
182 �

For enterprise-component modeling to be successful, it must live and
breathe within a larger context, a software development process.

We’ve developed such a process in practice, and we detail it in this
chapter. We present Feature-Driven Development (FDD) in these sections:

1. The problem: accommodating shorter and shorter business cycles

2. The solution: feature-driven development

3. Defining feature sets and features

4. Establishing a process: why and how

5. The five processes within FDD

6. Chief programmers, class owners, and feature teams

7. Management controls: Tracking progress with precision

I feel a recipe is only a theme which an

intelligent cook can play each time with a

variation.

Madame Benoit

The ultimate judgment of progress is this:

measurable results in reasonable time.

Robert Anthony

I measure output, not input.

Lim Bak Wee

Feature-Driven Development

�

�6

�
�

6.1 THE PROBLEM: ACCOMMODATING
SHORTER AND SHORTER BUSINESS CYCLES

Despite the many advances in software development, it is not uncommon
for projects lasting two or more years to use a function-driven process:
from functional specs (in traditional paragraph format or in use-case for-
mat) to design to code to test to deployment. Along the way, some have
made minor modifications to the theme, allowing some influence from
iterations. Nevertheless, many software projects exceed budget, blow
schedule, and deliver something less than desired (something appropri-
ate two years earlier, yet no longer).

As if that weren’t enough pressure, the ever-increasing pace of tech-
nological advances makes it less and less likely that a project lasting more
than two years will ever succeed.

In fact, more and more, we are mentoring projects with total
schedules of 90, 120, or 180 days—or perhaps 9, 12, or 18 months. One
market-leader we work with considers any project longer than 180 days
as high-risk. Why? Their business changes so rapidly and the support-
ing technology changes so rapidly that planning nine months out adds
risk to the project.

That’s quite a change in perspective.
The authors of BLUR: The Speed of Change in the Connected Economy

put it this way:

Speed is the foreshortening of product life cycles from years to
months or even weeks. . . . Accelerated product life cycles and time-
based competition have become part of the business lingo. . . . The
faster things move, the less time you have to plan for them. You’re
much better off iterating and reiterating, adjusting as you go.

STAN DAVIS AND CHRISTOPHER MEYER [DAVIS98]

The norm for fast-cycle-time projects is a feature-driven iterative
process, beginning with features and modeling, followed by design-and-
build increments.

In this chapter, we formalize the process we call “Feature-Driven
Development” (FDD).

We’ve developed FDD in practice. Project teams apply it with sig-
nificant success.

Developers like it. With FDD, they get something new to work on
every two weeks. (Developers love new things.) With FDD, they get closure
every two weeks. Closure is an important must-have element for job satis-
faction. Getting to declare “I’m done” every two weeks is such a good thing.

Managers like it too. With FDD, they know what to plan and how
to establish meaningful milestones. They get the risk-reduction that

� 183

comes from managing a project that delivers frequent, tangible, working
results. With FDD, they get real percentage numbers on progress, for
example, being 57% complete and demonstrating to clients and to senior
management exactly where the project is.

Clients like it too. With FDD, they see plans with milestones that
they understand. They see frequent results that they understand. And
they know exactly how far along the project is at any point in time.

Yes, developers and managers and clients like FDD. Amazing yet true.

6.2 THE SOLUTION: FEATURE-DRIVEN
DEVELOPMENT

What if you and your team adopted a process for delivering frequent, tan-
gible, working results?

Think about it. You could plan for results, measure results, measure
your progress in a believable way, and demonstrate working results.

What might this mean for you and your career, the morale of your
team, and added business from your clients? Plenty of motivation!

FDD is a model-driven short-iteration process. It begins with estab-
lishing an overall model shape. Then it continues with a series of two-
week “design by feature, build by feature” iterations.

The features are small “useful in the eyes of the client” results.
Most iterative processes are anything but short and “useful in the

eyes of the client.” An iteration like “build the accounting subsystem”
would take too long to complete. An iteration like “build the persistence
layer” is not (directly at least) client-valued.

Moreover, long and IT-centric iterations make life difficult. It’s harder
to track what’s really going on during an iteration. And it’s harder to
engage the client, not having a steady stream of client-valued results to
demonstrate along the way.

In contrast, a small feature like “assign unique order number” is both
short and client-valued. In fact, a client knows exactly what it is, can
assign a priority to it, can talk about what is needed, and can assess
whether or not it truly meets the business need.

A small feature is a tiny building block for planning, reporting, and
tracking. It’s understandable. It’s measurable. It’s do-able (with several
other features) within a two-week increment.

As in any other development process, FDD prescribes a series of steps
and sub-steps. Unlike other processes, FDD uniquely:

� uses very small blocks of client-valued functionality, called features
(allowing users to describe what they want in short statements,
rather than having to force those thoughts into a “the user does
this, the system does that” format),

� organizes those little blocks into business-related groupings (solv-
ing the dilemma of what level one should write use-cases for),

184 � Java Modeling in Color with UML

� focuses developers on producing working results every two weeks,

� facilitates inspections (making inspections, a best practice, easier
to accept and simpler to apply),

� provides detailed planning and measurement guidance,

� promotes concurrent development within each “design by feature,
build by feature” increment,

� tracks and reports progress with surprising accuracy, and

� supports both detailed tracking within a project and higher-level
summaries for higher-level clients and management, in business
terms.

6.3 DEFINING FEATURE SETS AND FEATURES

A feature is a client-valued function that can be implemented in two weeks
or less.

We name a feature using this template:

<action> the <result> <by|for|of|to> a(n) <object>

where an object is a person, place, or thing (including roles, moments in
time or intervals of time, or catalog-entry-like descriptions)

For example,

� Calculate the total of a sale.

� Assess the fulfillment timeliness of a sale.

� Calculate the total purchases by a customer.

A feature set is a grouping of business-related features. We name a fea-
ture set this way:

<action><-ing> a(n) <object>

An example is “making a product sale.”
And we name a major feature set this way:

<object> management

An example is “product-sales management.”
We start an informal features list while developing the overall model.

We write down features we hear from domain members and glean con-
tent from documents we are working with.

We build a detailed features list after developing an overall model.
Some features come by transforming methods in the model to features.
Most features come from considering each pink moment-interval (busi-
ness areas) and writing down the features.

For example, see the model snippet in Figure 6-1.

Feature-Driven Development � 185

We could transform its methods into:

� Feature set

Making a product sale to a customer

� Features

Calculate the total of a sale.

Assess fulfillment timeliness for a sale.

Calculate the total purchases by a customer.

Yet we can do even more, considering additional features that will
better satisfy client wants and needs. Here’s an example:

� Major feature set

Product-sale management

� Feature set

Making a product sale to a customer

� Features

Calculate the total of a sale.

Assess the fulfillment timeliness for a sale.

Calculate the total purchases by a customer.

Calculate the tax for a sale.

Assess the current preferences of a customer.

For each additional feature, we add corresponding methods to the
model. Normally we don’t do this right away, but rather during the
“design by feature, build by feature” iterations.

In practice, we’ve seen again and again that building an overall model
and an informal features list before developing a detailed features list:

� brings domain members together to talk with each other, listen to
each other, and develop a common model of the business—before
developing a fully detailed features list,

� increases developer members’ understanding about the domain
and how things interrelate within it (even if they have built sys-
tems in the domain before),

186 � Java Modeling in Color with UML

0..*11 0..*

<<moment-interval>>

ProductSale

calcTotal

assessTimelinessOfDelivery

<<role>>

Customer

calcTotal

FIGURE 6-1. � A model snippet.

� fosters more creativity and innovation (visual models in color
engage spatial thinking, a creativity must-have before moving into
linguistic and mathematical-logical thinking),

� encourages exploring “what could be done, what might be done,
and what could make a real difference” before locking oneself into
a fixed system boundary (“the user does this, the system does
that”), and

� leads to the discovery of feature sets and features that bring sig-
nificant business advantage, rather than passively scribing down
the needs for yet another system.

6.4 ESTABLISHING A PROCESS:WHY AND HOW

This section explores these questions:

1. Why use a process?

2. Who selects tools for a process?

3. How might one describe a process?

6.4.1 Why Use a Process?

We think most process initiatives are silly. Well-intentioned managers and
teams get so wrapped up in executing process that they forget that they
are being paid for results, not process execution.

Process for process’ sake alone, as a matter of “process pride,” is a
shame. Having hundreds of pages of steps to execute demoralizes the
team members, to the point that they willingly turn off their minds and
simply follow the steps.

Process over-specification does far more harm than good. The
process takes on a life of its own and consumes more and more time that
could be otherwise spent actually developing software.

A decade ago, one of us wrote up a 110-page process for a large
development team. No matter how hard he tried to defend every
word of his process as something of great value, the team members
looked at the four-page summary in the back and ignored the rest of
what he thought was valuable content. He learned from that experience:
No matter how much process pride you might have as a leader, short
one- to two-page process guides are what developers really want and
need.

No amount of process over-specification will make up for bad peo-
ple. Far better: Staff your project with good people, do whatever it takes
to keep them happy, and use simple, well-bounded processes to guide
them along the way.

A well-defined and (relatively speaking) lightweight process can help
your team members work together to achieve remarkable and notewor-
thy results. This is significant and worthy of additional consideration.

Feature-Driven Development � 187

In this light then, let’s take a look at the top reasons for developing
and using a process:

1. Move to larger projects and repeatable success.

2. Bring new staff in with a shorter ramp-up time.

3. Focus on high-payoff results.

6.4.1.1 Move to larger projects and repeatable success.
To move to larger projects and repeatable success, you need a good
process, a system for building systems.

Simple, well-defined processes work best. Team members apply them
several times, make refinements, and commit the process to memory. It
becomes second nature to them. It becomes a good habit.

Good habits are a wonderful thing. They allow the team to carry out
the basic steps, focusing on content and results, rather than process steps.
This is best achieved when the process steps are logical and their worth
immediately obvious to each team member.

With complex processes, about all you can hope for is “process
pride,” since learning and applying the process can keep you away from
getting the real work accomplished.

With good habits in using simple, well-defined processes, the process
itself moves from foreground to background. Team members focus on
results rather than process micro-steps. Progress accelerates. The team
reaches a new stride. The team performs!

6.4.1.2 Bring new staff in with a shorter ramp-up time.
Well bounded, simple processes allow the easy introduction of new staff:
it dramatically shortens their learning curves and reduces the time it takes
to become effective and efficient. When there is a practiced and simple sys-
tem in place, it takes far less time for someone new to understand how
things are done and to become effective. Standardization benefits also
come into play here if processes are subject to them (standard language,
process templates, naming conventions, where to find things, and the like).

It is far more effective to be able to spend a little time on process
training and a lot of time on problem-domain training. The ramp-up to
being productive will be shorter and much more efficient.

6.4.1.3 Focus on high-payoff results.
We’ve seen far too many technologists going beyond what is needed, and
in extreme cases striving for (unattainable) perfection on one part of a pro-
ject, without considering the other parts they compromise by doing so.

It’s absolutely essential that your team focuses and stays focused on
producing high-payoff results. Here are some suggestions for doing just that.

Help the team come to grips with this proverb:

Every time you choose to do, you choose to leave something else
undone. Choose wisely.

PETER COAD SR.

188 � Java Modeling in Color with UML

That means (in this context) setting and keeping priorities, building
the must-have features, getting to “good enough,” and not going beyond
till other features get their due.

Make weekly progress reports visible to everyone on the team. And
make individual progress visible at each desk. Here’s how: Use your own
form of “features completed on time” scorecards. Some organizations use
colorful stickers for this, indicating “feature kills” (features completed on
time) and “feature misses” (features that are late). The politically correct
prefer “feature wins” rather than “feature kills.”

6.4.2 Who Selects Tools for a Process?

Across-the-team-uniformity of tools in dealing with the various process
artifacts streamlines what you do. So project tool selection is another
important area to have well bounded.

Yet who selects tools? And who builds them?
We find that it’s a good idea to designate a Tools Board, one or more

people with the charter of defining tools to support the process, selecting
most tools from vendors, and building smaller in-house tools as needed.

Use the Tools Board to drive all tooling decisions. And use its exis-
tence to thwart side-tracks by your best and brightest (who might occa-
sionally fall in love with a custom tool and spend valuable time designing
and building that tool, rather than designing and building client-valued
project results).

But beware: Tools for the sake of tools is just as bad as process for
the sake of process. Tools support the process. The Tool Board should
strive to ensure that the tools work well together in a team environ-
ment. If a tool gets in the way, get rid of it. Tools are a means to an
end.

6.4.3 How Might One Describe a Process?

The best processes we’ve applied were expressed in one or two pages.
Surprised? It takes extra effort to write a process with simplicity, clarity,
and brevity. As Pascal once put it:

I have made this letter longer than usual, because I lack the time to
make it short.1

BLAISE PASCAL

Feature-Driven Development � 189

1“Je n’ai fait cette lettre plus longue que parce que je n’ai pas eu le loisir de la faire plus
courte.” Blaise Pascal, Lettres Provinciales (1656–1657), no. 4.

The best pattern we’ve found for writing process templates is called
ETVX: Entry, Task, Verification, and eXit:

1. Specify clear and well defined entry criteria for the process (can’t
start without these precursors).

2. Then list the tasks for that process with each task having a title,
the project roles that participate in that task, whether that task
is optional or required, and a task description (what am I to be
doing?).

3. Next, specify the means of verification for the process (when
have I accomplished “good enough” functionality?).

4. Finally, specify the exit criteria for the process, that is, how you
know when you are complete and what the outputs (work prod-
ucts) are.

Clearly defined process tasks allow you to progress more efficiently.
Without them, each developer makes his own way and ends up working
harder than necessary to get the desired results.

Exit criteria must define tangible outputs. Define what the produced
work products are, what the format is, and where the results go.

6.5 THE FIVE PROCESSES WITHIN FDD

This section presents the five processes within FDD (Figure 6-2):
� Process #1: Develop an overall model (using initial requirements/

features, snap together with components, focusing on shape).

� Process #2: Build a detailed, prioritized features list.

� Process #3: Plan by feature.

� Process #4: Design by feature (using components, focusing on
sequences).

� Process #5: Build by feature.

190 � Java Modeling in Color with UML

Develop
an

Overall
Model

Build
a

Features
List

Plan
by

Feature

Design
by

Feature

Build
by

Feature

components components

shape sequences

FIGURE 6-2. � The five processes within FDD.

FDD Process #1: Develop an Overall Model
Domain and development members, under the guidance of an experienced component/object modeler (chief architect), work
together in this process. Domain members present an initial high-level, highlights-only walk-through of the scope of the system
and its context. The domain and development members produce a skeletal model, the very beginnings of that which is to follow.
Then the domain members present more detailed walkthroughs. Each time, the domain and development members work in
small sub-teams (with guidance from the chief architect); present sub-team results; merge the results into a common model
(again with guidance from the chief architect), adjusting model shape along the way.

In subsequent iterations of this process, smaller teams tackle specialized domain topics. Domain members participate in many
yet not all of those follow-up sessions.

Entry Criteria
The client is ready to proceed with the building of a system. He might have a list of requirements in some form.Yet he is not
likely to have come to grips with what he really needs and what things are truly “must have” vs. “nice to have.” And that’s okay.

Tasks
Form the Modeling Team Project Management Required

The modeling team consists of permanent members from both domain and development areas. Rotate other project staff
through the modeling sessions so that everyone gets a chance to observe and participate.

Domain Walkthrough Modeling Team Required

A domain member gives a short tutorial on the area to be modeled (from 20 minutes to several hours, depending upon the
topic). The tutorial includes domain content that is relevant to the topic yet a bit broader than the likely system scope.

Study Documents Modeling Team Optional

The team scours available documents, including (if present): component models, functional requirements (traditional or
use-case format), data models, and user guides.

Build an Informal Features List Chief Architect, Chief Programmers Required

The team builds an informal features list, early work leading up to FDD Process #2. The team notes specific references
(document and page number) from available documents, as needed.

Develop Sub-team Models Modeling Team in Small Groups Required

The Chief Architect may propose a component or suggest a starting point. Using archetypes (in color) and components, each
sub-team builds a class diagram for the domain under consideration, focusing on classes and links, then methods, and finally
attributes. The sub-teams add methods from domain understanding, the initial features list, and methods suggested by the
archetypes. The sub-teams sketch one or more informal sequence diagrams, too.

Develop a Team Model Chief Architect, Modeling Team Required

Each sub-team presents its proposed model for the domain area. The chief architect may also propose an additional
alternative. The modeling team selects one of the proposed models as a baseline, merges in content from the other models,
and keeps an informal sequence diagram. The team updates its overall model. The team annotates the model with notes,
clarifying terminology and explaining key model-shape issues.

Log Alternatives Chief Architect, Chief Programmers Required

A team scribe (a role assigned on a rotating basis) logs notes on significant modeling alternatives that the team evaluated, for
future reference on the project.

Verification
Internal and External Assessment Modeling Team Required

Domain members, active in the process, provide internal self-assessment. External assessment is made on an as-needed
basis, to clarify domain understanding, functionality needs, and scope.

Exit Criteria
To exit this process, the team must deliver the following results, subject to review and approval by the development manager
and the chief architect:
� Class diagrams with (in order of descending importance) classes, links, methods, and attributes. Classes and links establish

model shape. Methods (along with the initial features list and informal sequence diagrams) express functionality and are the
raw materials for building a features list. Plus informal sequence diagrams.

� Informal features list
� Notes on significant modeling alternatives

Feature-Driven Development � 191

FDD Process #2: Build a Features List
The team identifies the features, groups them hierarchically, prioritizes them, and weights them.

In subsequent iterations of this process, smaller teams tackle specialized feature areas. Domain members participate in many
yet not all of those follow-up sessions.

Entry Criteria
The modeling team has successfully completed FDD Process #1, Develop an Overall Model.

Tasks
Form the Features-List Team Project Manager, Development Manager Required

The features-list team consists of permanent members from the domain and development areas.

Identify Features, Form Feature Sets Features-List Team Required

The team begins with the informal features list from FDD Process #1. It then:
� transforms methods in the model into features,
� transforms moment-intervals in the model into feature sets (and groupings of moment-intervals into major feature sets),
� (and mainly it) Brainstorms, selects, and adds features that will better satisfy client wants and needs.
It uses these formats:
� For features: <action> the <result> <by|for|of|to> a(n) <object>
� For feature sets: <action><-ing> a(n) <object>
� For major feature sets: <object> management
where an object is a person, place, or thing (including roles, moments in time or intervals of time, or catalog-entry-like
descriptions)

Prioritize the Feature Sets and Features Features-List Team Required

A subset of the team, the Features Board establishes priorities for feature sets and features. Priorities are A (must have),
B (nice to have), C (add it if we can), or D (future). In setting priorities, the team considers each feature in terms of client
satisfaction (if we include the feature) and client dissatisfaction (if we don’t).

Divide Complex Features Features-List Team Required

The development members, led by the chief architect, look for features that are likely to take more than two weeks to complete.
The team divides those features into smaller features (steps).

Verification
Internal and External Assessment Features-List Team Required

Domain members, active in the process, provide internal self-assessment. External assessment is made on an as-needed
basis, to clarify domain understanding, functionality needs, and scope.

Exit Criteria
To exit this process, the features-list team must deliver a detailed features list, grouped into major feature sets and feature sets,
subject to review and approval by the development manager and the chief architect.

192 � Java Modeling in Color with UML

FDD Process #3: Plan by Feature
Using the hierarchical, prioritized, weighted features list, the project manager, the development manager, and the chief
programmers establish milestones for “design by feature, build by feature” iterations.

Entry Criteria
The features-list team has successfully completed FDD Process #2, Build a Features List.

Tasks
Form the Planning Team Project Manager Required

The planning team consists of the project manager, the development manager, and the chief programmers.

Sequence Major Feature Sets and Features Planning Team Required

The planning team determines the development sequence and sets initial completion dates for each feature set and major
feature set.

Assign Classes to Class Owners Planning Team Required

Using the development sequence and the feature weights as a guide, the planning team assigns classes to class owners.

Assign Major Feature Sets and Features
to Chief Programmers Planning Team Required

Using the development sequence and the feature weights as a guide, the planning team assigns chief programmers as owners
of feature sets.

Verification
Self Assessment Planning Team Required

Planning-team members, active in the process, provide internal self-assessment. External assessment is made on an as-
needed basis, with senior management. Balance pure top-down planning by allowing developers an opportunity to assess the
plan. Naturally, some developers are too conservative and want to extend a schedule. But, by contrast, project managers or
chief programmers may tend to cast schedules in light of the “everyone is as capable as I am” syndrome. Or they may be trying
to please stakeholders by being optimistic on a delivery date. Strike a balance.

Exit Criteria
To exit this process, the planning team must produce a development plan, subject to review and approval by the development
manager and the chief architect:
� An overall completion date
� For each major feature set, feature set, and feature: its owner (CP) and its completion date
� For each class, its owner

Notes
We find that establishing a Future Features Board (FFB) accelerates feature prioritization. It also allows everyone else to play
“good cops” and the FFB to play “bad cops.” (“Sounds like a great feature. Let’s see how the FFB prioritizes it.”)

Feature-Driven Development � 193

FDD Process #4: Design by Feature (DBF)

A chief programmer takes the next feature, identifies the classes likely to be involved, and contacts the corresponding class
owners. This feature team works out a detailed sequence diagram. The class owners write class and method prologs. The team
conducts a design inspection.

Entry Criteria
The planning team has successfully completed FDD Process #3, Plan by Feature.

Tasks
Form a DBF Team Chief Programmer Required

The chief programmer identifies the classes likely to be involved in the design of this feature. From the class ownership list, the
chief programmer identifies the developers needed to form the feature team. He contacts those class owners, initiating the
design of this feature. He contacts a domain member too, if he needs one to help design this feature.

Domain Walkthrough Feature Team, Domain Optional

(This task is optional, depending upon feature complexity.) The domain member gives an overview of the domain area for the
feature under consideration. He includes domain information that is related to the feature but not necessarily a part of its imple-
mentation to help set context.

Study the Referenced Documents Feature Team Optional

(This task is optional, depending upon feature complexity.) Using referenced documents from the features list and any other
pertinent documents they can get their hands on, the feature team studies the documents, extracting detailed supporting
information about and for the feature.

Build a Sequence Diagram Feature Team Required

Applying their understanding of the feature, plus components and informal sequence diagrams, the feature team builds a
formal, detailed sequence diagram for the feature. The team logs design alternatives, decisions, assumptions, and notes. The
chief programmer adds the sequence diagram (and corresponding class-diagram updates, as is nearly always the case) to the
project model.

Write Class and Method Prologs Feature Team Required

Each class owner updates his class and method prologs for his methods in the sequence diagram. He includes parameter
types, return types, exceptions, and message sends.

Design Inspection Feature Team Required

The feature team conducts a design inspection. The chief programmer invites several people from outside the team to
participate, when he feels the complexity of the feature warrants it.

Log Design-Inspection Action Items Scribe Required

A team scribe logs design-inspection action items for each class owner, for follow-up by that class owner.

Verification
Design Inspection Feature Team Required

The feature team walks through its sequence diagram(s) to provide an internal self-assessment. External assessment is made
on an as-needed basis, to clarify functionality needs and scope.

Exit Criteria
To exit this process, the feature team must deliver the following results, subject to review and approval by the chief programmer
(with oversight from the chief architect):
� The feature and its referenced documents (if any)
� The detailed sequence diagram
� Class-diagram updates
� Class and method prolog updates
� Notes on the team’s consideration of significant design alternatives

194 � Java Modeling in Color with UML

FDD Process #5: Build By Feature (BBF)

Starting with a DBF package, each class owner builds his methods for the feature. He extends his class-based test cases and
performs class-level (unit) testing. The feature team inspects the code, perhaps before unit test, as determined by the chief pro-
grammer. Once the code is successfully implemented and inspected, the class owner checks in his class(es) to the
configuration management system. When all classes for this feature are checked in, the chief programmer promotes the
code to the build process.

Entry Criteria
The feature team has successfully completed FDD Process #4, Design by Feature, for the features to be built during this
DBF/BBF iteration.

Tasks
Implement Classes and Methods Feature Team Required

Each class owner implements the methods in support of this feature as specified in the detailed sequence diagram developed
during DBF. He also adds test methods. The chief programmer adds end-to-end feature test methods.

Code Inspection Feature Team Required

The chief programmer schedules a BBF code inspection. (He might choose to do this before unit testing or after unit testing.)
The feature team conducts a code inspection (with outside participants when the chief programmer sees the need for such
participation).

Log Code-Inspection Action Items Scribe Required

A team scribe logs code-inspection action items for each class owner, for follow-up by that class owner.

Unit Test Feature Team Required

Each class owner tests his code and its support of the feature. The chief programmer, acting as the integration point for the
entire feature, conducts end-to-end feature testing.

Check in and Promote to the Build Process Feature Team Required

Once the code is successfully implemented, inspected and tested, each class owner checks in his classes to the configuration
management system. When all classes for the feature are checked in and shown to be working end-to-end, the chief
programmer promotes the classes to the build process. The chief programmer updates the feature’s status in the features list.

Verification
Code Inspection and Unit Test Feature Team Required

The features team conducts a code inspection. A team scribe logs action items for each class owner.

Exit Criteria
To exit this process, the feature team must deliver the following results, subject to review and approval by its chief programmer:
� Implemented and inspected methods and test methods
� Unit test results, for each method and for the overall sequence
� Classes checked in by owners, features promoted to the build process and updated by the chief programmer

Feature-Driven Development � 195

6.6 CHIEF PROGRAMMERS, CLASS OWNERS,
AND FEATURE TEAMS

In FDD, two roles are essential elements: chief programmers and class
owners. And one sociological structure is key: feature teams. Let’s take a
closer look at these three.

6.6.1 Chief Programmer

Feature-driven development requires someone to lead the DBF/BBF
processes, feature by feature, leading by example (as a designer and pro-
grammer) and by mentoring (especially by way of inspections).

The number of chief programmers limits how fast and how far you can
go with your project. If you want to increase project speed, recruit another
chief programmer. A chief programmer in this context is someone who is
significantly more productive than others on your team. The amplifying fac-
tor comes from a combination of raw talent, skills, training, and experience.
Occasionally all those talents come together within one human being.

Adding more programmers tends to slow down a project, as Fred
Brooks observed decades ago. We find this to be true with one exception:
with small, client-valued features and lightweight processes, when you
add a chief programmer then you can add people around him and actu-
ally accelerate a project by increasing the amount of in-parallel develop-
ment you can tackle—but again, only to a point.

6.6.2 Class Owner

A class owner is someone responsible for the design and implementation
of a class. We find this works very effectively. First, developers gain a sense
of ownership of some part of the code, and we find pride of ownership a
good and motivating force. Second, it brings local consistency to a class
(just one programmer touches the code).

The norm is one class, one class owner. Occasionally, for a class with
algorithmically complex methods, you might need one class, one class
owner, and one algorithm programmer.

Yet FDD organizes activities by feature, not by class. As it should. After
all, FDD is all about producing frequent, tangible, working results—small,
client-value features! Clients use features. They do not use the organizational
framework that developers use to implement little pieces of a feature.

6.6.3 Feature Teams

We assign features to a chief programmer. He takes each feature and iden-
tifies the likely class owners who will be involved in delivering that fea-
ture. Then he forms a temporary, “lasts just a week or two” team, called
a feature team (Figure 6-3).

Class owners work on more than one feature team at a time. Feature-
team membership may change with each DBF/BBF iteration.

196 � Java Modeling in Color with UML

The chief programmer is just that, the chief! The interactions within
the team are primarily between the chief programmer and the other team
members (Figure 6-4). Why? We encourage this approach to accelerate
progress, ensure on-going mentoring of the team members by the chief
programmer, and promote uniformity of design and implementation.

Overall, the chief architect mentors the chief programmers, who in
turn mentor the class owners within a feature team.

6.7 TRACKING PROGRESS WITH PRECISION

How much time do teams spend within each of the five processes of FDD?
Here are some useful guidelines (Figure 6-5):

Develop an overall model. 10% initial, 4% ongoing

Build a features list. 4% initial, 1% ongoing

Plan by feature. 2% initial, 2% ongoing

Design by feature, build by feature. 77% (cycle time: every 2 weeks)

Feature-Driven Development � 197

FIGURE 6-3. � Feature-team membership may change
with each DBF/BBF iteration.

Chief
Programmer

Class
Owners

FIGURE 6-4. � Interactions
within a feature team.

Again, the percentages are useful guidelines (not absolutes).
The initial “develop an overall model, build a features list, and plan

by feature” sequence consumes 16% of project schedule. The ongoing iter-
ations of those front-end activities grab another 7%.

It’s the other 77% we’re concerned about in this section, the time
spent in the many “design by feature, build by feature” iterations.

DBF/BBF consists of six little processes and corresponding schedule-
percentage guidelines (Figure 6-6):

� DBF

Walk through the domain. 1%

Design. 40%

Inspect the design. 3%

� BBF

Code/test. 45%

Inspect the code. 10%

Promote to build. 1%

198 � Java Modeling in Color with UML

Develop
an

Overall
Model

Build
a

Features
List

Plan
by

Feature

Design
by

Feature

Build
by

Feature

components components

shape sequences

10% initial
4% ongoing

4% initial
1% ongoing

2% initial
2% ongoing

77%
cycle time: every two weeks

FIGURE 6-5. � FDD processes with schedule percentages.

Walk
Through

the
Domain

Design Inspect
the

Design
Code Inspect

the
Code

Promote
to

Build

DBF BBF

1% 40% 3% 45% 10%
56%44%

1%

FIGURE 6-6. � DBF/BBF milestone with schedule percentages.

Note that the 45% for coding includes building unit-test methods
and conducting units tests.

When applying DBF/BBF, do teams really spend less time designing
(40% of DBF/BBF) than coding (45% of DBF/BBF)? Yes. Yet if we consider
all of FDD and include initial object modeling when doing the compari-
son, we gain a bit more perspective on what is really happening here:
Teams spend more time modeling and designing (45% of FDD) than cod-
ing (35% of FDD). The adage is still true: Succeed to plan, plan to succeed.

We plan for and track each DBF/BBF milestone. Remember that the
total time from beginning to end is two weeks or less. So these milestones
are very tiny—maybe “inch-pebbles.”

The combination of small client-valued features and these six
DBF/BBF milestones is the secret behind FDD’s remarkable ability to track
progress with precision.

Here’s an example: For a given feature, once you’ve walked through the
domain and designed the feature, you count that feature as 41% complete.

6.7.1 Reporting

The release manager meets weekly with the chief programmers. In this 30-
minutes-or-less meeting, each chief programmer verbally walks through the
status of his features, marking up the project-tracking chart as he goes.
Doing this together, verbally, is a good way to make sure the chief pro-
grammers take time to listen to each other and are aware of where the oth-
ers are at in the development process. At the end of the meeting, the release
manager takes those results, updates the database, and generates reports.

The release manager issues progress reports weekly, for the team
(Figure 6-7) and for clients and senior management (Figure 6-8).

For upper management and client reporting, we report the percent-
age complete for each major feature set and feature set on a monthly
basis. In fact, we like to report progress visually. We draw rectangles for
each major feature set, and then inside each rectangle we draw rectangles
for each feature set. Then inside the inner rectangles, we show the fea-
ture-set name, a progress bar showing percent complete, and the planned
completion month. See Figure 6-9.

Note that the symbol is in three sections. Each section has its own
color-coding scheme. The upper section indicates overall status: work in
progress (yellow), attention (red), completed (green), and not yet started
(white). The middle section shows percent complete: percent complete
(green). The lower section illustrates completion status: the targeted com-
pletion month, or completed (green). When a feature set is fully complete,
the entire box turns green.

Figure 6-10 shows what this would look like in a project-wide view.

Feature-Driven Development � 199

Id
D

es
cr

ip
ti

o
n

C
h

ie
f

C
la

ss
W

al
k-

th
ro

u
g

h
D

es
ig

n
D

es
ig

n
 In

sp
ec

ti
o

n
D

ev
el

o
p

m
en

t
C

o
d

e
In

sp
ec

ti
o

n
Pr

o
m

o
te

 to
 B

u
ild

Pr
o

g
ra

m
m

er
O

w
n

er
s

Pl
an

n
ed

A
ct

u
al

Pl
an

n
ed

A
ct

u
al

Pl
an

n
ed

A
ct

u
al

Pl
an

n
ed

A
ct

u
al

Pl
an

n
ed

A
ct

u
al

Pl
an

n
ed

A
ct

u
al

<
M

aj
o

r F
ea

tu
re

-S
et

 N
am

e>
.<

Fe
at

u
re

-S
et

 N
am

e>
 (<

o

f f
ea

tu
re

s>
)

C
o

m
p

le
ti

o
n

 p
er

ce
n

ta
g

e
fo

r t
h

is
 fe

at
u

re
 s

et
:_

_%

Ex
p

ec
te

d
 c

o
m

p
le

ti
o

n
 m

o
n

th
 fo

r t
h

is
 fe

at
u

re
 s

et
:<

m
o

n
th

>
 <

ye
ar

>
.

F
IG

U
R

E
 6

-7
.

�
Fe

at
u

re
 t

ra
ck

in
g

 d
u

ri
n

g
 D

B
F/

B
B

F.

Fe
at

u
re

 S
et

 (<

o
f f

ea
tu

re
s>

)
To

ta
l

N
o

t
In

Be

h
in

d

C
o

m
p

le
ti

o
n

Fe
at

u
re

s
St

ar
te

d
Pr

o
g

re
ss

Sc
h

ed
u

le
C

o
m

p
le

te
d

In
ac

ti
ve

%
 C

o
m

p
le

te
d

D
at

e

<
M

aj
o

r F
ea

tu
re

-S
et

 N
am

e>
 (<

o

f f
ea

tu
re

s>
)

F
IG

U
R

E
 6

-8
.

�
M

aj
o

r
fe

at
u

re
 s

e
t

an
d

 fe
at

u
re

 s
e

t
tr

ac
ki

n
g

 d
u

ri
n

g
 D

B
F/

B
B

F
(in

cl
u

d
e

s
p

ro
je

ct
-w

id
e

 t
o

ta
ls

,t
o

o
)

200 �

Feature-Driven Development � 201

Work in progress

Completed

Not yet started

Targeted Completion Month

Attention (i.e., Behind Schedule)

Overall Status:

Progress bar

Completion Percentage:

Completed

Completion Status:

MY

Making
Product

Assessments
(14)

Dec 2001

75%

CP-1

Example:
Feature Set: Making Product Assessments–

Work in Progress

CP-1 is the Chief Programmer's Initials

(14) there are fourteen features that make
up this feature set

Feature Set is 75% complete

Target is to complete in Dec 2001

FIGURE 6-9. � Reporting progress to upper management and clients.

Making
Product

Assessments
(14)

Dec 2001

75%

CP-1
Invoicing

Sales
(33)

Dec 2001

3%

CP-1
Delivering
Products

(10)

Dec 2001

30%

CP-3
Shipping
Products

(19)

Dec 2001

10%

CP-1
Selling

Products
(22)

Nov 2001

99%

CP-1
Setting up

Product
Agreements

(13)

Dec 2001

CP-2

Product Sale Management (PS)

Logging
Account

Transactions
(30)

Nov 2001

82%

CP-2
Opening

New
Accounts

(11)

Oct 2001

100%

CP-2
Evaluating

Account
Applications

(23)

Oct 2001

95%

CP-2

Customer A/C Mgmt (CA)

Moving
Content

(19)

Nov 2001

82%

CP-3
Accepting
Movement
Requests

(18)

Nov 2001

97%

CP-3
Establishing

Storage Units
(26)

Nov 2001

100%

CP-3

Inventory Mgmt (IM)

Work in progress Attention Completed Progress Bar Not StartedKEY:

FIGURE 6-10. � Reporting project-wide progress to upper management and clients.

6.7.2 Keeping a Features Database

Capture these items in your features database:

� Type (problem domain, human interaction, or system interaction)

� Identifier (feature-set prefix plus a sequence number)

� Status (on-hold, no longer required, normal)

� Major feature set

� Feature set

� Document references

� Action items

� Chief programmer

� Domain walk-through plan date, actual date

� Design plan date, actual date

� Design-inspection plan date, actual date

� Code plan date, actual date

� Code-inspection plan date, actual date

� Promote-to-build plan date, actual date

� Remarks

Track classes and owners in a separate table.
Automate reporting functions using your features database.

6.8 SUMMARY AND CONCLUSION

Feature-driven development is a process for helping teams produce fre-
quent, tangible working results. It uses very small blocks of client-
valued functionality, called features. FDD organizes those little blocks
into business-related feature sets. FDD focuses developers on producing
working results every two weeks. FDD includes planning strategies. And
FDD tracks progress with precision.

We hope that you enjoy putting color archetypes, components, and
feature-driven development to work on your projects. We wish you good
success!

For ongoing news and updates, subscribe to The Coad Letter (a free
series of special reports on better modeling and design, www.oi.com/
publications.htm) and visit the Java Modeling home page (for additional
components, updates, and more, www.oi.com/jm-book.htm).

Yours for better modeling and processes,

Peter Coad (pc@oi.com)

Eric Lefebvre (lefee@groupe-progestic.com)

Jeff De Luca (jdl@nebulon.com)

202 � Java Modeling in Color with UML

REFERENCES

[Brooks95] Brooks, Frederick P., Jr., The Mythical Man Month: Essays on
Software Engineering. Anniversary Edition. Reading, MA: Addison
Wesley, 1995.

[Davis98] Davis, Stan, and Christoper Meyer, BLUR: The Speed of Change
in the Connected Economy. Reading, MA: Perseus Books, 1998.

Feature-Driven Development � 203

