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Abstract. The protein structure prediction problem is one of the most
(if not the most) important problem in computational biology. This prob-
lem consists of finding the conformation of a protein (i.e., a sequence of
amino-acids) with minimal energy. Because of the complexity of this
problem, simplified models like Dill’s HP-lattice model [12] have be-
come a major tool for investigating general properties of protein folding.
Even for this simplified model, the structure prediction problem has been
shown to be NP-complete [3, 5].

We describe a constraint formulation of the HP-model structure pre-
diction problem, present the basic constraints and search strategy. We
then introduce a novel, general technique for excluding geometrical sym-
metries in constraint programming. To our knowledge, this is the first
general and declarative technique for excluding symmetries in constraint
programming that can be added to an existing implementation. Finally,
we describe a new lower bound on the energy of an HP-protein. Both
techniques yield an efficient pruning of the search tree.

1 Introduction

The protein structure prediction problem is specified as follows: Given a protein
by its sequence of amino acids, what is its native structure? Many results in the
past have shown the problem to be NP-hard. But the situation is even worse,
since one does not know the general principles why natural proteins fold into
a native structure. E.g., these principles are interesting if one wants to design
artificial proteins (for drug design). For the time being, one problem there is
that artificial proteins usually don’t have a native structure.

To attack this problem, simplified models have been introduced, which be-
came a major tool for investigating general properties of protein folding. An im-
portant class of simplified models are the so-called lattice models. The simplest
used lattice is the cubic lattice, where every conformation of a lattice protein is
a self-avoiding walk in Z3. A discussion of lattice proteins can be found in [6].
There is a bunch of groups working with lattice proteins. Examples of how lat-
tice proteins can be used for predicting the native structure or for investigating
principles of protein folding are [17,1,8,16,11,9,2,13].
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Fig. 1. Energy matrix and sample conformation for the HP-model

An important representative of lattice models is the HP-model, which has
been introduced by [12]. In this model, the 20 letter alphabet of amino acids
is reduced to a two letter alphabet, namely H and P. H represents hydrophobic
amino acids, whereas P represent polar or hydrophilic amino acids. The energy
function for the HP-model is given by the matrix as shown in Figure 1(a). It
simply states that the energy contribution of a contact between two monomers
is —1 if both are H-monomers, and 0 otherwise. Two monomers form a contact
in some specific conformation if they are not connected via a bond, and the
euclidian distance of the positions is 1. A conformation with minimal energy
(called optimal conformation) is just a conformation with the maximal number
of contacts between H-monomers. Just recently, the structure prediction problem
has been shown to be NP-complete even for the HP-model [3, 5].

A sample conformation for the sequence PHPPHHPH in the two-dimensional
lattice with energy —2 is shown in Figure 1(b). The white beads represent P,
the black ones H monomers. The two contacts are indicated via dashed lines.

An example of the use of lattice models is the work by Sali, Shakhnovich and
Karplus [17].! They investigate under which conditions a protein folds into its
native structure by performing the following computer experiment:

1.) generate 200 random sequences of length 27.

2.) find the minimal structures on the 3 x 3 x 3-cube. The reason for using a
sequence length of 27 is that the 3 x 3 x 3-cube has exactly 27 position.?

3.) simulate protein folding on the lattice model using a Monte Carlo method
with Metropolis criteria. The Monte Carlo method is as follows. Initially, a ran-
dom conformation of the sequence is generated. Starting from this initial confor-
mation, the algorithm performs so-called Monte Carlo steps in order to search
for the minimal conformation. A single Monte Carlo step consists of the following
operations: First, a local move is selected at random until a move is found that
produces a valid conformation (i.e., a self-avoiding conformation). Two examples
of allowed moves are

Here, the positions of the shaded monomers are changed. Second, the resulting
conformation is evaluated according to the Metropolis criterion. If the energy of
the result is lower than the energy of the previous one, then the conformation
is always accepted. Otherwise, the conformation is accepted by random, where
the probability depends on the energy difference.

! The same lattice model is used by several other people, e.g., [1,16,2,9].
% In a later paper [8], the authors considered proteins of length 125.



Now a protein folds in that framework, if the Monte Carlo method finds
its native conformation (by performing 50 000 000 Monte Carlo steps). The
authors have found that a protein folds if there is a energy gap between the
native structure and the energy of the next minimal structure.

In performing such experiments, it is clear that the quality of the predicted
principle depends on several parameters. The first is the quality of the used lat-
tice and energy function. The second, and even more crucial point, is the ability
for finding the native structure as required by Step 2. For the energy function
used by [17], there is no ezact algorithm for finding the minimal structure. To
be computational feasible, they have restricted in [17] the search for the native
structure on the 3 x 3 x 3-cube as indicated in Step 2.

Previous Work In the literature, several algorithms were proposed for the HP-
model. E.g., there are heuristic approaches such as the hydrophobic zipper [7],
the genetic algorithm by Unger and Moult [15] and the chain growth algorithm
by Bornberg-Bauer [4]. Another example is an approximation algorithm as de-
scribed in Hart and Istrail [10], which produces a conformation, whose energy is
known to be at least % of the optimal energy, in linear time. And there is one
exact algorithm, namely the CHCC of Yue and Dill [18], which finds all opti-
mal conformations. There are two differences between the CHCC-algorithm and
ours. First, the motivation for development of CHCC was to find all minimal
conformations in the HP-model, whereas we are only interested in finding the
minimal energy. Second, we want to provide a declarative formulation of the
problem that can be used for other models as well (currently, we are working on
an extension of the HP-model). The CHCC algorithm is designed in a way that
is only suited for the HP-model.

Contributions and Plan of the Paper We have transformed the protein struc-
ture prediction problem to a constraint minimisation problem with finite domain
variables, Boolean variables, and reified constraints. We have then implemented
this constraint problem using the language Oz [14]. The main problem we where
faced with was the existence of 47 geometrical symmetries. One possible way for
excluding symmetries is to use an appropriate modeling. Although this results
in an efficient implementation in general, this approach has some drawbacks.
Despite the fact that one often does not find a modeling that excludes the sym-
metries (as in our case), this approach is inflexible. Usually, such a model cannot
be extended without doing a complete re-modeling.

For this reason, we have searched for a declarative way of excluding symme-
tries. In our approach, we consider binary branching search trees. The symme-
tries are excluded by adding at the right branch (which is visited after the left
branch) constraints which enforce the right branch to exclude all solution for
which a symmetric solution has been found in the left branch. These exclusion
constraints are defined by just using general properties of the symmetries consid-
ered. There are several advantages. First, it is a general method that can be used
with any kind of symmetries that can be defined using constraint expressions.
Second, it can be added to an existing implementation, since this technique is



applied on the level of the search tree, and uses existing constraint expressions.
And third, it does not impose any restrictions on the search strategy. To our
knowledge, there is no existing method for excluding symmetries declaratively.

Another way to prune the search tree was the use of a new lower bound on
the surface of all H-monomers given their distribution to planes described by the
equation z = ¢. This results in an upper bound on the number of contacts. The
lower bound on the surface uses a property of lattice models, namely that for any
sequence s and any conformation of s in Z?, two monomers 1 < i,j < length(s)
can form a contact iff [ — j| > 1, and 7 is even and j is odd, or vice versa.

In Section 2.1, we introduce the basic definitions for the structure prediction
problem. In Section 2.2, we introduce the constraint minimisation problem mod-
eling the structure prediction problem and describe the search strategy. We then
introduce in Section 2.3 the technique for excluding symmetries in a declarative
way, and apply the introduced technique to our lattice problem. In the following
Section 2.4, we explain the new lower bound on the surface. Finally, in Section 3,
we present results for some HP-sequences taken from the literature, show search
times and number of search steps with and without symmetry exclusion.

2 Constraint Formulation

2.1 Basic Definitions

A sequence is an element in {H, P}*. With s; we denote the it" element of a
sequence s. We say that a monomer with number ¢ in s is even (resp. odd) if ¢ is
even (resp. odd). A conformation ¢ of a sequence s is a function c: [1..|s]] — Z3
such that

1. V1 <i<|s|:|le(i) — c(i + 1)|| = 1 (where || - || is the euclidic norm on Z3)
2. and Vi # j : ¢(i) # ¢(4)-

Given a conformation ¢ of a sequence s, the number of contacts Contacts(c)
in ¢ is defined as the number of pairs (i, j) with ¢ + 1 < j such that

si=HANs; =HA||c(@) —c(j)]| = 1.

The energy of ¢ is just —Contacts(c). With e, e, and e, we denote (1,0,0),
(0,1,0) or (0,0,1), respectively. We say that two points p,p' € Z* are neighbors
if ||p — p'|| = 1. Then the surface Surf,(c) is defined as the number of pairs of
neighbor positions, where the first position is occupied by an H-monomer, but
the second not. Ie.,

Surfs(c) = [{ (c(i),p)|si =H A [lp—c(i)[| =1AVj: (s; = H = c(j) #p) }|

Now Yue and Dill [18] made the observation that there is a simple linear
equation relating surface and energy. This equation uses the fact that every
monomer has 6 neighbors, each of which is in any conformation either filled



with either an H-monomer, a P-monomer, or left free. Let nj; be the number of
H-monomers in s. Then we have for every conformation ¢ that

6 -nj = 2 - [Contacts(c) + HHBonds(s)] + Surf,(c), (1)

where HHBonds(s) is the number of bonds between H-monomers (i.e., the num-
ber of H-monomers whose successor in s is also a H-monomer). Since HHBonds(s)
is constant for all conformations ¢ of s, this implies that minimizing the surface
is the same as maximizing the number of contacts.

In a later section, we will consider a lower bound on the surface given partial
knowledge about a conformation c¢. Given the above, the lower bound on the
surface yields an upper bound on the number of contacts (which generates in
fact a lower bound on the energy since the energy is defined as —Contacts(c)).

Given a conformation, the frame of the conformation is the minimal rectan-
gular box that contains all H-monomers of the sequence. Given a vector p, we
denote with (p)x, (p)y and (p), the x-,y- and z-coordinate of p, respectively.
The dimensions (fry, fry, fr;) of the frame are the numbers of monomers that
can be placed in x-, y- and z-direction within the frame. E.g., we have

fre = max{|(c(i) — c(j))x| | 1 <4,j <length(s) As; = HAs; =H} +1.

2.2 Constraints and Search Strategy

A frame is uniquely determined by its dimension and its starting point. Yue
and Dill [18] provided a method to calculate a lower bound on the surface when
all H-monomers are packed within a specific frame. Thus, there are usually a
few frames to be searched through to find the optimal conformation, since often
bigger frames have a higher lower bound for the surface than an optimal confor-
mation found in a smaller frame. For all examples in [18], there is even only one
frame that has to be searched through. Note that also some of the P-monomers
must be included within this frame, namely those P-monomers whose left and
right neighbors in chain are H-monomers. The reason is just that one cannot
include the surrounding H-monomers into the core without also including the
middle P-monomer. These P-monomers are called P-singlets in [18]. A position
p € Z3 is a caveat in a conformation c of s if p is contained in the hull (over Z?3)
of the set of positions occupied by H-monomers in ¢

Our constraint problem consists of finite domain variables. We use also
Boolean constraint and reified constraints. With reified constraints we mean a
constraint x =: (¢), where ¢ is a finite domain constraint. x is a Boolean variable
which is 1 if the constraint store entails ¢, and 0 if the constraint store disentails
¢. A constraint store entails a constraint ¢ if every valuation that makes the
constraint store valid also makes ¢ valid. We use also entailment constraints of
the form ¢ — 1, which are interpreted as follows. If a constraint store entails
¢, then 1 is added to the constraint store. We have implemented the problem
using the language Oz [14], which supports finite domain variables, Boolean con-
straints, reified constraints, entailment constraints and a programmable search
module. The latter was used for the implementation of the symmetry exclusion.



Caveats Boolean; is 0 if the conformation contains no caveats

Frx, Fry, Frz dimension of the frame

Xi, Yi, Z; x-,y-, and z-coordinate of the i** monomer

Ej.seh, Ej.soh number of even and odd H-monomers of the j** -
plane (or z-layer) in the frame, respectively (where
1< j <Frx);

Elem§ membership of H-monomer 4 in the j¢* z-layer

Pk.ctp type of the k** position of the frame (where 1 <

k < Frx - Fry - Frz); the core type Py.ctp of the
k" position is either 1, if it is occupied by an H-
monomer, and 0 otherwise

ok for every position k of the frame and every monomer
i; 0F has boolean value (i.e., 0 or 1), and is 1 iff
monomer i occupies the k** position of the frame.

Surf}, surface contribution between neighbour positions &
and ! under the condition, that k is occupied by an
H-monomer. Thus, & is in the frame, and [ is in the
frame or within distance 1 from the frame

Surface complete surface of the conformation

Fig. 2. The variables and their description

Given a specific sequence s, the main variables of our constraint problem
are listed in Figure 2. We use constraint optimization to minimize the variable
Surface. There are additional variables and constraints used for pruning the
search tree, which we have suppressed for simplicity.

The basic constraints, which describe basic properties of self-avoiding walks,
are the following. W.l.o.g., we can assume that we have for every 1 < ¢ <
length(s):

X; € [1..(2 - length(s)] A Y; € [1..(2 - length(s)] A Z; € [1..(2 - length(s)]

The self-avoidingness is just (X;, Yi,Z;) # (X;,Y;,2;) for i # j.2

For expressing that the distance between two successive monomers is 1, we
introduce for every monomer 7 with 1 < i < length(s) three variables Xdiff;,
Ydiff; and Zdiff;. The value range of these variables is [0..1]. Then we can
express the unit-vector distance constraint by

Xdiffz' = |Xi — Xi+1| Zdiffi = |Zi — Zi+1|
Ydiff; =: |Y; — Yiy1] 1 =: Xdiff; + Ydiff; + Zdiff;.

The other constraints are as follows. Clearly, we must have

Frx Frx
ZEj.soh =:|{i|iodd and s; = H}| ZEj.seh:: |{i | i even and s; = H}|
j=1 j=1

3 This cannot be directly encoded in Oz [14], but we reduce these constraints to dif-
ference constraints on integers.



Then we have for every layer j that E;.soh+E;.seh+ < Fry-Frz. Using reified
constraints, Elem’ can be defined by

Elem’ =: (X; =: j — 1 + x-coordinate of starting point of frame).

Then Ej.seh =: Y, .o 5, — iy Elem, and E;.soh can be defined analogously.

We can state that whenever two monomers ¢ and i + 3 are in the same layer,
then ¢+ 1 and 7 4+ 2 must also be in one layer due to the condition that we must
fold into a lattice conformation. L.e., for every 1 < j < Frx we have

(Elemé- =:1A Elemj-+3 =:1) = X1 =: Xit2

Furthermore, there is a special treatment of P-singlets, which may not be buried
into the core without forming a caveat. Thus we have for every P-singlet ¢ that

(Elem) =: 1A Elem’t! =: 0 A Caveats =: 0) — Elemjfl =:1

(Elemg =:1AElem’ ' =: 0 ACaveats =: 0) — Elem;.-+1 =:1.

[

At some stage of the search we have to assign monomers to frame positions. A
monomer i is assigned the position k by setting 0¥ to 1 in one branch (which has
just the effect that Y; and Z; is set to the y- and z-coordinate of the position k),
and 0 in the other. Self-avoidingness is achieved by Sum[0%, ... Dﬁngth(s)] =<:1.

But there are additional constraints which restrict the core type and the
monomers that can be placed at some position. Let {iy, ... ,i,} be the set of all
H-monomers in s. If at some stage no monomer in {41,... ,i,} can be placed at
some position k, then the core type must be 0. This is implemented by

Pj.ctp =: (Sum[0f ,... 0% ] >: 0).

Finally, we have constraints relating core types of positions and surface con-
tributions. Of course, we get Surface =: Zk’l Surffc, where k,l ranges over
all neighbor positions. If ! is a position outside the frame (i.e., if its x-,y- or
z-coordinate is outside the frame), then Surf} =: P;.ctp. Otherwise we have
Surff =: (Py.ctp =: 1 AP;.ctp =: 0). Now the surface contributions and the
Caveats variable can be related using reified constraints. For every line li in Z?3
parallel to one of the coordinate axis, which intersects with the frame, we define
the Boolean variable Caveaty; by

Caveaty =t (Q_) 4 on i Surfl >: 2).

Then Caveats =: (3 ;. ; Caveat; >:1).
Our search strategy is as follows. We select the variables according to the
following order (from left to right)

Frx X;

E;.seh ;
Caveats < Fry < _/ sel < Elem; < ok < vy,
Fr E;.soh



It is a good strategy to set Caveats to 0 in the first branch, since in al-
most every case there is an optimal conformation without a caveat. The frame
dimensions are chosen ordered by surface according to the lower bound given
in [18]. After having determined the variables E;.seh and E;.soh, we calculate
a lower bound on the surface, which will be described in Section 2.4. If all H-
monomers and P-singlets are assigned to layers, we search for the positions of
these monomers within the frame. Finally, we place the remaining monomers.

2.3 Excluding Geometric Symmetries

We fix a first-order signature X' including the equality = with a set of variables
V. Constraints are literals, and constraint formulae are quantifier-free formulae
over Y. We identify ¢ = t' with ¢ = ¢. C denotes the set of all constraints. A
set of constraints C' C C is interpreted as the conjunction of the constraints
contained in C, and we will freely mix set notation and conjunction. We fix
a standard interpretation A with domain D4, which describes our constraint
theory. An assignment « in A is a partial function a : V — DA. A propagation
operator P for A is a monotone function P : C — C with A E (C & P(C)). The
propagation operator P characterises the constraint solver and will be fixed. A
constraint set C' determines a set of variables X to an assignment « iff for all
z € X there is ground term ¢ such that a(t) = a(z) and z =t € C.

In the following, we assume a fixed constraint set Cp, describing the prob-
lem to be solved. Furthermore, our constraint problem has the property, that
there is a subset of variables X C V consisting of the monomer position vari-
ables X;,Y;, Z;, whose valuation completely determines the valuation of the other
variables. Since we want to define the symmetries on these variables, we define

IC]| = {a | dom(a) = X A A,a = C}.

where A, a |= C means that there is a uniquely defined &’ D « total that satisfies
C in A. Furthermore, we write ¢ |= ¢ for entailment, i.e. ||@|| C ||¢¥]|-

A symmetry s for Cp; is a bijection s : ||Cpr|| = ||Cp:||- A symmetry set S for
Cp; is a set of symmetries operating on ||Cp,||, which is closed under inversion.
We denote the identity function on ||Cp,|| with id¢,, (which is a symmetry by
definition). Clearly, one can consider the set of all symmetries for Cp, (which
even form a group). But in general, we do not want to consider all symmetries,
since either there are too many of them, or some of them do not have an intuitive
characterisation.

Definition 1 (Search Tree). Let t be a finite, binary, rooted, ordered tree,
whose edges are labelled by literals, and whose nodes are labelled by triples of
constraint sets. The tree t is a search tree for Cp, if 1.) the root node v, has the

label (0,0, P(Cpy)), and 2.) every binary node has the form
(Cp; Cn; Cprop)

C C

(Cp Ae,Cr, Chiop) (Cp, Cn A =c, CF L)



with CL_o 0 D P(Cprop A €) and C,

prop =

prop 2 P(CPTOP A _|C)

Given a node v in ¢ with label (Cp, Cp, Cprop), We set ||[v]| = ||Cpropl|- For
every tree t, we denote with <; the partial ordering of nodes induced by t.

Definition 2 (Expanded, Cp,-Complete w.r.t S and S-Reduced Trees).
The search tree t is completely expanded if every leaf v = (Cp, Cp, Cprop) Sat-
isfies either 1.) ||v|| = {a} and Cprop determines X to «, or 2.) L € P(Chprop)-
Let S be a symmetry set for Cp.. A search tree is Cp,-complete w.r.t. S if for
every a € ||Cpy|| there is a leaf v such that

loll = {a} Vv 3s € S\{idp, } : [|v]| = {s()}.

A search tree is S-reduced if for every leaf v with ||[v|| = {a} we have that
Vs e SV £v: (||| ={a'} = s(a') # a).

In our case, the symmetries are rotations and reflections. These are affine
mappings S : Z3 — Z3 with S(x) = Asx + vs that map the Z3 onto Z3. Le.,
the matrix Ag is an orthogonal matrix with the property that the columns vy,
ve and v3 of Ag satisfy Vi € [1..3] : v; € {te,, +e,, +e,}. Since the dimension
of Ag must be 3, we have 6 x 4 x 2 matrices, and henceforth 47 non-trivial
symmetries. The problem is that the vector vg is not yet fixed. Now in our case,
the use of the frame surrounding the core monomers allows one to fix this vector.
As an example, we use Z? with a rectangular frame. For every symmetry s, we
have to fix vg such that the frame is mapped to itself. If this is not possible,
then the corresponding symmetry is excluded by the frame dimension. Consider
a frame in Z?2 with starting point (0,0) and dimensions Frx = 4 and Fry = 3.4
Then the top left point of the frame is (3,2). Furthermore, consider the three
symmetries reflection at the y-axis, rotation by 90° and rotation by 180°, which
we will name S7, S2 and Ss in the following. The corresponding matrices are

as=(757) 4e=(170) 4s=(513). @

and the corresponding mappings are

(-23), ...
(-32), 32 N (32 32

A symmetry S is compatible with the frame dimensions (Frx, Fry) if the frame
is mapped to itself, i.e., if {v | 0 < v < (Frx — L,Fry — 1)} = {S(v) | 0 <

4 If we define an appropriate symmetry S for a frame with starting point (0,0), then
we get a symmetry for a frame with the same dimension and starting point s by
using the affine mapping S’'(z) = S(x — s) + s = S(x) + s — Ass.



v < (Frx — 1,Fry — 1)}. For a given matrix Ag, there exists a vg such that
S(x) = Asx + vg satisfies this condition if and only if Ag satisfies

Ag(Frx — 1,Fry — 1) = (ag,ay) and |ay| =Frx—1Alay|=Fry—1. (3)

For the matrices Ag,, Ag, and Ag,, we get (—3,2), (—2,3) and (-3, —2), which
excludes the symmetry characterised by Ag,.

Given a symmetry characterised by an orthogonal matrix Ag which is com-
patible according to (3), then vs = (v,,vy) is defined by

[ —azifay, <0 _J—ayifa, <0
Vo = {0 else and vy = {0 else ’

where a, and a, are defined by (3). The extension to three dimension is straight-
forward.

Now the symmetries are excluded by adding at the right branch (which is
visited after the left branch) constraints which enforce the right branch to exclude
all solutions for which a symmetric solution has been found in the left branch.
For this purpose, we need the notion of symmetric constraints. As an example,
we use reflection along the x-axis S™ in three dimensions. Furthermore, assume
that we have selected a frame with the dimensions (Frx,Fry,Frz) = (4,3,3)
with starting point (0,0,0). Then the frame is of the form

T & T A 32,2

(0,0,0) |- :
LayerNo. 1 2 3 4
X=0 X=1X=2 X=3

Using the above outlined method, S™ is defined by

—-100 —(—(Frx —1)) —-100 3
o= (g (1) = (i) )

Now consider the constraint Elem’ =: b, where b € {0,1}. Elem =: b is defined
by a reified constraint Elem} =: (X; =: j —1). We first want to calculate the S™-
symmetric constraint StX, (X; =: j — 1). Given some conformation c¢ satisfying
the constraint X; =: j — 1, we know that the coordinates of the it monomer are
(j — 1,ys,2;) for some y;, z;. Furthermore, we know that these coordinates are
mapped to S™(j — 1,;, 2;) in the S™-symmetric conformation ¢’ of c. Hence,
we know that ¢’ satisfies the constraint X; =: a, where a is the x-coordinate
of S™(j — 1,4, 2;). Since the x-coordinate of S™(z,y,z) is —z + 3, we can
conclude that the symetric constraint S*%, (X; =: j — 1) is X; =23 - (j — 1),
which is equivalent to X; =: 4 — j. Now we can use this to define the symmetric

constraint St (Elem} =: b) for Elem} =: b. Since X; =: 4 — j is equivalent to



X; =: (65— j) — 1, and X; =: k — 1 is equivalent to Elem} =: 1, we get that the
S™-symmetric constraint to Elem; =: b is

Eleméfj =:b.

This states if the i* H-monomer is in the 1% layer of the frame, then the it
H-monomer must be in the 4t* layer in the conformation produced by S™.
Using this construction for generating symmetric constraints, we can present an
example of a (partial) {S™}-excluded search tree. Here, the constraints added
by the symmetry exclusion algorithm are indicated by a leading and:

Elem’i =1

Elem! =0
and Elem} =1

Elemg =0

Elemg =1 2 .
and Elemj = 0 — Elemj =0

In the right-most branch, we have added the constraint Elem’ = 1, which is the
same as =S, (Elem! = 0). Together with Elem! = 1, this yields an immediate
contradiction. The reason is simply the following. Consider any conformation
satisfying Elem! = 1 (the label of the right-most branch). Then we know that
the monomer 1 is in the 1%¢ layer. Consider an arbitrary conformation ¢ which is
generated from a conformation ¢’ satisfying Elem! = 1 by reflection at the x-axis.
Then ¢ has monomer i in the 4* layer, and henceforth satisfies Elem} = 1. But
Elem’ = 1 implies Elemi = 0, which implies that ¢ was already found in the left

branch. Henceforth, the symmetry exclusion closes the right-most branch.

2.4 A new lower bound

We will now describe a lower bound on the surface provided that know the
distribution of H-monomers to x-layers. For the rest of this section, let E;.seh
(resp. E; . soh) be the number of even (resp. odd) H-monomers in the j*® x-layer.
Given a conformation ¢, we distinguish between x-surface and yz-surface of c.
The x-surface of ¢ is defined by

Surfy (c) = |{(c(i),p)|si = H A p—c(i) = te, AVj:(s; = H=c(j) #p) }|

The yz-surface of ¢ is just Surfy(c) — Surf?(c). For the lower bounds on x-
surface and yz-surface, we use a special property of the cubic lattice, namely
that even H-monomers can form contacts only with odd H-monomers. Given a
point (z,y,2) € Z3, we say that (z,y,z2) is odd (resp. even) if x + y + z is odd
(resp. even). We write (z,y,2) = (2',y,2)iff e +y+2=2"+3' + 2’ mod 2.
Then we have for every conformation ¢ of s that ¢(i) = ¢(j) iff i = j mod 2.
Using this property, we get the following a lower bound on the x-surface:

Surf?(¢) > E;.soh + E; .seh + Epyx . soh + Epyy . s€h

+ Z (|E;j.soh —Eji1.seh| + |E;j.seh — E;;; .soh|)
1<j<Frx



For a lower bound on the yz-surface, we consider the surface contribution in
the different x-layers. Now let the j* x-layer be defined by the equation = = a;,
and let P(x = a;) be the set of points in the plane z = a;. We define the
yz-surface of this layer by

, i =H N p—c(i) € {+e,,Le.}
Surf’(c) = |4 (c(i),p) € P(z = a;)?| , oL : v
0= |{ cirm ere=ay|, 3T E 2RO

The first lower bound is given in [18], where it was found that the surface in
layer j is given by the minimal rectangle enclosing the H-monomers in that layer.
Thus, consider the following two conformations, where the positions occupied by
H-monomers in the j* x-layer look as follows:

1
& - 1 1
-09-0-60 + -
::::::: 6eced
1 1 XX
[ XXX XXX N + + 6
1 00000 | s0000
lee0ee ! oe0o0o0
| 1 -o0-0606-
il il ] a
7 5

Both have the property that E; . soh+E;.seh = 29. But Surfj(c) is 2-7+2-7 = 28
for the first conformation, and 2 -5+ 2 -6 = 22 for the second. Hence, given
ng = Ej.soh +E;.seh, then a lower bound for Surf?(c) is given by 2-a +2-b,
where a = [ \/ng | and b= [ “L .

But we can provide a better lower bound for Surf?(c) by considering the dif-
ferent parity of H-monomers. For this purpose, we introduce the concept of a col-
oring as an abstraction of the points occupied by H-monomers in a conformation
c. A coloring is a function f : Z2 — {0,1}. We say that a point (x,y) is colored
black by f iff f(z,y) = 1. In the following, we consider only colorings different
from the empty coloring f. (which satisfies Vp : f.(p) = 0). A point (z,y) € Z?is
a caveat in f if (x,y) is contained in the hull (over Z?) of the points colored black
in f. Given a coloring f, define e(f) = |{(z,y) | f(z,y) =1 and z + y even}|
and o(f) = |{(z,y) | f(z,y) =1 and z +y odd}|. The surface Surf(f) of a
coloring f is defined analogously to the surface of a conformation, i.e., it is
the number of pairs where the first point is colored black by f, and the sec-
ond is colored white. Given a pair (e, 0) of integers, we define Surf(e,0) to be
min{Surf(f) | f colouring with e(f) =e A o(f) = o}. W.l.o.g, we can restrict
ourself to cases where e < 0. Thus, we have the following lemma.

Surf(E;.seh,E;.soh) if E;.seh < E,.soh
5 7 ) & 7 =By
Lemma 1. Surff(c) > { Surf(E; . soh,E;.seh) if E;.soh < E;.seh.
In the following theorem, we handle the simple case where |e —o| < 1. There,
the lower bound on colorings agrees with the lower bound as given in [18].

Theorem 1. Let (e,0) be a pair of integers with |e—o| < 1. Let a = [\/e o |
and b = [££2]. Then Surf(e,0) = 2a + 2b.



The remaining case is to calculate Surf(e, 0) where e < o+ 1. But it would
be too time consuming to search through all possible colorings f in order to
determine Surf(e,0). But this is not necessary, since we can consider a ‘normal
form’ of colorings to which every coloring can be extended. The normal forms are
kind of maximal colorings provided a given difference d(f) = o(f) —e(f). We will
handle only caveat-free colorings for simplicity reasons. Let f be a coloring. Then
we define length(f) to be max{|z — 2’| | 3y,y’ : f(z,y) =1 = f(«',9")} +1,
and height(f) to be max{|ly — ¢'| | 3=,z : f(z,y) =1 = f(z',y')} + 1. The
pair (height(f),length(f)) is called the frame of f. We define the partial order
=< on caveat-free colorings by f =< f' if and only if height(f) = height(f’),
length(f) = length(f’) and d(f) = d(f"). It is easy to see that Surf(f) = Surf(f’)
given f < f'. We can show that every f can be extended to a <-maximal coloring
f' (which must have the same surface). Furthermore, we can show, that every
<-maximal coloring f has a simple form. An example of a <-maximal coloring

f with o(f) > e(f) is

Here, we use black beads for odd positions (z,y) with f(z,y) = 1, and grey beads
for even positions (z,y) with f(z,y) = 1. (a,b) is the frame of f, and 41,... ,i4
are the side length of triangles excluded at the corner. The tuple (a, b,i1,%2,43,%4)
is called the characteristics of this coloring. In this case, the characteristics is
(10,12,2,3,3,4).

Theorem 2. Let f be a <-maximal coloring. Then f has a unique characteris-
tics (a,b,i1,12,13,14). Furthermore, we have e(f) +o(f) =axb— 2;21 M,
d(f) = itietistia 4 1 gnd Surf(f) = 2a + 2b.

3 Results

We have tested the program on all sequences presented in [18]. For all we found an
optimal conformation. In Table 1, we have listed the test sequences together with
the found optimal conformation, the sequence length and the optimal surface.
For comparison, the runtimes (on a Sun4) of the algorithm in [18] for all optimal
conformations are 1 h 38 min for L1, 1 h 14 min for L2, 5 h 19 min for L3, 5 h
19 min for L4 and 20 min for L5, respectively. There is a newer, more efficient
version of this algorithm reported in [19], but there are no explicit runtime given
for these or others sequences. In Table 2, we have listed the number of steps to
find a first conformation (and a second, if the first was not optimal), the number
of steps needed to prove optimality, and the runtime on a Pentium 180 Pro.



Sequence and Sample Conformation  Length Optimal Surface

L1 HPPPPHHHHPPHPHPHHHPHPPHHPPH 27 40
RFDBLLFRFUBULBDFLUBLDRDDFU

L2 HPPPHHHHPHPHHPPPHPHHPHPPPHP 27 38
RFDLLBUURFDLLBBRURDDFDBLUB

L3 HPHHPPHHPPHHHHPPPHPPPHHHPPH 27 38
RFLDLUBBUFFFDFURBUBBDFRFDL

L4 HHPHHPHHPHHHHHHPPHHHHHPPHHHHHHH 31 52
RRFDBLDRFLLBUFLURFDDRFUBBUFRDD

L5 PHPPHPPHPPHPPHPPHPPHPPHPPHPPHPPHPPHP 36 32
RFDBDRUFUBRBLULDLDRDRURBLDLULURBRFR

Table 1. Test sequences. Below every sequence, we list an optimal conformation rep-
resented as a sequence of bond directions (R=right,L=left and so on).
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