
Logical Bayesian Networks and Their Relation

to Other Probabilistic Logical Models

Daan Fierens, Hendrik Blockeel, Maurice Bruynooghe, and Jan Ramon

Department of Computer Science, Katholieke Universiteit Leuven, Celestijnenlaan
200A, 3001 Leuven, Belgium

{daanf, hendrik, maurice, janr}@cs.kuleuven.ac.be

Abstract. Logical Bayesian Networks (LBNs) have recently been in-
troduced as another language for knowledge based model construction
of Bayesian networks, besides existing languages such as Probabilistic
Relational Models (PRMs) and Bayesian Logic Programs (BLPs). The
original description of LBNs introduces them as a variant of BLPs and
discusses the differences with BLPs but still leaves room for a deeper
discussion of the relationship between LBNs and BLPs. Also the rela-
tionship to PRMs was not treated in much detail.

In this paper, we first give a more compact and clear definition of
LBNs. Next, we describe in more detail how PRMs and BLPs relate to
LBNs. Like this we not only see what the advantages and disadvantages
of LBNs are with respect to PRMs and BLPs, we also gain more insight
into the relationships between PRMs and BLPs.

Keywords: Probabilistic-logical models, Bayesian networks, knowl-
edge representation, Bayesian Logic Programs, Probabilistic Relational
Models.

1 Introduction

Probabilistic logical models are models combining aspects of probability theory
with aspects of Logic Programming, first-order logic, or relational languages.
In recent years a variety of such models has been introduced in the literature
(see the overview by Kersting and De Raedt [26]). An important class of such
models are those based on the principle of Knowledge Based Model Construction
(KBMC) [2]. The idea of KBMC is that a general probabilistic logical knowledge
base can be used to generate a specific propositional probabilistic model (when
given a specific problem). We focus on the case where the propositional model
is a Bayesian network [32]. The most developed and best known models of this
kind are Probabilistic Relational Models by Getoor et al. [14] and Bayesian Logic
Programs by Kersting and De Raedt [23, 24].

We recently introduced Logical Bayesian Networks (LBNs) as yet another
model for knowledge based model construction of Bayesian networks [12]. In
the original description, we introduced LBNs as a variant of BLPs. In designing
LBNs, focus was specifically on introducing all necessary language components

S. Kramer and B. Pfahringer (Eds.): ILP 2005, LNAI 3625, pp. 121–135, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

122 D. Fierens et al.

to make knowledge representation with LBNs as simple as possible. First, LBNs
cleanly separate deterministic, logical knowledge and probabilistic knowledge.
Second, LBNs have different language components to determine different parts
of a Bayesian network (the nodes in the graph, the directed edges and the con-
ditional probability distributions).

In this paper, we first give a new, more compact and clear but essentially
equivalent definition of LBNs. Next, we compare LBNs with PRMs, which was
done only very briefly in [12]. Then we compare LBNs to BLPs. We approach
this comparison differently than in [12] by explicitly using LBNs as a reference
point and go more into detail. Such a comparison not only teaches us more about
LBNs, but also about the mutual relations between PRMs and BLPs.

For several probabilistic logical models techniques for learning from data have
been developed. At recent ILP conferences a substantial number of papers (and
invited lectures) have been presented on this topic (e.g. [24, 22, 37, 11]). Our
paper complements this work in that we do not discuss learning directly, but
focus on the knowledge representation used by the different learning systems.

We proceed as follows. In Section 2 we review LBNs, give a new, more com-
pact definition of LBNs and discuss the methodology behind their design. In
Section 3 we compare LBNs with Probabilistic Relational Models and Bayesian
Logic Programs. In Section 4 we conclude. We assume familiarity with the basic
concepts of Bayesian networks [32] and Logic Programming [29].

2 Logical Bayesian Networks

We review Logical Bayesian Networks (LBNs) [12] by means of an example.
Then we formally define the syntax and declarative semantics of LBNs. Finally,
we discuss the methodology behind the design of LBNs.

2.1 Logical Bayesian Networks by Example

Consider the following running example (based on the ‘university’-example by
Getoor et al. [14]).

There are students and courses. We know which students take which
courses. Each student has an IQ and a final ranking and each course has
a difficulty level. A student taking a certain course, gets a grade for that
course. The grade of a student for a course depends on the IQ of the
student and the difficulty of the course. The final ranking of a student
depends on his grades for all the courses he’s taking.

LBNs explicitly distinguish deterministic, logical knowledge and probabilistic
knowledge. To do so, LBNs use two disjoint sets of predicates: the set of logical
predicates and the set of probabilistic predicates (an idea introduced by Ngo
and Haddawy [33]). Logical predicates are used to specify logical background
knowledge describing the domain of discourse for the world considered (this is
supposed to be deterministic information). Probabilistic predicates in LBNs (like

LBNs and Their Relation to Other Probabilistic Logical Models 123

predicates in Bayesian Logic Programs [23]) have an associated range and are
used to represent random variables. Precisely, a random variable is represented
as a ground atom built from a probabilistic predicate and has a range equal to
the range of that predicate. Note that it is debatable whether ‘predicates’ is the
right name since these ‘predicates’ behave more like (typed) functors than like
ordinary predicates (similarly logical atoms behave more like terms than like
ordinary atoms). The main reason for calling them predicates is because like
this we stay in line with the terminology of Bayesian Logic Programs (since we
introduced LBNs as a variant of Bayesian Logic Programs we believe this to be
important).

LBNs have four components. The first one is a set of clauses called the random
variable declarations. The second one is a set of clauses called the conditional
dependency clauses. The third one is a set of logical Conditional Probability Dis-
tributions (logical CPDs), quantifying the conditional dependencies determined
by the conditional dependency clauses. The fourth one is a set of normal logic
clauses for the logical predicates used to specify deterministic background infor-
mation.

We now illustrate some of these notions on our running example. The logical
predicates are student/1, course/1 and takes/2, the probabilistic predicates are
iq/1, diff /1, ranking/1 and grade/2 (having as associated range for example
respectively {low,high}, {low,middle,high}, {A,B,C} and {A,B,C}). The random
variable declarations are:

random(iq(S)) <- student(S).
random(ranking(S)) <- student(S).
random(diff(C)) <- course(C).
random(grade(S,C)) <- takes(S,C).

Here random/1 is a special-purpose logical predicate. The first clause, for in-
stance, should be read as: “iq(S) is a random variable if S is a student”. The
conditional dependency clauses are:

ranking(S) | grade(S,C) <- takes(S,C).
grade(S,C) | iq(S), diff(C).

The first clause should be read as: “the ranking of S depends on the grade of S
for C if S takes C” and the second “the grade of S for C depends on the iq of
S and the difficulty of C”. We do not mention anything about the logical CPDs
here, leaving this issue for the next section.

The semantics of a LBN is that it defines a mapping from specific problems
(or worlds) to Bayesian networks. We use a normal logic program [29] to describe
the specific problem. For our running example this could look as follows (the
meaning is obvious):

student(john). student(pete).
course(ai). course(db).
takes(john,ai). takes(john,db). takes(pete,ai).

124 D. Fierens et al.

iq(pete)iq(john) diff(ai)diff(db)

grade(pete,ai)grade(john,db) grade(john,ai)

ranking(john) ranking(pete)

Fig. 1. The structure of the Bayesian network induced for our running example

The structure of the Bayesian network induced by the above LBN given this
logic program is shown in Figure 1.

2.2 Syntax of Logical Bayesian Networks

We now define the syntax of LBNs. In the next section we define the semantics.
Remember that LBNs use two disjoint sets of predicates: the logical predi-

cates and the probabilistic predicates having an associated range (we use these
sets implicitly in our definitions). We call an atom built from a probabilistic
predicate a probabilistic atom (it has the same range as the predicate). Simi-
larly we talk about logical atoms and logical literals. Remember that a random
variable is represented as a ground probabilistic atom.

Definition 1 (random variable declaration). A random variable declara-
tion is a range-restricted clause of the form

random(pAtom)← lit1, . . . , litn.

where n ≥ 0, pAtom is a probabilistic atom and lit1, . . . , litn are logical literals.

A clause is range-restricted iff all free variables that occur in the head also
occur in a positive literal in the body.

Definition 2 (conditional dependency clause). A conditional dependency
clause is a clause of the form

pAtom | pAtom1, . . . , pAtomn ← lit1, . . . , litm.

where n, m ≥ 0, pAtom, pAtom1, . . . , pAtomn are probabilistic atoms and lit1,
. . . , litm are logical literals.

As will become clear in the next section, these clauses need not be range-
restricted. If m = 0, we write the clause as pAtom | pAtom1, ..., pAtomn.

Definition 3 (logical CPD). A logical CPD for a probabilistic predicate p is a
function mapping a set of ground probabilistic atoms to a conditional probability
distribution on the range of p.

LBNs and Their Relation to Other Probabilistic Logical Models 125

When referring to the logical CPD for a ground probabilistic atom, we mean
the logical CPD for the predicate that atom is built from.

Logical CPDs in LBNs play the same role as combining rules in Bayesian
Logic Programs [23]. This means that a logical CPD not only quantifies a de-
pendency indicated by a single conditional dependency clause but also combines
the influences of multiple conditional dependency clauses with the same head.

In [12] we argued that one way to specify a logical CPD is as a logical decision
tree [5, 43]. Working this out in detail is beyond the scope of this paper.

Definition 4 (Logical Bayesian Network). A Logical Bayesian Network is
a tuple (V ,D,B,L) with V a set of random variable declarations, D a set of
conditional dependency clauses, B a set of normal logic clauses for the logical
predicates and L a set of logical CPDs, one for each probabilistic predicate.

The above definitions differ slightly from the original definitions in [12].
First, we use a slightly different notation for the random variable declarations
(using random/1). Second, we explicitly introduced in our definitions the nor-
mal clauses B describing deterministic background knowledge (in [12] this was
left implicit). Third, we tried to make the definition of logical CPD easier.

2.3 Declarative Semantics of Logical Bayesian Networks

The semantics of a LBN is that it defines a mapping from specific problems or
worlds (described by a normal logic program Pl defining the logical predicates) to
Bayesian networks. In other words, a LBN induces a ground Bayesian network.
We use the well-founded semantics [41]: every normal logic program Pl has a
unique well-founded model WFM(Pl) (for a program without negation, this
semantics is equivalent to the least Herbrand semantics).

Definition 5 (Induced Bayesian Network). The Bayesian Network induced
by a LBN (V ,D,B,L) given a normal logic program Pl is the Bayesian network
determined by the directed graph containing

– a node (random variable) V iff V is a ground probabilistic atom and random
(V) is true in WFM(Pl ∪ B ∪ V),

– an edge from a node Vparent in the graph to a node Vchild in the graph iff
there is a ground instance Vchild | body ← context. of a clause in D such
that Vparent ∈ body and context is true in WFM(Pl ∪ B),

and where the CPD for a node V is obtained by applying the logical CPD for V
in L to the set of ground probabilistic atoms that are parents of V in the graph.

Obviously the Bayesian network induced by a LBN given a logic program Pl

is only well-defined (i.e. specifies a unique probability measure) under certain
conditions1.
1 These conditions are similar to the conditions for a Bayesian Logic Program to be

well-defined, see [23].

126 D. Fierens et al.

Proposition 1. The Bayesian network induced by a LBN given Pl is well-
defined iff the directed graph induced is non-empty and acyclic, each node in
the graph has a finite number of ancestors and the CPD associated to each node
is conditioned only on the parents of that node.

2.4 Discussion

The language of LBNs was designed from the point of view of knowledge repre-
sentation. We explicitly tried to unravel the different types of knowledge that one
might want to represent and tried to reflect these different types of knowledge
in the different components of LBNs. This can be seen on two levels.

First, as LBNs define a mapping from specific worlds to Bayesian networks
and a Bayesian network is determined by its nodes, directed edges and CPDs,
LBNs have a first component to determine the nodes, a another one to project a
set of directed edges on these nodes and yet another one to determine the CPDs.

Second and more general, LBNs explicitly distinguish deterministic and pro-
babilistic knowledge (under the form of two sets of predicates). In Section 3.2 we
go into detail about the problems that arise when this distinction is not made.

LBNs have a number of advantages as compared to models offering a language
as ‘uniform’ as possible (i.e. with as few language components as possible, as was
for instance the original motivation behind Bayesian Logic Programs [27, 21]).
First, LBNs are very easy to understand. Second, as argued in [12] knowledge
representation with LBNs is very easy. Third, LBNs can be used to gain insight
into other probabilistic logical models by investigating how the language com-
ponents of these models map to the components of LBNs. We illustrate this last
point in the next section.

3 Comparing Logical Bayesian Networks to Other
Probabilistic Logical Models

We now compare LBNs to Probabilistic Relational Models (Section 3.1) and
Bayesian Logic Programs (Section 3.2). We also briefly review other related
models (Section 3.3).

3.1 Probabilistic Relational Models

Introduction. Probabilistic Relational Models (PRMs) [13, 15, 14, 16] are
based on the entity-relationship model and consist of three components. The
relational schema describes the set of classes and their attributes. The depen-
dency structure defines the set of parents that an attribute conditionally depends
on. Associated to the dependency structure is a quantitative component: a set
of aggregate functions and CPDs. The semantics of a PRM is that it induces
a Bayesian network on the so-called relational skeleton. The latter specifies all
the objects for all the classes and the values of the (primary and foreign) key-
attributes for all objects but leaves the values of all other attributes (‘descriptive’

LBNs and Their Relation to Other Probabilistic Logical Models 127

attributes) unspecified. The Bayesian network then specifies a probability dis-
tribution on these unspecified values. Algorithms for learning the dependency
structure and the CPDs have been developed [13, 15, 14, 16].

The graphical representation of the dependency structure for our running
example is shown in Figure 2 (it is similar to the example in [14]).

Student

Takes

Course

student course

iq

ranking

grade

difficulty

Fig. 2. The dependency structure of the PRM for our running example. Rectangles
represent classes, ovals represent descriptive attributes, lines represent relationships
through foreign keys and arrows represent conditional dependencies.

Discussion. LBNs can be seen as the counterpart of PRMs in a Logic Program-
ming based language. First, the distinction logical vs. probabilistic predicates in
LBNs corresponds to the distinction key-attributes vs. descriptive attributes in
PRMs (as key-attributes in PRMs are supposed to be deterministic and are used
to specify the objects in the domain of discourse and their relations)2. Second,
there is a one-to-one correspondence as to functionality between the components
of PRMs and those of LBNs. In LBNs we use the random variable declarations
to determine the nodes in the Bayesian network, where PRMs use the relational
schema. In LBNs we use the conditional dependency clauses to determine the
directed edges, where PRMs use dependency structure. In LBNs we use logi-
cal CPDs to determine the CPDs in the Bayesian network, where PRMs use a
combination of aggregate functions with ordinary CPDs.

Due to this correspondence between the components of LBNs and PRMs, it is
trivial to translate any PRM to an equivalent LBN. As a consequence, LBNs can
help to clarify the relationships between PRMs and probabilistic logical models
based on concepts of Logic Programming [23, 10, 38, 33, 42, 34, 35].

The main advantage of LBNs over PRMs is that LBNs are more flexible
and more expressive. This is the result from the transition from the entity-
relationship language of PRMs to the full Logic Programming language of LBNs.

LBNs are more flexible than PRMs. First, in LBNs the knowledge that de-
termines the random variables and the dependencies (i.e. the knowledge spec-
ified by the logical predicates) can be anything. In PRMs this knowledge can
only be knowledge about class-membership and relations (i.e. knowledge con-
tained in the relational skeleton). For example, suppose that we want to specify
that only undergraduate students get a final ranking. In LBNs we simply write
2 Extensions of PRMs exist where key-attributes do not have to be deterministic:

PRMs with ‘structural uncertainty’ [15, 14, 16].

128 D. Fierens et al.

random(ranking(S)) <- undergrad(S). In PRMs we can only specify this if
we adapt the relational schema of our running example by explicitly making a
new (sub)class for undergraduate students [14]. As the conditions we want to
specify get more complex, this process of adapting the relational schema of the
PRM becomes more and more cumbersome. In LBNs, this can be handled in a
much more uniform way. Second, in the same way it is easier to specify deter-
ministic background knowledge in LBNs than in PRMs (in LBNs we can simply
use the normal clauses in B).

LBNs are also more expressive than PRMs. PRMs do not have functor sym-
bols. Functor symbols are needed to elegantly represent temporal processes such
as Hidden Markov Models, or more generally, to represent recursive concepts.
For a further discussion we refer to the remarks on recursion and PRMs in [38].
Also, PRMs have no concept of negation. One application of negation is dealing
with exceptions, e.g. expressing that a student has a grade for a course if he was
taking that course unless he was absent on the exam. This cannot be expressed
directly in PRMs. We further discuss negation in Section 3.2.

3.2 Bayesian Logic Programs

Introduction. Bayesian Logic Programs (BLPs) combine Bayesian networks
with definite Logic Programming. BLPs were defined in [23, 24, 22, 25]. Recently,
a modified definition has been given in [10, 28]. We now discuss the original (and
probably best known) definition. We come to the new definition later on in this
section.

The core of a BLP is a set of Bayesian clauses. An example of such a clause is:

grade(S,C) | iq(S), diff(C), takes(S,C).

All predicates in BLPs are ‘Bayesian’ predicates having an associated range (like
probabilistic predicates in LBNs). Ground atoms represent random variables.
The semantics of a BLP is that it induces a Bayesian network. The random
variables are the ground atoms in the least Herbrand model LH of the set of
Bayesian clauses (treating these clauses as pure logical clauses). The ground
instances of the Bayesian clauses encode directed edges: there is an edge from
Vparent ∈ LH to Vchild ∈ LH iff Vparent is in the body of a ground instance with
Vchild in the head. As a quantitative component BLPs use CPDs and combining
rules. Algorithms for learning the Bayesian clauses and the CPDs have been
developed [24, 22, 25].

To model our running example with a BLP, we need the following Bayesian
clauses (student/1, course/1, takes/2, iq/1, ranking/1, diff /1 and grade/2 are
all Bayesian predicates):

iq(S) | student(S).
ranking(S) | student(S).
diff(C) | course(C).
grade(S,C) | takes(S,C).
grade(S,C) | iq(S), diff(C), takes(S,C).

LBNs and Their Relation to Other Probabilistic Logical Models 129

ranking(S) | grade(S,C), takes(S,C).
student(john). student(pete).
course(ai). course(db).
takes(john,ai). takes(john,db). takes(pete,ai).

The first four clauses are essentially needed to specify the random variables, the
fifth and the sixth clause to specify the dependencies3 and the Bayesian ground
facts to specify the domain of discourse.

Discussion. The most important difference between BLPs as defined above and
LBNs is that BLPs do not have standard logical predicates. In the philosophy
of BLPs logical predicates are a special kind of Bayesian predicates with range
{true,false}. This leads to a number of problems from a knowledge representation
point of view:

1. Compared to the Bayesian network induced by a LBN or PRM, the network
induced by a BLP typically contains more nodes and, as a consequence, has
CPDs that cannot be filled in meaningfully. The reason is that for instance
student(john). in the above BLP is not a logical fact stating that john is a
student, but a Bayesian fact stating that student(john) is a random variable
(with an associated CPD which we do not show here). The Bayesian network
induced by the above BLP is shown in Figure 3a (only partially because of
space restrictions). As a reference, Figure 3b shows the corresponding part
of the Bayesian network induced by a LBN (this is a fragment of Figure 1).
Note that network induced by the LBN does not contain e.g. student(john)
as a random variable.

a) student(john)

iq(john)

takes(john,ai)

grade(john,ai)

course(ai)

diff(ai)

b) iq(john) grade(john,ai) diff(ai)

Fig. 3. Part of the structure of the Bayesian network induced for the running example
a) by a BLP, b) by a LBN. The former typically contains more nodes than the latter.

In the network of Figure 3b (for LBNs), the node iq(john) needs a CPD
that is unconditioned, for example the following table:

p(iq(john))
low: 0.4 high: 0.6

3 In the clause grade(S,C) | iq(S), diff(C), takes(S,C)., the atom takes(S,C)

is needed to ensure that grade(S,C) is a random variable only if S takes C.

130 D. Fierens et al.

In the network of Figure 3a (for BLPs), the node iq(john) needs a CPD that
is conditioned on student(john), for example the following table:

student(john) p(iq(john)|student(john))
true low: 0.4 high: 0.6
false ?

The problem here is that no meaningful probability distribution can be filled
in for the case where student(john) is false (the question mark). The rea-
son is that in our example we wanted to model that something has an iq
only if it is a student. So if student(john) is false, the random variable
iq(john) is meaningless and should not even exist. The same problem ap-
pears when trying to specify a CPD for the dependence of diff(ai) conditioned
on course(ai) and also for grade(john, ai) conditioned on takes(john, ai).
To summarize, the Bayesian networks induced by BLPs contain CPDs that
cannot be filled in meaningfully while for LBNs (or PRMs) this problem
does not exist.
One might think that the approach taken by BLPs is ‘more general’ than the
approach taken by LBNs in that BLPs allow knowledge about the student/1
predicate to be non-deterministic and LBNs do not. This is wrong, however.
LBNs leave the user the freedom to decide for each application which pre-
dicates should be logical and which probabilistic. As such the user could
for instance decide to make student/1 a probabilistic predicate if needed,
accepting the above problems with meaningless entries in CPDs (essentially,
the same approach is taken by PRMs with structural uncertainty [15, 14,
16]). Our point, however, is that if student/1 is deterministic we can make
it a logical predicate in LBNs, avoiding the above problems. In BLPs, this is
not possible since it has been decided by design that all predicates are pro-
babilistic. In other words, in BLPs we cannot express the fact that certain
knowledge is deterministic, while in LBNs we can.
As a more practical side-remark, note that larger CPDs typically result in
slower inference [7]. As such, inference in networks induced by BLPs is ex-
pected to be slower than for LBNs or PRMs.

2. Since BLPs do not have logical atoms, no negated atoms are allowed. One
of the possible applications of negation is default reasoning (dealing with
exceptions [6]). For instance, suppose we want to express that a student has
a grade for a course if he was taking that course unless he was absent on
the exam (being absent is considered as an exception). In LBNs, we would
simply write:

random(grade(S,C)) <- takes(S,C), not(absent(S,C)).

In BLPs, however, we cannot express this since no negated atoms are allowed.
Note that the above form of negation, which cannot be captured by BLPs,
is non-monotonic negation [1]. Classical negation, in contrast, can be sim-
ulated by BLPs inside the CPDs [23]. For instance, to model that some-
one is male if and only if he is not female, we can write a Bayesian clause
male(X) | female(X) with the following CPD:

LBNs and Their Relation to Other Probabilistic Logical Models 131

female(X) p(male(X)|female(X))
true true: 0.0 false: 1.0
false true: 1.0 false: 0.0

3. In addition to the previous remarks (but less important because somewhat
subjective), it is more difficult to read and write clauses in a BLP than
clauses in a LBN. This is because clauses in a BLP have a double meaning:
– They should be seen as a definite logic program to find the random

variables in the Bayesian network (through the least Herbrand model).
In this reading, each atom in each clause should be seen as a standard
logical atom.

– At the same time they should be seen as statements about conditional de-
pendencies between random variables. In this reading, each atom should
be seen as a random variable (or set of random variables).

This is not the case in LBNs. First, each clause is either a random variable
declaration or a conditional dependency clause. Second, each atom in each
clause is either a standard logical atom or a random variable. Moreover, both
distinctions are clearly visible in the syntax of LBNs.

BLPs Redefined. The above problems are all caused by the fact that BLPs
as defined originally [23, 24, 22, 25] do not have standard logical predicates.
BLPs have recently been redefined [10, 28] and now indeed distinguish logical
predicates and Bayesian predicates. In the new definition only ground Bayesian
atoms (in the least Herbrand model of the BLP) become random variables in the
induced Bayesian network. Ground logical atoms are kept out of the network.
This is also the way BLPs are implemented [28].

Note, that at the time LBNs were first published [12], all literature about
BLPs [23, 24, 22, 25] still used the original definition, i.e. the one without this
distinction. Also, the ‘new’ literature about BLPs [10, 28] does not give any
reasons why this redefinition is needed (in fact, it does not even mention that it
is different from the original definition). In our discussion above we tried to show
these reasons by explicitly pointing out the problems with the original definition.
As such this paper can contribute to the understanding of BLPs.

This redefinition obviously brings BLPs closer to LBNs. The main remaining
difference is that LBNs use one set of clauses to specify the random variables in
the Bayesian network and a separate set of clauses to specify the directed edges,
whereas BLPs use the same set of clauses for both purposes. While this might
make LBNs slightly easier to read than BLPs (especially for people acquainted
with PRMs), it is not an essential difference.

3.3 Other Probabilistic Logical Models

A variety of probabilistic logical models has been described in the literature (see
the overview by Kersting and De Raedt [26]). On a high level, these models can
be divided into two classes.

132 D. Fierens et al.

Models of the first class combine Bayesian networks with logic and mainly
follow the knowledge based model construction approach. We already discussed
LBNs, Probabilistic Relational Models and Bayesian Logic Programs. Some
others models of this class are Relational Bayesian Networks [19], Probabilis-
tic Logic Programs (also known as Context-Sensitive Probabilistic Knowledge
Bases) [33], MIA (the ‘meta-interpreter approach’, which is the origin of some
ideas incorporated in LBNs) [4], CLP(BN) [38], Hierarchical Bayesian Net-
works [17] and Markov Logic Networks [11, 36] (the latter are based on Markov
networks). Learning algorithms exist for Probabilistic Relational Models [13,
15, 14, 16], Bayesian Logic Programs [24, 22, 25], CLP(BN) [38], Hierarchical
Bayesian Networks [17] and Markov Logic Networks [36].

Models of the second class integrate probabilities into Logic Programming,
staying as close as possible to pure Logic Programming. The most important
of these models are Probabilistic Horn Abduction [34], Independent Choice
Logic [35], PRISM [39, 40], Stochastic Logic Programs [8, 9, 30, 31] and Logic
Programs with Annotated Disjunctions [42]. Learning algorithms exist for the
last three models [20, 40, 9, 31, 37].

4 Conclusions

We reviewed Logical Bayesian Networks introduced in [12]. We have given more
compact and clear but essentially equivalent definitions of syntax and semantics
of LBNs than in [12]. We carried out a more detailed comparison of LBNs with
Probabilistic Relational Models and Bayesian Logic Programs, hereby clarifying
and motivating the difference between the original definition of Bayesian Logic
Programs [23, 24, 22, 25] and their recent redefinition [10, 28].

A lot of future work remains. As for knowledge representation, comparing
LBNs to other probabilistic logical models is promising given the wide variety of
such models. As for learning, we are currently working on learning logical CPDs
in LBNs under the form of first order logical probability trees (Tilde [5, 43]). In
a next step, algorithms for learning the conditional dependency clauses of LBNs
can be developed.

The methodology behind the design of LBNs can also be followed for other
graphical models than Bayesian networks. Languages for knowledge based model
construction of dependency networks [18], Markov networks [36] or neural net-
works [3] can all be defined having the same components as LBNs: a component
for determining the nodes in the graph, one for the edges and one for the quan-
titative local models (CPDs for dependency networks, potential functions for
Markov networks, activation functions for neural networks).

Acknowledgements

Daan Fierens is supported by the Institute for the Promotion of Innovation
through Science and Technology in Flanders (IWT Vlaanderen). Hendrik

LBNs and Their Relation to Other Probabilistic Logical Models 133

Blockeel and Jan Ramon are post-doctoral fellows of the Fund for Scientific Re-
search (FWO) of Flanders. The authors would like to thank Kristian Kersting
and the reviewers for useful comments.

References

[1] J. Alferes, L. Pereira, and T. Przymusinski. ‘Classical’ negation in Nonmonotonic
Reasoning and Logic Programming. Journal of Automated Reasoning, 20:107–142,
1998.

[2] F. Bacchus. Using first-order probability logic for the construction of Bayesian
networks. In Proceedings of the Sixth Conference on Uncertainty in Artificial
Intelligence (UAI-1993), pages 219–226, 1993.

[3] C. M. Bishop. Neural Networks for Pattern Recognition. University Press, Oxford,
1999.

[4] H. Blockeel. Prolog for Bayesian networks: a Meta-Interpreter Approach. In
Proceedings of the 2nd International Workshop on Multi-Relational Data Mining
(MRDM-2003), pages 1–13, 2003.

[5] H. Blockeel and L. De Raedt. Top-down induction of first order logical decision
trees. Artificial Intelligence, 101(1-2):285–297, June 1998.

[6] R. Brachman and H. Levesque. Knowledge Representation and Reasoning. Mor-
gan Kaufmann Publishers, 2004.

[7] G. F. Cooper. The computational complexity of probabilistic inference using
bayesian belief networks. Artificial Intelligence, 42(2-3):393–405, 1990.

[8] J. Cussens. Stochastic logic programs: Sampling, inference and applications. In
Proceedings of the Sixteenth Annual Conference on Uncertainty in Artificial Intel-
ligence (UAI-2000), pages 115–122, San Francisco, CA, 2000. Morgan Kaufmann.

[9] J. Cussens. Parameter estimation in stochastic logic programs. Machine Learning,
44(3):245–271, 2001.

[10] L. De Raedt and K. Kersting. Probabilistic Inductive Logic Programming. In
Proceedings of the 15th International Conference on Algorithmic Learning Theory
(ALT-2004), pages 19–36, October 2004. Invited paper.

[11] P. Domingos. Learning, logic, and probability: A unified view. In Proceedings of
14th International Conference on Inductive Logic Pogramming (ILP-2004), Porto,
Portugal, page 359, 2004. Invited paper.

[12] D. Fierens, H. Blockeel, M. Bruynooghe, and J. Ramon. Logical bayesian net-
works. In Proceedings of the 3rd Workshop on Multi-Relational Data Mining
(MRDM-2004), Seattle, WA, USA, pages 19–30, 2004.

[13] N. Friedman, L. Getoor, D. Koller, and A. Pfeffer. Learning probabilistic relational
models. In Proceedings of the 16th International Joint Conference on Artificial
Intelligence (IJCAI-1999), pages 1300–1309, 1999.

[14] L. Getoor, N. Friedman, D. Koller, and A. Pfeffer. Learning Probabilistic Rela-
tional Models. In S. Džeroski and N. Lavrač, editors, Relational Data Mining,
pages 307–334. Springer-Verlag, 2001.

[15] L. Getoor, N. Friedman, D. Koller, and B. Taskar. Learning probabilistic models
of relational structure. In Proc. 18th International Conf. on Machine Learning
(ICML-2001), pages 170–177. Morgan Kaufmann, San Francisco, CA, 2001.

[16] L. Getoor, N. Friedman, D. Koller, and B. Taskar. Learning probabilistic models
of link structure. Journal of Machine Learning Research, 3:679–707, 2002.

134 D. Fierens et al.

[17] E. Gyftodimos and P. Flach. Hierarchical Bayesian Networks: an Approach
to Classification and Learning for Structured Data. In Proceedings of the
ECML/PKDD - 2003 Workshop on Probablistic Graphical Models for Classifi-
cation, pages 25–36, 2003.

[18] D. Heckerman, D. Chickering, C. Meek, R. Rounthwaite, and C. Kadie. Depen-
dency Networks for Inference, Collaborative Filtering, and Data Visualization.
Journal of Machine Learning Research, 1:49–75, 2000.

[19] M. Jaeger. Relational Bayesian networks. In Proceedings of the Thirteenth Annual
Conference on Uncertainty in Artificial Intelligence (UAI-1997), pages 266–273.
Morgan Kaufmann Publishers, 1997.

[20] Y. Kameya and T. Sato. Efficient EM learning with tabulation for parameterized
logic programs. In Proceedings of the 1st International Conference on Computa-
tional Logic (CL-2000), volume 1861 of Lecture Notes in Artificial Intelligence,
pages 269–294, 2000.

[21] K. Kersting and L. De Raedt. Bayesian logic programs. In Proceedings of the
tenth international conference on Inductive Logic Programming, work in progress
track, 2000.

[22] K. Kersting and L. De Raedt. Adaptive Bayesian Logic Programs. In Proceedings
of the 11th International Conference on Inductive Logic Programming (ILP-2001),
pages 104–117, 2001.

[23] K. Kersting and L. De Raedt. Bayesian logic programs. Technical Report 151,
Institute for Computer Science, University of Freiburg, Germany, April 2001.

[24] K. Kersting and L. De Raedt. Towards combining inductive logic programming
and Bayesian networks. In Proceedings of the 11th International Conference on
Inductive Logic Programming (ILP-2001), pages 118–131, 2001.

[25] K. Kersting and L. De Raedt. Basic principles of learning bayesian logic programs.
Technical Report 174, Institute for Computer Science, University of Freiburg,
Germany, June 2002.

[26] K. Kersting and L. De Raedt. Probabilistic logic learning. In S. Dzeroski and
L. De Raedt, editors, SIGKDD Explorations, special issue on Multi-Relational
Data Mining, volume 5(1), pages 31–48, 2003.

[27] K. Kersting, L. De Raedt, and S. Kramer. Interpreting bayesian logic programs.
In Proceedings of the AAAI-2000 Workshop on Learning Statistical Models from
Relational Data, 2000.

[28] K. Kersting and U. Dick. Balios - The Engine for Bayesian Logic Programs. In
Proceedings of the 8th European Conference on Principles and Practice of Knowl-
edege Discovery in Databases (PKDD-2004), pages 549–551, September 2004.
Demonstration paper.

[29] J. Lloyd. Foundations of Logic Programming. Springer-Verlag, 2nd edition, 1987.
[30] S. Muggleton. Stochastic logic programs. In L. de Raedt, editor, Advances in

Inductive Logic Programming, pages 254–264. IOS Press, 1996.
[31] S. Muggleton. Learning stochastic logic programs. In L. Getoor and D. Jensen,

editors, Proceedings of the AAAI2000 workshop on learning statistical models for
relational data, 2000.

[32] R. Neapolitan. Learning Bayesian Networks. Prentice Hall, New Jersey, 2003.
[33] L. Ngo and P. Haddawy. Answering queries from context-sensitive probabilistic

knowledge bases. Theoretical Computer Science, 171(1–2):147–177, 1997.
[34] D. Poole. Probabilistic Horn abduction and Bayesian networks. Artificial Intelli-

gence, 64:81–129, 1993.
[35] D. Poole. The Independent Choice Logic for modelling multiple agents under

uncertainty. Artificial Intelligence, 94(1–2):5–56, 1997.

LBNs and Their Relation to Other Probabilistic Logical Models 135

[36] M. Richardson and P. Domingos. Markov Logic Networks. Technical report,
Department of Computer Science, University of Washington, 2004.

[37] F. Riguzzi. Learning logic programs with annotated disjunctions. In Proceedings
of 14th International Conference on Inductive Logic Pogramming (ILP-2004),
Porto, Portugal, 2004.

[38] V. Santos Costa, D. Page, M. Qazi, and J. Cussens. CLP(BN): Constraint logic
programming for probabilistic knowledge. In Proceedings of 19th Conference on
Uncertainty in Artificial Intelligence (UAI-2003), 2003.

[39] T. Sato and Y. Kameya. PRISM: A symbolic-statistical modeling language. In
Proceedings of the 15th International Joint Conference on Artificial Intelligence
(IJCAI-1997), pages 1330–1335, 1997.

[40] T. Sato and Y. Kameya. Parameter learning of logic programs for symbolic-
statistical modeling. Journal of Artificial Intelligence Research, 15:391–454, 2001.

[41] A. Van Gelder, K. Ross, and J. Schlipf. The well-founded semantics for general
logic programs. Journal of the ACM, 38(3), 1991.

[42] J. Vennekens, S. Verbaeten, and M. Bruynooghe. Logic programs with anno-
tated disjunctions. In Proceedings of the 20th International Conference on Logic
Programming (ICLP-2004), 2004.

[43] C. Vens, A. Van Assche, H. Blockeel, and S. Džeroski. First order random forests
with complex aggregates. In R. Camacho, R. King, and A. Srinivasan, editors,
Proceedings of the 14th International Conference on Inductive Logic Programming,
pages 323–340. Springer, 2004.

	Introduction
	Logical Bayesian Networks
	Logical Bayesian Networks by Example
	Syntax of Logical Bayesian Networks
	Declarative Semantics of Logical Bayesian Networks
	Discussion

	Comparing Logical Bayesian Networks to Other Probabilistic Logical Models
	Probabilistic Relational Models
	Bayesian Logic Programs
	Other Probabilistic Logical Models

	Conclusions
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

