs descriptions.

In order to demonstrate this we must first define the
operations ³ , ∧ and prove that the description space D is
a lattice.

3.1 ³ Definition for labelled graphs

In this paragraph, we define an pre-order between graphs
using the homomorphism relation. We will show (3.2)
that for a class of graphs (core graphs), this pre-order is an
order.

Notations

We note a graph G:(V,E,L) .

The vertex set of G is denoted by V(G).

The edge set of G is denoted by E(G). Each edge is a
ordered pair (v1,v2), v1,v2∈V(G).

The Label set of G is denoted by L(G). For a vertex v we
note L(v) the label of this vertex.

In the following paragraphs, we give properties for
directed graphs, these properties are true as well for
undirected graphs.

Definition labelled graph homomorphism

A homomorphism ƒ:G1->G2 is a mapping

ƒ:V(G1) -> V(G2) for which (f(v1), f(v2)) ∈ E(G2)
whenever (v1,v2) ∈ E(G1) and L(v1)=L(ƒ(v1))

a

b b

G1 2

a

Figure 1: Homomorphism example G1 -> G2

This is not the classical subgraph isomorphism relation.

Operation ³: D × D → {True, False}

For two labelled graphs G1:(V1,E1,L1) and
G2:(V2,E2,L2), we note G1³G2 iff there is a
homomorphism from G1 into G2.

Operation ≡ : D × D → {True, False}

Two labelled graphs G1 and G2 are homomorphically
equivalent, denoted by G1≡G2, if both G1³G2 and
G2³G1.

a

b b

a

G1 G2

Figure 2: G1≡G2

Operation :D × D → {True, False}: d1d2 iff not (d1
≡ d2)

3.2 D for labelled graphs

The homomorphism relation is only a pre-order because
the antisymmetry property is not fulfilled (Chein, 1992).
An order relation between element of D is necessary in
order to use results of section 2.

The same problem occurs in Inductive Logic
Programming (Muggleton, 1994)

“Because two clauses equivalent under θ-subsumption are
also logically equivalent (implication), ILP systems
should generate at most one clause of each equivalence
class. To get around this problem, Plotkin defined
equivalence classes of clauses, and showed that there is a
unique representative of each clause, which he named 'the
reduced clause' ”.

In the case of labelled graphs, we can use the same
strategy. For this purpose, we use the class of core
labelled graphs (Zhou, 1991).

Definition retract

A strict subgraph G' of G is a retract of G ((Zhou, 1991),
if there is a homomorphism called a retraction r: G -> G'
such that r(v)=v for each v∈V(G').

Definition core

A graph is called a core (or minimal graph (Fellner,
1982), or irredundant graph (Cogis, 1995)) if it has no
proper retracts.

Property 2

For the equivalence relation defined above (≡). An
equivalence class of labelled graphs contains one and only
one core labelled graph, which is the (unique) graph with
the smallest vertex number (Mugnier, 1994).

Notation R:

We can construct a core graph from a graph as proved by
Mugnier (Mugnier, 1994). This operation is called
reduction (notation R).

Let g be a labelled graph, R(g) is a core labelled graph
such that g≡R(g).

4

a

b b

G (G)

Figure 3: Example G and R(G)

We need an order relation in order to use labelled graph.
For core labelled graph, we have this order. So, we define
D as a set of core labelled graphs. All labelled graph
description of the example can be converted to an
equivalent core labelled graph, using the R operation.

Theorem 2 The restriction of ³ to the set of core labelled
graphs is a lattice (Zhou, 1991), (Poole, 1993), (Chein,
1994)

For this lattice, the ∨ operation is the disjoint sum of the
graph, g1∨g2= g1+g2 (Chein, 1994) (g1 with g2 form a

new graph).

The ∧ operation is more complex and is defined in the
following paragraph.

3.3 ∧ Definition for labelled graphs

The ∧ operation for graph is based on a following
classical Kronecker product operation × (Weichsel,
1962).

Definition × operation for graphs

For two graphs, the product G1 × G2 has the vertex set
V(G1) × V(G2) and the edges ((v1,v2), (v'1,v'2)), where
(v1,v'1) ∈E(G1) and (v2,v'2) ∈ E(G2).

This product operation can be determined for labelled
graphs.

Definition × operation for labelled graphs

For two labelled graphs G1:(V1,E1,L1) and

G2:(V2,E2,L2)

The product G(V,E,L) = G1 × G2 is defined by:

• L = L1 ∩ L2

• V ⊆ V1 × V2 ={ v | v=[v1,v2] with L(v1) =

L(v2) and L(v)=L(v1)}

• U= {(v=[v1,v2],v'=[v'1,v'2]) | (v1,v'1)∈V1 and

(v2,v'2)∈V2}(edge oriented)

a

b b

G1 G2

c

a

 b

c

a

b b

c

G1 x G2

d

Figure 4: Labelled graphs product

Lemma 1

if G1,G2,G are labelled graphs then

a) G1 × G2 ³ G1 and G1 × G2 ³ G2

b) if G ³ G1 and G ³ G2, then G ³ G1 × G2

c) G1 ³ G1 × G2 if and only if G1 ³ G2.

Proof: from the definitions and (Zhou, 1991)

Remark: The product operation can be easely improved
when the label set is a hierarchy or a lattice.

Definition operation ∧: D × D →D

for G1, G2 two core labelled graphs, G1∧G2= R(G1×
G2)

 a

b

R(G1 x G2)

Figure 5: G1∧G2, with G1 and G2 defined in Figure 4

3.4 Galois lattice for graphs

Now, We have all the operations for the construction of a
Galois lattice when example are described by graphs.

Each node of this Galois lattice is a pair [Ext × Int] with

Ext is a subset of ξ and Int is a core graph. This core
graph is the generalization of the description of the
examples in Ext.

5

Theorem 3

With:

 ξ a set of examples,

D a description lattice for core labelled graphs,

d a description mapping, d: ξ->D,

I the instance lattice, Π(ξ) set power of ξ,

³ an order relation D×D→ {True,false},

∧ the generalization operation D×D→D for graphs.

We can define α,β.

for g ∈ D, α(g)={ei∈ξ | g³d(ei)}

for H ∈ Ι, β(H)= ∧e∈Η d(e)

The correspondence α et β defines a Galois connection
between I and D.

Proof : see lemma 1 and proof for the Theorem 1.

Using this Galois connection, we can define a Galois
lattice (see 2.2). We name this lattice T.

We have defined a formal model for labelled
graphs. This model uses , ³, and ∧ operations in the case
of labelled graphs. In the next section, we study the
complexity of these operations.

4. THE COMPLEXITY OF GALOIS
LATTICE CONSTRUCTION

The complexity in the construction of a Galois lattice in
our model, is a function of:
1) the number of nodes in the lattice,
2) the time and space complexity of the operations (∧,R),
3) the algorithm used for Galois lattice construction (see
5.1)

4.1 the size of the Galois lattice

Property 3: The number of nodes for T can be 2|ξ |.

proof: It is well known that, Galois lattice can be
isomorphic to the power set of ξ (Bordat, 1986) which is
the maximal complexity for the size of T.
A similar situation occurs in our model. The proof comes
from the fact that each binary attribute description can be
converted to a structural description.
 For example the list [Big] [Blue] [Expensive] can be
structurally described as:

Object

Big ExpensiveBlue

Figure 6: graph representation for an list of attributes.

Using this description, the ∧ operation for the tree
representation is equivalent to ∩ for the attribute
representation.

4.2 Complexity of the ∧ operation

In (Muggleton, 1994) S. Muggleton and L. de Raedt
wrote:
"… ILP systems can get around the problem of equivalent
clauses when working with reduced clauses only".
This affirmation is true but the problem of the complexity
of the R operator has not been taken into account.

• for two labelled graphs, G1=(V1,E1,L1) and

G2=(V2,E2,L2), the complexity of the product is: O(n1x

n2) where n1=|V1| et n2=|V2| .

For a set of graph P,

G=∧Gi∈PGi=R(×Gi∈PGi).
the size of ×Gi∈PGi can be exponential.

Property 4

the operation R is co-Np-complete (Mugnier, 1994). So,
in general application, this operation cannot be used.

However we do have an interesting result:

Property 5 (Mugnier, 1994)
If, for a class of labelled graphs, the homomorphism is
polynomial, then the reduction operation is polynomial.

The homomorphism for the following class of labelled
graphs is polynomial.

• trees (Mugnier, 1994),

• locally injective graph (Liquiere, 1994) (see definition
below)

• 1/2 locally injective graph (see definition below) (see
langage theory, automata (Aho, 1986))

Property 6

For a set of path or tree P, G=∧Gi∈PGi is polynomial

(time and size) (Horvath, 1995)

4.3 Study for a class of Graphs.

We study the complexity of the operation (∧,R) for the

class of locally injective graphs (LIG) (Liquiere, 1994).

Notation

For a labelled graph G=(V,E,L), we note N+(v)= {v' |

(v,v')∈V} and N-(v)= {v'| (v',v)∈V}.

Definition LIG graph

6

For a labelled graph G=(V,E,L), G is locally injective if

for each vertex v∈V, ∀ v1,v2∈N+(v), v1v2 ⇒ L(v1)

L(v2) and ∀ v1,v2∈N-(v), v1v2 ⇒ L(v1) L(v2).

a

b

b

c

a

b

G1 G2

Figure 7. LIG Property

In figure 7, G1 is an LIG graph. G2 is not an LIG graph

because, for the c node, there is two edges c -> b. G2 is a

1/2 locally injective graph (see the next definition).

Definition 1/2 locally injective graph

A 1/2 locally injective graph is a oriented graph where

∀ v1,v2∈N+(v) (resp. N-(c)) , v1v2 ⇒ L(v1) L(v2).

Property 7: ³ is polynomial for locally injective graph
(Liquiere, 1994) and for 1/2 locally injective graph (Aho,
1986).

Property 8: For G1, G2 two LIG, G= G1× G2 is a LIG.

Partial proof: come from the definition of × .

Property 9: A connected LIG is an irredundant graph
(Cogis, 1995)

Property 10: For G a LIG, we note CC(G) the set of
maximal connected subgraph of G. Then R(G)=
{ci∈CC(G)| ∀i,j,ij there is no projection from ci to cj }

Proof: property 9 => Property 10

These properties are interesting because for LIG we can
construct the R, ³, × and ∧ operations, for two graphs,
with a polynomial complexity.

Property 11: For a set of 1/2 locally injective graphs P,

G=∧Gi∈PGi is size exponential so time exponential

(results for deterministic automata (Aho, 1986)).

Table 1: Complexity for different class of language

Language ≥, ≡, R Size for n graphs

Path
(Horvath,1995)

P Polynomial

Tree
(Horvath,1995)

P Polynomial

LIG
(Liquiere,1994)

P ?

1/2LIG
(Aho,1986)

P Exponential

Graph
(Garey,1987)

NPC Exponential

With P: polynomial, NPC: NP complete.

5. GRAAL IMPLEMENTATION

Traditionally machine learning offers mechanisms for a
class of language. The idea is, if an algorithm is good for
a general class of language, it would also work well for a
less general class included in the first one. It is true, but
in many cases, the general mechanism does not use all the
interesting properties of the restricted language. So the
complexity of the operation is not optimal for this
language.

A second drawback of this approach, comes from the need
for a translation process. Each description in the restricted
language has to be converted into a more general one. For
example a list of attributes is converted into a graph
(Liquiere, 1994).

In our new method, Graal (for GRAph And Learning), we
have implemented a general mechanism where description
language and operations ∧,³ are parameters. Our tool is
generic but it cannot yet be used in practical cases when
important sets of examples are described by large graphs.
It in fact, an algorithm for formal analysis.

5.1 An utilization of a classical Algorithm for
Galois Lattice construction.

We give an algorithm which can be used on any
description language with operations ² and ∧.
This algorithm is based on a classical method (Chein,
1969). Another algorithm can be used (Bordat, 1986)
which gives the set of nodes of the Galois lattice and also
the set of edges.

We note [ei x di] the concept numbered i of Tk.

7

T<-Ø /* concept set empty */
/* description of the examples */

T1<-{[{i}× d(ei)]} and i∈[1, |ξ|]

k<-1

While |Tk| > 1 do
Tk+1<-Ø

 For each i<j and i,j∈[1, |Tk|] (so we have: [ei x di] [ej
x dj]) /* we create a new concept from two concepts

already found in the previous step*/
dij<- di∧dj /* description for the new concept */
if dij Ø then

/* test if there is a concept with the same description */

if dij ∈ Tk+1 then
eij <- eij∪ej

else
 Tk+1<- Tk+1 ∪ [ei∪ej × dij]

/* test if the description is a generalisation */
if dij ≡ di then

 Tk <- Tk - [ei × di]

if dij ≡ dj then

Tk <- Tk - [ej × dj]

End-if
 end-for
T<- T ∪ Tk

k<-k+1
end-while
T<- T ∪ Tk

Graal is written in Java language and uses object
programming properties. We have defined an abstract
class (interface) so a user can add his own description
language if he implements the interface.

The complexity of Galois Lattice construction with the

Bordat’s algorithm (Bordat, 1986) is less than O(n3*p)
where n is the number of objects and p the size of T.

5.2 An experimental example.

We present an example where each object is described by
a locally injective labelled graph.

We use a classical example based on arch definition.

E0

circle

 rectangle

 rectangle
right

on

E1

rectangle

 rectangle

 circle
right

on

E2

square

square

rectangle
on

on

E3

 rectangle

on

circle

E4

square

rectangle

on

 circle
right

Figure 8: set of examples

The lattice is:

Figure 9: the structure of the Galois lattice for our set of
examples.

For each node of the lattice there is a pair consisting of a
graph and a set of examples. Additionally, if node1..
nodek are linked to nodep then nodep is the least
common superconcept (generalisation) of node1... nodek.

In figure 9 we observe the subset of examples (extension).
In out tool, by double cliking on a node we obtain the
following descriptions.

8

circle

rectangle

ectangle

righton

x [0,1]

rectangle

ircle right

on

 [1,4]

rectangle n square

x [2,4]

x [0,1,2]

rectangle

on rectangle

on
ircle

rectangle

on

 [0,1,3]

rectangle

circle

righton

x [0,1,4]

rectangle

n

 [0,1,2,4]x [0,1,2,3]

rectangle

on rectangle

circle

on

x [0,1,3,4]

rectangle

on

x [0,1,2,3,4]

Figure 10: the graph and subset for each node.

This lattice gives all the classification for the examples
without duplication. All concepts are differents
(description and extension), two differents descriptions
necessarily have distinct extensions.

Remark: For this example, the unconnected nodes like on
can be interpreted as: there is something on something.

6. CONCLUSION

Our work enlarges and expands the domain of formal
concept analysis by demonstrating that the Galois lattice
can be used for structural description.

Coming from graph theory, our work provides operations
and shows that they can be used to build a generalization
operator for labelled graphs.

In addition, the LIG graphs we use are an excellent
compromise between complexity and expressiveness.

Our method, written in Java, offers a general tools for
formal structural concept analysis.

We are now working on the following improvements:

• To prove that LIG is PAC learnable or not,

• a survey of classical Galois lattice results in
case of structural concept description,

• an implementation of heuristic in Graal, to
make Graal a tool for practical application,

• an improvement of the approaches with
categorical operations.

References

F.Aho, R.Sethi, J.Ullman, "Compilers, Principles,
techniques and tools", Addison wesley 1986.

M.Barbut, B.Monjardet, 1970, " Ordre et classification:
algébre et combinatoire". Hachette, Paris 70.

Birkhoof, 1967, "Lattice theory", Third edition, American
Mathematical Society, Providence , RI 1967.

Bordat, JP 1986. “Calcul pratique du treillis de Galois
d'une correspondance.” Math.Sci.humaines, 24°année,
96:31-7.

C.Carpineto,G.Romano,"A Lattice Conceptual Clustering
System and its Application to Browsing Retrieval",
Machine Learning 24,95-122 (1996).

M.Chein,"Algorithme de recherche de sous-matrice
premiere d'une matrice", bull.math.R.S.Roumanie,13,
1969.

 M.Chein, M.L Mugnier, "Conceptual Graphs:
fundamental notions", RIA Volume 6- n°4, 1992,p 365-
40

M.Chein, M.L.Mugnier "Conceptual Graphs are also
Graphs", Research report.

M.C Daniel-Vatonne, C de la Higuera “Les termes: un
modéle algébrique de représentation et dee structuration
des données “, Mathématique, informatique et sciences
humaines, 122, 1993, p41-63.

T.Dietterich "unsupervised concept learning and
discovery". In Readings in machine learning. pages 263-
266. Morgan Kaufmann 1990.

W.D. Fellner, “On minimal Graphs”, Theoret. Comp. sci.
17 (1982) 103-110.

J.G Ganascia, "TDIS: an Algebraic Formalization",
pp1008-1013, IJCAI 1993.

B. Ganter, “Composition and Decomposition in Formal
Concept Analysis”, Classification and related Methods of
Data analysis, p 561-566, North-Holland, Springer, NY.

R.Godin,G.Mineau,R.Missaoui,H.Mili, “ Méthode de
classification conceptuelle basées sur les treillis de Galois
et application “, RIA,Vol 9 n°2, 1995.

M.R. Garey, D.S. Johnson, “Computers and
Intractability: a guide to the Theory of NP-
Completeness”, W.H Freeman, San Francisco (USA).

P.Hell, “Retract in graphs.”, Springer Verlag Lecture
notes in mathematics 406 (1974) 291-301.

9

O.Cogis, O.Guilnaldo, "A linear descriptor for conceptual
graphs and a class for polynomial isomorphism test " pp
263-277, LNAI 954, Third conf on Concept.Struc, ICCS
1995.

T.Horvath, G.Turan, "Learning logic programs with
structured background knowledge", Inductive Logic
Programming conference, p53-76, Leuven, 1995.

M.Liquiere,”INNE:(Induction in Network”, EWSL,
Montpellier, 1989.

M.Liquiere, “ Graphs and structural similarities”, in New
approaches in classification and data analysis. Springer
Verlag. Studies in classification, data analysis. 1994.

M.Liquiere, O.Brissac, “A class of conceptual graphs
with polynomial iso-projection”, In proceedings of the
international Conference on Conceptual Structures, ICCS,
1994.

E. Mephu Nguifo, "Galois lattice: A framework for
concept learning - design, evaluation and refinement", pp
461-467, 6° Tool with AI, New Orleans TAI 1994.

Michalski,R.S, Stepp.R “ Learning from observation:
conceptual clustering .” In machine Learning: An artificial
Approach (vol 1). Tioga publishing.

M.Missikoff, "An algorithm for insertion into a Lattice;
Application to Type Classification", Proc of th 3rd Int.
Conf FODO, Paris, Juin 1989, Springer Verlag, LNCS
367.

 S.Muggleton, L de Raedt, "Inductive Logic
Programming: Theory and Methods", J.Logic
Programming 1994:19, 20:629-679.

M.L Mugnier, "On Generalisation / Specialisation for
Conceptual Graphs". J.expt.theor.Artif.intell, 6, 1994.

G.D. Plotkin, “ a further note on inductive
generalization”, in: B.Meltzer and D.Michie (eds),
Machine intelligence, vol 6, Edinburgh University press,
Edinburgh, 1971, 101-124.

 J.Poole,J.A.Campbell," A novel algorithm for matching
conceptual and related graphs", ICCS 93, pp 293-307.

J.F.Sowa,"Conceptual structures: Information processing
in mind and machine", Addison-wesley Pub., Reading,
460p, 1984.

P.M. Weichsel, “The kronecker product of graphs.”
Proc.Am.Math.Soc. 13 (1962) 47-52.

R.Wille “ Restructuring Lattice Theory: an Approach
Based on Hierarchies of concepts”, in Ordered sets,
I.Rival (ed), Reidel, p 445-470, 1982.

R.Wille.”Knowledge acquisition by methods of formal
concept analysis”, in E.Diday, editor, Data analysis,
Learning Symbolic and numeric knowledge, pages 365-
380.1989.

R.Wille “Concept lattices and conceptual knowledge
systems.” In Computers Math.application, volume
23,pages 493-515.1992.

H.Zhou, “Multiplicativity. Part I Variations,
Multiplicative Graphs and Digraphs.” Journal of graph
Theory, Vol 15,N°5,469-488(1991).

Appendix

Properties 1 proof
Proof 1)
 g³g' <=> α(g) ⊇ α(g')

=> property of the order relation ³
<= α definition

α(g1∧g2) = α(g1) ∪ α(g2)

Proof 2)
α(g)={e∈ξ/ g³d(e)}
We have g1∧g2³g1 and g1∧g2³g2 so α(g1∧ g2)

⊇ α(g1) ∪ α(g2)

We know that g1∧g2 , ∀g ,g³g1 and g³g2 then g³

g1∧g2.so α(g) ⊇ α(g1∧g2) ⊇ α(g1) ∪ α(g2)

if α(g1∧g2) ⊃ α(g1) ∪ α(g2) then for g'/ α(g')=α(g1)

∪ α(g2) we have

g1∧g2³g' and g'³g1 then g'³g2 so we don't have

the property of g1∧g2.
then α(g1∧ g2) = α(g1) ∪ α(g2)

Theorem 1 proof
α and β is a Galois connection iff :
a) ∀ I1 and I2 ∈ I, I1⊆I2 ⇒ β(I1) ² β(I2)

b) ∀ g1,g2∈D, g1³g2 ⇒ α(g1) ⊇ α(g2)

and for h= α ° β and h'=β ° α
c) ∀ H ∈ I, H ⊆ h(H)
d) ∀ g ∈ D, g ³ h'(g) (remark classicaly we note
generalisation ² so we have a more classical definition.

Proof a) We have g1∧g2 ³ g1 then

β(I1)=∧e∈Ε1 d(e)= g and I1⊆Ι2 β(I2)= (β(I1))

∧ (β(I2 - I1) so β(I2)³ β(I1)

Proof b) We have g1 ³ g2 and g2 ³ g3 ⇒ g1 ³ g3
because ³ is an order relation α(g2)={e∈ξ/ g2³d(e)}

we have g1³g2 then g1³ d(e) with e∈α(g2) so α(g1)

⊇ α(g2)

Proof c) We have g1 ³ g ⇒ g1∧ g2 ³ g

β(H)=∧e∈Η d(e), α(β(H))={e∈ξ / β(H)³d(e)}

But ∀e∈Η, we have β(H)³d(e) because β({e}∪ Κ)³d(e)
property of ∧.

Proof d) We have, g³g1 and g³g2⇒ g³g1∧g2 so

∀ g ∈ D, h'(g)= β(α(g)), α(g)={e∈ξ/ g³d(e)},

 g ³∧e∈α(g)d(e) because g³d(e) with e∈α(g).

