
Resolution in Max-SAT and its relation to local consistency in weighted CSPs

Javier Larrosa, Federico Heras
{larrosa, fheras }@lsi.upc.edu

Dept. LSI, Universitat Politecnica de Catalunya
Barcelona, Spain

Abstract

Max-SAT is an optimization version of the well-
known SAT problem. It is of great importance from
both a theoretical and a practical point of view. In
recent years, there has been considerable interest
in finding efficient solving techniques[Alsinet et
al., 2003; Xing and Zhang, 2004; Shen and Zhang,
2004; de Givryet al., 2003]. Most of this work
focus on the computation of good quality lower
bounds to be used within a branch and bound algo-
rithm. Unfortunately, lower bounds are described
in a procedural way. Because of that, it is difficult
to realize thelogic that is behind.
In this paper we introduce a logical framework for
Max-SAT solving. Using this framework, we in-
troduce an extension of the Davis-Putnam algo-
rithm (that we call Max-DPLL) and the resolution
rule. Our framework has the advantage of nicely
integrating branch and bound concepts such as the
lower and upper bound, as well as hiding away
implementation details. We show that Max-DPLL
augmented with a restricted form of resolution at
each branching point is an effective solving strat-
egy. We also show that the resulting algorithm is
closely related with some local consistency proper-
ties developed for weighted constraint satisfaction
problems.

1 Introduction
Since the eighties, bothboolean satisfiabilityandconstraint
satisfactionhave been the topic of intense algorithmic re-
search. In both areas, the goal is to assign values to variables
in such a way that no forbidden combination of values appear
in the solution. In satisfiability, forbidden combinations are
specified by means ofclauses. In constraint satisfaction they
are specified by means of arbitraryconstraints. Given its sim-
ilarity, it is hardly a surprise that both research communities
have developed closely related techniques.

In both fields, the original decision problem (SAT and
CSP, respectively) has been augmented to deal with unfea-
sible problems (namely, not all the clauses or constraints
can be satisfied). The new goal is to find an assignment

that best respects the clauses/constraints. Two well-known
examples are Max-SAT[Hansen and Jaumard, 1990] and
weightedCSP (WCSP)[Bistarelli et al., 1999], where most
of recent algorithmic work has focused. In both cases the
importance of the clauses/constraints is given by aweight
and the goal is to minimize the sum of weights associated
with the clauses/constraints violated by the assignment. It is
known that Max-SAT instances can be translated into WCSP
instances and vice versa[de Givryet al., 2003]. In both cases
the main solving technique are enumeration algorithms based
on branch and bound search.

In the CSP side, several local consistency properties have
been recently generalized to the WCSP framework[Cooper,
2003; Larrosa and Schiex, 2004; 2003; de Givryet al., 2005].
As a result, a new family of algorithms have been proposed.
Besides being efficient, these algorithms have a highly desir-
able property: they can be neatly described as a basic back-
tracking search in which certain local consistency property is
enforced at every search state.

In [de Givryet al., 2003], it was shown that Max-SAT in-
stances could be efficiently solved by translating them into
equivalent WCSP instances and later using a WCSP solver.
The level of local consistency maintained by the WCSP
solver was fundamental in the efficiency of the algorithm.

In this paper we analyze the interpretation of WCSP lo-
cal consistency properties and related algorithms when ap-
plied to Max-SAT instances. To facilitate the connection, we
start by providing a reformulation of Max-SAT in which it
is possible to explicitly express a lower and an upper bound
of the optimal cost (Section 3). Such reformulation makes
possible an elegant extension of DPLL in which each branch-
ing point is just a Max-SAT instance, similarly to what hap-
pens with DPLL in SAT (Section 4). In Section 5 we present
our main contribution: a generalization of the resolution rule
(x∨A, x̄∨B⇒ A∨B) and the proof that neighborhood reso-
lution (i.e., a restricted form of resolution) suffices to enforce
(weighted) node and arc consistency. In Section 6 we put our
approach in context with other Max-SAT algorithms. Finally,
in Section 7 we provide conclusions and directions of future
work.

2 Preliminaries
In the sequelX = {x1, . . . ,xn} will denote a set of boolean
variables. They take values over the set{t, f}, which stands

for true andfalse, respectively. Aliteral l is either a variable
x or its negation ¯x. l̄ stands for the negation ofl .

If variablex is instantiated tot, notedx← t literal x is sat-
isfied and literal ¯x is falsified. Similarly, ifx is instantiated to
f, x̄ is satisfied andx is falsified. Anassignmentis an instanti-
ation of a subset of the variables. The assignment iscomplete
if it instantiates all the variables inX (otherwise it is partial).
An assignment satisfies a clause (i.e., a disjunction of liter-
als)C iff it satisfies one or more of its literals. It satisfies a set
of clausesF iff it satisfies all its clauses. A satisfying com-
plete assignment is called amodel. Given a boolean formula
encoded by a set of clausesF , the SAT problem consists in
determining whether there is any model for it or not.

We will use the symbol2 to denote theempty clause
which, obviously, cannot be satisfied. When2 ∈ F we say
that there is an explicitcontradiction.

When there is no model for the formulaF , one may be
interested in finding the complete assignment with minimum
number of violated clauses. This problem is known as Max-
SAT.

3 An equivalent reformulation of Max-SAT
There is aweightedversion of Max-SAT in which (weighted)
clauses are pairs(C,w) such thatC is a classical clause andw
is the cost of its falsification. In weightedMax-SATF is a set
of weighted clauses. The cost of an assignment is the sum of
weights of all the clauses that it falsifies. The goal is to find
complete assignments with minimal cost. We make the usual
assumption of weights being natural numbers.

It is easy to see that Max-SAT and weighted Max-SAT
have exactly the same expressive power. A Max-SAT in-
stance can be rewritten as a weighted instance replacing ev-
ery clauseC by a weighted clause(C,1). A weighted Max-
SAT instance can be rewritten as a Max-SAT instance replac-
ing every weighted clause(C,w) by w copies of clauseC.
Clearly, weighted Max-SAT encodings may be exponentially
more compact than Max-SAT. Thus, in the following, we will
assume, without loss of generality, weighted Max-SAT.

Following previous work in weighted constraint satisfac-
tion [Larrosa and Schiex, 2004], we assume the existence of
a known upper boundk of the optimal solution. This is also
done without loss of generality because, if a tight upper bound
is not known,k can be set to the sum of weights of all the
clauses.

Consider the setF of weighed clauses. We say that a
modelis a complete assignment with cost less than k. Max-
SAT is the problem offinding a model of minimal cost, if
there is any.

Observe that weightsw ≥ k indicate that the associated
clausemust be necessarily satisfied. Thus, we can replace ev-
ery weightw≥ k by k without changing the problem. Thus,
without loss of generality we assume all costs in the interval
[0..k] and, accordingly, redefine the sum of costs as

a⊕b = min{a+b,k}
in order to keep the result within the interval. For convenience
of notation, we will refer tok as>. We say that a weighted
clause ishard (or mandatory) iff its weight is>. Observe that
Max-SAT with>= 1 is equivalent to SAT.

Example 1 Consider the formula {(x,1),(ȳ,5),(x̄ ∨
y,2),(x∨y,4)}, with> = 5. The second clause is hard. The
assignment x= f,y = f is not a model because its cost is
1⊕4 =>. The assignment x← t,y← f is a (optimal) model
with cost2.

Note that in Max-SAT truth tables are tables with a cost
associated to each truth assignments. A brute-force solving
method consists in computing the truth table of the input for-
mula and finding the minimal cost model. For instance, the
truth-table of the previous formula is,

x y cost
f f 1⊕4 =>
f t 1⊕>=>
t f 2
t t >

It is worth mentioning the role of the empty clause(2,w).
Since it cannot be satisfied,w will be added to the cost of any
model. Therefore,w is an explicitlower boundof the optimal
model. When the lower bound and the upper bound have the
same value (i.e.,(2,>) ∈ F) the formula does not have any
model and we call this situation an explicitcontradiction.

4 Generalization of DPLL to Max-SAT

4.1 Max-SAT Basic Simplification Rules

SAT solvers take advantage from some equivalence rules that
are used to simplify the CNF formula without changing its set
of models. Not all of these formulas can be applied directly to
Max-SAT. In this Section we state some useful Max-SAT spe-
cific rules. We use the notation[P, . . . ,Q]⇒ [R, . . . ,S], where
P,Q, . . . are weighted clauses. It means that if there are in
F weighted clauses matching with[P, . . . ,Q], they can be re-
placed by[R, . . . ,S]. A and B are arbitrary disjunctions of
literals.

• BR1: [(A,>),(A∨B,w)]⇒ [(A,>)]

• BR2: [(A,w),(A,u)]⇒ [(A,w⊕u)]

• BR3: If (w ⊕ u = >) then [(A,w),(A ∨ B,u)] ⇒
[(A,w),(A∨B,>)]

• BR4: [(A,0)]⇒ []

BR1 shows that classical absorption can only be applied
when the absorbing clause is hard. BR2 generalizes the
standard idempotency of the conjunction: In Max-SAT the
weights of the repeated clauses must be added in the result-
ing clause. BR3 is used to harden a soft clause. BR4 indi-
cates that cost-free clause can be eliminated. The correctness
of these equivalences is direct and we omit the proof.

Example 2 Consider the formula {(x,1),(x,1),(x ∨
y,3),(x∨ y∨ z,1)}, with > = 5. We can apply BR2, which
produces{(x,2),(x∨y,3),(x∨y∨z,1)}. Now, we can apply
BR3, producing{(x,2),(x∨y,>),(x∨y∨z,1)}. Finally, BR1
produces{(x,2),(x∨ y,>)}. The equivalence between the
original and the final formula can be checked by constructing
and comparing the costs of the two truth-tables.

4.2 Max-DPLL
Davis Putnam(DPLL) is the most popular algorithm for SAT
and the starting point of most state-of-the-art solvers[Davis
et al., 1962]. It takes as input a CNF formulaF and de-
cides whether or not there exists a model. In this Section, we
present a natural extension of DPLL to Max-SAT that we call
Max-DPLL. LetF be a weighted CNF formula and> its up-
per bound. Max-DPLL(F ,>) returns the cost of the optimal
model ofF if there is such a model, else it returns>. The
following description is inspired by the description of DPLL
given in[Bacchus, 2002].

As in classical SAT, Max-DPLL performs basic simplifi-
cations on its input prior to invoking itself recursively. The
instantiationof a variable by forcing the satisfaction of a lit-
eral l , denotedF [l] produces a new formula generated from
F as follows: all clauses containingl are eliminated, and̄l
is removed from all clauses where it appears.Unit Clause
Reduction(UCR) is another simplification rule that selects
a clause(l ,>) (namely, a unit hard clause) and instantiates
the corresponding variable in accordance to the literal in that
clause.Unit Propagation(UP) is the algorithm that performs
UCR and the basic simplification rules BR1−4 until either
(a) a contradiction is achieved, or (b) there are no more pos-
sible simplifications to do.

Example 3 Consider the application ofUP to the for-
mula {(2,1),(x̄,4),(x,1),(y,3),(ȳ,1),(x̄ ∨ ȳ ∨ z,1)},
with > = 5. Rule BR3 transforms it into
{(2,1),(x̄,>),(x,1),(y,3),(ȳ,1),(x̄ ∨ ȳ ∨ z,1)}. UCR
instantiatesx̄ and produces{(2,3),(y,3),(ȳ,1),(ȳ∨ z,1)}.
Again BR3 produces{(2,3),(y,>),(ȳ,1),(ȳ∨ z,1)}, which
allows UCR to instantiate y,{(2,4),(z,1)}. Again BR3
produces {(2,4),(z,>)}, which UCR to instantiate z
producing the trivial{(2,4)}. The model of the original
formula(x̄,y,z) can be constructed by tracking back the truth
assignments made by UCR.

A recursive description of Max-DPLL is given in Algo-
rithm 1. First,UP is applied to the input formula (line 1). If
the resulting formula contains a contradiction, the algorithm
returns> and backtracks (line 2). Else, if it does not contain
any variable the trivial cost of the optimal model is returned
(lines 3 and 4). Otherwise, an arbitrary literall is selected
(line 5). The formula is instantiated withl and l̄ and Max-
DPLL is recursively called with each case (lines 6 and 7).
Observe that the first recursive call is made with the> inher-
ited from its parent, but the second call uses the output of the
first call. This implements the typical upper bound updating
of branch and bound. Finally, the best value of the two re-
cursive calls is returned (line 8). Note that if Max-DPLL is
executed with a SAT instance (i.e.,>= 1) it behaves exactly
as DPLL.

Figure 1 reports some empirical evaluation of Max-DPLL
on 40-variable random instances of Max-2-SAT and Max-3-
SAT generated with theCnfgengenerator.1 The horizontal
axis indicates the number of clauses and the vertical axis in-
dicates the search effort as the number of visited nodes. Each

1A. van Gelder ftp://dimacs.rutgers.edu/
pub/challenge/satisfiability/contributed/UCSC/instances

Function Max-DPLL(F ,>) : nat
1 F :=UP(F);
2 if (2,>) ∈ F then return >;
3 if F = /0 then return 0;
4 if F = {(2,w)} then return w;
5 l :=SelectLit(F);
6 v :=Max-DPLL(F [l],>);
7 v :=Max-DPLL(F [l̄],v);
8 return v;

Algorithm 1: Max-DPLL.F is a set of weighted clauses with
all weights in the interval[0, . . . ,>]. If the weighted formula
has models, Max-DPLL returns the cost of the optimal one,
else it returns>

point is the mean over 10 instances. The results of Max-
DPLL are those labelled asUP (ignore, for the moment, the
other curves). As can be observe, the performance of the al-
gorithm degenerates as the number of clauses increases.

Max-DPLL can be enhanced bydominancerules that ex-
ploit situations where it is easy to detect that one literal is
never worse than its negation. A well-known SAT case, also
applicable to Max-SAT, is thepure literal rule. It says that
if there is a literal such that it appears in the formula and its
negation does not appear, then all clauses mentioning it can
be removed. More sophisticated dominance rules for Max-
SAT and WCSP can be found in[Xing and Zhang, 2004;
de Givry, 2004].

5 Resolution for Max-SAT
While DPLL seems to be the best option to find models,res-
olution might be more appropriate to detect contradictions.
[Robinson, 1965] showed that the resolution rule is sound
and complete for SAT, although it is usually too space con-
suming. In the SAT context, the performance of DPLL has
been improved by the addition of limited forms of resolution
at each search node[Gelder, 1995; Rish and Dechter, 2000;
Bacchus, 2002; Drakeet al., 2002] in order to anticipate the
detection of dead-ends. In this section we generalize the res-
olution rule to Max-SAT. Then we show that some local con-
sistency techniques used in[Larrosa and Schiex, 2004] are
just the application of a restricted form of the weighted reso-
lution rule.

First we define thesubtractionof weights (): Let a,b∈
[0, . . . ,>] be two weights such thata≥ b,

a	b =
{

a−b : a 6=>
> : a =>

Theweighted resolutionrule (RES) is defined as,

(x∨A,u),(x̄∨B,w)⇒

(A∨B,m)
(x∨A,u	m)
(x̄∨B,w	m)
(x∨A∨ B̄,m)
(x̄∨ Ā∨B,m)

whereA andB are arbitrary disjunctions of literals andm=
min{u,w}. Variablex is called the clashing variable. Ob-
serve that in theu = w = > case the fourth and fifth new

0

200

400

600

800

1000

0 500 1000 1500 2000 2500 3000

n.
 o

f
no

de
s

(t
ho

us
an

ds
)

n. of clauses

UP
UP+NRES0

UP+NRES0+NRES1
EDAC

0

5000

10000

15000

20000

0 500 1000 1500 2000 2500 3000

n.
 o

f
no

de
s

(t
ho

us
an

ds
)

n. of clauses

UP
UP+NRES0

UP+NRES0+NRES1
UP+NRES

EDAC*

Figure 1: Experimental results on random Max-2SAT (top)
and Max-3SAT (bottom).

clauses can be removed (by BR1), yielding a rule similar to
classical resolution. Observe as well that in theu = w < >
case, the second and third new clauses will have weight 0 and
can be removed (by BR4). In theu 6= w case, either the sec-
ond or the third new clause will have weight 0 and can be
removed (by BR4). Recall that in RES, the left-hand clauses
are replaced by the right-hand, while in classical resolution
right-hand clauses are just added.

Theorem 1 The transformation rule RES is sound. Namely,
it preserves the set of models and their cost.

proof 1 The following table contains in the first columns all
the truth assignments, in the second column the cost of the
assignment according to the clauses on the left-hand of the
RES rule, and in the third column the cost of the assignment
according to the clauses on the right-hand of the RES rule.
As it can be observed, the costs the are same, so the resulting
problem is equivalent.

x A B Left Right
f f f u m⊕ (u	m)
f f t u m⊕ (u	m)
f t f 0 0
f t t 0 0
t f f w m⊕ (w	m)
t f t 0 0
t t f w m⊕ (w	m)
t t t 0 0

The interest of RES is that it makes explicit some previ-
ously hidden connection between variables inA andB. It is

well known that in the SAT case (i.e,>= 1) the rule is com-
plete (its application suffices to achieve a contradiction). We
are still investigating under which other cases the complete-
ness of RES is guaranteed. One important problem we have
detected is that the fourth and fifth new weighted formulas
(i.e.,(x∨A∨ B̄,m), (x̄∨ Ā∨B,m)) may not be in conjunctive
normal form.

5.1 Neighborhood Resolution
Neighborhood Resolution[Cha and Iwama, 1996] is the clas-
sical resolution rule restricted to pairs of clauses that differ
only in the clashing variable. Similarly, in the Max-SAT con-
text we define the neighborhood resolution rule (NRES) as
RES restricted to theA = B case, which simplifies to,

(x∨A,u),(x̄∨A,w)⇒

{ (A,m)
(x∨A,u	m)
(x̄∨A,w	m)

whith m = min{u,w}. This rule is specially useful because
it projects toA costs that were implicit in the formula. We
demonstrate the interest of NRES considering its application
to bounded-size clauses. Let NRESk denote NRES restricted
to |A|= k. NRES0 yields,

(x,u),(x̄,w)⇒

{ (2,m)
(x,u	m)
(x̄,w	m)

This rule is extremely useful because it produces a direct
increment of the lower bound, which may raise a contradic-
tion, or produce new unit clause reductions.

Example 4 Consider the formula
{(x,1),(x̄,2),(y,1),(ȳ,1),(z,1)} with > = 3. UP is un-
able to simplify the problem. Nevertheless, NRES0 can
be applied to the first and second clauses producing
{(2,1),(x̄,1),(y,1),(ȳ,1),(z,1)}. Appling NRES0 to the
third and fourth clauses produces{(2,2),(x̄,1),(z,1)}.
Using BR3 we obtain{(2,2),(x̄,>),(z,>)}. The two unit
clauses can be reduced, producing{(2,2)}.

It is interesting to observe that the application of NRES0
is somehow similar to the computation of the lower bound
of [Alsinet et al., 2003]. The practical importance of adding
NRES0 to Max-DPLL is illustrated in Figure 1. The lines la-
belled UP+NRES0 report the efficiency of Max-DPLL when
UP is augmented with NRES0 until quiescence. As it can be
observed NRES0 produces huge savings over the very ineffi-
cient Max-DPLL.

The rule NRES1 is,

(x∨ l ,u),(x̄∨ l ,w)⇒

{ (l ,m)
(x∨ l ,u	m)
(x̄∨ l ,w	m)

This rule is also of great interest because it increases the
weight of a unary clauses, which may allow further appli-
cation NRES0 and UCR.

Example 5 Consider the formula {(x ∨ y,1),(x̄ ∨
y,1),(ȳ,1),(z,1) with > = 2. Neither UP nor NRES0
can simplify the problem. However, NRES1 produces

{(ȳ,1),(y,1),(z,1)} which allows NRES0 to transform the
problem into {(2,1),(z,1)}. We can apply BR3 to the
unary clause obtaining{(2,1),(z,>). Now, UCR produces
{(2,1)}.

The practical importance of adding NRES1 to Max-
DPLL is also illustrated in Figure 1. The lines labelled
UP+NRES0+NRES1 report the efficiency of Max-DPLL
when UP is augmented with NRES0 and NRES1 until qui-
escence. As it can be observed, the addition of NRES1 also
produces huge gains. For the sake of completeness, we also
evaluate the effect of NRESk for k > 1. Obviously, in 2-SAT
it does not have any effect, since the application of NRESk
requires clauses of lengthk+ 1. In 3-SAT, NRES2 can only
be applied in the original ternary clauses. Its effect is reported
in Figure 1 under the label UP+NRES. It can be observed that
NRES2 has a very limited effect.

5.2 Neighborhood Resolution and Local
Consistency

In this Section we relate the simplification rules discussed
along the paper with local consistency properties developed
for WCSP. In order to do so, we recall that the usual way to
map a Max-SAT instance with a WCSP is to group clauses
mentioning exactly the same set of variables and associate
them to a cost functionf defined as follows: LetV ⊂ F
be the group of clauses over the set of variablesY ⊂ X. V
defines a cost functionf with scopeY. Let t be an instanti-
ation of the variables inY. If t falsifies a clause(C,w) ∈ V ,
f (t) = w, else f (t) = 0. Now it is straightforward to redefine
the WCSP local consistency properties in Max-SAT terms.
In the following consider a boolean formulaF wherew(2)
denotes the weight of the empty clause;w(i) and w(ī) the
weights of the the unary clausesxi andx̄i , respectively; anal-
ogouslyw(i j), w(i j̄), w(ī j) andw(i j) are the weights of the
four possible binary clauses overxi andx j . If any of these
clauses is not inF the corresponding weight is 0.

Definition 1 F is node-consistent (NC) iff for all variable xi ,
w(2)⊕w(i) <> and w(2)⊕w(ī) <>.

Theorem 2 AlgorithmUP enforces the NC property.

proof 2 Suppose thatF is not NC. Then there is some clause
(l ,w) ∈ F such that w(2)⊕w = >. Therefore BR3 can be
applied replacing clause(l ,w) by (l ,>). It will allow the
application of UCR which will eliminate the clause.

Definition 2 F is starnode-consistent (NC*) iff it is NC and
for all variable xi , w(i) = 0 or w(ī) = 0

Theorem 3 Let UP +NRES0 denote the algorithm that ap-
pliesUP and NRES0 until quiescence. It enforces NC*.

proof 3 We only need to proof that the application of NRES0
guarantees that for all variable xi , w(i) = 0 or w(ī) = 0. As-
sume that0 < w(i) ≤ w(ī). There are two possible situa-
tions. The first one is w(ī) = >. In that caseUP will trig-
ger UCR and xi will disappear from the formula. The sec-
ond situation is w(ī) < >. Then, the application of NRES0
will add w(i) to w(2) and replace(xi ,w(i)),(x̄i ,w(ī)) by
(xi ,0),(x̄i ,w(ī)	w(i)).

The algorithm to enforce NC* introduced in[Larrosa and
Schiex, 2004] proves the following result,

Corollary 1 UP +NRES0 can be implemented with time
complexity O(n), where n is the number of variables in the
formula.

Definition 3 F is arc-consistent (AC*) iff it is NC* and
for all pair of variables(xi ,x j), min{w(i j),w(i j̄)} = 0 and
min{w(ī j),w(i j)}= 0

Theorem 4 Let UP +NRES0 +NRES1 denote the algorithm
that appliesUP, NRES0 and NRES1 until quiescence. It en-
forces arc-consistency (AC*).

proof 4 We only need to proof that the application of
NRES1 guarantees that for all pair of variables(xi ,x j),
min{w(i j),w(i j̄)} = 0 andmin{w(ī j),w(i j)} = 0. We proof
the first condition (the second is similar). Assume that0 <
w(i j) ≤ w(i j̄). There are two possible situations. The first
one is that w(i j) => (which implies w(i j̄) =>. In that case
NRES1 will add (xi ,>) to the formula. Then, UCR will be
trigger and xi will disappear from the formula. The second
situation is w(i j) < >. Then, the application of NRES1 will
add w(i j) to w(i) and replace(xi ∨ x j ,w(i j)),(xi ∨ x̄ j ,w(i j̄))
by (xi ∨x j ,0),(xi ∨ x̄ j ,w(i j̄)	w(i j)).

The algorithm to enforce AC* introduced in[Larrosa and
Schiex, 2004] proofs the following result.

Corollary 2 UP +NRES0 +NREO can be implemented with
time complexity O(n2), where n is the number of variables in
the formula.

6 Neighborhood Resolution and
state-of-the-art Max-SAT lower bounds

In the last years several algorithms for Max-SAT have been
proposed[Alsinet et al., 2003; Xing and Zhang, 2004;
Shen and Zhang, 2004]. All these works have in common
a basic branch and bound algorithm. They mainly differ in
the lower bound that they use.[Shen and Zhang, 2004] show
that their lower bound is better (i.e., higher than or equal) than
[Alsinet et al., 2003] and, under some reasonable conditions,
it is also better than[Xing and Zhang, 2004]. In the follow-
ing, by means of two examples, we show thatUP +NRES0
+NRES1 is not comparable with them.

Consider the formula{(x∨ z,1),(x̄∨ z,1),(y∨ z̄,1),(ȳ∨
z̄,1)}. Both [Xing and Zhang, 2004] and[Shen and Zhang,
2004] would compute a lower bound 0. However, NRES1
can be applied twice, producing the equivalent formula
{(z,1),(z̄,1)} and now NRES0 would transform the problem
into {(2,1)}, which means a lower bound of 1.

Consider now the formula{(x,1),(y,1),(x̄∨ ȳ,1)}. While
both [Xing and Zhang, 2004] and [Shen and Zhang, 2004]
would compute a lower bound of 1, NRES cannot be ap-
plied, so the implicit lower bound of our algorithm would
be 0. Nevertheless, it is important to observe that, if we en-
code this problem as a weighted CSP and enforce a stronger
form of consistency called existential directional arc consis-
tency (EDAC*)[de Givryet al., 2005], we transform the for-
mula into the equivalent{(2,1),(x∨ y,1)} which also has

an implicit lower bound of 1. The performance of enforcing
EDAC* on random Max-SAT instances is also illustrated in
Figure 1. As it can be seen, it clearly provides further im-
provement over the application of the NRES rule. Experi-
ments on Max-SAT using weighted CSP technology can be
performed using the freely availabletoolbarsolver.2

7 Conclusions and Future work
Motivated by the success of[de Givryet al., 2003] in solving
Max-SAT instances as weighted CSPs, we have studied the
interpretation of WCSP local consistency properties within
the Max-SAT context. The result of our work is a logical
framework for Max-SAT in which the solving process can be
seen as a set of transformation rules. Interestingly, our ap-
proach leads to a natural extension of the Davis-Putnam algo-
rithm as well as an extension of the resolution rule (RES). The
application of a limited form of RES, called neighborhood
resolution (NRES), provides an interesting and effective al-
gorithm. We have shown the relation between the application
of NRES and some local consistency properties in weighted
CSP. Finally, we have also shown that NRES provides (im-
plicit) lower bounds not subsumed by state-of-the-art Max-
SAT solvers.

We believe our work leaves several directions of fu-
ture work. First, it would be interesting to analyze under
which conditions the application of RES provides a complete
method for Max-SAT. Since it has been shown thatdirec-
tional resolutionis just an instantiation ofadaptive consis-
tency[Rish and Dechter, 2000], it would also be interesting to
know if there is any relation between the application of RES
and the more generalbucket elimination[Dechter, 1999].

Our framework facilitates the relation between Max-SAT
and weighted CSP solving. The resolution rule that we have
introduced seems only valid to enforce node and arc con-
sistency. However, it is known in the WCSP context that
stronger forms of local consistency such as EDAC* may be
more effective in practice[de Givry et al., 2005]. Thus, it
seems natural to search for new transformation rules such
that, when added to NRES, can achieve higher levels of lo-
cal consistency.

References
[Alsinetet al., 2003] T. Alsinet, F. Manya, and J. Planas. Im-

proved branch and bound algorithms for max-sat. InProc.
of the 6th SAT, pages 408–415, 2003.

[Bacchus, 2002] Fahiem Bacchus. Enhancing davis putnam
with extended binary clause reasoning. InProceedings of
the 18th AAAI, pages 613–619, 2002.

[Bistarelliet al., 1999] S. Bistarelli, H. Fargier, U. Monta-
nari, F. Rossi, T. Schiex, and G. Verfaillie. Semiring-based
CSPs and valued CSPs: Frameworks, properties and com-
parison.Constraints, 4:199–240, 1999.

[Cha and Iwama, 1996] Byungki Cha and Kazuo Iwama.
Adding new clauses for faster local search. InProc. of
the 13thAAAI, pages 332–337, Portland, OR, 1996.

2http://carlit.toulouse.inra.fr/cgi-bin/awki.cgi/ToolBarIntro

[Cooper, 2003] M. Cooper. Reductions operations in fuzzy
or valued constraint satisfaction.Fuzzy Sets and Systems,
134(3):311–342, 2003.

[Daviset al., 1962] M. Davis, G. Logemann, and G. Love-
land. A machine program for theorem proving.Commu-
nications of the ACM, 5:394–397, 1962.

[de Givryet al., 2003] S. de Givry, J. Larrosa, P. Meseguer,
and T. Schiex. Solving max-sat as weighted csp. InProc.
of the 9th CP, pages 363–376, Kinsale, Ireland, 2003.
LNCS 2833. Springer Verlag.

[de Givryet al., 2005] S. de Givry, F. Heras, J. Larrosa, and
M. Zytnicki. Existential arc consistency: getting closer to
full arc consistency in weighted csps. InProc. of the 19th

IJCAI, Edinburgh, U.K., August 2005.

[de Givry, 2004] S. de Givry. Singleton consistency and
dominance testing for weighted csp. InProc. of the 6th

Intl. Workshop on Soft Constraints and Preferences, pages
363–376, Toronto, Canada, 2004.

[Dechter, 1999] R. Dechter. Bucket elimination: A unifying
framework for reasoning.Artificial Intelligence, 113:41–
85, 1999.

[Drakeet al., 2002] L. Drake, A. Frisch, and T. Walsh.
Adding resolution to the dpll procedure for boolean satis-
fiability. In Proceedings of 5th SAT, pages 122–129, 2002.

[Gelder, 1995] A. Van Gelder.Satisfiability testing with more
reasoning and less guessing, pages 0–1. American Math-
ematical Society, 1995.

[Hansen and Jaumard, 1990] P. Hansen and B. Jaumard. Al-
gorithms for the maximum satisfiability problem.Com-
puting, 44:279–303, 1990.

[Larrosa and Schiex, 2003] J. Larrosa and T. Schiex. In the
quest of the best form of local consistency for weighted
csp. InProc. of the 18th IJCAI, Acapulco, Mexico, August
2003.

[Larrosa and Schiex, 2004] J. Larrosa and T. Schiex. Solving
weighted csp by maintaining arc-consistency.Artificial In-
telligence, 159(1-2):1–26, 2004.

[Rish and Dechter, 2000] I. Rish and R. Dechter. Resolution
vs. sat: two approaches to sat.Journal of Automated Rea-
soning, 24(1):225–275, 2000.

[Robinson, 1965] J. Robinson. A machine-oriented logic
based on the resolution principle.Journal of the ACM,
12:23–41, 1965.

[Shen and Zhang, 2004] Haiou Shen and Hantao Zhang.
Study of lower bounds for max-2-sat. InProceedings of
the 19th AAAI, 2004.

[Xing and Zhang, 2004] Zhao Xing and Weixiong Zhang.
Efficient strategies for (weighted) maximum satisfiability.
In Proc. of the 10th CP, pages 690–705, Toronto, Canada,
2004. LNCS 3258. Springer Verlag.

