
35

Feature-Driven
Development—Practices

Answers: What do we have to manage?

Good habits are a wonderful thing. They allow the
team to carry out the basic steps, focusing on content

and results, rather than process steps. This is best
achieved when process steps are logical and their
worth immediately obvious to each team member.

Coad, LeFebvre, De Luca [Coad 99]

Like all good software development processes, Feature-Driven Develop-
ment (FDD) is built around a core set of “best practices.” The chosen
practices are not new but this particular blend of the ingredients is new.
Each practice complements and reinforces the others. The result is a
whole greater than the sum of its parts; there is no single practice that
underpins the entire process. A team could choose to implement just
one or two of the practices but would not get the full benefit that occurs
by using the whole FDD process.

Consider inspections, for example. They are decades old and have a
mountain of evidence showing them to be a great tool. However, on their
own, they are far from enough. No, it is the right mix of the ingredients in
the right amounts at the right times that makes the FDD cake taste so good!

Mac: Steve, are the processes within FDD rigid, or can we adapt them to fit the project,
the team, and the organization?

Steve: FDD can certainly be adapted to a particular toolset and to teams of people
with various levels of experience. It is this level of flexibility that makes FDD relatively
easy to adopt within an organization.

Mac: So, you are telling me that for our project, we can pick and choose what we will
implement and that’s FDD?

Steve: Absolutely not! FDD is flexible and adaptable, but there are some best practices
that need to be included in order for it to be an FDD process. I’ll list the best practices
that make up FDD. Take a look at it, and then we’ll go over each one in detail.

chapter

Integrating
Best
Practices

ch03.qxd 1/14/02 3:40 PM Page 35

Prentice Hall PTR
This is a sample chapter of A Practical Guide to Feature-Driven Development
ISBN: 0-13-067615-2

For the full text, visit http://www.phptr.com

©2002 Pearson Education. All Rights Reserved.

FDD Best Practices
The best practices that make up FDD are:

• Domain Object Modeling

• Developing by Feature

• Individual Class (Code) Ownership

• Feature Teams

• Inspections

• Regular Builds

• Configuration Management

• Reporting/Visibility of Results

Steve: You could choose to implement a few of the practices and claim you are follow-
ing a feature-centric process but I reserve the FDD name to mean that you are follow-
ing all of the practices I’ve listed.

Mac: Okay, I can understand that distinction. Let’s look at each practice in turn....

Domain Object Modeling

Domain object modeling consists of building class diagrams depict-
ing the significant types of objects within a problem domain and the re-
lationships between them. Class diagrams are structural in nature and
look a little like the more traditional entity-relationship diagrams of the
relational database world. Two big differences are the inclusion of inheri-
tance or generalization/specialization relationships and operations that
specify how the objects behave. To support this behavioral view, it is
usual to complement the class diagrams with a set of high-level se-
quence diagrams depicting explicitly how objects interact with each
other to fulfill their responsibilities. The emphasis is on what questions
objects of a particular class can answer and what calculations or services
they can perform; there is less emphasis placed on determining exactly
what attributes objects of a particular class might manage.

As analysts and developers learn of requirements from Domain Ex-
perts, they start forming mental images of the desired system. Unless
they are very careful, they make assumptions about this imaginary de-
sign. These hidden assumptions can cause inconsistencies between dif-
ferent people’s work, ambiguities in requirements documentation, and
the omission of important details. Developing an overall domain object
model (Figure 3–1) forces those assumptions out into the open—misun-
derstandings are resolved, holes in understanding are filled, and a much
more complete, common understanding of the problem domain is
formed.

In Extreme Programming Explained, Kent Beck offers the analogy that
software construction is like driving a car [Beck 00]. Driving requires con-

A Practical Guide
to Feature-Driven

Development

36

ch03.qxd 1/14/02 3:40 PM Page 36

tinual small course adjustments, using the steering wheel; you cannot
simply point a car in the right direction and press the accelerator. Soft-
ware construction, Beck says, is similar. Extending that analogy a bit fur-
ther, a domain object model is like the road map that guides the journey;
with it, you can reach your destination relatively quickly and easily with-
out too many detours or a lot of backtracking; without it, you can very
quickly end up lost or driving around in circles, continually reworking
and refactoring the same pieces of code.

The domain object model provides an overall framework to which to
add function, feature by feature. It helps to maintain the conceptual in-
tegrity of the system. Using it to guide them, feature teams produce bet-
ter initial designs for each group of features. This reduces the amount of
times a team has to refactor classes to add a new feature.

Feature-Driven
Development—
Practices

37

0..*1

0..*1

0..*1

<<party>>
Party

-name:String
-address:String

<<party>>
Person

-dateOfBirth:Date

+calculateAge:int

<<party>>
Organization

<<role>>
OrganizationRole

+getOrganization:Organization

<<role>>
PartyRole

+getParty:Party

<<role>>
PersonRole

+getPerson:Person

Figure 3–1
The early beginnings of
a domain object
model.

Domain Object Modeling is a form of object decomposition. The
problem is broken down into the significant objects involved. The design
and implementation of each object or class identified in the model is a
smaller problem to solve. When the completed classes are combined,
they form the solution to the larger problem.

The best technique the authors know for Domain Object Modeling is
“modeling in color.” Modeling in color uses four color-coded class arche-

ch03.qxd 1/14/02 3:40 PM Page 37

types that interact in defined ways. The use of color adds a layer of “visu-
ally detectable” information to the model. Using this technique, a team
or individual can very rapidly build a resilient, flexible, and extensible
object model for a problem domain that communicates clearly and con-
cisely.

FDD does not mandate the use of modeling in color and modeling in
color does not require FDD. However, they do complement each other
exceptionally well.

Mac: I understand the analogy you used, but why is that so important to a software
project? We have several very experienced programmers who will be working on our
project. Some of them are used to listing the initial requirements, then going directly to
coding. Sometimes they will prototype the system, but that’s about as much of a model
as they use.

Steve: For a very simple problem, that may be all right. However, the more complex
the problem, the more imperative it is that the problem be adequately explored and
explained. Source code is far too detailed a mechanism with which to do that. The
information needs to be accessible to and understandable by all of those involved with
specifying the requirements, as well as to those responsible for implementing them. A
domain object model is a concise, relatively accessible, reuseable way of storing and
communicating that information to everyone involved in the project.

The old “building a house” analogy really fits here. I wouldn’t mind building a kennel
without plans and blueprints, but would I want a builder to build my home that way?
Or would you want to live in a 30-story high-rise that was built without blueprints?

The domain object model provides a solid framework that can be built within when
changes in the business environment require the system to change. It allows designers
to add new features and capabilities to the system correctly; it greatly enhances the in-
ternal quality and robustness of the system.

Developing by Feature

Once we have identified the classes in our domain object model, we
can design and implement each one in turn. Then, once we have com-
pleted a set of classes, we integrate them and hey, presto! We have part
of our system. Easy!...Well, it’s a nice dream!

Nontrivial projects that are run in this way have found that they end
up delivering a system that does not do what the client requires. Also,
classes in these systems are often overly complicated, containing meth-
ods and attributes that are never used while missing methods and attrib-
ute that are needed. We can produce the most elegant domain object
model possible, but if it does not help us to provide the system’s clients
with the functionality for which they have asked, we have failed. It would
be like building a fantastic office skyscraper but either leaving each floor
unfurnished, uncarpeted, and without staff, or furnishing it with orna-
mental but impractical furniture and untrained staff.

A Practical Guide
to Feature-Driven

Development

38

ch03.qxd 1/14/02 3:40 PM Page 38

In the “Process and People” section at the beginning of Chapter 2, we
said that a key element in any project is some statement of purpose,
problem statement, or list of goals or very high-level requirements de-
scribing what the system needs to do. Without this, there is no reason for
the project to exist. This is the functionality that the system must provide
for the project to be considered a success.

Every popular method or process contains some form of functional
decomposition activity that breaks down this high-level statement into
more manageable problems. Functional specification documents, use
case models and use case descriptions, and user stories and features all
represent functional requirements, and each representation has its own
advantages and disadvantages.

Traditionally, we have taken the statement of purpose and broken it
down into a number of smaller problems and defined a set of subsys-
tems (or modules) to solve those smaller problems. Then, for each sub-
system, we have broken its problem into a hierarchical list of functional
requirements. When we have requirements granular enough that we
know how to design and implement each of them, we can stop decom-
posing the problem. We then start designing and implementing each of
our functional requirements. The project is driven and tracked by func-
tion; sets of functional requirements are given to developers to imple-
ment, and their progress is measured.

A major problem is that the functional requirements tend to mix
user interface, data storage, and network communication functions with
business functions. The result is that developers often spend large
amounts of time working on the technical features at the expense of the
business features. A project that delivers a system with the greatest per-
sistence mechanism but no business features is a failure.

A good solution to this problem is to restrict our lists of functional
requirements to those of value to a user or client and to ensure that re-
quirements are phrased in language that the user or client can under-
stand. We call these client-valued functions, or features. Once the features for
a system have been identified, they are used to drive and track develop-
ment in FDD. Delivering a piece of infrastructure may be important—
even critical—to the project but it is of no significance to the client be-
cause it has no intrinsic business value. Showing progress in terms of
features completed is something that the client can understand and as-
sign value to. Clients can also prioritize features in terms of significance
to the business.

Interestingly, Extreme Programming records functional requirements
as user stories on index cards. In Extreme Programming Explained, a user
story was described as “a name and a short paragraph describing the pur-
pose of the story” [Beck 00]. A year later, in Planning Extreme Programming
Explained, a user story is “nothing more than an agreement that the cus-
tomer and developers will talk together about a feature,” and a user story
is “a chunk of functionality that is of value to the customer” [Beck 01].

Feature-Driven
Development—
Practices

39

ch03.qxd 1/14/02 3:40 PM Page 39

Mac: What about use cases? Don’t they do the same thing? Aren’t both FDD and Ex-
treme Programming reinventing the wheel here? Ivar Jacobson introduced the software
development world to use cases back in 1992 [Jacobson 92]. He defines a use case as
“a description of a set of sequence of actions, including variants, that a system performs
that yields an observable result to a particular actor,” where an actor is defined as “a
coherent set of roles that users of use cases play when interacting with these use cases”
[Jacobson, 99]. I know this is a bit of a mouthful but it sounds like a feature to me.

Steve: A bit of a mouthful!?!?

Mac: Okay, a big mouthful. All it really means is that you:
1. Identify the users of the system (both humans and other computer

systems)
2. Identify what each user does (tasks)
3. Categorize users according to their tasks to form a set of user roles

(actors)
4. Describe how the system will help each user role perform each of its tasks

(use cases)

In other words, a use case approach is user-centric. It groups functional requirements
by the type of user of those functions. Driving a project with use cases helps us to ensure
that we are developing what users need. This sounds like a step forward, in my opinion.

Steve: I agree, the thinking and ideas behind use cases are good, and they sound great
in theory. However, despite numerous successes, many projects have struggled to apply
use cases successfully in practice.

My main problem with use cases is that their definition does not define at what level of
granularity use cases should be written and what format and level of detail their con-
tents should take. The result has been continuous, raging debates, both within teams
and on public online discussion forums. For example, in the first edition of UML Dis-
tilled: Applying the Standard Object Modeling Language, Martin Fowler
writes, “Ivar Jacobson says that for a 10-person-year project, he would expect about 20
use cases....In a recent project of about the same magnitude, I had more than 100 use
cases” [Fowler].

This problem becomes worse when the wrong people are asked to write use cases at the
wrong time. A team of analysts and Domain Experts used to writing traditional func-
tional specifications is often asked to write all the use cases for a system before any mod-
eling or prototyping is done. The result is often an inconsistent and incomplete set of
use cases of mixed granularity, with differing levels of detail, mixing user interface and
persistence details with business logic in an overdetailed description of the design of an
imaginary system.

Mac: Sounds like you are talking from personal experience. One popular answer to
this problem is to define long, comprehensive templates to follow when writing the con-
tents of a use case. However, this makes the task of writing use cases expensive in terms
of project schedule, and increased manpower is also required to keep the use cases up to
date throughout a project.

Steve: And Project Managers following that approach need to be very careful not to
become bogged down in endlessly writing and rewriting use cases; what one of our col-
leagues, Bob Youngblood, calls “death by use cases.” As with anything new, it’s best to

A Practical Guide
to Feature-Driven

Development

40

ch03.qxd 1/14/02 3:40 PM Page 40

work with someone who knows what they are doing or at least to buy a book such as
Advanced Use Case Modeling [Miller] and agree as a team to follow it.

Mac: So how do we avoid exactly the same problems with features? You’ve defined
them as client-valued functions but there must be more to it than that, surely.

Steve: Yes...

The term feature in FDD is very specific. A feature is a small, client-
valued function expressed in the form:

<action> <result> <object>

with the appropriate prepositions between the action, result, and object.

Features Are Small

They are small enough to be implemented within two weeks. Two
weeks is the upper limit. Most features are small enough to be imple-
mented in a few hours or days. However, features are more than just ac-
cessor methods that simply return or set the value of an attribute. Any
function that is too complex to be implemented within two weeks is fur-
ther decomposed into smaller functions until each sub-problem is small
enough to be called a feature. Specifying the level of granularity helps to
avoid one of the problems frequently associated with use cases. Keeping
features small also means clients see measurable progress on a frequent
basis. This improves their confidence in the project and enables them to
give valuable feedback early.

Features Are Client-Valued

In a business system, a feature maps to a step in some activity
within a business process. In other systems, a feature equates to some
step or option within a task being performed by a user.

Examples of features are:

• Calculate the total of a sale.

• Assess the performance of a salesman.

• Validate the password of a user.

• Retrieve the balance of a bank account.

• Authorize a credit card transaction of a card holder.

• Perform a scheduled service on a car.

As mentioned earlier, features are expressed in the form <action>
<result> <object>. The explicit template provides some strong clues to
the operations required in the system and the classes to which they
should be applied. For example:

Feature-Driven
Development—
Practices

41

ch03.qxd 1/14/02 3:40 PM Page 41

• “Calculate the total of a sale” suggests a calculateTotal() opera-
tion in a Sale class.

• “Assess the performance of a salesman” suggests an assessPerfor-
mance() operation in a Salesman class.

• “Determine the validity of the password of a user” suggests a deter-
minePasswordValidity() operation on a User class that can then
be simplified into a validatePassword() operation on the User
class.

The use of a natural language, such as English, means that the tech-
nique is far from foolproof. However, after a little practice, it becomes a
powerful source of clues to use in discovering or verifying operations and
classes.

Mac: So if I use the template to name my use cases and keep them to the two-week im-
plementation limit, I would have the benefits of features and use cases? Use cases usu-
ally have preconditions, postconditions, and a description of what needs to happen. I
could leave these empty to start with and fill them as development proceeds. That would
avoid the analysis paralysis you warn of.

Steve: I suppose you could. I’m not sure what it buys you. One problem you might
encounter by calling your features use cases is that you are going to confuse others
who associate a different level of granularity, format, and application with the name
use case.

Another problem is that, although nearly every expert I have spoken to recently advo-
cates writing use cases in parallel with building a domain object model, most people still
try to write them before doing any modeling or prototyping. In fact, many people advo-
cate using use cases or functional requirements to drive the building of a domain object
model.

Mac: Yes, I know, and I have seen the results many times! Function-heavy classes con-
stantly accessing data-heavy classes, high coupling, low cohesion, and poor encapsula-
tion. Yuck! I definitely prefer building the object model with Domain Experts first or at
the same time as writing use cases. The functional decomposition and object-oriented
decomposition are orthogonal approaches. Doing both helps to ensure that we deliver
the function required within a structure that is robust and extensible.

Class (Code) Ownership

Class (code) ownership in a development process denotes who (per-
son or role) is ultimately responsible for the contents of a class (piece of
code).

There are two general schools of thought on the subject of code
ownership. One view is that of individual ownership, where distinct
pieces or groupings of code are assigned to a single owner. Every cur-
rently popular object-oriented programming language uses the concept
of a class to provide encapsulation; each class defines a single concept
or type of entity. Therefore, it makes sense to make classes the smallest

A Practical Guide
to Feature-Driven

Development

42

ch03.qxd 1/14/02 3:40 PM Page 42

elements of code to which owners are assigned; code ownership be-
comes class ownership. This is the practice used within FDD; developers
are assigned ownership of a set of classes from the domain object
model.

Note

Throughout the rest of the book, we assume that the readers are using a
popular object-oriented programming language such as Java, C++,
Smalltalk, Eiffel, C#, etc. Therefore, we make the assumption that classes
are the programming language mechanism providing encapsulation (also
polymorphism and inheritance). Where this is not the case, the reader is re-
quested to translate class to whatever fundamental element provides infor-
mation hiding, abstract typing, or data encapsulation in your programming
language.

The advantages of individual class ownership are many but include
the following:

• An individual is assigned the responsibility for the conceptual
integrity of that piece of code. As enhancements and new
methods are added to the class, the owner will ensure that the
purpose of the class is maintained and that the modifications
fit properly.

• There is an expert available to explain how a particular piece
of code works. This is especially important for complex or
business-critical classes.

• The code owner can implement an enhancement faster than
another developer of similar ability who is unfamiliar with that
piece of code.

• The code owner personally has something that he or she can
take pride in doing well.

The first classic problem with class ownership occurs when devel-
oper A wants to make some changes to his or her classes, but those
changes are dependent on other changes being made in the classes
owned by developer B. Developer A could be required to wait a signifi-
cant amount of time if developer B is busy. Too many of these situations
would obviously slow down the pace of the development team.

The second potential problem with individual class ownership that is
often raised is that of risk of loss of knowledge about a class. If the owner
of a set of classes should happen to leave the project suddenly for some
reason, it could take considerable time for the team to understand how
that developer’s classes work. If the classes are significant, it could put
the project schedule under pressure.

Feature-Driven
Development—
Practices

43

ch03.qxd 1/14/02 3:40 PM Page 43

At the opposite end of the code ownership spectrum is the view pro-
moted by Extreme Programming proponents, among others. In this
world, all the developers in the team are responsible for all of the code.
In other words, the team has collective ownership of the source code.

Collective ownership solves the problem of having to wait for some-
one else to modify code and can ease the risk of someone leaving be-
cause, at least in a small system, more than one person has worked on
the code.

The main issue with collective ownership, however, is that in prac-
tice, it can quickly degenerate into nonownership or an ownership dic-
tated by few dominant individuals on the team. Either nobody ends up
being responsible for anything in the system or the dominant few try to
do all the work because, in their opinion, they are the only competent
members of the team. If nobody takes responsibility for ensuring the
quality of a piece of code, it is highly unlikely that the resulting code will
be of high quality. If a few dominant developers try to do everything, they
may start off well but will soon find themselves overloaded and suffering
from burnout. Obviously, teams that encounter these problems struggle
to continue to deliver frequent, tangible, working results.

Mac: Hey, Steve. It appears that there is a swelling of opinion in the industry that says
any team member should be allowed to change any piece of code. Many of our develop-
ers seem to like this idea, but FDD promotes individual class ownership. Is collective
ownership an option?

Steve: Supporters of collective ownership claim that it works when combined with other
complementary practices (see [Beck]):

• Pair programming—two developers working together at one personal
computer or terminal to reduce the likelihood of introducing errors into the
code and to shorten the time it takes a developer to learn and understand
the system.

• Extensive unit testing to verify that new code functions as required and
that refactored or updated code still functions as required.

• Coding standards compliance to improve the readability of code and
to minimize errors due to misunderstanding of existing code.

• Continual integration of changes into the code base to reduce the likeli-
hood that multiple programmer pairs need to access the same piece of code
at the same time.

However, if we assume collective ownership, look at what could happen as developers
work on features. For any given feature, the developer (or pair of developers) can add or
modify operations and attributes of the classes that participate in the feature. A differ-
ent pair, working on a different feature, can add or modify another operation in some of
those same classes (Figure 3–2). In a large team, each method of a class could theoret-
ically end up being written by a different developer.

Mac: My alarm bells are ringing at this point! With small classes and small teams, we
might get away with this but on larger, more significant classes with a larger team,

A Practical Guide
to Feature-Driven

Development

44

ch03.qxd 1/14/02 3:40 PM Page 44

consistency and conceptual integrity, not to mention robustness, could become a major
problem.

Steve: Exactly! The more minds working on a piece of work over time, the harder it is
to maintain the conceptual integrity of that work [Brooks]. I believe the chances of the
class evolving a consistent, elegant, efficient set of methods are greatly reduced if anyone
and everyone can write a piece of it. I also think the need for rework and refactoring is
going to be greatly increased.

Also, to modify a class correctly, the modifiers have to understand how its internals
work. This can take time if those developers have not seen the class before or have not
worked with it for a while. This is obviously going to take longer than if someone famil-
iar with the code did the modification.

Mac: It sounds like individual class ownership is more likely to scale to our size of
project and team. However, I can see that, in some cases within a project, collective own-
ership of parts of the model could be advantageous. Can we use combinations of indi-
vidual and collective ownership and still call it FDD? Does FDD allow me to tailor the
class ownership practice to the needs and structure of my team and organization?

Steve: You’re not going to get arrested by the thought police, if that’s what you mean.
Also, let’s not get hung up over a name of a process. We need to do what works for us
and our organization. Having said that, I think as we cover the other practices in FDD,
you’ll find less and less of a reason to need collective ownership. The only areas where I
personally might consider collective ownership is when building proof of concept proto-
types for the technical architecture and user interface. When it comes to production
code, I want to know that there is a single responsible person I can go to when there are
issues with a particular class.

Feature-Driven
Development—
Practices

45

Sender

Object1
ClassA

Object2
ClassB

Object3
ClassC

Object4
ClassD

2.1.1: OperationD

1.1.1: operationD

2.2: operationA2

2.1: OperationC2

1.2: OperationA1

1.1: operationC1

2: feature2

1: feature1

Figure 3–2
Features adding and enhancing operations in the same classes.

ch03.qxd 1/14/02 3:40 PM Page 45

Mac: I suppose there is no way of getting the benefits of both individual class ownership
and collective ownership, is there? Or at least get close to that ideal?

Steve: Actually, I think the answer to that is yes! We need to combine class ownership
with the use of feature teams and inspections.

Feature Teams

Building a domain object model identifies the key classes in the
problem domain. The class ownership practice assigns those classes
to specific developers. We also know that we want to build, feature by
feature.

So how do we best organize our class owners to build the features?

We assigned classes to owners to ensure that there was a single per-
son responsible for the development of each class. We need to do the
same for features. We need to assign each feature to an owner—some-
body who is going to be responsible for ensuring that the feature is de-
veloped properly. The implementation of a feature is likely to involve
more than one class and, therefore, more than one Class Owner. Thus,
the feature owner is going to need to coordinate the efforts of multiple
developers—a team lead job. Therefore, we pick some of our better de-
velopers, make them team leaders, and assign sets of features to each of
them (we can think of a team leader as having an “inbox” of features that
he or she is responsible to deliver).

Now that we have Class Owners and team leaders, let’s form the de-
velopment teams around these team leaders. Ah! We have a problem!
How can we guarantee that all the Class Owners needed to code a partic-
ular feature will be in the same team? This is not an easy problem to
solve.

We have four options:

1. We can go through each feature, listing the classes we think
are involved, then try to separate the features into mutually
exclusive sets. This feels like a good deal of design work just
to form teams, and what if we get it slightly wrong? What if
there are no convenient, mutually exclusive groupings of fea-
tures? This does not sound like a repeatable step in the
process.

2. We can allow teams to ask members of other teams to make
changes to the code they own. However, now we are likely to
be waiting for another developer in another team to make a
change before we can complete our task. This is exactly the
situation that led Extreme Programming to promote collec-
tive ownership.

3. We can drop class ownership and go with collective owner-
ship and everything else that it requires to make it work.
There is already a book in this series covering this option,

A Practical Guide
to Feature-Driven

Development

46

ch03.qxd 1/14/02 3:40 PM Page 46

[Astels] and anyway, we know that collective ownership does
not scale easily.

4. We can change the team memberships whenever this situa-
tion occurs so that a team leader always has the Class Owners
he or she needs to build a feature. This is the only realistic
option that will allow us both to develop by feature and to
have Class Owners.

Actually, there is nothing that requires us to stick to a statically de-
fined team structure. We can change to a more dynamic model. If we
allow team leaders to form a new team for each feature they start to de-
velop, they can pick the Class Owners they need for that feature. Once
the feature is fully developed, the team is disbanded, and the team
leader picks the Class Owners needed to form the team for the next fea-
ture. This can be repeated indefinitely until all the features required are
developed.

This is a form of dynamic matrix management. Team leaders owning
features pick developers based on their expertise (in this case, class own-
ership) to work in the feature team developing those features involving
their classes (Figure 3–3).

Feature-Driven
Development—
Practices

47

Feature teams are
formed from class
owners as needed.

Figure 3–3
Feature teams.

Mac: So are feature teams new? I remember that Harlan Mills suggested the idea of
Chief Programmer teams back in 1971 [Brooks]. His idea is based on surgical
teams, where a surgeon is supported by a number of talented and qualified people, each
performing a specific role. In a Chief Programmer team, developers each have their own
specific responsibility and support a lead developer.

Steve: Feature teams are similar but differ in two important aspects:
• The team leader acts as more of a coach for the team than some superpro-

grammer in charge of a bunch of junior or trainee programmers.
• The Class Owners’ responsibilities are all similar to each other; it is the code

that they are responsible for that differs.

Every member of a feature team is responsible for playing their part in the success of
the team. However, feature team leaders, as all good coaches know, are ultimately re-

ch03.qxd 1/14/02 3:40 PM Page 47

sponsible for producing results. They own the features, and they are accountable for
their successful delivery. Playing this team leader role well normally requires both abil-
ity and experience, so we call our feature team leaders Chief Programmers in recog-
nition of this and Mills’[Brooks] work.

Mac: Steve, this sounds incredibly flexible and may be the answer to a lot of the prob-
lems we have experienced in the past on our software projects, but what happens when a
Chief Programmer guesses incorrectly about which classes are involved in the develop-
ment of a feature? For example: What if a Chief Programmer thought three classes were
needed to implement a given feature, and it turns out that two more are involved?

Steve: Easy! All the Chief Programmer needs to do is contact the appropriate Class
Owner if they are not already in the team, verify their availability to work on the fea-
ture, and include them on the feature team. The Chief Programmer may have to dis-
cuss the availability of the extra developers with other Chief Programmers, if those
developers are heavily loaded.

Mac: What happens if the Class Owners are working in too many teams and cannot
take on another feature team for a few days? Does the feature team block?

Steve: Well, that feature team may block. However, remember that each Chief Pro-
grammer has this inbox of features assigned to him or her. If the Class Owners are not
available to develop one feature, the Chief Programmer can pick a different feature to
develop next, instead.

Mac: Even more flexible! I like this idea a lot! I guess, though, that there are some re-
strictions about which features a Chief Programmer can develop next.

Steve: Yes, there will be some dependencies between features to watch for, and some
features will be higher priority than others and will need to be developed sooner rather
than later, but that is about it.

Mac: Is there anything else interesting about feature teams?

Steve: A couple more points...

Some things to note about feature teams:

• A feature team, due to the small size of features, remains small,
typically three to six people.

• By definition, a feature team is comprised of all the Class Own-
ers who need to modify or enhance one of their classes as part
of the development of a particular feature. In other words, the
feature team owns all the code it needs to change for that fea-
ture. There is no waiting for members of other teams to change
code. So we have code ownership and a sense of collective
ownership, too.

• Each member of a feature team contributes to the design and
implementation of a feature under the guidance of a skilled, ex-
perienced developer. Applying multiple minds to evaluate mul-
tiple options and select the design that fits best reduces the
risk of reliance on key developers or owners of specific classes.

A Practical Guide
to Feature-Driven

Development

48

ch03.qxd 1/14/02 3:40 PM Page 48

• From time to time, Class Owners may find themselves mem-
bers of multiple feature teams at the same time. This is not the
norm but is not a problem, either. While waiting for others in
one feature team, a Class Owner can be working on stuff for an-
other feature team. Most developers can handle belonging to
two or even three features teams concurrently for a short
period of time. More than that leads to problems switching
context from one team to another. Chief Programmers work
together to resolve any problematic conflicts and to avoid over-
loading any particular developer.

• Chief Programmers are also Class Owners and take part in fea-
ture teams led by other Chief Programmers. This helps Chief
Programmers to work with each other and keeps them close to
the code (something most Chief Programmers like).

Inspections

FDD relies heavily on inspections to ensure high quality of designs
and code. Many of us have sat through hours of boring, backbiting,
finger-pointing sessions that were called code reviews, design reviews, or peer
reviews and shudder at the thought of another process that demands
inspections. We have all heard comments such as “Technical inspections,
reviews, walkthroughs are a waste of time. They take too long, are of little
real benefit, and result in too many arguments” or “I know my job! Why
should I let others tell me how to design and write my code?”

However, when done well, inspections are very useful in improving
the quality of design and code. Inspections have been recommended
since the 1970s, and the evidence weighs heavily in their favor.

The Aetna Insurance Company found 82% of the errors in a program by
using inspections and was able to decrease its development resources by 25%.

M.E. Fagan [Fagan]

In a group of 11 programs developed by the same group of people, the first
5 were developed without inspections. The remaining 6 were developed with
inspections.

After all the programs were released to production, the first 5 had an average
of 4.5 errors per 100 lines of code. The 6 that had been inspected had an av-
erage of only 0.82 errors per 100 lines of code.

Inspections cut the errors by over 80%....

In a software-maintenance organization, 55% of one-line maintenance
changes were in error before code inspections were introduced. After inspec-
tions were introduced, only 2% of the changes were in error.

D.P. Freedman and G.M. Weinberg [Freedman]

Feature-Driven
Development—
Practices

49

ch03.qxd 1/14/02 3:40 PM Page 49

IBM’s 500,000-line Orbit project used 11 levels of inspections. It was deliv-
ered early and had only about 1% of the errors that would normally be ex-
pected.

T. Gilb [Gilb 88]

The average defect detection rate is only 24% for unit testing, 35% for func-
tion testing, and 45% for integration testing. In contrast, the average effec-
tiveness of design and code inspections is 55 and 60% respectively.

C.L. Jones [Jones]

One client found that each downstream software error cost on average
5 hours. Others have found 9 hours (Thorn EMI, Reeve), 20 to 82 hours
(IBM, Remus), and 30 hours (Shell) to fix downstream. This is compared to
the cost of only one hour to find and fix using inspection.

T. Gilb and D. Graham [Gilb 93]

Need we say more?

Actually, there is a little more to say. The primary purpose of inspec-
tions is the detection of defects. When done well, there are also two very
helpful secondary benefits of inspections:

1. Knowledge transfer. Inspections are a means to disseminate
development culture and experience. By examining the code
of experienced, knowledgeable developers and having them
walk through their code, explaining the techniques they use,
less experienced developers rapidly learn better coding prac-
tices.

2. Standards conformance. Once developers know that their
code will not pass code inspection unless it conforms to the
agreed design and coding standards, they are much more
likely to conform.

Even though coding standards can be written (presumably by experienced
developers) and distributed, they will not be followed (or maybe not even
read) without the sort of encouragement provided by inspections.

Steve McConnell [McConnell 98]

We can make inspections even more useful by collecting various
metrics and using them to improve our processes and techniques. For in-
stance, as metrics on the type and number of defects found are captured
and examined, common problem areas will be revealed. Once these
problem areas are known, this can be fed back to the developers, and the
development process can be tweaked to reduce the problem.

Of course, the catch is that little qualifying phrase that we have used
a couple of times in the last few paragraphs—“when done well.” Chap-

A Practical Guide
to Feature-Driven

Development

50

ch03.qxd 1/14/02 3:40 PM Page 50

ter 10, section titled “Verification: Design Inspection,” and Chapter 11,
section titled “Conduct a Code Inspection,” provide hints and tips for
achieving exactly this. We make a couple more general points here.

Inspections have to be done in a way that removes the fear of embar-
rassment or humiliation from the developer whose work is being in-
spected. Few developers like to be told that something they have
sweated over for hours is wrong or could have been done better. Setting
the inspection culture is key. Everyone needs to see inspections primarily
as a great debugging tool and secondly as a great opportunity to learn
from each other. Developers also need to understand that inspections
are not a personal performance review[McConnell 93].

Inspections complement the small team and Chief Programmer–
oriented structure of FDD beautifully. The mix of feature teams and in-
spections adds a new dimension. An entire feature team is on the hot
seat, not just one individual. This removes much of the intensity and fear
from the situation. The Chief Programmer controls the level of formality
of each inspection, depending on the complexity and impact of the fea-
tures being developed. Where design and code have no impact outside
the feature team, an inspection will usually involve only the feature team
members inspecting each other’s work. Where there is significant impact,
the Chief Programmer pulls in other Chief Programmers and developers
both to verify the design and code and to communicate the impact of
that design and code.

Regular Build Schedule

At regular intervals, we take all of the source code for the features
that we have completed and the libraries and components on which it
depends, and we build the complete system.

Some teams build weekly, others daily, and still others continuously.
It really depends on the size of the project and the time it takes to build
the system. If a system takes eight hours to build, a daily build is proba-
bly more than frequent enough.

A regular build helps to highlight integration errors early. This is es-
pecially true if the tests built by the feature teams to test individual fea-
tures can be grouped together and run against the completed build to
smoke out any inconsistencies that have managed to find their way into
the build.

A regular build also ensures that there is always an up-to-date sys-
tem that can be demonstrated to the client, even if that system does only
a few simple tasks from a command line interface. Developing by feature,
of course, also means that those simple tasks are of discernible value to
the client.

Feature-Driven
Development—
Practices

51

ch03.qxd 1/14/02 3:40 PM Page 51

A regular build process can also be enhanced to:

• Generate documentation using tools such as JavaSoft’s Javadoc
or Together’s greatly enhanced documentation-generation ca-
pability.

• Run audit and metric scripts against the source code to high-
light any potential problem areas and to check for standards
compliance.

• Be used as a basis for building and running automated regres-
sion tests to verify that existing functionality remains un-
changed after adding new features. This can be invaluable for
both the client members and the development team.

• Construct new build and release notes, listing new features
added, defects fixed, etc.

These results can then be automatically published on the project
team or organization’s intranet so that up-to-the-minute documentation
is available to the whole team.

Configuration Management

Configuration management (CM) systems vary from the simple to
the grotesquely complex.

Theoretically, an FDD project only requires a CM system to identify
the source code for all the features that have been completed to date
and to maintain a history of changes to classes as feature teams enhance
them.

Realistically, a project’s demands on a CM system will depend on the
nature and complexity of the software being produced; for example,
whether multiple versions of the software need to be maintained,
whether different modules are required for different platforms or differ-
ent customer installations, and so on. This is not explicitly related to the
use of FDD; it is just business as usual on any sophisticated software de-
velopment project where work is being done on different versions of a
software system simultaneously.

It is a common fundamental mistake, however, to believe that only
source code should be kept under version control. It is as important
(maybe more important) to keep requirements documents, in whatever
form they take, under version control so that a change history is main-
tained. This is especially true if the requirements form a legal commer-
cial contract between two organizations.

Likewise, analysis and design artifacts should be kept under version
control so that it is easy to see why any changes were made to them.

Test cases, test harnesses and scripts, and even test results should
also be versioned-controlled so that history can be reviewed.

A Practical Guide
to Feature-Driven

Development

52

ch03.qxd 1/14/02 3:40 PM Page 52

Any artifact that is used and maintained during the development of
the system is a candidate for version control. Even contract documents
with clients of the system that document the legal agreement for what is
being built are candidates for versioning. The version of the process you
are using and any changes and adjustments that may be made during the
construction and maintenance of the system may need to be versioned
and variances documented and signed by Project Managers or Chief Pro-
grammers. This is especially true for systems that fall under regulation of
such governmental bodies as the U.S. Food and Drug Administration.

Reporting/Visibility of Results

Closely related to project control is the concept of “visibility,” which refers to the
ability to determine a project’s true status....If the project team can’t answer
such questions, it doesn’t have enough visibility to control its project.

The working software is a more accurate status report than any paper report
could ever be.

Steve McConnell [McConnell 98]

It is far easier to steer a vehicle in the right direction if we can see
precisely where we are and how fast we are moving. Knowing clearly
where we are trying to go also helps enormously.

A similar situation exists for the managers and team leaders of a
software project. Having an accurate picture of the current status of a
project and knowing how quickly the development team is adding new
functionality and the overall desired outcome provides team leads or
managers with the information they need to steer a project correctly.

FDD is particularly strong in this area. FDD provides a simple, low-
overhead method of collecting accurate and reliable status information
and suggests a number of straightforward, intuitive report formats for re-
porting progress to all roles within and outside a project.

Chapter 5, “Progress,” is dedicated to the subject of tracking and re-
porting progress on an FDD project, so we postpone any further discus-
sion on the subject until then.

FDD blends a number of industry-recognized best practices into a cohe-
sive whole. The best practices used in FDD are:

• Domain Object Modeling—a thorough exploration and explanation
of the domain of the problem to be solved, resulting in a frame-
work within which to add features.

Feature-Driven
Development—
Practices

53

Summary

ch03.qxd 1/14/02 3:40 PM Page 53

• Developing by Feature—driving and tracking development through
a functionally decomposed list of small, client-valued func-
tions.

• Individual Class Ownership—having a single person who is respon-
sible for the consistency, performance, and conceptual integrity
of each class.

• Feature Teams—doing design activities in small, dynamically
formed teams so that multiple minds are always applied to
each design decision, and multiple design options are always
evaluated before one is chosen.

• Inspections—applying the best-known defect-detection tech-
nique and leveraging the opportunities it provides to propagate
good practice, conventions, and development culture.

• Regular Builds—ensuring that there is always a demonstrable
system available and flushing out any integration issues that
manage to get past the design and code inspections. Regular
builds provide a known baseline to which to add more function
and against which a quality assurance team can test.

• Version Control—identifying the latest versions of completed
source code files and providing historical tracking of all infor-
mation artifacts in the project.

• Progress Reporting—frequent, appropriate, and accurate progress
reporting at all levels, inside and outside the project, based on
completed work.

In the next chapter, we look at exactly how these practices blend to-
gether to form the five FDD processes.

A Practical Guide
to Feature-Driven

Development

54

ch03.qxd 1/14/02 3:40 PM Page 54

