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Abstract

Cells communicate with other cells, and process cues from their environment, via
signaling pathways, in which extracellular cues trigger a cascade of information flow,
causing signaling molecules to become chemically, physically or locationally modified,
gain new functional capabilities, and affect subsequent molecules in the cascade, cul-
minating in a phenotypic cellular response. Mapping the influence connections among
biomolecules in a signaling cascade aids in understanding of the underlying biological
process and in development of therapeutics for diseases involving aberrant pathways,
such as cancer and autoimmune disease. In this thesis, we present an approach for
automatically reverse-engineering the structure of a signaling pathway, from high-
throughput data. We apply Bayesian network structure inference to signaling protein
measurements performed in thousands of single cells, using a machine called a flow
cytometer. Our de novo reconstruction of a T-cell signaling map was highly accurate,
closely reproducing the known pathway structure, and accurately predicted novel
pathway connections. The flow cytometry measurements include specific perturba-
tions of signaling molecules, aiding in a causal interpretation of the Bayesian network
graph structure. However, this machine can measure only ~4-12 molecules per cell,
too few for effective coverage of a signaling pathway. To address this problem, we
employ a number of biologically motivated assumptions to extend our technique to
scale up from the number of molecules measured to larger models, using measure-
ments of overlapping variable subsets. We demonstrate this approach by scaling up
to a model of 11 variables, using ~15 overlapping 4-variable measurements.

Thesis Supervisor: Douglas A. Lauffenburger
Title: Whitaker Professor of Biological Engineering, Chemical Engineering, and
Biology; Director, Biological Engineering Division
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6A). C. Results from averaged, simulated western blot data indicate

the advantage of single-cell resolution. Simulated western blot data

was created by averaging 20 randomly selected single-cell data points

at a time, yielding a dataset of 420 points. As compared to a single-cell

dataset of equal size (Figure 4-11B), this result missed more arcs and

captures more unconfirmed arcs. Ten sets of truncated and averaged

datasets were made; results shown in B and C represent typical results. 105

4-12 Citations for possible pathways of influence listed in Figure 4-7. . . . 106
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4-13 Two representative results from ten independent bootstrap

experiments Panel A includes original results, including complete

dataset, for ease of comparison. Panels B and C show the averaged

search results for two independent bootstrap datasets, in which 90%

of the original data is sampled randomly. Panels B and C closely

resemble the original results, indicating that the results are robust to

resampling of the data. In cases where an edge appears that is different

from the original results, it is always one that appears in the original

results, but did not make the particular confidence cuttoff employed.

For example, the Raf−→Akt connection which appears in panel B is

one that appears as a lower confidence edge in the original results (see

Figure 4-9). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114

4-14 Models resulting from varying the number of discretization

states. Panel A shows the original data for ease of comparison. In

the original data, the data was discretized into 3 levels. Panel B shows

the search results when data is discretized into 2 levels. Blue edges

are present in original model, purple edges are present, but reversed

in orientation, and dotted edges are not present in original model.

Although results are similar to those in panel A, it is evident that

the coarser gradiation of the data enables more numerous connections.

Panel C shows search results for data in which variables are discretized

to 4 levels. It too shows good agreement with the original results,

though it contains fewer low confidence edges. . . . . . . . . . . . . . 116
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4-15 Comparison of interval discretization with mutual-information

preserving discretization. Panel A shows the original results, in

which the data were discretized using a mutual-information preserv-

ing approach (see Section 4.3.2) Panel B shows the results for data

discretized into three levels using interval discretization. Blue edges

are present in original model, purple edges are present, but reversed

in orientation, and dotted edges are not present in original model. A

comparison between them reveals several reversed arrows and other

small differences. However, the basic structure of the model is retained. 119

5-1 Pictorial illustration of correlation and extended neighbor-

hoods. Within the complete signaling network in a cell, a particular

signaling molecule (circled in red) is likely to exist within a particular

neighborhood of other molecules (shaded circle). The connections in

the network indicate a physical or mechanistic interaction, which may

be accompanied by a statistical correlation. We assume that molecules

which affect each other will show some correlation, and that closer in-

teractions will, in general, show higher correlation than farther ones.

A molecule may also have more distant, poorly correlated ancestors

that may be detected using perturbations (shaded squares). . . . . . 127

5-2 Flow diagram of our approach. 1. Initial experiments define cor-

relation and extended neighborhoods. 2. Further experiments are

selected based on the initial experiments. 3. Structure learning is

performed with an implementation that constrains the search accord-

ing to extended neighborhoods (as detailed in the text). 4. Resulting

model includes all variables, even though the set was not measured

simultaneously. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128
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5-3 Appending perturbation parents which cannot be measured

simultaneously. Panel A. Variable X3 has 3 other variables in its

correlation neighborhood, as well as a potential perturbation parent,

X6. X6 is not in X3’s correlation neighborhood, as they are not well

correlated (inset). Panel B. Possible search query in which X3 is the

child of all its potential parents. For m = 4, it is not possible to

score this local conditional probability distribution by measuring all

variables involved. Panel C. To score this query, data in which X3

and its correlation neighborhood were measured is supplemented with

data from a separate experiment, in which X6 is measured. X6—X3

dependence will not be preserved in the ’background’ distribution, un-

less the levels of X6 and X3 are fairly homogenous within a particular

experimental condition. However, in the X6—perturbation condition

(yellow shaded area), the level of X6 is known because it is determined

experimentally (by the perturbation). Therefore, under this condition,

the X6—X3 dependence is observable. When we use this approach, we

are making the assumption that this perturbation—condition depen-

dence is sufficient for the perturbation parent to emerge as a parent in

the learned Bayesian network structure. . . . . . . . . . . . . . . . . . 131
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5-4 Assumption of approximate transitivity of correlations is used

to eliminate certain measurements. Panel A. Variables X3 and

X4 are very well correlated, variables X3 and X6 are very poorly cor-

related. Panel B. In accordance with their correlations, X4 is in the

correlation neighborhood of X3, while X6 is not. The dotted inner cir-

cle depicts the ’inner neighborhood’ of variables that are particularly

well correlated with X3 (the cutoff for these highly correlated variables

is more stringent than the cutoff for membership in the correlation

neighborhood. See Section 5.2.3). Panel C. Because of the correlation

between X3 and X4, and the lack of correlation between X3 and X6,

we assume that X6 is not in X4’s correlation neighborhood, without

measuring X4 and X6 together. . . . . . . . . . . . . . . . . . . . . . 132

5-5 Model I: Results from 8 4-color experiments. Panel A shows the

original model, from the full 11-color dataset. Panel B shows the model

inferred using 8 4-color data subsets. Although only 8 experiments were

used in the search, another 7 were necessary in order to heuristically

determine which measurements to include in the search. The edges in

both models are annotated with edge confidence values, obtained by

averaging 100 high scoring models. . . . . . . . . . . . . . . . . . . . 142

5-6 Model II: Results from 15 4-color experiments. Panel A shows

the original model, from the full 11-color dataset. Panel B shows the

model inferred using 15 4-color data subsets. The edges in both models

are annotated with edge confidence values, obtained by averaging 100

high scoring models. . . . . . . . . . . . . . . . . . . . . . . . . . . . 144

5-7 Model III: Results from an independent set of 15 4-color ex-

periments. Panel A shows the original model, from the full 11-color

dataset. Panel B shows the model inferred using 15 4-color data sub-

sets (7 of which are distinct from those used in Figure 5-6). The edges

in both models are annotated with edge confidence values, obtained by

averaging 100 high scoring models. . . . . . . . . . . . . . . . . . . . 145
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Chapter 1

Introduction

Survival of organisms depends on the ability of cells to communicate with their envi-

ronment, often in response to a set of cues. To this end, cells have evolved signaling

pathways, in which extracellular cues trigger a cascade of information flow, causing

signaling molecules to become chemically, physically or locationally modified, gain

new functional capabilities, and affect subsequent molecules in the cascade, culmi-

nating in a phenotypic cellular response. Mapping of signaling pathways typically has

involved intuitive inferences arising from aggregation of studies of individual path-

way components from diverse experimental systems. Although pathways are often

conceptualized as distinct entities responding to specific triggers, it is now appreci-

ated that inter-pathway crosstalk and other properties of networks reflect underly-

ing complexities that cannot be explained by consideration of individual pathways

or model systems in isolation. To properly understand normal cellular responses

and their potential dysregulation in disease, a global, multivariate approach is re-

quired [32]. Bayesian networks [63], a form of graphical models, have been proffered

as a promising framework for modeling complex systems such as cell signaling cas-

cades as they can represent probabilistic dependence relationships among multiple

interacting components [16, 17, 77]. Bayesian network models illustrate the effects of

pathway components upon each other (that is, the dependence of each biomolecule

in the pathway on other biomolecules) in the form of an influence diagram. These

models can be automatically derived from experimental data through a statistically
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founded computational procedure termed network inference. Although the relation-

ships are statistical in nature, they can sometimes be interpreted as causal influence

connections when interventional data are used, for example with the use of kinase

specific inhibitors [66, 64].

There are several attractive properties of Bayesian networks for the inference of

signaling pathways from biological datasets. They can represent complex stochas-

tic nonlinear relationships among multiple interacting molecules, and their proba-

bilistic nature can accommodate noise inherent to biologically derived data. They

can describe direct molecular interactions as well as indirect influences that pro-

ceed through additional, unobserved components, a property crucial for discovering

previously unknown effects and unknown components—including crosstalk between

pathways. Therefore, very complex relationships that likely exist in signaling path-

way architectures can be modeled and discovered. They can also incorporate prior

biological knowledge when available, by assigning increased or decreased likelihoods

to particular inter-molecular connections. The Bayesian network inference algorithm

constructs a graph diagram in which nodes represent the measured molecules and

arcs (drawn as lines between nodes) represent statistically meaningful relations and

dependencies between these molecules. When inferring a Bayesian network from ex-

perimental data, the network inference algorithm aims to discern a model that is as

close as possible to the observations made. The algorithm finds the most likely models

by traversing the space of possibilities, via single arc changes that improve the score.

There is a trade-off between simple models and those that accurately capture the

empirical distribution observed in the data. The employed Bayesian scoring metric

captures this trade-off, thus a high scoring model is a both simple and accurate rep-

resentation of the data[65]. Bayesian networks have been applied to gene expression

data for the study and discovery of genetic regulatory pathways [17, 66, 23]. However,

due to the probabilistic nature of the Bayesian modeling approach, effective inference

requires many observations of the system. Thus, such studies have often been limited

by the insufficient size of datasets, comprising for instance measurements based on

averaged samples derived from heterogeneous cell populations (a necessary limitation
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when using lysates from large numbers of cells [77, 102]).

In contrast to lysate-based methods, intracellular multicolor flow cytometry [28,

68] allows more quantitative, simultaneous observation of multiple signaling molecules

in many thousands of individual cells, and hence is an especially appropriate source

of data for Bayesian network modeling of signaling pathways. Importantly, it allows

for measurement of biological states in more native contexts. Flow cytometry can be

used to quantitatively measure a given protein’s expression level, and can also include

measures of protein modification states such as phosphorylation [68, 59, 39]. Because

each cell is treated as an independent observation, flow cytometric data provide a

statistically large sample that could enable Bayesian network inference to accurately

predict pathway structure.

In this dissertation, we present work in which Bayesian network structure infer-

ence is used to learn the structure of a signaling pathway, using high-throughput

single cell measurements of phosphoproteins in CD4+ T-cells. In the remainder of

the introduction, we discuss previous and related work (Section 1.1) and state the

significance of this work (Section 1.4). We then give an abbreviated background on

flow cytometry (Section 1.2) and on CD4+ T-cell signaling (Section 1.3).

1.1 Previous and related work

Our work on computational elucidation of signaling pathways is unique in a number of

ways. However, others have used high-throughput data sources and/or computational

methods to analyze signaling pathways employing a variety of methods. Although

not directly focused on signaling pathways, the pioneering work of Pe’er and Fried-

man [17], and Hartemink et al. [23], were some of the first efforts to learn biological

regulatory pathways directly from high throughput data. In these studies, the au-

thors applied Bayesian network structure learning to gene expression data, in order

to learn genetic regulatory pathways. These efforts suffered from two main problems:

a severe data shortage (though thousands of molecules were measured, each one was

only measured hundreds of times), and an insufficient amount of interventional data.
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For these reasons, they were generally not able to learn specific pathway structure,

but rather pathway features with respect to certain genes. Both of these groups

found ways to address these problems: Hartemink et al.by also employing binding

data, which indicates which activating gene (transcription factor) binds upstream of

which potentially regulated gene [24]. Segal et al. [82] extend the earlier work by

Pe’er with an elegant solution to both problems: they pre-identify and select po-

tential regulators, reducing the need for interventional data, and they define gene

modules, enabling them to pool data from multiple genes, greatly reducing the data

shortage problem. In this dissertation, we find a way to solve these two problems in

the related but separate domain of signaling pathways. Our work can be considered

a direct extension of these earlier studies.

Protein–protein interaction data

Most of the work aimed at elucidating signaling pathways fits the category of eluci-

dation of protein–protein interactions and protein–protein interaction networks. A

subset of such interactions constitute signaling pathways. The first large scale exper-

imental efforts were presented in 2000 [94, 34, 33]. These employed yeast two-hybrid

screens, which are designed to detect both transient and stable interactions. As-

says of protein co-immunoprecipitation coupled to mass spectrometric identification

of proteins have also been used; however, these focus primarily on finding compo-

nents of protein complexes, as they are more suitable for detection of more stable

interactions [30, 20]. Although these methods suffer from high false-positive and

false-negative rates, these networks can be thought of as a noisy super-set, contain-

ing some of the interactions present in signaling pathways (other true interactions

detected include, e.g. protein association for complex formation). von Mering et

al.were among the first to address the task of increasing accuracy of these noisy data-

sources, proposing to use the intersection of high-throughput experiments [97]. This

work resulted in a low false positive rate, but a high false negative rate, finding just

3% of known interactions. Technological improvements have helped to increase the

confidence of protein–protein interaction datasets [10].
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More recently, indirect biological data has been integrated with data from the high-

throughput interaction screens. In these studies, weak signals from various sources

are merged, aiding in detection of real interactions. Such studies use coexpression,

Gene Ontology (GO) annotations, localization, transcription factor binding data,

and/or sequence information, in addition to high throughput protein–protein inter-

action data. [37, 47, 72, 107, 110, 35, 44, 4, 103] The various information sources are

used as input to a classifier, which classifies interactions as true or false. The classifi-

cation methods include decision trees, naive Bayes, random forests, logistic regression,

k-nearest neighbor, kernel method, and others. Aside from the classifier used, these

studies differ in the dataset they use for training and testing their classifier, in the

specific features (data types/sources) that they integrate, and in the encoding of the

data (whether similar types of experiments are grouped together and merged or sum-

marized, or each used as a separate experiment). Although these studies are primarily

data-driven, a few groups ([84, 11, 98]) have utilized a data-independent approach,

predicting interactions based on sequence motifs. More recently, Lu et al. [49] and

Singh et al. [84] have introduced structure based methods, first predicting structures

via homology modeling and, using these structures, predicting the likelihood of inter-

action based on energy considerations. In general the data-independent approaches

incorporate data when available (though they have the advantage of being useable

even in extremely data poor domains).

With various sophisticated computational approaches, these studies have helped

greatly improve the accuracy of interaction prediction in an otherwise noisy com-

pendium of possible interactions. Such studies are focused on general protein inter-

actions, rather than those specific to signaling pathways. Information gleaned from

these approaches may be useful to incorporate into our approach: first defining a set

of protein–to–protein connection possibilities based on the interaction data supple-

mented by various other datsets, then increasing the likelihood of potential graph

arcs in the Bayesian network according to their likelihood of interaction. Such prior

knowledge over graph substructures is straightforward to incorporate in the Bayesian

network formalism, and constitutes an interesting direction for future work.
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Cell signaling interactions

A sub-category of protein interaction prediction is that of signaling interaction pre-

diction, a field that is more closely related to the work presented here. Programs

such as Scansite use predicted or known modular signaling domains (e.g. a kinase

domain) and protein sequence motifs to predict specific signaling interactions (either

a specific modification, such as phosphorylation or dephosphorylation, or a binding

event) [105, 58]. Modular domains are distinct and large enough to be recognized

directly from protein sequences. The sequence motifs with which they interact, how-

ever, are more difficult to detect (due to their small size).

These have been identified primarily via experimental binding information from

oriented peptide library screening [87, 106, 104] and phage display experiments [31],

combined with information from biochemical characterization. More recently, a purely

computational approach has been described for this task, in which protein–protein

interaction data is used to identify a small set of binding partners for a particular do-

main [57]. Because the search space is greatly constrained by the binding information,

the signals from the motifs’ short sequences are detectable.

Like the protein–protein interaction studies, these approaches attempt to find

all potential interactions (for the latter studies, all potential signaling interactions),

rather than specific interactions occurring in a particular cell or cell type, in response

to specific stimuli or conditions. In this way, they differ markedly from our approach,

which extracts interactions in a particular dataset and can be catered to a specific bio-

logical condition, cell type, disease or other cell state. The set of influence connections

in a particular dataset (from our work) and the set of potential signaling interactions

(from the studies described above) can be extremely complementary datasets. Not

only can we take advantage of predicted signaling interactions to aid in the selec-

tion of an optimal Bayesian network (using priors on potential edges, as described

above), and to select an initial set of molecules to model (based on which molecules

are thought to interact), but we can also use potential signaling interaction data to

help us elucidate the signaling events that underlie newly discovered connections in
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the Bayesian network. This is because many connections in the Bayes net structure

are indirect—in other words, they do not include an enzyme and its direct substrate,

but rather an upstream regulator and a molecule that is eventually affected via sev-

eral other intermediaries. This will occur whenever the intermediate molecules that

mediate the affect of the upstream regulator on the downstream target are not mea-

sured as part of the dataset, a common problem in this data-limited domain. (See for

example the arc PKC→Jnk in Chapter 4 Figure 4-6. In this connection, the influence

of the upstream regulator, PKC, on the downstream molecule, Jnk, is likely mediated

by the unmeasured molecules, MAPKKK and MAPKK.)

One way to overcome this problem is to include more molecules in the dataset, a

direction we are pursuing (see Chapter 5). However, in cases with insufficient prior

biological knowledge, we may not have a good guess regarding which molecules may

act as intermediates in an interaction (or indeed if the interaction is indirect or direct).

In such cases, predicted signaling interactions that connect the upstream molecule to

the downstream one can be used to complete the hypothesis of pathway structure,

and to direct experiments for future Bayesian network analyses (with data which

includes candidate intermediate molecules) or for direct wet lab verification. This too

is an exciting direction for future extensions of these approaches.

Analysis of signaling pathways using flow cytometry data

We now take the perspective of work relating to our datasource, and briefly discuss

work in which flow cytometry data is used to analyze signaling pathways. This is a

new field, involving a fairly limited number of studies, as described below. We also

present a brief background on flow cytometry in Section 1.2.

The flow cytometer was invented by 1974 by Len Herzenberg and colleagues [28].

It was at the time a single-parameter machine, used to sort immune cells with a

particular cell surface protein from those which lacked the protein. Immune system

cells contain many distinct subpopulations, often distinguished by a particular set

of cell surface markers. Once these markers are defined, it is possible to select a

specific subpopulation by identifying cells with these specific markers. As the flow
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cytometer’s detection capabilities grew, it was used to identify increasingly specific

subsets of cells. Thus, its primary purpose is for cell identification, via detection of

cell surface markers. Today, it is possible to detect 17 distinct cell surface markers

simultaneously, enabling the isolation of rare and distinct cellular populations [70].

The extension of flow cytometry to intracellular molecules required additional ad-

vances, as intracellular staining of molecules entails a number of technical challenges

(see Section 1.2). This was first accomplished in the mid-1990’s [14], opening new pos-

sibilities for analysis of interacellular events, rather than just cellular identification,

using flow data. Since then, there have been a few dozen studies using intracellu-

lar staining of phospho-epitopes citePerez06, most of which include no more than 3

intracellular molecules. Thus, the analysis of signaling pathways through flow data

is a field that is truly in its infancy. Generally, these studies simply examined the

phosphoprotein histogram in order to detect a shift in the response of the signaling

protein to varying experimental conditions. In those studies in which a larger number

of signaling proteins were profiled, data analysis became more challenging. The flow

community traditionally used gating, a process in which the entire cell population is

partitioned, and only cells with parameters (i.e. quantitiy of proteins) between cer-

tain values are considered for further analysis. Thus, for example, a particular study

may examine the level of protein B, in cells in which proteins A and C are both above

a certain threshold. In this way, dimensionality reduction was performed manually,

allowing the researcher to analyze specific differences in signaling protein distribution,

in a context-dependent manner. These studies often examine the distribution of two

proteins simultaneously (by gating on the remaining proteins, and then visualizing

the data in a 2-dimensional plot), however, high-dimensional information could not be

analyzed in an integrated fashion [41, 69]. To confront this problem, several studies

attempted to examine all the different measured signaling proteins simultaneously,

by clustering samples according to their profiled signaling molecules. [68, 39] To do

this, these studies first collapsed the distribution information into a single number, a

geometric mean, before clustering samples. Thus, though this approach did enable

high-dimensional analysis, it could not also include the distribution information. Our
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approach was the first to use information from each dimension while taking advan-

tage of distribution information, by examining correlations among all dimensions in

individual cells.
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1.2 Flow cytometry

In this dissertation, we focus on learning signaling pathway structure by examining

data from single cells. We acquire single cell data using a technique called flow

cytometry. In flow cytometry, molecules of interest in or on cells are bound by

antibodies attached to a fluorophore. Cells thus stained pass in a thin stream of fluid

through the beam of a laser or series of lasers, and absorb light, causing them to

fluoresce. The emitted light is detected and photomultiplier tubes convert this light

to electric signals, which are recorded by the flow cytometer, providing a readout of

fluorescence, and, therefore, of the abundance of the detected molecules [29].

Flow cytometry was classically used to measure cell surface markers in order to

distinguish functionally distinct cellular subpopulations. More recently, methods have

been developed to detect intracellular epitopes (such as e.g. signaling molecules) in

order to characterize the cellular response to various conditions and ligands [14, 55].

In intracellular flow cytometry, an antibody is often raised to the phosphorylated

form of the molecule, under the assumption that this is the active form (or at least

the form of interest). However, it is equally appropriate to use antibodies specific to

any other form of interest, such as a molecule phosphorylated on an alternate site, or

a cleaved form of a molecule (such as caspase 3). To stain intacellular epitopes, it is

necessary to fix and permeabilize the cells, in order to allow the antibodies to pene-

trate the plasma membrane and bind their targets. The procedure involves acquiring

a biological sample (this can be cells from a cell line, or, as in this work, primary

cells from a human or animal donor), the cells are (typically) treated with various

stimuli, then fixed using a cross-linking agent (such as formaldehyde), permeabilized

with a detergent or with alcohol (such as Triton or saponin, methanol or ethanol,

respectively), then stained with antibodies that are each conjugated to a different

fluorophore, and analyzed with the flow cytometer. The flow cytometer determines

the relative abundance of each fluorophore in each cell, providing a relative measure

of the signaling protein abundance. [41]

A number of issues arise when dealing with intracellular molecules, which mostly
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tend to lead to false negative results with respect to the presence of a protein (or at

least to decrease its apparent abundance). An antibody may not be able to bind its

target antigen due to lack of antigen accessibility, if the epitope phosphosite happens

to be buried in a protein–protein interaction, or if the protein exists in a cellular com-

partment that is not permeabilized by standard methods. Phosphoepitope stability

is a concern, particularly with respect to treatment of samples prior to fixation. It is

necessary to optimize protocols for different specific applications, including, impor-

tantly, careful selection of the antibodies. Antibodies that work well in Western blots

may not work in the nondenatured, fixation condition of cells in a flow cytometer,

and in general control experiments must be carried out to ensure that an antibody is

working in a flow context.[42, 41]

Another major issue in mutlicolor flow cytometry is fluorophore selection. As

discussed above, each antibody is conjugated (directly or indirectly) to a distinct

fluorophore. Larger fluorophores may physically interfere with an antibody’s binding

characteristics or permeability, and thus can be considered another contributor to

potential false negative results. In order to quantify each antigen, it is necessary to

detect the emmission of each antibody separately from the others. It is also necessary

to ensure that each fluorophore’s absorption spectrum is included in the range of

laser light used in the flow cytometer. To accomplish this, it is often necessary

to incorporate multiple lasers. A 3-laser flow cytometer may be able to handle as

many as twelve distinct fluorophores, hitting a different portion of the excitation

spectrum of each (it is not necessary to include the highest point of the excitation

spectrum). Although purchasing additional lasers can be expensive, once purchased,

it is straightforward to ensure that the absorption spectrum of all the colors (up to the

limit possible) is covered. Separating the signal from multiple overlapping emission

spectra can be more difficult. [56]

Separation of signals from multiple dyes requires compensation, an adjustment of

the measured fluorescence values based on the amount of spillover from one color to

another (the amount of emission spectral overlap). We measure fluoresence emissions

by selecting an optical filter for each color’s detector, that only transmits certain
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wavelengths of light, thus creating a channel for that color. Although a color may be

primarily green (measured in the green channel), it may also have some component

of its emmission spectrum that is yellow; thus, it spills over into the yellow channel.

This will tend to inflate the value reported for the yellow dye. Furthermore, the

yellow dye may also spill over into the green channel, causing a similar (but not

equivalent in magnitude) inflation effect. For a given fluorophore, the proportion that

will be emitted in each channel will always be the same for a particular instrument/

instrument setting. For example, green may emit 75% into the green channel and

25% into the yellow, while yellow emits 90% into the yellow channel and 10% into

the green. Therefore, by determining this channel ratio for each fluorophore, and

measuring the signal in each channel, it is possible to determine how much must

be subtracted for correct compensation. In this example, the true green and yellow

values are determined by solving the equations MG = TG +0.1TY , MY = TY +0.25TG

for TG and TY , where MG and MT denote the measured values of green and yellow,

respectively, and TG, TY denote the true values. In principle this could be expanded

to an n-color system. In matrix notation, we solve for T in the equation M = CxT ,

where M is an nx1 vector of the measured values in each channel, T is an nx1 vector

of the true values of each color for each channel, and C is an nxn matrix containing

the percent spillover from each color into each other channel. C is determined by

measuring each color alone, and determining how much of the total signal spills over

into other channels. Since C is known, the system of n equations and n unknowns

can be solved for T .

In principle, this approach can be used to include a large number of colors, but

in practice, ’crowding’ the colors in the emission spectrum leads to noisy data. This

is because there is error in each measurement (from each channel), and, since com-

pensation involves using measurements from multiple channels to determine a single

true abundance, the noise for each color is additive noise from all the channels that

contribute to it. This is particularly a problem because some dyes are far brighter

than others, so some true measurements are much larger than others. (This can also

happen if certain molecules are in far greater abundance or certain antibodies more
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efficient) When subtracting out the overlapping effect of a bright dye out of a dim

channel, even a small measurement error in the bright dye can affect the dim mea-

surement significantly. Therefore, scaling up to increased number of colors must be

done carefully. When controls indicate that indeed a bright signal is causing increased

spread in the variance of a dimmer signal, it may be preferable to reduce the

number of colors in an experiment, rather than contend with noisy data. [74]

1.3 T-cell signaling

The primary model system used in this thesis is signaling in human CD4+ T-lymphcytes.

We present here a brief overview of signaling in T-cells, with emphasis on the specific

molecules profiled in this work.

CD4+ T-cells, also known as T-helper cells, are immune system cells crucial for

their role in stimulating and activating other immune system cells upon encountering

a foreign, non-self protein known as an antigen (which may be, e.g., virally derived).

In general, each T-cell is specific to a different antigen, and there exists a remarkable

heterogeneity in the repertoire of T-cell antigen specificity, allowing the T-cell popu-

lation to respond to many (if not all) possible invasions that the host may encounter.

In order for the T-cell to begin activating other cells, it must first itself be ac-

tivated, by binding to its specific antigen in the context of an antigen presenting

cell (APC). The APC is another immune system cell, which, as its name implies, is

able to present foreign antigen to the T-cell on the occasion of a viral or bacterial

infection. When the APC presenting a T-cell’s specific antigen binds the T-cell re-

ceptor, a series of steps occur in which signaling pathways are activated, culminating

in the production and secretion of cytokines (which then stimulate and activate other

immune system cells), and in the modification and proliferation of the T-cell itself. [2]

It is the T-cell receptor (TCR) on the T-cell surface, along with associated re-

ceptors such as CD28 that initially bind the antigen presenting cell. The antigen

is presented as a short peptide in the context of an APC-surface protein called the

major histocompatibility complex class II (MHC). Binding of the TCR to the MHC-
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peptide complex leads to the activation of the Src family protein tyrosine kinase,

Lck [27, 83]. Lck phosphorylates specialized motifs called immunoreceptor tyrosine-

based activation motifs (ITAMs) on the receptor-associated CD3 molecules, creating

docking sites for the protein tyrosine kinase Zap-70, leading to its recruitment and

subsequent phosphorylation [40].

Activation of Zap-70 leads to the phosphorylation of a protein called linker for ac-

tivation of T cells (LAT) [101], a scaffold protein that binds a variety of proteins with

adaptor or enzymatic functions. Among these is the protein Grb2, which functions as

an adaptor by binding to LAT via its SH2 domains, and to other other proteins via its

SH3 domains. Grb2 mediates the translocation of the guanine nucleotide exchange

factor son of sevenless (Sos), an activator of the G protein Ras [6]Egan. LAT also

leads to the activation of PLCγ which cleaves phosphatidylinositol 4,5-bisphosphate

(PIP2) into inositol triphosphate (IP3) and diacylglycerol (DAG). IP3 leads to cal-

cium release which results in several events, among them the activation of certain

Protein Kinase C (PKC) isoforms. DAG leads to the activation of several molecules,

including PKCθ. PKC is an important molecule in T-cell signaling, with a number

of downstream targets that eventually contribute to such processes as actin reorgani-

zation and cytokin production. [90] PKCθ further contributes to Ras activation. [13]

Active Ras recruits Raf, a mitogen-activated protein kinase kinase kinase (MAPKKK-

an activator of the activator of the mitogen-activated protein kinase), to the mem-

brane, where it is phosphorylated and activated. Raf activates Mek (a MAPKK)

and Mek activates the MAPKs Erk1/2. [21] Erk activates transcription factors that

regulate cytokine production and T-cell differentiation. The MAPKs Jnk and p38

are similarly important for their modification of transcription factors during T-cell

activation, particularly for cytokine production. These MAPKs also have roles in

T-cell development. [73]

Binding of the CD28 receptor to its receptor on the APC (B7-1/CD80 or B7-

2/CD86) results in its phosphorylation, enabling its interaction with and activation

of phosphatidylinositol-3 kinase (PI3K). [75, 71, 61] PI3k phosphorylates PIP2, pro-

ducing phosphatidyl inositol-3,4,5-triphosphate (PIP3), which recruits proteins to the
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plasma membrane via its pleckstrin homology (PH) domains. This leads to the phos-

phorylation of the PH-containing serine/threonine kinase Akt (also known as protein

kinase B) via the kinase phosphatidylinositol-dependent kinase-1 (PDK1). [88] Akt

phosphorylates a number of substrates, influencing decisions of cell fate and cytokine

production.

The common secondary messenger, cyclic AMP (cAMP), is transiently increased

in response to TCR engagement. It is generally a negative regulator of T-cell activa-

tion. [85, 89] cAMP binds to and activates cAMP-dependent protein kinase (PKA).

PKA modulates immune function in crucial ways; its hyperactivation is has been im-

plicated in T-cell dysfunction in HIV, while it hypoactivity is implicated in systemic

lupus erythematosus. Among its targets are the MAPKKK raf, and Src kinase Csk,

a negative regulator of Lck. [1, 91]

39



1.4 Significance

In this dissertation, we describe an approach for learning molecule-to-molecule con-

nections, and pathway structure, in biological signaling pathways. Our approach

unifies a datasource which requires (and which lacked) a computational method able

to extract information from a multitude of datapoints in many dimensions, with a

computational technique which requires (and which also lacked, in this domain) many

datapoints in order to effectively extract statistical dependencies.

Previous methods to learn molecular networks were primarily gene expression

based (Section 1.1). These had key problems, such as a lack of sufficient data and

measurements of a proxy to signaling events; as a consequence the resulting net-

works suffered from lack of accuracy. In this thesis we apply network learning tech-

niques, specifically Bayesian networks, to single cell measurements of phosphorylated

proteins, overcoming shortcomings of previous approaches. Previous approaches to

analyzing flow cytometry data focused on cellular populations rather than single

cells. They employed gating techniques to extract specific insights gleaned from a

particular restricted dimension of the multidimensional distribution, or used the pop-

ulation mean, collapsing the distribution information into one metric. We take a

mulit-parameter approach, revealing the correlations within single cells, and extract

a landscape of protein to protein statistical dependencies from this data. Correlations

within single cells are particularly useful because they provide a statistically robust

sample size, avoid confounding affects of population averaging, and provide access to

specific cellular subsets.

The approach we present is not dependent on the specifics of the implementation:

Flow cytometry data could be replaced by automated microscopy, other computa-

tional tools could be employed (most obviously Markov random fields), and the ap-

plication to learning signaling pathway structure could be modified, for example, for

elucidating difference in model parameters, under different experimental conditions.

Our contribution lies in the proffering of single cells as the smallest unit of ’biologi-

cal computation’, and in the subsequent use of information from single cells to learn
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inter-molecular relationships.
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Chapter 2

A Bayesian Networks Tutorial

In this thesis, we chose a modeling framework called Bayesian networks in order to

model signaling pathways. Bayesian networks come from a family of models called

graphical models, a family of flexible and interpretable models, in which probabilistic

relationships among variables are represented in a graph. In our context, the Bayesian

network represents relationships among variables in a signaling pathway, where the

variables can represent signaling molecules, small molecules, lipids, or any biologically

relevant molecule.

Bayesian networks can uncover statistical relationships among variables from a

set of data. Revealed relationships are not restricted to pairwise or linear functions

and, in fact, can be arbitrarily complex. Because statistical relationships may imply

a physical or functional connection, we can use Bayesian networks to refine existing

knowledge or uncover potential relationships in signaling pathways. When interven-

tional data is available (i.e. data in which specific biomolecules have been manipulated

or perturbed), we can begin to add a causal interpretation to our model.

In this work, to model signaling pathways, we analyze single cell data from flow

cytometry, using the Bayesian network approach. The single cell data is (relatively)

abundant but noisy, and the underlying biological processes are noisy as well, so

a probabilistic approach is particularly suitable in this domain. The probabilistic

nature of the Bayesian network enables it to extract signals from noisy data and to

naturally handle uncertainty that arises in the modeling of biological processes.
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The probabilistic approach determines dependencies and conditional independen-

cies among variables; for this reason, it is able to include edges that represent mean-

ingful relationships, but exclude those edges that are not necessary, leading to a

relatively sparse representation of the underlying dependencies. Thus, given suffi-

cient data, a Bayesian network can provide a first order map of a signaling pathway,

and serve as an in silico generator of testable hypotheses.

This chapter contains a tutorial on Bayesian networks, intended to provide the

reader with an understanding of these models, including what they are and how we

use them in the context of this dissertation. It is primarily intended to confer an in-

tuitive understanding. For a more technical review, we recommend [65] and [26]. We

note that notation in this tutorial is borrowed from (and therefore consistent with)

[65]. In this tutorial, we start with a stand-alone section that provides a quick and

intuitive overview of Bayesian networks (Section 2.1). We then introduce Bayesian

networks and explain what they are and what are some of their applications (Sec-

tion 2.2), followed by an explanation of how Bayesian networks are used in this work

(Section 2.3). Finally, we discuss model properties and causal interpretations of the

models (Section 2.4).

2.1 Bayesian networks in a nutshell

This section is included for the reader who wants a very quick overview of Bayesian

networks and their application to signaling pathways. It is meant as a stand-alone

section; therefore, it is not necessary reading for those who intend to read the re-

mainder of the tutorial. It was originally published in a slightly modified form in the

Biomedical Computation Review [76]

Advances in technology have brought to molecular biology datasets that are bigger,

more sophisticated, and, unfortunately, more difficult to interpret than ever before. In

this thesis, we employ a computational analysis approach called Bayesian networks, a

machine learning tool that is able to automatically discover networks of dependencies

and causal interactions among biomolecules of interest.
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ski

injuries lotion

ski

injuries lotion

Figure 2-1: A Bayesian network depicting statistical dependencies among
variables. The variables injury and lotion are statistically dependent upon the
variable ski.

Bayesian networks are a form of graphical modeling, in which dependencies among

variables are depicted in a graph, with the nodes representing variables (e.g., bio-

molecules such as proteins), and the edges representing dependencies. Dependencies

are statistical in nature, so an edge from A to B indicates that knowing A can help

us predict B. This may or may not indicate a causal relationship, i.e. one in which

A (directly or indirectly) affects B. Interventional data, in which biomolecules are

specifically manipulated, can be used to discover causal connections.

The Bayesian network inference algorithm takes data in which biomolecules were

measured (and, ideally, also manipulated), and automatically reconstructs the underly-

ing network of protein to protein influences that may have created the data. How

does this process work? Consider a ski resort, with skiers and nonskiers (hot-tub sit-

ters). A study discovers a strong statistical correlation between sunscreen lotion use

and skiing injuries. To further investigate this statistical dependency, a manipulation

is performed on the lotion variable: all sunscreen lotions are secretly replaced with

an ineffective placebo. This fails to affect the number of skiing injuries, and so it

is determined that lotion use does not causally affect skiing injuries. The variable

ski is also well correlated. When the ski variable is manipulated (the ski slopes are

closed for a day), both lotion use and injuries are greatly reduced or eliminated, thus

implicating ski as the variable causally responsible for the other two (Figure 2-1).

The study now expands to include a tropical island. The correlation between

skiing and sunscreen use is weakened; however, when tropical sports are included in
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ski

injuries exposure

lotion

sportsski

injuries exposure

lotion

sports

Figure 2-2: The Bayesian network including additional variables. Ski and
sports together predict sun exposure, which is a good predictor of lotion use.

the study, the ski and sports variables together are able to predict sunscreen lotion

use. If sun exposure is also included, it is found to be well predicted by skiing and

tropical sports, and is itself a good predictor of lotion use (Figure 2-2).

The Bayesian network works much like this example, examining correlations, de-

termining which variable(s) can be used to predict which other variables, and relying

heavily on interventional data to determine causal connections and the directionality

of node to node connections. It is able to find complex relationships beyond simple

correlations, it can handle indirect relationships (e.g ski→lotion, when exposure is

not measured), and it can eliminate unnecessary edges (ski→lotion when exposure

is measured). Therefore, it is potentially able to automatically construct a network

much like the canonical pathways sketched out in biology text books. In this the-

sis, we show an application of this approach to signaling proteins measured in single

cells, demonstrating the ability of Bayes nets to find a first order map of a signaling

pathway, and serve as an in silico generator of testable influence hypotheses.

2.2 An introduction to Bayesian networks

This introduction is intended to serve as a basis for understanding Bayesian net-

works in their general context, including typical applications, in order to provide a

context for their use in the analysis of signaling pathways. It is primarily intended to
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provide an intuitive understanding, readers intending to pursue the use of Bayesian

networks are referred to more in-depth references. [63, 26, 65] In this introduction,

we assume only knowledge of basic concepts from probability, including such concepts

as Bayes rule, marginalization, and conditional independencies. A reader who is not

comfortable with these concepts can read about them in any basic probability text.

2.2.1 Model semantics

In a Bayesian network, probabilistic relationships are represented by a qualitative

description- a graph (G), and a quantitative description- an underlying joint proba-

bility distribution. In the graph, the nodes represent variables (in our case, these are

biomolecules, usually signaling molecules) and the edges represent dependencies (or

more precisely, the lack of edges indicate a conditional independency).[63] The graph

must be a DAG- a directed acyclic graph. By directed we mean that the edges must

be single-headed arrows, originating from one node (the parent node) and ending in

another (called the child node). Acyclic indicates that the graph must not include

directed cycles, so it should not be possible to follow a path from any node back to

itself. (This constraint is a serious limitation in the biological domain, a point which

we discuss later.)

For each variable, a conditional probability distribution (CPD) quantitatively

describes the form and magnitude of its dependence on its parent(s). This conditional

probability distribution is described by a vector of its parameters, θ. The CPD

must be consistent with the conditional independencies implied by G. In general,

variables in a Bayesian network may be continuous or discrete, and joint probability

distributions may take on any form that specifies a valid probability distribution.

However, in this dissertation, we handle only discrete variables, and use primarily

multinomial distributions. When discrete variables are used, each variable may take

on one of a finite set of states. (E.g. a protein variable may be in state low, medium

or high.)

In general, a Bayesian network represents the joint probability distribution for a

finite set X = {X1, . . . , Xn} of random variables where each variable Xi may take on
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Figure 2-3: A Bayesian network structure for the variables pollen, allergy, cold
and sneezing.

a value xi from the domain V alXi. In our notation, we use capital letters, such as

X, Y, Z, for variable names and lowercase letters x, y, z to denote specific values taken

by those variables. Sets of variables are denoted by boldface capital letters X,Y,Z,

and assignments of values to the variables in these sets are denoted by boldface

lowercase letters x,y, z. We denote the parents of Xi in G as ParXi. θ describes the

CPD, P (Xi|ParXi), for each variable Xi in X. For illustrative purposes, consider a

toy example in which a Bayesian network represents the joint probability distribution

between a cold virus (c), an allergy to pollen (a), the presence of pollen (p), and

the occurrence of sneezing (s). We may represent the dependencies among these

variables in a graph such as (figure). In this graph, allergy is the child of pollen,

sneezing is the child of cold and allergy, and the nodes cold and pollen have no

parents (such nodes are called root nodes). Assume each variable can take on the

value 0 (’absent’) or 1 (’present’).

While the graph appears to represent variable dependencies, its primary purpose

is actually to encode conditional independencies, critical for their ability to confer

a compact representation to a joint probability distribution. In our toy example,

sneezing is dependent upon cold and allergy. Sneezing is dependent upon pollen

as well; however, when the value of allergy attack is known, sneezing and pollen

become independent. If we already know that an allergy attack is occurring (a=1)

(or not occurring- a=0) knowing something about the presence of pollen will not help
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us determine the value of sneeze. Therefore, sneezing is conditionally independent

of pollen given allergy.

Formally, We say that X is conditionally independent of Y given Z if

P (X|Y, Z) = P (X|Z)

and we denote this statement by (X ⊥ Y | Z).

The graph G encodes the Markov Assumptions: Each variable Xi is independent

of its non-descendants, given its parents in G.

∀Xi(Xi ⊥ NonDescendantsXi
| PaXi

)

As a consequence of the Markov assumption, the joint probability distribution over

the variables represented by the Bayesian network can be factored into a product

over variables, where each term is local conditional probability distribution of that

variable, conditioned on its parent variables:

P (X1, . . . , Xn) =
n∏

i=1

P (Xi|PaXi
) (2.1)

This is called the chain rule for Bayesian networks, and it follows directly from

the chain rule of probabilities, which states that the joint probability of independent

entities is the product of their individual probabilities.

A key advantage of the Bayesian network is its compact representation of the

joint probability distribution. With no independence assumptions, the joint proba-

bility distribution over the variables pollen, allergy, cold and sneeze is P (P, C, A, S) =

P (P )P (C|P )P (A|C, P )P (S|C, P, A)1. For binary variables, this is 1+2+4+8=15 pa-

rameters. Employing the conditional independencies, the joint probability distribu-

tion becomes P (P, C, A, S) = P (P )P (C)P (A|P )P (S|A, C), or 1 + 1 + 2 + 4 = 8

parameters. The more sparse a graph structure, the fewer edges it contains and the

1Or, equivalently, P (A,C, P, S) = P (A)P (C|A)P (P |A,C)P (S|A,C, P ), or any other order. If
this representation of the joint probability distribution is not familiar, derive it by starting with the
more familiar P (A,B) = P (A|B)P (B), then expanding to more variables.
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more conditional independencies it encodes, yielding a greater savings in parameters.

What about the joint probability distribution representation? In the case of the

multinomial distributions, each CPD can be presented in a conditional probability

table (CPT ), in which each row in the table corresponds to a specific joint assignment

paXi
to PaXi

, and specifies the probability vector for Xi conditioned on paXi
. If we

assume these variables are binary (each can be in one of two states, either 0 or 1),

then in order to specify all the parameters of the CPD for variable Xi with parent(s)

PaXi
, each CPT must have 2k entries, where k is the number of parents. In general,

for a variable Xi with k parents, if each variable takes on one of s states, the number

of entries in the CPT will be sk ∗ (s− 1).

Returning to our toy example, we will assume (for now) that the parameters of

the CPTs are known:

P (p = 0) P (p = 1)

0.7 0.3

P (c = 0) P (c = 1)

0.9 0.1

p P (a = 0) P (a = 1)

p = 0 0.999 0.001

p = 1 0.4 0.6

a c P (s = 0) P (s = 1)

a = 0 c = 0 0.99 0.01

a = 0 c = 1 0.4 0.6

a = 1 c = 0 0.5 0.5

a = 1 c = 1 0.1 0.9

These indicate that, for instance, the probability of having a cold is 0.1 (this

is the ’general’ or a priori probability, not taking into account any information),

the probability of pollen being present is 0.3, the probability of having an allergy

attack when pollen is present is 0.6 (the person is only somewhat allergic), and the

probability of sneezing when the person has a cold but no allergy attack is 0.6. While

the graph reveals the conditional independencies, the CPTs demonstrate the strength

50



of dependencies. For instance, although both allergy and cold can cause sneezing,

cold alone has a stronger affect than allergy alone (P (s = 1|c = 1, a = 0) = 0.6

while P (s = 1|c = 0, a = 1) = 0.5). Notice that, as expected, each row in the CPT

sums to 1, so the second column of probabilities is redundant. If we consider only the

first column, we can count exactly 8 parameters that are specified for this Bayesian

network.

2.2.2 Inference

The most common task for which Bayesian networks are used is inference- reasoning

from factual knowledge or evidence. This is a ’classic’ use of Bayesian networks which

is applicable whenever (often incomplete) information must be used to evaluate a

probabilistic system (examples include assessment of the likelihood of an accident by

a car insurance company or a doctor’s assessment of the likelihood of a particular

patient diagnosis). In an inference task, we wish to know what is the value of a

particular node, but we do not have access to that information. Instead, we use the

Bayesian network to get an answer in the form ”variable Xi is 0 with probability

y”. Usually we have evidence that we take into account. Evidence takes the form of

assignments to some other variables. For example, if we wish to know if a person is

sneezing, and we know that the person is having an allergy attack, we can use this

information to assess P (sneezing = 1|allergy = 1). We say that the variable allergy

is instantiated, and we call this information evidence. When evidence is available, we

may reason about a cause of the instantiated variable (this is diagnostic or ’bottom

up’ reasoning), or we may have evidence on the cause, and instead reason about the

effect (this is causal, or ’top down’ reasoning). An example of the former would be

P (p = 1|s = 1); P (s = 1|c = 1) is an example of the latter.

To clarify these concepts, lets consider a number of examples.

Lets say we want to know P (c = 0) - the probability that the person does not have

a cold. With no available evidence, we need to sum the joint probability distribution

over all possible values of the other variables:

P (c = 0) =
∑

pollen,allergy,sneeze P (p)P (a|p)P (c)P (s|a, c)
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= P (p = 0)P (a = 0|p = 0)P (c = 0)P (s = 0|a = 0, c = 0)

+P (p = 0)P (a = 0|p = 0)P (c = 0)P (s = 1|a = 0, c = 0)

+P (p = 0)P (a = 1|p = 0)P (c = 0)P (s = 0|a = 1, c = 0)

+P (p = 0)P (a = 1|p = 0)P (c = 0)P (s = 1|a = 1, c = 0)

+P (p = 1)P (a = 0|p = 1)P (c = 0)P (s = 0|a = 0, c = 0)

+P (p = 1)P (a = 0|p = 1)P (c = 0)P (s = 1|a = 0, c = 0)

+P (p = 1)P (a = 1|p = 1)P (c = 0)P (s = 0|a = 1, c = 0)

+P (p = 1)P (a = 1|p = 1)P (c = 0)P (s = 1|a = 1, c = 0) =

= 0.7 ∗ 0.999 ∗ 0.9 ∗ 0.99 +0.7 ∗ 0.999 ∗ 0.9 ∗ 0.01

+0.7 ∗ 0.001 ∗ 0.9 ∗ 0.5 +0.7 ∗ 0.001 ∗ 0.9 ∗ 0.5

+0.3 ∗ 0.4 ∗ 0.9 ∗ 0.99 +0.3 ∗ 0.4 ∗ 0.9 ∗ 0.01

+0.3 ∗ 0.6 ∗ 0.9 ∗ 0.5 +0.3 ∗ 0.6 ∗ 0.9 ∗ 0.5 = 0.9

This result is, as expected, the same as the a priori probability of c=0, since we

did not take any evidence into consideration. In the case of cold, it is not a very useful

calculation. But we can use the same approach to calculate an overall probability for

variables that are not root as well. For example, lets say that we want to know what

is the overall probability of a person sneezing, when the allergy, pollen, and cold state

are not known. We can do a similar calculation:

P (s = 1) =
∑

pollen,allergy,cold P (p)P (a|p)P (c)P (s|a, c)

= P (p = 0)P (a = 0|p = 0)P (c = 1)P (s = 1|a = 0, c = 1)

+P (p = 0)P (a = 0|p = 0)P (c = 0)P (s = 1|a = 0, c = 0)

+P (p = 0)P (a = 1|p = 0)P (c = 1)P (s = 1|a = 1, c = 1)

+P (p = 0)P (a = 1|p = 0)P (c = 0)P (s = 1|a = 1, c = 0)

+P (p = 1)P (a = 0|p = 1)P (c = 1)P (s = 1|a = 0, c = 1)

+P (p = 1)P (a = 0|p = 1)P (c = 0)P (s = 1|a = 0, c = 0)

+P (p = 1)P (a = 1|p = 1)P (c = 1)P (s = 1|a = 1, c = 1)

+P (p = 1)P (a = 1|p = 1)P (c = 0)P (s = 1|a = 1, c = 0) =

= 0.7 ∗ 0.999 ∗ 0.1 ∗ 0.6 +0.7 ∗ 0.999 ∗ 0.9 ∗ 0.01

+0.7 ∗ 0.001 ∗ 0.1 ∗ 0.9 +0.7 ∗ 0.001 ∗ 0.9 ∗ 0.5

52



+0.3 ∗ 0.4 ∗ 0.1 ∗ 0.6 +0.3 ∗ 0.4 ∗ 0.9 ∗ 0.01

+0.3 ∗ 0.6 ∗ 0.1 ∗ 0.9 +0.3 ∗ 0.6 ∗ 0.9 ∗ 0.5 = 0.15411

So the overall probability of sneezing is fairly low; not surprising, since sneezing

depends on two variables which occur at low probability.

Usually an inference task involves evidence. Lets consider an example in which

one or more variables are instantiated. For instance, perhaps we notice that the per-

son is sneezing (s = 1), and we wonder if this is due to a cold or an allergy attack.

We might examine the CPTs and see that cold alone is more likely than allergy alone

to cause sneezing (since P (s = 1|c = 1) = 0.6 while P (s = 1|a = 1) = 0.5). Can we

guess that a cold is likely the cause of the sneezing? We cannot, because we must

also take into account the different a priori probabilities of both cold and allergy. If

we do the calculation:

P (c = 1|s = 1) =
∑

pollen,allergy P (p)P (a|p)P (c)P (s|a, c)/P (s = 1)

= [P (p = 0)P (a = 1|p = 0)P (c = 1)P (s = 1|a = 1, c = 1)

+P (p = 0)P (a = 0|p = 0)P (c = 1)P (s = 1|a = 0, c = 1)

+P (p = 1)P (a = 1|p = 1)P (c = 1)P (s = 1|a = 1, c = 1)

+P (p = 1)P (a = 0|p = 1)P (c = 1)P (s = 1|a = 0, c = 1)] /P (s = 1) =

0.7 ∗ 0.001 ∗ 0.1 ∗ 0.9 +0.7 ∗ 0.999 ∗ 0.1 ∗ 0.6

+0.3 ∗ 0.6 ∗ 0.1 ∗ 0.9 +0.3 ∗ 0.4 ∗ 0.1 ∗ 0.6 /0.15411

= 0.065421/0.15411 = 0.42451

P (a = 1|s = 1) =
∑

pollen,cold P (p)P (a|p)P (c)P (s|a, c)/P (s = 1)

= [P (p = 0)P (a = 1|p = 0)P (c = 0)P (s = 1|a = 1, c = 0)

+P (p = 0)P (a = 1|p = 0)P (c = 1)P (s = 1|a = 1, c = 1)

+P (p = 1)P (a = 1|p = 1)P (c = 0)P (s = 1|a = 1, c = 0)

+P (p = 1)P (a = 1|p = 1)P (c = 1)P (s = 1|a = 1, c = 1)] /P (s = 1) =

0.7 ∗ 0.001 ∗ 0.9 ∗ 0.5 +0.7 ∗ 0.001 ∗ 0.1 ∗ 0.9

+0.3 ∗ 0.6 ∗ 0.9 ∗ 0.5 +0.3 ∗ 0.6 ∗ 0.1 ∗ 0.9 = 0.097578/0.15411 = 0.63317

So given only the information that sneezing is occurring, the more likely cause is
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actually an allergy attack2. Notice that when we perform inference with evidence, we

must rule out all possibilities in which the evidence is refuted- in this case, we cannot

take into consideration any possibilities in which s=0, since we are given that s=1.

The probability distribution over the space of possibilities must sum to 1. Since we

are constraining the space of possibilities, in order to maintain the constraint that

the probabilities sum to 1, we must renormalize our probability distribution; we do

this by dividing by the overall probability of the evidence (in this case, P(s=1), which

we already calculated above). This is an application of Bayes rule: P (a|s) = P (a,s)
P (s)

.

It is this use of Bayes rule for inference tasks that gives Bayesian networks their

name (and, in fact, Bayesian methods are not necessarily employed in the context

of Bayesian networks. It is common to use Bayesian networks with non-Bayesian

methods of, e.g. parameter estimation. We discuss Bayesian methods below.).

Note also that the probability of cold increased when this evidence was taken

into account (we say that our belief in c=1 was increased), because the presence of

sneezing made a cold more likely (i.e. P (c = 1|s = 1) > P (c = 1)). Although we

have not calculated the a priori probability of allergy, it is safe to assume we would

similarly find that P (a = 1|s = 1) > P (a = 1).

Finally, consider the inference task in which we know the person is sneezing and

we also know the person is having an allergy attack. What happens to the probability

of cold? How does it compare to the probability of a cold, given only that the person

is sneezing, but with no information regarding allergy? If we do the calculation:

P (c = 1|a = 1, s = 1) =
∑

pollen P (p)P (a|p)P (c)P (s|a, c)/P (s = 1, a = 1)

=
∑

pollen P (p)P (a|p)P (c)P (s|a, c)/
∑

pollen,cold P (p)P (a|p)P (c)P (s|a, c)

= [P (p = 0)P (a = 1|p = 0)P (c = 1)P (s = 1|a = 1, c = 1)

+P (p = 1)P (a = 1|p = 1)P (c = 1)P (s = 1|a = 1, c = 1)]

/[P (p = 0)P (a = 1|p = 0)P (c = 0)P (s = 1|a = 1, c = 0)

+P (p = 0)P (a = 1|p = 0)P (c = 1)P (s = 1|a = 1, c = 1)

2Note that P (a = 1|s = 1) puts no constraint on the value of c, so the probability includes the
case in which a=1 and c=1. Similarly, P (c = 1|s = 1) includes the possibility that a=1.
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+P (p = 1)P (a = 1|p = 1)P (c = 0)P (s = 1|a = 1, c = 0)

+P (p = 1)P (a = 1|p = 1)P (c = 1)P (s = 1|a = 1, c = 1)] =

[0.7 ∗ 0.001 ∗ 0.1 ∗ 0.9 +0.3 ∗ 0.6 ∗ 0.1 ∗ 0.9] /[0.7 ∗ 0.001 ∗ 0.9 ∗ 0.5

+0.7 ∗ 0.001 ∗ 0.1 ∗ 0.9 +0.3 ∗ 0.6 ∗ 0.9 ∗ 0.5 +0.3 ∗ 0.6 ∗ 0.1 ∗ 0.9] =

= 0.016263/0.097578 = 0.16667

We see that the presence of an allergy attack reduces our belief that the person has a

cold. So our belief in c=1 increases when we know s=1, but then is reduced when we

also discover that a=1. This is because the presence of sneezing makes us think the

person may have a cold that is the cause of the sneezing. However, when we discover

that the person has an allergy attack, we reason that the allergy attack may be the

cause of the sneezing, and so we become less convinced that the person has a cold.

This process is called explaining away (because the allergy attack explains away the

sneezing), and it is one way in which a Bayesian network is able to reason.

2.2.3 Parameter estimation

So far, we have discussed Bayesian networks where both the graph structure and

the CPD parameters are known. In this section, we discuss the situation in which

the parameters are unknown, and must be estimated from data. Suppose we have

a set of samples D = {x[1], . . . ,x[M ]}, containing M measurements of the variables

in the Bayesian network . We would like to find an estimate for θ, denoted θ̂. A

standard approach to parameter estimation is called maximum likelihood estimation,

sometimes called MLE. In MLE, first we define a likelihood function, which expresses

the likelihood of the data as a function of the (unknown) parameter(s). Then we find

the parameter value that maximizes the value of the likelihood, and we use this value

as our parameter estimate. Consider an example in which we have a coin, and we

wish to estimate θ = P (heads). We flip the coin three times, and get two heads and

one tail. The likelihood function is L(θ : D)αθ2(1 − θ). Now we want to find the

estimator that will maximize this likelihood:
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θ̂ = max
θ

L(θ : D) (2.2)

For this likelihood function, we can maximize by taking the derivative and setting

to zero:

d
dθ

θ2(1− θ) = 2θ − 3θ2 = 0⇒ θ̂ = 2/3

Notice that we get a θ̂ that is consistent with our intuition regarding what the

estimate for P (heads) might be.

In our case, we define a likelihood function for the parameters of our Bayesian

network and the data:

L(θ : D) =
M∏

m=1

P (x[m] | θ)

This optimization problem is greatly facilitated by the decomposability of the

Bayesian network likelihood function, which allows us to consider each local proba-

bility function (each variable given its parents) separately. For each variable X with

its parents PaXi
, there exists a parameter θx|u for each combination of x ∈ Val(X)

and u ∈ Val(PaXi
), that we find by maximizing the likelihood function. To express

the estimated parameters, we group together all the instances in which X = x and

U = u. Denote M [x,u] to be the number of instances in which X = x and U = u

and M [u] =
∑

x∈X M [x,u], then the paramters can be expressed as:

θ̂x|u = max
θX|U

L(θX|U : D) =
M [x,u]

M [u]
(2.3)

The counts M [x,u] and M [u] are called sufficient statistics. The sufficient statis-

tics summarize all the information from the data that is needed in order to calculate

the likelihood, so given the counts, the dataset itself is no longer needed.

Bayesian approach

As in the two cases shown above, the MLE consistently gives a logical estimate:

if a coin yields heads 2/3 of the time, we might guess that P(heads)=2/3. However,
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if we revisit the coin example, we might discover that we are not convinced by this

estimate, because it was based on just three total coin flips. Such a dataset could

easily bias our estimate. Until we see a much larger sample size- perhaps 100 coin

flips- we might believe that the coin is probably a fair one, with P(heads)=0.5. When

parameters are not known, and especially when the dataset from which we estimate

the parameters is limited, we must contend with the uncertainty of our parameters.

The MLE fails to take uncertainly into account, but the Bayesian approach handles

it naturally. In the Bayesian approach, uncertainly is handled in two ways: First,

in parameter estimation, we incorporate a prior distribution that encodes our belief

in the possible values of a parameter, prior to observing the data. Second, in the

inference task, we integrate over all possible values of the parameter, rather than

considering one particular point estimate.

The prior, P (θ), is a distribution that encodes our belief regarding the parameter

value, based on everything except the data. For example, we might base it on our

general knowledge about the physical world. In the coin example, we might assume

that P(heads) is most likely 0.5, that P(heads)=0.4 or 0.6 is slightly less likely, and

so on, incorporating our bias that the coin is likely to be a fair one. Alternatively, we

can assume that any P(heads) is equally likely- this unbiased prior is called a uniform

prior, since it uses the uniform distribution. The data is then used to update the prior

distribution, yielding the posterior distribution, P (θ|D). The update is achieved using

Bayes rule:

P (θ | D) =
P (D | θ)P (θ)

P (D)
. (2.4)

Note that the denominator, P (D), is a normalizing factor that is independent of θ.

For this reason, it is sometimes disregarded.

The posterior distribution is different from the MLE in several ways. First, it is

not a point estimate that assigns a particular value to θ̂, but instead is a distribution

that assigns a probability density to each possible value of θ. Second, it always takes

the prior distribution into account. This tends to have a smoothing affect on the

estimation. For example, if the prior assumed that any value of θ between 0 and 1
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is possible, then a data sample of 2 heads, 1 tail would assign a (possibly small, but)

nonzero probability to all values of θ, including, say, θ̂ = 0.5. How heavily the data

is considered versus the prior depends on the size of the dataset, and on the ’weight’

of the prior, specified within the prior itself. If the dataset is very small and the prior

is heavily weighted, the prior will influence the posterior substantially, however, as

the size of the dataset grows relative to the weight of the prior, the affect of the prior

fades. 3

For our coin example, we might choose to express the prior distribution as a beta

distribution:

P (θ) =
1

c
θα(1− θ)β (2.5)

where c is the normalizing factor, c =
∫ 1
0 θα(1−θ)β and α, β > −1. α and β are called

the hyperparameters of the beta distribution.

The beta distributionconveniently allows us to express a belief that the coin is

biased towards heads (simply set α > β, the bigger the difference, the more heads

becomes likely), or a belief that that tails is more likely (β > α), or, perhaps the

more realistic case, that both are equally likely (α = β). The magnitude of α and β

allow us to express how strongly we believe in our prior 4, with a larger magnitude

indicating a stronger belief in the prior, as we shall see below. If we have no prior

belief about the fairness of the coin, and we wish all values of θ to be equally likely

a priori, we can use a uniform prior, which is simply the beta with α = β = 0.

Our goal is to find P (θ|D) and the beta prior gives us P (θ). According to Eq. (2.4),

we still need to express P (D|θ) and P (D) in order to find the posterior. P (D|θ) is

the likelihood function, which we express using the binomial distribution:

P (D|θ) =
(h + t)!

h!t!
θh(1− θ)t (2.6)

3The prior is never completely eliminated from the posterior- so if the prior assigns a nonzero
probability to θ̂ = .5, then the posterior will always assign a nonzero probability to θ̂ = .5, even if
we observe a dataset of 100,000 heads and zero tails. However, in this case values of θ̂ that are < 1
will likely be very small.

4This holds true for positive α,β.
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where h=number of heads, t=number of tails,

and P (D) is the normalizing factor:

P (D) =
∫ 1

0
P (D|θ)P (θ)dθ =

∫ 1

0

(h + t)!

h!t!
θh(1− θ)t 1

c
θα(1− θ)βdθ (2.7)

This gives a posterior of the form:

P (θ|D) =
(h+t)!

h!t!
θh(1− θ)t ∗ 1

c
θα(1− θ)β∫ 1

0
(h+t)!

h!t!
θh(1− θ)t ∗ 1

c
θα(1− θ)βdθ

=
1

d
θh+α(1− θ)t+β (2.8)

where d =
∫ 1
0 θh+α(1− θ)t+βdθ.

Notice that the prior and the posterior are of the same form. We say that the beta

is the conjugate to the binomial distribution, since if we start with a beta prior, the

posterior is also a beta distribution. 5 The form of the posterior provides an intuitive

interpretation for the hyperparameters- we view them as pseudocounts, corresponding

to imaginary coin flips. This explains how the hyperparamters can be varied to

give more or less weight to the prior, as mentioned above. Large hyperparamters

correspond to many pseudocounts, while small ones correspond to fewer pseudocounts,

which have little impact on the posterior, especially if the dataset is large.

Given the posterior distribution, we can now perform inference using a fully

Bayesian approach. Say we had a dataset of size M (containing M measurements

of all n variables). For the sake of comparison, we will work out the non-Bayesian

(frequentist) approach first. Recall that in the frequentist approach, we used MLE to

get parameter estimates for our Bayesian network. For each variable, we had a set of

parameter estimates, expressing the estimated probability of that variable, given its

parent(s). Returning to our toy Bayesian network example, the set would include θ̂c=0,

θ̂c=1, θ̂p=0, θ̂p=1, θ̂a=0|p=0, and so on, one estimator for each parameter. In our inference

task, we wish to find the probability of a future datapoint (not one from the dataset),

in which c = 1, p = 0, a = 1 and s = 0. In the frequentist approach, this would be:

5Note that the prior and posterior are distributions over θ, and so they use the continuous
distribution beta, while the likelihood is a distribution over the data, in this case coin flip counts, and
so it uses the discrete binomial distribution. As is demonstrated by this example, it is mathematically
very convenient to use conjugate distributions.
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P (X[M + 1]) = P (c = 1, p = 0, a = 1, s = 0) = θ̂c=1 ∗ θ̂p=0 ∗ θ̂a=1|p=0 ∗ θ̂s=0|c=1,a=1

In contrast, in the Bayesian approach, we replace θ̂ with the distribution P (θ|D),

then we integrate over all possible setting of the parameters:

P (X[M + 1] | D) =
∫

P (X[M + 1] | D, θ)P (θ | D)dθ (2.9)

We expand on parameter estimation in Bayesian networks below.

Parameter estimation in Bayesian networks

In this thesis, we use the multinomial distribution for our Bayesian network pa-

rameters,and Dirichlet priors. Just as the multinomial is the multivariate exten-

sion of the binomial distribution, the Dirichlet is the multivariate extension of the

beta. Analogously to the beta distribution, the Dirichlet is characterized by a set

of hyperparamters αx1|u, . . . αxK |u, one such hyperparameter corresponding to each

xj ∈ Val(X).

The Dirichlet distribution is specified by:

P (θ) = Dirichlet(αx1|u, . . . αxK |u) ∼
∏
j

θ
α

xj |u−1

xj |u (2.10)

where the hyperparamters once again can be thought of as pseudocounts (as we

shall see), and α∗ =
∑

j αxj |u can be considered the effective sample size of the prior.

Aside from lending itself naturally to our tabular multinomial CPTs, the Dirichlet

prior is convenient for a number of reasons. It satisfies parameter independence,

meaning that it decomposes into a product of independent terms,6 it provides an

intuitive approach to specifying the strength of our prior, and it is the conjugate

distribution to the multinomial; therefore, the posterior will also be Dirichlet:

Proposition 2.2.1: If P (θ) is Dirichlet(αx1|u, . . . , αxK |u), then the posterior P (θ | D)

is Dirichlet(αx1|u + M [x1,u], . . . , αxK |u + M [xK ,u]) where M [x,u] is the sufficient

statistics derived from D.

6In the Dirichlet prior, the parameters for each variable given its parents in G are independent of
the parameters for each other variable, given its parents (global parameter independence), and the
parameters for each variable given a parent are independent of the parameters for the same variable
given other parent(s) (local parameter independence).
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The posterior can be used in Eq. (2.9) to calculate the probability of future sam-

ples.

2.3 Structure learning

In the entire tutorial so far, we have considered Bayesian networks in which the

structure, G, is known. However, in this thesis, our goal is to discover G, by searching

for a structure that is consistent with the dependencies present in a dataset. Finding

the graph structure that may have generated (is most likely to have generated) the

observed data is called structure learning.

Structure learning is conceptually different from what we have focused on so far,

but our methods are consistent with what we have already seen. Our strategy for

structure learning is as follows: First, we define a Bayesian score which indicates,

for a given graph structure, how well the structure reflects the dependencies (and

conditional independencies) present in the data. This score allows us to assess indi-

vidual structures. Armed with this ability, we can now search over possible model

structures, until we find the best one (i.e. the one with the highest score), or more

accurately, we find a set of high-scoring model structures. Finally, we take our set

of high scoring models and average them, in order to avoid overfitting and remain

consistently Bayesian in our approach.

2.3.1 Bayesian score

To formulate the Bayesian score, we start with a probability metric:

scoreB(G : D) α P (G|D) =
P (D | G)P (G)

P (D)
(2.11)

This score expresses the posterior probability of the the graph given the data.

Because the marginal likelihood, P (D), will be the same for any structure considered,
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we are able to neglect it; thus, the Bayesian score becomes:

scoreB(G : D) = P (D | G)P (G) (2.12)

This is not quite accurate, because, for convenience of computation, the score is

actually the log probability:

scoreB(G : D) = log P (D | G) + log P (G)

P (G) is the structural prior, expressing the a priori probability of each graph

structure. Typically, we employ a uniform prior, so we are not biased towards one

structure or another. However, when we have constraints, we can incorporate them.

For example, if our model is dynamic, we may have a probability of zero for any graph

in which a node representing a later timepoint is influencing an earlier timepoint.

Additionally, one could use the prior to incorporate biological knowledge.

As before, we have a dataset, but are uncertain about the value of our parameters.

Therefore, we average over all possible parameter assignments when we calculate

P (D|G):

P (D | G) =
∫

P (D | G, θ)P (θ | G)dθ (2.13)

We can see from this expression that the Bayesian score incorporates a complexity

penalty, ensuring that it will prefer simpler models, unless a more complex model is

supported by a sufficiently large dataset. The complexity penalty follows from the

fact that the Bayesian score integrates over all possible parameters. A more complex

model will have more parameters, leading to integration over a larger-dimensional

space. For the parameter prior, P (θ|G), this means that every point in the density

function is smaller (since the distribution must integrate to 1). For P (D|G, θ), the

distribution must be strongly peaked over the true parameters to overcome the in-

crease in parameter dimensionality. This can happen (assuming the true underlying
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graph is indeed complex) when the dataset is large. Otherwise, there is not sufficient

data to learn a complex distribution (even if it is the true one), and the Bayesian

score will select a simpler graph structure. Because of this complexity penalty, the

Bayesian approach avoids overfitting- a process by which we fit our model to noise in

the data, rather than a true signal. This is a significant strength, particularly in a

data-limited domain.

The integral in Eq. (2.13) can in general be a hard integral to solve; however, due

in part to the decomposability of the Bayesian network and the Dirichlet prior, this

integral has a closed form solution. Assuming Dirichlet priors with hyperparamters

{αXj
i |u
}, the Bayesian score can be expressed as:

scoreB(G : D) =
∑

i

log
∏

u∈Val(PaXi
)

Γ(αxi|u)

Γ(αxi|u + M [u])

∏
xj

i∈Val(Xi)

Γ(αxj
i |u

+ M [xj
i ,u])

Γ(αxj
i |u

)

(2.14)

where Γ is the Gamma function (Γ(n) = (n − 1)! if n is a natural number) and

αxi|u =
∑

j∈Val(Xi) αxj
i |u

.

As before, the hyperparameters are incorporated as pseudocounts, so it is straight-

forward to vary the influence of the smoothing prior. Note that the score sums over

each variable separately, so the contribution of each variable to the overall score can

be considered individually (a feature crucial for efficiency, as we discuss below). Fur-

thermore, each local contribution depends only on the sufficient statistics- we need

only know the counts from the data and the prior hyperparamters to calculate the

score.

2.3.2 Searching the space of possible graph structures

For our next step, we have to consider possible graph structures and assess them

using the Bayesian score, until we find one (or ones) that score well. We cannot

exhaustively examine every graph, because the number of possible graph structures

is super-exponential in the number of variables. In fact, finding the highest scoring
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graph is known to be NP-complete (therefore computationally infeasible). Instead,

we employ a heuristic search to find high scoring models. There are a number of ways

to formulate such an algorithm. In this thesis, we employ a greedy random search,

specifically, a variation called Metropolis. We begin with a random graph. Then, at

each iteration, we select at random an edge to add, delete, or reverse (while keeping

within necessary constraints of the graph, such as acyclicity). We score the new

graph structure, and keep the change if we find that the score improves. Otherwise,

we revert to the previous structure. We then go to the next iteration, and again make

a random change, repeating the process.

This procedure can get stuck in a local maximum- because we change only one

edge at a time, we may encounter a situation in which any single edge change yields a

lower score, but a, say, two edge change may lead to a better score. We can never get

to this two edge difference, because the first edge change would be rejected. Thus, we

are stuck in a score that is locally good (better than any structure that is one edge

different) but not very good overall. We avoid this problem in two ways. First, we

allow a ’bad’ edge change (one that leads to a lower score) with some probability p. p

starts very high, then becomes smaller as the search continues. This is a form of the

simulated annealing algorithm. As in simulated annealing, after the ’temperature’

(actually p) is reduced, it is temporarily increased late in the search (reannealing).

As a second measure, we also repeat the search multiple times, each time starting

from a different point in the search space (a different random graph). This is called

random restart. The random graph can be generated simply by starting with an

empty graph and running the search procedure for several iterations with a very

permissive temperature (i.e. very high p). In this thesis, we typically employ at least

100 random restarts (sometimes up to 500).

Each search iteration requires a calculation of the new model score. As we dis-

cussed before, the score requires only the sufficient statistics from the data (which

are simply counts of the form, ”How many times is a variable in configuration x while

its parents are in configuration y”). For a large Bayesian network , compiling the

sufficient statistics may be computationally burdensome. Fortunately, as we saw in
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Eq. (2.14), the score decomposes, so that the score contribution of each variable can

be considered in isolation. This is very useful for our search procedure, because it

means that we need to gather all the sufficient statistics only once, (the first time

we score). After that, we change the score only locally, by updating the sufficient

statistics only for the one variable which has gained (or lost) a parent as a result of

the new edge change. For example, if the edge A → B is added, then B has gained

a parent, and so will need new counts for its sufficient statistics. In the case of an

edge reversal, say A → B becomes B → A, then in one step both A and B have

had a change in their parent sets. In this case, we update the sufficient statistics for

both A and B. Thus, because of the decomposability of the Bayesian score, all search

iterations (except for the first) will require at most two recalculations of sufficient

statistics.

2.3.3 Model averaging

At the end of our search procedure, we have a collection of high-scoring models. We

could simply select the highest scoring model from this collection. However, because

our data is noisy, we have uncertainty with respect to our dataset. Furthermore,

because our dataset is limited in size (sometimes very limited), we are concerned about

choosing the one highest scoring model that happens to best reflect possibly spurious

signals in this dataset. In other words, we are concerned about overfitting. For this

reason, rather than select the single highest scoring model, we consider the collection

of all high-scoring models, and choose those features that are common to many of

them. To do this, we perform model averaging. Notice that this is consistent with

the Bayesian approach that we have seen so far: Each time we encounter uncertainty,

we average over all possibilities. In this case we are uncertain that one high scoring

model is necessarily better than another.

In model averaging, we consider all high scoring models, and calculate a score

for each feature (each edge) based on the number of high scoring models in which it

appears, as well as the scores of those models. We do this with a weighted average:
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ScoreEdgei =

∑
Modelscontainingedgei ScoreModel∑

AllModels ScoreModel

(2.15)

The score of the edge is approximately equal to the probability of the edge. In

order to get the actual probability, it is necessary to sum over all possible graphs,

something we cannot do due to the enormous size of the set of all graphs. However,

because we sum over numerous very high-scoring models, we do capture most of the

probability density in our sum, making the probability metric more or less accurate.

Other variations on model averaging can be considered. We investigate some of these

in secrefRobustness analysis.

2.4 Model properties and Causality

So far, we have considered Bayesian networksin their general context, and discussed

how to learn the Bayesian network structure from data. In this section, we will

delve a bit more into the model structure, to examine how different structures can

be extracted from data, even when they represent similar dependencies, what kinds

of dependencies are represented, and when a Bayesian network structure can be in-

terpreted as a causal structure.

2.4.1 Dependencies and independencies in the graph struc-

ture

Explaining away in substructures

As previously stated, a Bayesian network is a representation of dependencies and

conditional independencies among a set of variables. We saw before that conditional

independencies are particularly useful. In general, variables may be dependent; how-

ever, they may become independent conditionally, when we consider another variable

or set of variables. We have touched on this topic before briefly; here, we revisit it

for a more thorough treatment. Returning to our toy example (and negelcting, for

a moment, the cold variable), we have the structure p → a → s (such a structure is
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sometimes called a chain). In this structure, pollen and allergy are dependent, as are

allergy and sneeze. pollen and sneeze are dependent as well: if we know that there

is pollen in the air, our belief about the possibility of sneezing increases. However,

pollen and sneezing are independent given allergy: If we know the person has no

allergic reaction, then the absence or presence of pollen does not change our belief in

the possibility of sneezing. Thus, allergy renders pollen and sneeze independent.

Consider this from the structure learning perspective. Examining the variables a,

p, s, we may note that all the variables are correlated. We may connect p to a and

a to s, but why should we stop there? Afterall, we see that p and s are statistically

dependent, so we could also connect p to s. The correct Bayesian network structure

will not connect p to s, however, because the dependence between p and a, and

between a and s, explains away the dependence between p and s (assuming the data

are consistent with the dependencies we describe in our example).

How will the conditional independence implied by the ability of a to explain away

s’s dependence on p manifest itself in the Bayesian score? Consider the CPTs for this

structure: In the correct structure, for the variable s, the CPT will specify P (s|a). If

we also connect p to s, the CPT must now specify P (s|a, p), so it will contain twice as

many parameters. Recall that the Bayesian score penalizes complexity. For the score

to allow the extra parameters, the parameters must be more peaked (as they would

be if pollen did in fact contribute additional information towards predicting sneeze,

for example, if pollen also affected sneezing in some other way, other than by causing

an allergy attack). If p affects s only via its affect on a, the complexity penalty will

result in the more connected model scoring more poorly; thus, it will ensure that the

structure is appropriately sparse.

What other structures encode conditional independencies? Consider the structure

A ← B → C, sometimes called a fork, in which A and C depend upon B. We have

not seen such a structure before, so let us devise an example: say, puddles, rain

and umbrellas. In the model puddles ← rain → umbrellas, we see that puddles

and umbrellas depend on rain. Because they share a parent, we expect puddles and

umbrellas to also be dependent: seeing people with umbrellas might lead us to suspect
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that there are puddles on the ground, and seeing puddles on the ground may increase

our belief that people will be carrying umbrellas (the puddles may have an alternate

cause, such as a sprinkler nearby, which does not induce people to carry umbrellas, so

while our belief in umbrellas is increased, it is not necessarily certain). What happens

when we know that it is raining? As in the chain structure, knowing the value of B

(rain)renders A (puddles) and C (umbrellas) independent, because if we know it is

raining, then the presence of umbrellas no longer informs us as to the possibility of

puddles. In other words, the dependence of each variable on rain explains away their

dependence on each other, rendering them conditionally independent. As before, the

Bayesian score will prefer this structure to one in which an additional edge connects

puddles to umbrellas directly.

Let us examine one final graph structure, an important one called a v-structure,

which has this configuration: A → B ← C (with no edge between A and C). We

saw such a structure in our toy example: cold→ sneeze← allergy. The v-structure

is quite unique because in a v-structure, in contrast to the other structures we have

seen, two otherwise independent variables may become dependent. Consider cold and

allergy. Both affect sneeze, but this will not confer a dependence between them. In

fact, they are completely independent: the presence of a cold virus does not affect

the possibility of an allergy attack and vice versa (to confirm this, return to secref(ref

section here) and calculate P (cold|allergy) and P (allergy|cold); these will be equal

to P (cold) and P (allergy), respectively). What happens if we know the person is

sneezing? Suddenly, allergy and cold become dependent; because we know one must

be the cause of the sneezing, knowing the value of one helps us to determine the value

of the other. We saw an example of this in secref: If sneeze = 1 and cold = 1, our

belief in allergy = 1 decreases; similarly, if sneeze = 1 and allergy = 1, our belief in

cold = 1 decreases; one cause of sneezing explains away the other cause.

D-separation

In the three structures we examined, having information (evidence) for certain

variables confers or eliminates dependencies between other variables. In a link struc-

ture, A → B → C and in a fork, A ← B → C, B makes A and C independent;
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we say that B blocks the flow of information between A and C when it is observed.

In contrast, in a v-structure, A → B ← C, B confers dependence upon A and C,

so B blocks the flow of information between A and C when it is not observed. For

two variables X and Z with observed evidence E, we say that an active trail exists

between X and Z if information is allowed to flow between them, indicating that

for every connection in the form of a v-structure, the ’middle’ variable (the child in

the v-structure) 7 is part of the evidence E, and that no other node between them

is part of E. If no active trail exists between X and Z given E, we say that they

are d-separated given evidence E. The notion of d-separation helps us determine the

presence of conditional independencies in large and convoluted Bayesian networks, in

which it is harder to pick out conditional independencies by inspection.

Selection of model structures

The task of finding the correct model structure for a set of variables may initially

appear straightforward, but it can actually be quite tricky. This is because often,

many dependencies will exist in the domain that are indirect, so the challenge is

to find conditional independencies, rather than dependencies. Making the graph

sparse can be harder than finding accurate connections. Consider a biological domain,

in which three kinases affect each other: kinase A activates kinase B, which then

phosphorylates kinase C. From this description, the accurate underlying Bayesian

network structure is A → B → C. If we attempt to learn this structure from data,

we will likely see a correlation between A and B, B and C, and A and C. So how can

we decide how to connect them? A→ B → C is one valid structure, but what about

B → A → C? What about A ← B → C? What about a fully connected model (an

edge between each two variables)? The answer is that sometimes we can tell which

of these models are better, but sometimes we cannot (unless we have interventional

data- see next section).

Consider A → B → C (the true model) vs. B → A → C or A → C → B. All

of these represent dependencies that we do in fact see in the data. Will the Bayesian

7Information can flow (and the trail can remain active) also if a descendent of the child node is
instantiated
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score favor the true model (assuming sufficient data)? In this case, the Bayesian score

can tell the correct model from the other two. How does this work? If we imagine

a binary dataset, with 0 representing ’kinase off’ and 1 representing ’kinase on’, we

would anticipate that if A is off, B will be off and C will be off; and the opposite

situation if A is on. Therefore, we anticipate a dataset containing rows of ’0 0 0’ and

’1 1 1’- i.e. one in which all the kinases are always either on or off. From this dataset,

it is not possible to tell which model is correct- each is equally supported. Thankfully,

the Bayesian network is actually helped by ’noise’ in the system- in some cases, while

A has turned on B, B has not yet turned on C (perhaps due to the action of some

unknown other protein). In other cases, A has already been dephosphorylated, but B

and C are still ’on’. Because of these situations, the dependence of C is greater upon

B than upon A; and B and A are more closely linked than A and C. Therefore, the

correct model will be preferred from the three above.

What about the model A → B ← C, also consistent with the closer correlations

in the data? Because this model is a v-structure, the Bayesian network can take

advantage of the difference in conditional independencies to tell this model apart

from the true model. In this model, when B is not known, A and C are independent

(as we discussed previously). In the true model, A → B → C, A and C are only

independent if B is known. Since in the data the latter would be true, the correct

model can be selected.

Equivalence classes

Finally, what about the models C → B → A or A ← B → C? They have the

more closely correlated variables linked to each other, so we cannot use system ’noise’

to tell them apart from the true model. What about conditional independencies? In

these two models, A and C are independent given B- just as in the true model, so

conditional independencies cannot be used to distinguish them. Therefore, a Bayesian

network using only observational data cannot tell these apart from the true model.

The Bayesian score for all three will be exactly the same. This is an example of

an equivalence class. Models with the same set of conditional independencies form

an equivalence class. Such models will always receive the same Bayesian score and,
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therefore, are impossible to tell apart using observational data. The simplest such

example is the class consisting of A→ B and B → A. Because of equivalence classes,

when we perform structure learning using observational data, we search for the best

equivalence class rather than the best model. Typically, this means we can find a

graph with only some of the edges directed (called a PDAG, partially directed graph).

2.4.2 Interventional data

Equivalence classes are a big problem in practice, but there is a (conceptually) easy

way to get around them: using interventional data. Interventional data refers to

data in which we intervene experimentally in the biological system, by perturbing

the values of individual molecules in defined ways. For example, we may knock out

a protein (thus set it equal to zero), we may use RNAi, or, as in this thesis, we may

use pharmacological activators and inhibitors. (This is in contrast to observational

data, in which the system may be generally stimulated, but no specific variable is

forced on or off) The power of interventional data is easy to understand. Assume

we have two variables, A and B. A and B are highly correlated, so if we attempt

structure learning, we will end up with the equivalence class consisting of A→ B and

B → A. Now assume we have interventional data in which A is set to zero. In the

observational data, generally A and B were both 0 or both 1. Now A is forced to be

0, and we see that B is also zero. This makes us suspect that A might be affecting

B, i.e. A → B is the correct model. If we also have interventional data on B, and

we see that when B is set to zero, A is sometimes 0 and sometimes 1, we can select

the model A→ B with high confidence, because the data demonstrate that B is not

affecting A. To forshadow the next section, notice that interventional data help us

go from a model of statistical dependency between A and B to one that can have a

causal interpretation.

How do we translate our intuition regarding interventions into a Bayesian score

that incorporates interventions? When we assess a graph structure with the Bayesian

score, we are asessing if the dependencies in the data are well represented by those in

the graph- in other words, does the child variable (in each case) show a statistical de-
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pendence on its parent(s) in the structure. When dealing with interventions, we have

a slightly different situation: In those datapoints with intervention, the perturbed

variable cannot be dependent on its parent(s), because its value has been externally

set (by the experimentor). Therefore, for those datapoints only, we sever the ties be-

tween the perturbed variable and its parent(s). The remainder of the data is treated

as before.

Recall that the Bayesian score sums over the contribution of each variable given its

parents, and that this contribution amounts to counts extracted from the data (plus

hyperparameters from the prior). Severing the ties of the perturbed variable from

its parents amounts to skipping the datapoints with intervention when tabulating the

counts for the variable that has been perturbed (only when it is the child). Note that

failure to do this would weaken the dependence of the variable on its parents, since

they cannot affect the variable’s value in those datapoints.

The intuition behind this alteration of the Bayesian score is as follows. Consider

again a two variable dataset, with well correlated variables, yielding the equivalence

class A→ B and B → A. Assuming the true model is A→ B, a perturbation on A

would result in interventional data in which the B variable is fixed according to A’s

value. Thus, when A → B is scored, it will score well, as A will appear as a good

parent of B. When B is scored, because the perturbed variable, A, is now the child,

those interventional datapoints will be skipped, yielding an effectively smaller dataset

in which to score the B → A edge. The effectively smaller dataset yields less peaked

parameters, so the true model, A→ B, will have a higher score. A perturbation on B

would lead to interventional data in which B is fixed, but A is not fixed in response,

since it does not depend on B. With this data, the dependence between A and B is

weakened in the B → A (in which the interventional data is included), but not in the

A→ B model (in which the interventional data is disregarded), so the A→ B model

will score higher.
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2.4.3 Causality and model interpretation

The Bayesian networks we have been discussing so far have been models of sta-

tistical dependencies among variables. Because statistical dependencies often accom-

pany causal, mechanistic relationships, these relationships are often mistaken for each

other. In fact, while a causal relationship may result in a statistical dependency, the

presence of a statistical dependency does not imply causality. Puddles and umbrellas

may be well correlated, but not because one causes the other; rather, because a third

variable is the parent of both. In general, a statistical dependency implies either a

causal relationship or a shared (set of) parent(s) (or both). The presence of equiva-

lence classes ties in to this fact: since a statistical dependence is merely statistical, it

does not necessarily have directionality. Recall from the discussion above that under

some conditions, we are able to determine the directionality of graph edges (even

when only observational data is available). In those cases, given certain assumptions,

we can interpret the Bayesian network models as causal models.

A causal interpretation of a Bayesian network implies that the parents of a variable

in the graph are its immediate causes.8 It follows that in a causal graph, an inter-

vention on a parent variable will affect the child. To interpret a Bayesian network

structure as causal, two assumptions must be made. The first is the Causal Markov

Assumption, (similar to the Markov assumption we defined earlier) which states that

given its immediate causes in the graph (i.e. its parents), a variable is independent of

its earlier causes. This is a reasonable assumption in our domain. Consider a simple

signaling pathway in which kinase A activates kinase B which then activates kinase

C: A → B → C. Assuming that B is activated (or inactivated), the value of C no

longer depends upon the value of A. The second assumption states that there are no

hidden variables (variables which are not measured) which affect the model variables.

This assumption is often violated in our domain. For instance, there are many sig-

naling molecules which we do not measure. Furthermore, even if we could measure

8Immediate in the sense that their effect is more direct than the effect of any nonparent variable
in the graph; in the causal graph X → Y , it is still possible that an unobserved variable Z is an
intermediary between X and Y .
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all signaling molecules, the state of the signaling molecules might also be affected

by other factors, such as the concentration of ATP, Ca+2 or other small molecules,

cell cycle stage, and countless other contributors which our model typically does not

encompass. Therefore, our results must be interpreted with caution. 9

If we do make these modeling assumptions, then we can interpret as causal all

edges that are directed in our model. Recall that some edges are not directed, due

to the presence of equivalence classes. An edge can be directed in one of three ways:

it may be the result of conditional independencies in the domain (this applies even

when only observational data is available), it may be the result of an intervention, or

it may be compelled by a combination of other edges that are directed, and/or our

modeling assumptions.

Conditional independency

Conditional independencies can orient edges due to the presence of v-structures,

which exist only when two variables (the parents) become dependent given a third

variable (the child). Because this type of conditional independence happens only

with a v-structure, it automatically orients the model edges. (See our discussion

of v-structures, above). Considering that no interventional data is employed, it is

interesting that a causal interpretation may be proposed for these edges. This topic

has received thorough treatment in the literature [64].

Interventions

Edges coming out of or going into a perturbed variable are directed. Either the

perturbed variable is found to influence another variable (these are the arrows going

out of the perturbed variable), or it is found to not influence it (the arrows going

in)10 See above for discussion of directing edges using interventional data.

Compelled edges

The last type of directed edge is one that we have not yet considered: edges that

9Note that there is another modeling assumption that we make implicitly, with respect to all
Bayesian network models (not only the causal ones). That is that the true underlying graph is
acyclic. This assumption is also often violated in our domain. While we must make these modeling
assumptions if we wish to use the Bayesian network tool, it is crucial that we then cautiously regard
our results as ones emerging from an imperfect model.

10Or its influence is not consistent with the background observational distribution, leading to an
arrow going into the perturbed variable.
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are compelled. Edges are typically compelled by a combination of edges that are

already directed, and possibly also by modeling constraints. There are two basic

ways to compel edges. One is by avoiding v-structures, and the other is by avoiding

cyclicity. Consider a graph containing one edge that is already directed, and one that

is not: A→ B–C. If we direct the B–C edge as B ← C, we will create a v-structure.

We know a v-structure must not exist, because if it did, that edge would have already

have been directed by the conditional independencies in the data. Therefore, we

conclude that the structure is not a v-structure, leading us to orient the edge as

B → C. Now consider the model with the directed edges A → B → C that also

contains the undirected edge A–C. Orienting that edge as A ← C creates a cycle,

so, in order to avoid the cycle, the edge is oriented as A → C. In more complex

models, edges may be oriented due to a combination of acyclicity constraints and the

avoidance of v-structures.
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Chapter 3

Preliminary work

This thesis has focused on Bayesian network models for analysis of signaling path-

ways. However, because such models were uncharted territory, it was not clear from

the beginning what data should be used, so part of the thesis work involved evaluation

of various forms of data. In the preliminary work described below, we explore the

use of population-level protein abundance assays (e.g. western blots), protein activ-

ity assays, and, finally, low-dimensional flow cytometry data, to construct Bayesian

network models of signaling pathways. These models are limited in scope and very

data-limited, and therefore are limited in their biological relevance. They are included

in this thesis for two reasons. First, they illustrate the potential of Bayesian network

applications to the analysis to signaling pathways through various small-scale exam-

ples (e.g. see Section 3.1.2 below for an example of dynamic Bayesian networks).

Second, they show the progression of data types considered, that led to the eventual

selection of single cell data. The first portion of this chapter was previously published

in [77].
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3.1 MAPK cascade models using western blot and

protein activity assay data

In the realm of signaling molecules, measurements can be time-consuming and expen-

sive, and datasets limited in size. In this modeling attempt, we take advantage of a

relatively large dataset, to model the mitogen-activated protein kinase (MAPK) cas-

cade, a ubiquitous pathway vital for such processes as the survival, proliferation, dif-

ferentiation, and migration of eukaryotic cells. In particular, we address the activation

of focal adhesion kinase (FAK) and extracellular signal-regulated kinase (ERK) that

results from the interaction between the extracellular matrix protein fibronectin (fn)

and the integrin α5β1. There has been literature controversy about the pathway(s)

relating FAK and ERK activation, in terms of the relative directions of influence of

FAK activation on ERK activation and vice versa; for example, see [22, 48, 81, 80, 99].

We consider several possible models of the signaling events. To score them, we take

advantage of an existing, relatively large-scale, quantitative dataset of this system.

[3] Asthagiri et al. cultured CHO-B2 cells transfected with human α5 on fibronectin

coated plates. Two levels of integrin and five levels of fibronectin were employed. A

time course of ERK2 activity measurements were made for each of the ten possible

fibronectin/integrin combination using a high-throughput kinase activity assay. FAK

activation time courses were measured via Western blots. We utilize two metrics for

FAK and ERK2 from Asthagiri et al.: an overall activation level, and the initial rate of

activation under the ten integrin/fibronectin combinations. The data is summarized

in Figure 3-1.

3.1.1 Model selection

Model selection can be an important stage in hypothesis testing, when a single model

out of a number of equally favored candidates must be singled out for wet-lab verifi-

cation, in particular when parallel verification of all candidate models is infeasible or

prohibitively expensive. Because the Bayesian scoring metric determines the relative

78



Figure 3-1: Data summary. For model selection, data sets I and II are used to
score static models. Data set I is the initial rate of activation from Asthagiri et al,
1999; data set II is overall activation. Model discovery examines dynamic models and
therefore employs the unprocessed time course data.
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probability of each model structure, it can be applied to rank competing models ac-

cording to their ability to explain available data. This is a form of model selection in

which the data set defies interpretation through classic application of biological in-

tuition and instead necessitates a computational tool to determine which hypothesis

the data support best. In the case of Bayesian networks, that selected hypothesis is

simply the model with the highest relative probability, given the data.

We pose four candidate models (Figure 3-2). Model 1 (M1) shows a link from

fn and integrin to FAK, and one from FAK to ERK2. Such a dependence structure

is expected if fn and integrin activate (activate is used to indicate regulation in the

general sense, and may include repression or combinatorial regulation) FAK, which

activates ERK2. Model 2 (M2) is consistent with a pathway in which fn and integrin

activate ERK2, which activates FAK. Model 3 (M3) shows ERK2 and FAK both

linked to fn and integrin but conditionally independent of each other. Finally, Model

4 (M4) is a mixture of the previous models and has no conditional independencies.

Our goal was to score the models against data from Asthagiri et al. to discover which

model might be best supported by these data. In addition to the four candidate

models, we also consider the independence model, M0, as a control. Because some

dependence is known to exist between fn-integrin signaling and FAK and ERK2 ac-

tivity, this model lacks at least one dependence relationship, so it is intentionally

designed to score poorly. A total of 8 measurements of initial activation rate and 10

measurements of overall activation for FAK and ERK2 were used. Data were grouped

to two or three levels using a discretization method that strives to preserve mutual

information between pairs of variables while reducing the number of discretization

levels [25]. Resulting model score comparisons are presented (Figure 3-3). M0, the

control, scores poorly, as anticipated. Of the four hypothesized structures, data set I

(initial activation rate) best supports M1, which scores 3 times higher than M2 and

4 times higher than M3 and M4. Data set II (overall activation level) supports M4

100 times better than M1, 70 times better than M2, and 10 times better than M3.

These differences indicate to what degree the high-scoring model explains the data set

better than the other models. These results support distinct dependence structures
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Figure 3-2: Candidate and control models. ”Cue” represents the signal from the
interaction betwen fn and integrin, F is FAK, and E is ERK2. M0 is the control
model. An additional model identical to M4, but with the edge from F to E reversed,
is not represented because it is in the same equivalence class as M4 and will, therefore,
always score the same.

for the processes resulting in initial activation rates and overall activation of FAK

and ERK2. Although M1 and M4 emerged as the most likely model structures of the

candidates tested under data sets I and II, respectively, they are superior in likelihood

to the remaining models by only small or moderate margins (large or decisive mar-

gins may be on the order of 1000-fold or more). Therefore, based on these results, we

cannot select M1 or M4 with high degrees of confidence. A useful conclusion is that

we will need a larger data set, acquired through a similar systematic, quantitative,

dynamic, and multivariable approach.

3.1.2 Dynamic models

We searched for high-scoring dynamic graphs using time series data from Asthagiri

et al. We used a dynamic Bayesian network graph expanded in time, in such a way

that each time point of each variable is represented as a node [18]. This representa-

tion confers a number of advantages, including time resolution of dependencies. The

search is constrained to forbid dependence of early time points on later ones and

of the cue node on downstream signals. We sample from the high-scoring region of

the model space, thus the search algorithm will find a subset of the highest-scoring
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Figure 3-3: Model scores. Data set I is initial rate of activation from Asthagiri et al;
data set II is overall activation. Columns 3 and 5 indicate to what degree the top-
scoring model explains the data better than the indicated model. This fold difference
is equal to e to the power of (difference in model scores).
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models. (Results shown here represent 200 runs of 1000 or more iterations each. The

high-scoring graph in each run was typically found by approximately iteration 500).

The resulting graph comprises a weighted average of high-scoring models visited over

200 runs (Figure 3-4). Darker arcs represent edges with higher posterior probability

(0.86 to 1); lighter arcs indicate a posterior probability of 0.50 to 0.85. The data

appear to support a dependence between the signaling cue (the signal generated by

fn binding integrin) and FAK levels at the early time point, as well as ERK levels at

5, 10, and 15 min (Figure 3-4, arcs 1 through 4). An arc connects later time points

with their respective predecessor(s) for ERK nodes (Figure 3-4, arcs 8 through 10).

The graph suggests an interesting dynamic between FAK and ERK: A dependence

is seen between ERK at 5 and 10 min and FAK at 90 min, and between FAK at 7.5

min and ERK at 15 min. Thus, the model predicts a bidirectional dependence be-

tween the two molecules. This cyclic relationship could not be elucidated with static

Bayesian networks, which do not permit cycles. It is interesting to appreciate that

the apparent complexity of these dynamic ERK-FAK interactions could be responsi-

ble for the difficulty in determining clear ”upstream” versus ”downstream” influence

relationships by means of standard molecular cell biology methods.

3.1.3 Discussion

We have applied Bayesian networks as a tool for performing hypothesis selection and

formulation, in the context of a simple preliminary problem in the realm of cell sig-

naling pathways for illustration purposes. This problem is the influence relationship

between FAK and ERK after fn-mediated integrin activation, and we used two dy-

namic data sets incorporating multiple levels of integrin expression and concentrations

of fn [3]. Of the static graphs considered for model selection analysis (Figure 3-2),

data set I (initial activation rate) best supports M1, in which FAK is dependent on

the fn-integrin cue and ERK is dependent on FAK, but conditionally independent

of the fn-integrin cue. Data set II (activation level) supports M4, in which there

are no conditional independencies (that is, M4 indicates dependence among all the

variables). This result implies that the dependence structure leading to initial activa-
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Figure 3-4: Features common to high-scoring graphs. The model presented comprises
a weighted average of high-scoring graphs from 200 runs of the search algorithm.
”Cue” represents the signal from fn and integrin, E is ERK2, and F is FAK. Subscripts
indicate time in minutes. Light arrows are features with a posterior probability of 0.5
to 0.85; dark arrows represent consensus arcs or arcs with posterior probability 0.85.
Arcs 1 through 10 are numbered for convenience.
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tion rate is distinct from that resulting in overall activation levels of FAK and ERK.

We have no a priori reason to doubt this result, which could in fact implicate an

interesting mechanism for short-term versus long-term effects of fn-integrin signaling.

However, in this case we cannot determine with certainty that M1 and M4 are the

most probable dependence structures for initial and overall FAK and ERK activation,

respectively, for a number of reasons. All the noncontrol models are defeated by a

small or moderate margin, which may be attributed to noise. Moreover, the data sets

are very small in probabilistic terms, in particular in comparison to the number of

model parameters. A larger data set (5 times larger at least) would be expected to

yield larger differences between scored models. Thus, we conclude that we currently

have insufficient data to select M1 or M4 definitively. The use of dynamic Bayesian

networks enables the elucidation of regulatory loops and dynamic dependencies not

evident in static networks. The data used to search for dynamic graphs are a mea-

surement of the level of active FAK and ERK at each time point, in contrast to the

rate of initial activation and overall activation levels used for scoring the static models

Figure 3-1. Because the nodes physically represent different measurements, compar-

ing the static and dynamic models is not completely straightforward. Nevertheless,

the link between the cue and early time points of FAK and ERK and later depen-

dence between FAK and ERK in the dynamic graph Figure 3-4 are consistent with

M4, a top-scoring static graph, suggesting dependence among all the variables. How-

ever, the early dependence of both FAK and ERK on the cue alone lends support,

for the initial activation data set, to static M3, showing conditional independence

between ERK and FAK, yet M3 scores about four times lower than the top-scoring

model, M1. This discrepancy may point to inaccuracies in either model. The search

results (Figure 3-4) suggest an interesting model of FAK-ERK dependence, combin-

ing a number of hypotheses previously proposed [22, 48, 81, 80, 99]. However, this

has resulted from an average of high-scoring models rather than the definitive best

model, and it is very likely overfitting to the small data set. (Indeed, the number

of model parameters in some places exceeded the number of available data points.)

Although the data set we studied here is relatively large by traditional molecular cell
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biology standards, it nonetheless appears to be too limited to compellingly advance

the current state of understanding regarding FAK and ERK activation. We thus

emphasize again that this example was provided for illustration purposes only. The

effective utility of Bayesian network approaches to modeling cell signaling pathways

may depend on higher-throughput measurement methods, such as flow cytometry,

protein arrays, and microfabricated analytical devices. Because the systems biology

field generally expects rapid developments in these measurement techniques, we an-

ticipate that Bayesian networks will become increasingly useful in this problem area,

as they are in the analysis of gene expression problems.

3.2 Apoptosis models using 2-color flow cytometry

To overcome the problem of small dataset size, we next turned to single cell data,

specifically, flow cytometry measurements. In this initial attempt, two-color flow is

used to measure molecules involved in tumor necorsis factor (TNF) induced apop-

tosis. We obtained 16,000 measurements, 2000 each of 8 different conditions, of

two apoptosis pathway components (caspase 3 and cytokeratin) from John Albeck

(Sorger lab). The eight conditions consist of three apoptotic activators/repressors

(TNF, Pi3k inhibitor, caspase 9 inhibitor) that were each either included or left out

of each experiment, for a total of eight conditions. Our intent was to use the data

and the information about inhibitors and inducers in the media to search for the best

dependency model among these five apoptosis pathway components (2 measured, 3

manipulated molecules). This dependency structure is already known (see Figure 3-5

for a diagram showing these molecules in the context of TNF signaling)

For each manipulated molecule, we assumed the molecule was ’on’ when its in-

hibitor was absent (or when the molecule was added to the media), and ’off’ when

its inhibitor was present (or molecule was not added to the media). This assumption

may be violated at times, such as when an inhibitor is absent but the molecule is

turned off through normal activity of other pathway components. However, we felt

it was a reasonable assumption since the exogenously added inhibitors can be added
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Figure 3-6: Proposed models and their scores. The scores as reported as the natural
log of the relative probabilities. Therefore, the difference in score between models
is expScoreMi−ScoreMj (i.e. e to the power of (Difference in score between the two
models)). The correct model scores higher than the others by a factor of at least
1000.

at a saturating dose. We included the constraint that no directed edge can point to

the manipulated molecules, since these are set externally by the experimenter. Under

these conditions, the known dependence structure between the measured and manip-

ulated molecules was found as the highest scoring model in our search, scoring as at

least 1000 times more probable than any other model (Figure 3-6). This work, though

small in scope, demonstrates the power of addressing biological problems with high

throughput (in this case, single-cell level resolution) data and probabilistic modeling

tools. To our knowledge, this is the first time a large (16,000 sample), single-cell

level biological dataset has been analyzed with our approach to address a question of

dependencies among cell signaling molecules.
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Chapter 4

Models of multidimensional flow

cytometry data

At the core of this dissertation is an approach we developed to elucidate the influence

connections in protein signaling pathways. This process involves the extraction of

correlations revealed in individual cells, an approach we arrived at after considera-

tion of various other data approaches (see Chapter 3). After turning to single cell

correlations, we were fortunate to establish a collaboration with a lab that had devel-

oped a capability to measure multidimensional data in single cells. The Nolan lab at

Stanford has helped to push the capability of the flow cytometer to the point where

it is able to measure 12 distinct intracellular signaling molecules (simultaneously),

assuming available reagents. We use this data to reverse engineer a first order map

of the influence connections in the underlying signaling pathway.

This work was previously published in [78]. In this thesis text, we elaborate on

the technical details (see Section 4.3.2) and add a section on robustness analysis that

was not included in the published work (Section 4.4).

4.1 Introduction

In this proof of principle study, we applied Bayesian network analysis to multivariate

flow cytometry data, in order to learn influence connections among signaling molecules
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involved in T-cell signaling. Data were collected after a series of stimulatory cues

and inhibitory interventions (see Table 1A), with cell reactions stopped at 15 minutes

post-stimulation by fixation, to profile the effects of each condition on the intracellular

signaling networks of human primary naive CD4+ T cells, downstream of CD3, CD28,

and LFA-1 activation (see Figure 4-1 for an overview of the approach, and Figure 4-2

for a currently accepted consensus network).
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Figure 4-1: Bayesian Network Modeling with Single Cell Data A. Schematic
of Bayesian network inference using multidimensional flow cytometry data. Nine
different perturbation conditions were applied to sets of individual cells (see Table
1A). A multiparameter flow cytometer simultaneously recorded levels of 11 phospho-
proteins and phospholipids in individual cells in each perturbation dataset (see Table
1B). This data conglomerate was subjected to Bayesian network analysis, which ex-
tracts an influence diagram reflecting dependencies and causal relationships in the
underlying signaling network. B. Bayesian networks for hypothetical proteins X, Y,
Z, and W. (a): In this model X influences Y which, in turn, influences both Z and
W. (b): Same network except Y was not measured in the dataset. C. Simulated data
that could reconstruct the influence connections in Figure 4-1, B (this is a simplified
demonstration of how Bayesian networks operate). Each dot in the scatter plots rep-
resents the amount of two phosphorylated proteins in an individual cell. (a) Scatter
plot of simulated measurements of phosphorylated X and Y show correlation. (b) In-
terventional data determine directionality of influence. X and Y are correlated under
no manipulation (blue dots). Inhibition of X affects Y (yellow dots); inhibition of Y
does not affect X (red dots). Together this indicates that X is consistent with being
an upstream parent node. (c) Simulated measurements of Y and Z. (d) A noisy but
distinct correlation is observed between simulated measurements of X and Z.

We made flow cytometry measurements of 11 phosphorylated proteins and phos-

pholipids (Raf phosphorylated at position S259, mitogen activated protein kinase

Erk1 and Erk2 phosphorylated at T202 and Y204, p38 MAPK phosphorylated at

T180 and Y182, JNK phosphorylated at T183 and Y185, AKT phosphorylated at

S473, Mek 1 and Mek2 phosphorylated at S217 and S221 (both isoforms of the protein

are recognized by the same antibody), phosphorylation of PKA substrates (CREB,

PKA, CAMKII, CASPASE 10, CASPASE 2) containing a consensus phosphoryla-

tion motif, phosphorylation of PLC on Y783, phosphorylation of PKC on S660,

and phosphor-inositol 4,5 bisphosphate [PIP2] and phosphoinositol 3,4,5 triphosphate

[PIP3]) (Figure 4-5 and see Materials and Methods). Each independent sample in this

dataset consists of quantitative amounts of each of the 11 phosphorylated molecules,

simultaneously measured from single cells. For purposes of illustration, examples of

actual FACS data plotted in prospective co-relationship form are shown in Figure 4-4.

In most cases, this reflects the activation state of the kinases monitored, or in the
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Figure 4-2: Classic Signaling Network and Points of Intervention. Graphical illustra-
tion of the conventionally accepted signaling molecule interactions, the events mea-
sured, and the points of intervention by small molecule inhibitors. Signaling nodes
in color were measured directly. Signaling nodes in gray were not measured but are
presented to place the signaling nodes that were measured within the context of con-
textual cellular pathways. Interventions classified as activators are color-coded green
and inhibitors are color-coded red. Intervention site of action is indicated in the Fig-
ure. Arcs are used to illustrate connections between signaling molecules; in some cases
the connections may be indirect and may involve specific phosphorylation sites of the
signaling molecules (see Figure 4-7 for details of these connections). Note that this
figure contains a synopsis of signaling in mammalian cells and is not representative
of all cell types, with inositol signaling co-relationships being particularly complex.
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Figure 4-3: Conditions used and biological effect. Left hand column outlines
the conditions used in this study. Middle column lists the specific reagents used in
each perturbation condition and the right hand column classifies the reagent class into
either a general perturbation that overall stimulated the cell or a specific perturbation
that acts on a defined set of molecules.
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Figure 4-4: Example scatterplots of the multicolor flow cytometry data used. Each
dot in the scatter plots represents the amount of two phosphorylated proteins in
an individual cell. A. Scatterplot of phosphorylated proteins Raf and Mek shows a
clear correlation, similar to the simulated data presented in Figure 4-1, panel a. B.
Scatterplot of PKC and PKA displays a far noisier dependency that is not apparent
by eye. The data used contains the entire range between the two examples in this
figure. Given sufficient data, the Bayesian network is able to overcome the noise and
extract these relationships.

cases of PIP3 and PIP2 the levels of these secondary messenger molecules in primary

cells, under the condition measured. Nine stimulatory or inhibitory interventional

conditions were used (see Table 1A, Materials and Methods). The complete datasets

were analyzed with the Bayesian network structure inference algorithm as detailed

below (see also, Chapter 2).

4.2 Results

4.2.1 A Human Primary T cell Signaling Causality Map

The resulting de novo causal network model was inferred (Figure 4-6) with 17 high-

confidence causal arcs between various components. To evaluate the validity of this

model, we compared the model arcs - and absent potential arcs-with those described in

the literature. Arcs were categorized as: [i] ’expected,’ for connections well-established

in the literature, that have been demonstrated under numerous conditions in multiple

model systems; [ii] ’reported,’ for connections that are not well known, but for which
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Figure 4-5: Molecules measured and antibody specificity. In the left hand column are
shown target molecules measured in this study. These were assayed using mAb to
the target residues (site of phosphorylation or phosphorylated product as described).
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Figure 4-6: Bayesian Network Inference Results. A. Network inferred from flow cy-
tometry data represents expected outcomes. This network represents a model average
from 500 high-scoring results. High-confidence arcs, appearing in at least 85molecules
are used to represent the measured phosphorylation sites, (See Figure 4-5). B. In-
ferred network demonstrates several features of Bayesian networks. (a) Arcs in the
network may correspond to direct events or, (b) indirect influences. (c) When in-
termediate molecules are measured in the dataset, indirect influences rarely appear
as an additional arc. No additional arc is added between Raf and Erk because the
dependence between Raf and Erk is dismissed by the connection between Raf and
Mek, and between Mek and Erk (for instance, see Figure 4-1). (d) Connections in
the model contain phosphorylation site-specificity information. Since Raf phospho-
rylation on S497 and S499 was not measured in our dataset, the connection between
PKC and the measured Raf phosphorylation site (S259) is indirect, likely proceeding
via Ras. The connection between PKC and the undetected Raf phosphorylation on
S497 and S499 is seen as an arc between PKC and Mek.

we were able to find at least one literature citation; [iii] ’unexplained,’ indicates that

though the arc was inferred from our model, no previous literature reports were

found; and [iv] ’missing’ indicates an expected connection that our Bayesian network

analysis failed to find. Of the 17 arcs in our model, 14 were expected, 16 were

either expected or reported, 1 was not previously reported (unexplained), and 4 were

missed (Figure 4-6) [7, 52, 51, 111, 19] (see also references in Figure 4-12). Figure 4-7

enumerates the probable paths of influence corresponding to model arcs determined

by surveying published reports.

Several of the known connections from our model are direct enzyme-substrate

relationships (Figure 4-6): (PKA to Raf , Raf to Mek, Mek to Erk, Plc to PIP2)

97



Figure 4-7: Possible pathway of influence, type of connection and category of model
connections. E=Expected, R=reported, U=unexplained, see main text for further
discussion. Specific phosphorylation sites are included as subscript. Unmeasured
sites/molecules appear in blue. See Figure 4-12 for citations.

98



and one a relationship of recruitment leading to phosphorylation (Plc to PIP3). In

almost all cases, the direction of causal influence was correctly inferred (an exception

was Plc to PIP3, in which case the arc was inferred in the reverse direction). All the

influences are contained within one global model, thus the causal direction of arcs

is often compelled so that these are consistent with other components in the model.

These global constraints allowed detection of causal influences from molecules that

were not perturbed in our assay. For instance, although Raf was not perturbed in

any of the measured conditions, the method correctly inferred a directed arc from

Raf to Mek-as expected for the well characterized Raf-Mek-Erk signal transduction

pathway. In some cases, the influence of one molecule on another is mediated by

intermediate molecules that were not measured in the dataset. In the results, these

indirect connections were detected as well (Figure 4-6B, panel b). For example, the

influence of PKA and PKC on the MAPKs p38 and Jnk likely proceeded via their

respective (unmeasured) MAPK kinase kinases. Thus, unlike some other approaches

used to elucidate signaling networks (for example, protein-protein interaction maps

[50, 5] that provide static biochemical association maps with no causal links, our

Bayesian network method can detect both direct and indirect causal connections and

therefore provide a more contextual picture of the signaling network.

Another important feature demonstrated is the ability to dismiss connections that

are already explained by other network arcs (Figure 4-6B panel c). This is seen in the

Raf-Mek-Erk cascade. Erk, also known as p44/42, is downstream of Raf and therefore

dependent on Raf, yet no arc appears from Raf to Erk, as the connection from Raf to

Mek, and from Mek to Erk, explains the dependence of Erk on Raf. Thus, an indirect

arc should appear only when one or more intermediate molecules is not present in

the dataset, otherwise the connection will proceed via this molecule. The intervening

molecule may also be a shared parent. For example, phosphorylation status of p38 and

Jnk are correlated (Figure 4-8), yet they are not directly connected, as their shared

parents (PKC and PKA) mediate the dependence between them. Although we can

not know if an arc in our model represents a direct or indirect influence, it is unlikely

that our model contains an indirect arc that is mediated by any molecule observed
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Figure 4-8: Correlation connections that pass a Bonferroni corrected p value. 52
out of 55 possible arcs appear. Only the pairs Pip3-Raf, Pip3-PKC and PKC-Jnk
are not found to be significantly correlated. Note that correlations are not directed.
Thus, there is a need to apply a more rigorous test (Bayesian network inference) to
go beyond the simple correlations.

in our measurements. As can occur with closely connected pathways, correlation

exists between most molecule pairs in this dataset (per Bonferroni corrected p value,

see Figure 4-8). Therefore, the relative ”lack” of arcs in our model (Figure 4-6A)

contributed greatly to the accuracy and interpretability of the inferred model.

A more complex example is the influence of PKC upon Mek, known to be medi-

ated by Raf (Figure 4-6B, panel d). PKC is known to affect Mek through two paths

of influence, each mediated by a different active, phosphorylated, form of the protein

Raf. Although PKC phosphorylates Raf directly at S499 and S497, this event is not

detected by our measurements, as we use only an antibody specific to Raf phospho-

rylation at S259 (Figure 4-5). Therefore, our algorithm detects an indirect arc from

PKC to Mek, mediated by the presumed unmeasured intermediate Raf phosphory-

lated at S497 and S499. [7] The PKC to Raf arc represents an indirect influence that

proceeds via an unmeasured molecule, presumed to be Ras. [52, 51] We discuss above

the ability of our approach to dismiss redundant arcs. In this case there are two

paths leading from PKC to Mek because each path corresponds to a separate means

of influence from PKC to Mek- one via Raf phosphorylated at S259, and the other

through Raf phosphorylated at S497 and S499. Thus, neither path is redundant. This
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Figure 4-9: Inference results including low confidence arcs. Arcs with a confidence
value of 0.5 or higher are shown. The lower confidence arcs reveal that each missing arc
(from Fig. 3A) is explained by the acyclicity constraint. The missing arc Plc −→PKC
is precluded by the path PKC−→PKA−→Plcγ , as the addition of the missing Plcγ
−→PKC arc would form a cycle in the model. Similarly, the arc PIP2−→PKC is
precluded by the path PKC−→PKA−→Plcγ −→PIP2, and PIP3−→Akt is precluded
by the path Akt−→Plcγ −→PIP3. The missing arc Akt−→Raf is excluded by the
(high confidence) path Raf−→Mek−→Erk−→Akt, but it appears as a low-confidence
arc in the reversed (Raf−→Akt) direction. Missing arcs clearly demonstrate the
limitation in the application of Bayesian network inference to biological pathways
due to the acyclicity constraint.

result demonstrates the important distinction that this analysis is sensitive to specific

phosphorylation sites on molecules and is capable of detecting more than one route

of influence between molecules.

Four well-established influence connections do not appear in our model: PIP2 to

PKC, PLC to PKC, PIP3 to Akt, and Raf to Akt. Bayesian networks are constrained

to be a-cyclic, so if the underlying network contains feedback loops we cannot nec-

essarily expect to uncover all connections (Figure 4-9). For example, in our model

the path from Raf to Akt (via Mek and Erk) precludes the inclusion of an arc from

Akt to Raf, due to this acyclicity constraint. Availability of suitable temporal data

could possibly permit this limitation to be overcome using dynamic Bayesian networks

[18, 60].
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4.2.2 Experimental Confirmation of Predicted Network Causal-

ity

Three influence connections in our model are not well established in the literature:

PKC on PKA, Erk on Akt, and PKA on Erk. To probe the validity of these pro-

posed causal influences, we searched for prior reports in the literature. Of these 3

connections, 2 have previously been reported, the PKC to PKA connection in rat ven-

tricular myocytes, and the Erk to Akt connection in colon cancer cell lines [111, 19].

An important goal of our work was to test the ability of Bayesian network analysis of

flow cytometry data to correctly infer causal influences from unperturbed molecules

within a network. For example, Erk was not acted upon directly by any activator

or inhibitor in the sample sets, yet Erk showed an influence connection to Akt. Our

model thus predicts that direct perturbation of Erk would influence Akt (Figure 4-

10A). On the other hand, although the Erk and PKA are correlated (see Figure 4-8)

the model predicts that perturbation of Erk should not influence PKA.

As a test of these predictions (Figure 4-6A), we used siRNA inhibition of either

Erk1 or Erk2 and the amount of S473 phosphorylated Akt and phosphorylated PKA

were then measured. In accord with the model predictions, Akt (p ¡ 9.4e-5) phospho-

rylation was reduced after siRNA knockdown of Erk1 but activity of PKA (p ¡ 0.28)

was not (Figure 4-10B,C). Akt phosphorylation was not affected by the knock down

of Erk2. The connection between Erk 1 and Akt may be direct or indirect, involving

mediatory molecules yet to be understood, but the connection is supported by both

the model and the validation experiment.

4.2.3 Enablers of Accurate Inference: Network Interventions

and Sufficient Numbers of Single Cells

Three features distinguish our data from the majority of currently attainable biologi-

cal datasets. First, we measured multiple protein states simultaneously in individual

cells, eliminating population averaging effects that could obscure interesting correla-

tions. Second, because the measurements are on single cells, thousands of data points
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Figure 4-10: Validation of Model Prediction. (A) The model predicts that an
intervention on Erk will affect Akt, but not PKA. (B) To test the predicted relation-
ships, Erk1 and Erk2 were knocked down using siRNA in cells simulated with anti-
CD3 and anti-CD28. Amount of Akt phosphorylation in transfected CD4+ (EGFP+
cells) were assessed, and amounts of phosphorylated PKA are included as a negative
control. When Erk1 is knocked down, phosphorylated Akt is reduced to amounts
similar to those in unstimulated cells, confirming our prediction (p=0.000094). PKA
is unaffected (p=0.28).
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were collected in each experiment. This feature constitutes a tremendous asset for

Bayesian network modeling, as the large number of observations allows accurate as-

sessment of underlying probabilistic relationships, and hence extraction of complex

relationships from ’noisy’ data. Third, interventional assays generated hundreds of

individual data points per intervention (because flow cytometry measures single-cells

in population), allowing for an increase in inferences of causality.

To evaluate the importance of these features, we created variations on our orig-

inal data-set: [i] an observation-only dataset (that is, without any interventional

data) of 1200 data points; [ii] a population-averaged (that is, a simulated western

blot) dataset and [iii] a truncated individual-cell dataset of size comparable to the

simulated western blot dataset (that is, the original dataset with most of the data ran-

domly excluded to reduce its size, see Methods). (paragraph spacing added) Bayesian

network inference was performed on each set of data. The network inferred from 1200

observational data points included only 10 arcs, all undirected, of which 7 were ex-

pected or reported, and 11 arcs were missing (Figure 4-11A). This demonstrates that

interventions are critical for effective inference, particularly to establish directional-

ity of the connections (see also Figure 4-1B). The truncated single cell dataset (420

data points) shows a large (11-arc) decline in accuracy, missing more connections and

reporting more unexplained arcs than its larger (5400 data points) counterpart (Fig-

ure 4-11B). This result emphasizes the importance of sufficiently large dataset size in

network inference. The network inferred from averaged data (Figure 4-11C) shows

a further 4-arc decline in accuracy relative to that inferred from an equal number of

single cell data points, emphasizing the importance of single cell data. The fact that

population averaging destroys some of the signals present in the data may reflect the

presence of heterogeneous cellular subsets that are masked by averaging techniques

4.3 Materials and Methods

In this section, we include the experimental materials and methods, as well as the

technical details of the Bayesian network implementation, data discretization and
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Figure 4-11: Interventional data, large dataset size and single-cell resolu-
tion are critical for effective inference. A. Inference results from observational
data demonstrate that interventional data is crucial for effective inference. Bayesian
network analysis was applied to 1200 datapoints from general stimulatory conditions.
The resulting network contained only half as many expected arcs and almost three
times more missed arcs than the full data counterpart (Figure 4-6A). Additionally,
while it is sometimes possible to detect directed arcs with observational data alone,
in this case no directed arcs were found, so the model provides no information re-
garding the causal direction of each link. B. Results from a truncated version of the
full dataset reveal the importance of very large dataset size. Although this dataset
contains all the interventions as in the full dataset, its smaller size (420 datapoints)
resulted in fewer expected connections recovered and more missing arcs as compared
to the result from the full dataset (Figure 4-6A). C. Results from averaged, simulated
western blot data indicate the advantage of single-cell resolution. Simulated western
blot data was created by averaging 20 randomly selected single-cell data points at a
time, yielding a dataset of 420 points. As compared to a single-cell dataset of equal
size (Figure 4-11B), this result missed more arcs and captures more unconfirmed arcs.
Ten sets of truncated and averaged datasets were made; results shown in B and C
represent typical results.
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Connection Influence path Citation
PKC−→Raf PKC−→Ras−→RafS259 [96, 51, 52, 38, 53]
PKC−→Mek PKC−→RafS497/S499−→Mek [7]
PKC−→Jnk PKC−→−→MKKs−→Jnk [9, 8]
PKC−→p38 PKC−→−→MKKs−→p38 [9, 8]
PKC−→PKA PKC−→cAMP −→PKA [111]
PKA−→Raf PKA−→RafS259 [12]
PKA−→Mek PKA−→RafS621−→Mek [54]
PKA−→Erk PKA−→HePTP−→Erk [79]
PKA−→Jnk PKA−→−→MKKs−→Jnk [15]
PKA−→p38 PKA−→−→MKKs−→p38 [112]
Raf−→Mek direct phosphorylation [43, 36, 95]
PKA−→Akt PKA−→CaMKK−→AktT308−→AktS473 [100, 108, 92]
Mek−→Erk direct phosphorylation [62]
Plcγ−→PIP2 direct hydrolysis to IP3 [86, 45]
Plcγ−→PIP3 recruitment leading to phosphorylation [2]
PIP3−→PIP2 precursor-product [2]
Erk−→Akt direct or indirect [19]

Figure 4-12: Citations for possible pathways of influence listed in Figure 4-7.

data preprocessing. We include the experimental details for the sake of completeness

and to enable the reader to repeat the experiments described. However, we stress

that all the experimental work in this chapter was performed by Dr. Omar D. Perez

(then at the Nolan lab at Stanford).

4.3.1 Experimental

Reagents Protein and chemical reagents used (and vendors) were as follows: 8-

Bromo-cAMP (8-bromo Adenosine 3’,5’-cyclic Monophosphate, 2cAMP), AKT in-

hibitor, G06976, LY294002, psitectorigenin and U0126: Calbiochem. PMA: Sigma.

Recombinant human ICAM2-FC was produced as reported [67]. Alexa fluor dye se-

ries (488, 546, 568, 594, 633, 647, 680), cascade yellow, cascade blue, allophycocyanin

(APC), and R-Phycoerythrin (PE): Molecular Probes; cyanine dyes (Cy5, Cy5.5,

Cy7: Amersham Life Sciences. Tandem conjugate protocols for PECy5, PECy5.5,

PECy7, APCCy5.5, and APCCy7 can be found at www.drmr.com/abcon. -CD3

(clone UCHT1) and -CD28 (clone 28.2): BD-Pharmingen; antibodies to phospho-
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proteins Raf-259, Erk1/2-T202/T204, p38-T180/Y182, Jnk-T183/Y185, Akt-S473,

Mek1/2-S217/S221, PKA substrates (a measure of PKA activation), PKC-S660, and

Plcγ -Y783: Cell Signaling Technologies; antibodies to PIP2 and PIP3: Molecu-

lar Probes; antibodies to Erk1/2-T202/T204-phycoerythrin and PKA-S114: BD-

Pharmingen. Phospho-AKT-S473 in siRNA experiment was from Biosource.

Cell culture Human peripheral blood lymphocytes were obtained by Ficoll-

plaque density centrifugation (Amersham Pharmacia, Uppsala, Sweden) of whole

blood from healthy donors (Stanford Blood Bank) and depleted for adherent cells.

Magnetically activated cell sorting was used to negatively isolate nave CD4+ cells

(Dynal, Oslo, Norway). Human cells were maintained in RPMI-1640 supplemented

with 5AB (Irvine Scientific), and 1supplemented with 2 mM L-glutamine). Cells were

maintained at 5at /370C in a humidified incubator.

Flow cytometry Intracellular and extracellular staining was performed as de-

scribed [68] Intracellular probes for active kinases were made by conjugating phospho-

specific antibodies to the Alexa Fluor dye series as described and used in phospho-

protein staining [68, 67]. Briefly, purified human CD4+ T cells were dispensed in 96

wells, and treated with chemical inhibitors for 30 min, then were treated with stim-

ulatory agents for 15 min. Analyses were performed by direct application of fixation

buffer to time-synchronized 96-wells (i.e. a single 96-well plate) maintained at 370C.

2uL) was added to 0.5x106 cells (in 100 uL), stimulated as indicated. Fixation was

performed for 30 min on pre-chilled 96-well metal holders at 40C. Plates were then

centrifuged (1500 RPM, 5 min, 40C) and stained with pre-titred multi-color anti-

body cocktails. Cells were washed three times and analyzed. Flow cytometry data

are representative of at least 3 three independent experiments. Data were collected

on a custom-configured machine, a modified FACStar bench (Becton Dickenson) con-

nected to MoFlo electronics (Cytomation, Fort Collins CO) [93]. This configuration

allows for 11-color analysis of samples and real-time compensation for spectral overlap

(plus two channels for forward and side scatter). Data was collected using Desk soft-

ware (Stanford University), compensated (intra-laser and fluorophore spectral overlap

demixing) and analyzed using Flowjo software (Treestar).
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siRNA inhibitions siRNA complementary to Erk1 mRNA was purchased from

Superarray Biosciences. siRNA complementary to Erk2 mRNA was purchased from

Upstate Biotechnologies. siRNA oligonucleotide (100 nM) was used in primary cell

transfections using the Amaxa nucleofector systems (Amaxa Biosystems) [46].

Conditions employed The following conditions were used for model inference:

1: (anti-CD3 and anti -CD28), 2: (anti -CD3, anti -CD28 and Intercellular Adhesion

Protein-2 (ICAM-2) protein), 3: PMA (phorbol myristate acetate), 4: 2cAMP (8-

bromo Adenosine 3’,5’-cyclic Monophosphate), 5: (anti -CD3, anti -CD28 and U0126),

6: (anti-CD3, anti-CD28 and G06976), 7: (anti -CD3 anti -CD28 and Psitectorigenin),

8: (anti -CD3, anti -CD28 and Akt-inhibitor), and 9: (anti -CD3, anti -CD28 and

LY294002). Each condition provided 600 cells, for a total of 5400 datapoints. For the

simulated western blot dataset and its single-cell equivalent, the following conditions

were also used: 1 (anti -CD3 anti -CD28, ICAM2 protein and U0126) 2 (anti -CD3,

anti -CD28, ICAM2 protein and G06976), 3 (anti -CD3 anti -CD28, ICAM2 protein

and Akt-inhibitor), 4 (anti -CD3 anti -CD28, ICAM2 protein and Psitectorigenin,)

and 5 (anti -CD3 anti -CD28, ICAM2 protein and LY294002). Equal numbers of cells

(600) were selected at random from each condition, to prevent biasing the network

to any particular condition.

4.3.2 Computational

Processing of data

Preprocessing Data were preprocessed as follows: Data points that fell more than

three standard deviations from the mean were eliminated. This step was intended to

clean up the data by removing any suspicious datapoints (potentially debris, clumps

of cells or other noise).

Discretization Data were then discretized to three levels (low, medium or high

levels of the phosphorylated protein), using an agglomerative approach that seeks to

minimize loss of pairwise mutual information among variables [25]. This algorithm is

thoroughly described, including pseudocode, in [25]. Briefly, the raw measurements

from each variable (across all conditions) are first binned, using either uniformly
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spaced bins (’interval discretization’, in which the interval is divided into equally

sized subintervals), or bins which each contain an equal number of measurements

(’quantile discretization’). The number of bins is an input parameter. We partitioned

the measurements into 100 uniformly spaced bins, choosing the interval discretization

approach as it is likely more true to the underlying biology. The quantile approach

assumes that each level of a protein is equally represented in a population of cells,

an assumption we wanted to avoid, whereas the interval approach does not make this

assumption. 1

Given a particular interval discretization in which the measurements are each

represented as a number between 1 and 100, the algorithm then agglomerates 2 levels

in each iteration, producing 100 − i total levels at iteration i, until only the desired

number of levels (in our case, 3) remain. The levels to agglomerate are chosen as

follows: First, the pairwise mutual information between a variable and each other

variable is calculated, pre-agglomeration. Next, the mutual information is calculated

for each possible agglomeration under consideration (i.e. level 1 with level 2, level

2 with level 3, level 3 with level 4, etc.), and the difference is calculated, revealing

which agglomeration will result in the least total loss of pairwise mutual information.

This agglomeration is performed, and the procedure iterates. In our case (because

we start with 100 levels and end with 3), 97 iterations are required.

Preprocessing of perturbed values Under conditions of chemical intervention, more

data preprocessing was often required. This is because our study uses the measured

phosphorylation level of molecules as surrogates for their activity. In most cases,

the inhibitors employed affected the activity of the molecules, but did not affect their

phosphorylation level. For instance, when Mek is inhibited, its measured level actually

increases (possibly the system responding to a lack of Mek activity), but its activity

is inhibited. Therefore, in the presence of inhibitor, the measured level is no longer

a legitimate surrogate for its activity level. To model these interventions, we assume

1In principle, one could use interval discretization with the desired number of levels as the final
discretization, rather than as input to the agglomerative algorithm. We chose the more sophisticated
approach because information preservation is crucial to the success of our network inference. See
Section 4.4.3 for experiments exploring interval discretization as the discretization approach.
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that the level reflects the inhibited (or activated) level, setting inhibited molecules to

level 1 (’low’), and activated molecules to level 3 (’high’).

Specifically, we assume that inhibition completely removes activity (setting raw

values to zero) and that activation increases activity by ten fold (we multiply the raw

values by 10- this value was chosen somewhat arbitrarily). While these appear to be

strong assumptions, note that because of the smoothing affect of the discretization,

the precise values by which we modify the raw values in the pre-processing phase

should not have significant impact. This would be an interesting point to address

specifically, by varying the degree of fold change assumed as a result of perturbation,

but this sensitivity analysis has not been performed. Note that this preprocessing

was applied only in cases in which, as a result of the inhibition, the measured value

no longer reflects the activity level of the molecule. This was not always the case:

under Psitectorigenin treatement, the level rather than the activity of Pip2 is affected.

Therefore, the raw values of Pip2 were not altered.

Simulated western blots To create a simulated western blot dataset, the follow-

ing was repeated for each condition: 20 cells were selected at random and averaged,

until all the cells had been averaged (yielding 30 simulated western blot datapoints

per condition). Averaging reduces the size of the dataset to 1/20th of the original

size, therefore 5 additional conditions containing ICAM2 (see above) were used to

create the simulated western blot dataset, for a total of 420 datapoints. For a sin-

gle cell dataset of equivalent size, 30 cells were selected at random from each of the

14 conditions. This process was repeated 10 times, each with a different random

seed, producing 10 different simulated western blot and truncated datasets. The

Bayesian network inference procedure (see below) was independently applied to each

such dataset.

Bayesian network structure inference

We implemented Bayesian network inference as described in [66, 109] (see also

Friedman [16] for a review on the methodology). Bayesian networks and Bayesian

network structure inference are described in Chapter 2. In the following, we provide a

short description of network inference and of our implementation, including relevant
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details.

Bayesian networks [63] provide a compact graphical representation of multivari-

ate joint probability distributions. This representation consists of a directed acyclic

graph whose nodes correspond to random variables, each representing the measured

amount of a biomolecule in the dataset. An arc expresses statistical dependence be-

tween the downstream variable and the upstream (parent) variable. In certain cases,

these statistical dependencies can be interpreted as causal influences from the par-

ent upon the downstream variable (molecule) [64]. For example, Figure 4-1 panel b

demonstrates how interventional data guides the inference of causality.

The goal of Bayesian network inference is to search among possible graphs and

select a graph or graphs that best describe the dependency relationships observed in

the empirical data. We take a score-based approach: we introduced a statistically

motivated scoring function that evaluates each network with respect to the data, and

search for the highest scoring network. We use the standard Bayesian scoring metric

[26] that rewards relatively simple models (i.e. few arcs), that are likely to have

generated the data, that is, whose underlying distribution is close to the empirical

distribution of the data. Because our data were sampled under conditions that directly

manipulate the amounts of the measured modified biomolecules (see Table 1B), we use

an adaptation of the Bayesian scoring metric that explicitly models these interventions

[66, 109]. Our modeling of interventions assumes that these are ideal, i.e. directly

affect only one molecule whose identity is known. While the interventions used are

not ideal, this is a reasonable first approximation. See above text for a description of

preprocessing of perturbed molecule values.

Given a scoring function (the Bayesian scoring metric described above) and a

set of data, network inference amounts to finding the structure that maximizes the

score. The number of possible graph structures is super-exponential in the number of

variables (measured biomolecules) and therefore the size of the search space prohibits

an exhaustive search. Thus, we resort to a heuristic simulated annealing search. We

define a search space where each state is a possible network structure and define a

set of operators: addition, deletion or reversal of a single arc, that transform the
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network from one structure to another. We started with an initial random structure

and traversed this space using the operators, searching for high scoring networks.

At each step in the search procedure, a random operator was used to change the

graph, the resulting structure was rescored and the change was incorporated if it

yielded an improvement in the score. To avoid local maxima, occasionally a change

was incorporated even if it decreased the score. We iterated this procedure to find

high-scoring graphs.

This process was initialized with different random graphs and repeated (500

times), to explore different regions of the search space. Typically, many of the re-

sulting models explained the data almost equally well among themselves. To gain

statistical robustness in our inference, instead of relying on a single high scoring

structure, we performed model averaging on the compendia of high scoring networks

[66]. This resulted in an averaged network, consisting of common features (arcs), on

which most of the high scoring network structures agreed. The final inferred network

consists of arcs of confidence 85% or greater (that is, appeared in at least 85% of the

high scoring networks).

4.4 Robustness analysis

As with most modeling approaches, this modeling effort required a selection of ”al-

gorithm parameters”: a choice of discretization algorithm, number of discretization

states, type of score used in the score-based search, and other parameters. Further-

more, we recognize that our data is sampled from a distribution of possible cells and

cell states, and that technically, our results could be a the result of a fortuitous sam-

pling of data that led to familliar connections. To assess the contribution of these

and other factors in the final model results, a thorough robustness analysis must be

undertaken. Such an analysis is beyond the scope of this thesis, but would consti-

tute an interesting project for future work (such results might be interesting to the

Bayesian network community at large).

Although we did not do a thorough robustness analysis, we did do several analyses,
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in order to be confident of our model results. In the following section, we present

results showing what happens when a slightly different sample is drawn from the

distribution of cells; we investigate the affect of varying the number of discretization

states, and finally, we try out a simple approach to discretization, in place of the more

sophisticated algorithm we originally employed.

4.4.1 Bootstrap analysis

Our data is a finite sample drawn from a distribution, and our modeling results

are reflective of the dependencies found in this sample. It is possible then that our

modeling results contain dependencies that are random fluctuations found in this

particular sampling of the distribution. In other words, the results might be overfit

to the data. We discourage overfiting by having a relatively large dataset, by using the

Bayesian score, which penalizes complex models, and by averaging over high scoring

models. Nevertheless, certain random signals may still emerge in our results.

To ensure that our model does not contain ’chance’ connections randomly intro-

duced by the distribution sample, we perform a bootstrap analysis, in which we can

better estimate the sampling distribution by resampling with replacement from the

original sample. To do this, we randomly sample a new dataset from the original

dataset, and perform the search on it. Each sampled dataset contains 4860 data-

points, 90% of the original dataset (i.e. 10% of the cells are excluded). We created

ten such sampled datasets and inspected the results to assess consistency with the

original model results. Two representative results are shown in Figure 4-13. The

bootsrap results show very good consistency with the original model, with the main

point of sensitivity appearing to be the confidence cutoff for the edges. This point is

one that appears repeatedly in our various robustness analyses.

4.4.2 Impact of the number of discretization states

In this work, the data was discretized into three states. In general, employing a greater

number of states provides additional flexibility in the expressivity of the model, but
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Figure 4-13: Two representative results from ten independent bootstrap
experiments Panel A includes original results, including complete dataset, for ease
of comparison. Panels B and C show the averaged search results for two independent
bootstrap datasets, in which 90% of the original data is sampled randomly. Panels
B and C closely resemble the original results, indicating that the results are robust
to resampling of the data. In cases where an edge appears that is different from the
original results, it is always one that appears in the original results, but did not make
the particular confidence cuttoff employed. For example, the Raf−→Akt connection
which appears in panel B is one that appears as a lower confidence edge in the original
results (see Figure 4-9).
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simultaneously increases the number of parameters. One must tradeoff between the

benefits afforded by a model of increased complexity, and the tendency of such a

model to overfit, especially given a limited dataset (our dataset is large by biological

standards, but not by general standards of datasets employed in machine learning).

The choice for the number of states was partially biologically motivated- it seemed

reasonable to assume that molecule states can be binned into three different levels

(low, medium and high), whereas two seem insufficient, while greater than three (we

hoped) were not necessary. The second motivation was a computational one. The

discretization approach allowed us to assess how much mutual information would be

lost with each reduction in the number of levels employed. Three levels allowed us

to retain much of the mutual information in comparison to two levels; increasing to

greater than three yields a relatively slight increase in the amount of mutual infor-

mation retained (see [25] for a discussion of selection of the number of discretization

states).

Using the same approach as that described in Section 4.3.2, we discretized the

(identically preprocessed) raw data into two and four states, to assess the impact

of fewer or greater number of states, respectively. Results are shown in Figure 4-

14. In both cases, the model results are in good agreement with our original model

results from three levels of discretization, though not as close agreement as seen in

the bootstrap analysis. This is to be expected: discretizing to different number of

states will establish new correlations and eliminate others.

Panel B shows the search results when the data is discretized to two levels. For a

particular confidence cuttoff, it will tend to have more connections than the results

from a larger number of discretization bins. This too is to be expected- a smaller

number of levels will tend to encourage higher correlation coefficients. Most (but not

all) of the edges in the 2-level model appear in the 3-level model, at some confidence

level. A few of the edges, however, do not appear even in the low confidence edges

of the low confidence model (see Figure 4-9), such as PKC−→Plcγ (interestingly, the

reverse of one of our missing edges, see Figure 4-6), Mek−→Plcγ and Mek−→p38.

Interestingly, a couple of edges are reversed (Plcγ−→Akt and Akt−→p44), likely due
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Figure 4-14: Models resulting from varying the number of discretization
states. Panel A shows the original data for ease of comparison. In the original data,
the data was discretized into 3 levels. Panel B shows the search results when data
is discretized into 2 levels. Blue edges are present in original model, purple edges
are present, but reversed in orientation, and dotted edges are not present in original
model. Although results are similar to those in panel A, it is evident that the coarser
gradiation of the data enables more numerous connections. Panel C shows search
results for data in which variables are discretized to 4 levels. It too shows good
agreement with the original results, though it contains fewer low confidence edges.
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to a shift in the background distribution relative to the distribution under intervention

(see Section 2.4.2 for an explanation of edge orientation using interventional data).

As before, the choice of cuttoff value for edge confidence can have significant impact

on the results, in both the 2 level and the 4 level case. The 4-level results, shown

in Panel C, are closely matched to the original results. These results include very

few low confidence edges when compared to the original 3-level model- reducing the

confidence cuttoff would add just two more edges (not shown), whereas the 3-level

model contains almost a dozen edges between the confidence values of 0.5 and 0.85.

4.4.3 Interval discretization

Discretization is a lossy procedure, in the sense that information is lost when the

activity of a protein is expressed as 3 levels rather than the original continuous val-

ues found in the raw measurements. However, discretized data was appropriate in

our application (partially because we wanted to use multinomial tables for the con-

ditional probability distribution representation), so a discretization procedure had to

be selected.

Our goal was to elucidate influence connection from the data. For this reason,

we selected a discretization algorithm that sought to minimize the amount of mutual

information that was lost in the discretization (see Section 4.3.2 for a description).

However, as part of our robustness analysis, we wanted to assess how different our

final results would be if we used a different approach. Here, we evaluate the results

using simple interval discretization (with 3 levels).

In interval discretization, the interval over which the raw measurements lie is

divided into 3 equal intervals, and the levels are assigned according to where a par-

ticular cell lies. (The intervals may contain a different number of cells- dividing the

interval into peices which each contain the same number of cells is called quantile

discretization, and it is a discretization approach which we have not tried). This is

done separately for each variable.

The results of iterval discretization are shown in Figure 4-15. As in the previous

analyses, the general model structure is retained. However, there is a reversal of
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certain links (i.e. Raf−→Mek and Plcγ−→Pip2) and certain links do not appear (e.g.

PKA−→Jnk).

4.4.4 Discussion

We performed a series of analyses to assess the robustness of our results. We first

performed a bootstrap analysis, which indicates that our results are robust to re-

sampling from the distribution, and that our results are not due to a fortuitous data

sample that happened to contain known dependency links. The other two analyses

assess the impact of specific choices that we made in our algorithm and, importantly,

give an indication of how differently our results would turn out had we chosen a dif-

ferent discretization approach, etc. These results- both for the variable number of

discretization levels, and the interval discretization- are largely consistent with our

original results, especially in the sense that the basic model structure is preserved.

However, individual arcs may be lost or added, or, more commonly, reversed, as

’modeling parameters’ are changed. The more coarse-grained discretization yields in-

creased variable to variable correlations (the 2-level discretization result), increasing

the number of arcs; conversely, the more fine grained discretization (4 levels) reduces

correlations, yielding a more sparse model. As previously noted, the reversal of edges

is likely due to a difference in the background distribtuion relative to the perturbation

data distribtuion, which impacts the directionality of edges.

It is not surprising that altering the discretization will affect the final results- after

all, the inference algorithm encounters a (potentially very) different dataset as a result

of altering the number of levels or the discretization approach. A different dataset can

be expected to contain different sets of dependencies, which the inference algorithm

detects, yielding differences in the modeling result. Nevertheless, the existence of

differences leads to doubts regarding the specifics of a particular modeling results,

and begs the question: What is the correct discretization approach? (or the correct

number of levels, etc.) The answer is that the correct approach is that which allows

us to correctly and completely capture the underlying dependencies present in the

data. A priori, we do not have a clear way of selecting the ideal approach. At best,
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Figure 4-15: Comparison of interval discretization with mutual-information
preserving discretization. Panel A shows the original results, in which the data
were discretized using a mutual-information preserving approach (see Section 4.3.2)
Panel B shows the results for data discretized into three levels using interval dis-
cretization. Blue edges are present in original model, purple edges are present, but
reversed in orientation, and dotted edges are not present in original model. A com-
parison between them reveals several reversed arrows and other small differences.
However, the basic structure of the model is retained.
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we we can choose one that appears appropriate based on our biological knowledge in

the domain (though this is an intuitive rather than a subjective decision) and/or that

fits our computational constraints (such as, e.g., avoiding a large number of model

parameters by limiting the number of levels in which each variable can exist).

Thus, although our analyses indicate good model robustness, they also indicate

that given a particular model result, we can not be overly confident about each

particular edge, or about the directionality of a particular edge. Furthermore, a close

examination of edge confidence levels reveals that the final results are quite sensitive

to the particular confidence cutoff employed, making the separation between a low

confidence edge (that doesn’t make the cutoff) and a slightly higher confidence edge

(that does make the cutoff) appear somewhat arbitrary.

Taken together, these facts emphasize the need to regard Bayesian network in-

ference of signaling pathway structure as in silico hypothesis generation, rather than

a definitive elucidation of pathway structure. Thus, learned connections must be

verified. Based on our results shown in this section, the general form of the model

structure is highly robust, indicating it is a reliable source of hypotheses, hopefully

meriting the effort and expense of wet lab verification.

4.5 Discussion and Summary

As shown, we correctly reverse-engineered and rapidly inferred the basic structure

of a classically understood signaling network that connects a number of key phos-

phorylated proteins in human T cell signaling-a map built by classical biochemistry

and genetic analysis over the last two decades. The network was automatically con-

structed with no a priori knowledge of pathway connectivity. Application of Bayesian

networks to single cell flow cytometry has distinct advantages, including an ability to

measure events in primary cells after in vivo interventions (thus measuring context

specific signaling biology in tissues), inference of directed arcs and causality therein,

and the ability to detect indirect as well as direct connections. This latter point is a

powerful feature when the known list of participating molecules may not be exhaus-

120



tive, and can be especially important when networks are used to assess the effects

of system perturbations (as in a pharmaceutical context). A limiting step in the

experimental aspect, clearly, is the availability of suitable reagents; currently, there

are about 80 antibodies to phosphorylated molecules compatible with flow cytometry,

but this number is expected to rapidly increase. [70]

Application of this approach to other sets of molecules, cell types, disease states

and interventions (e.g., siRNA and dominant negative screens, or pharmaceutical

agents) should enhance our understanding of signaling networks, especially with re-

spect to complex, nonlinear cross-talk between pathways. Another important experi-

mental issue which this approach can address is the differences among specific primary

cell types and even cell subpopulations. The traditional understanding of pathway

structures as collated from diverse model cell types and organisms demonstrates the

essential congruity of basic signaling networks, but does not easily reveal the subtle

differences that exist in different primary cell subtypes. This report demonstrates that

it is now possible to appreciate pathway intricacies in primary cell subsets-even with

previously uncharacterized signaling molecules. Application of this approach during

biochemical interrogation of cellular subset-specific signaling networks in the course of

disease state or in the presence of pharmaceutical agents can potentially provide im-

portant mechanistic information of clinical relevance. This method could identify sets

of signaling molecules that explain differences between responses to chemotherapy in

patients with cancer. [39]

Concerning the computational aspect, a key advantage of Bayesian networks is

that these are relatively robust to the existence of unobserved variables, for example

their ability to detect indirect influences via unmeasured molecules. At the forefront

of Bayesian network research is development of methods to automatically infer the

existence and location of such hidden variables. Although the current report was

restricted to 11 phosphorylated molecule measurements per cell, the number of si-

multaneous parameters measured by flow cytometry is steadily growing [70] . As

measurement systems improve, and the ability to readily and accurately measure

greater numbers of internal signaling events increases, additional opportunities to
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discover novel influences and pathway structures become possible.

One of the caveats in the use of Bayesian networks for the elucidation of signaling

pathways is that these are restricted to be acyclic, where as signaling pathways are

known to be rich in feedback loops. Indeed, our inference missed four classic arcs,

most likely for this reason. Given time series data, Dynamic Bayesian Networks

could potentially capture these feedback loops. To measure the amounts of internal

phosphorylated proteins, the cells must be fixed and therefore continuous real-time

simultaneous, multi-parameter single cell time series data can not be collected with

the current technology. Since Bayesian networks belong to a more general class of

probabilistic graphical models, within the formalism of these models it is possible to

develop a novel model that could handle feedback loops given a series of static time

points using the current technology.

While there is much to be developed both computationally and experimentally,

by extending the concepts derived here, it is clear that simultaneous, multivariate

analysis of biological states in multiple discrete entities, such as cells, offers a clear

advantage for rapidly deriving signaling network hierarchies and structures. Extension

of this approach to biological systems involving multiple cell populations, even solid

tissues and organs, or whole animal studies such as in whole body fluorescence imaging

of phosphorylation states in staged Caenorhabditis elegans or Drosophila larva, or

thin-slice tissue sections from mammalian organs, could allow automated construction

of signaling network influences not only within, but also across cell boundaries in ever

more physiological contexts.
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Chapter 5

Learning larger networks using

measurements of overlapping

subsets

In the previous chapter, we show that a map of influence connections can be inferred

from simultaneous measurements of signaling proteins in single cells. We emphasize

the necessity of simultaneous measurements, crucial for finding correct edges, as well

as excluding superfluous ones. However, because of the limitations of the measure-

ment technology, as our set of variables of interest grows, it becomes increasingly hard

(or impossible) to measure all the variables simultaneously. Therefore, in order to

build models containing more variables than the number we can measure simultane-

ously, we must relax our requirement for simultaneous measurements. In this chapter,

we describe a method for scaling up the number of variables in the inferred model,

by measuring overlapping subsets of the full variable set in multiple experiments.

This chapter has not been previously published. Readers interested in this work

should refer to the publication, which will contain the final form of this algorithm

and results.
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5.1 Introduction

A systems biology approach often relies upon an innovative, high throughput data

measurement technology. In our effort to map signaling pathways, our data require-

ment is especially ambitious: we require simultaneous measurement of all signaling

proteins of interest in each individual cell profiled, under various general and specific

stimulus and inhibitory conditions. Multidimensional flow cytometry is a uniquely

information rich and statistically robust data source, and its capacity to measure an

increased number of variables is steadily growing. Nevertheless, the current standard

capability for simultaneous measurements is ~4 molecules at a time, while the cutting

edge is ~12 molecules. In either case, this is an insufficient number to enable one to

address most pathways of interest, as even narrowly defined canonical pathways can

include dozens of molecules.

Since we are interested in models of a biologically-relevant scale, our goal is to

expand the number of variables in a model beyond the measurement capability of

the technology (in this case flow cytometry, but this work applies equally well to any

other technology with a limitation on the number of variables that can be measured

simultaneously). Let us define the number of molecules that the technology can

measure simultaneously to be m, and let us call the total number of molecules we

wish to model n (our problem is only relevant for n > m). Our question is, Can we

scale up from measurements of m variables to models of n?

In this chapter, we describe an approach for scaling up from a measurement ca-

pability of m molecules to models of n molecules. We employ an active learning

method in which each experiment provides information that allows us to constrain

future experiments and ultimately to constrain our search in such a way that we can

relax our requirement for simultaneous measurements. The intent is to enable a ~10

color capability to scale up to models of 50-100 molecules (and, in the future, for

an ever-increasing measurement capability to scale up to models of hundreds of vari-

ables). In the meantime, we use available 11-color data to demonstrate this approach

on a sample problem in which m = 4 and n = 11, the problem encountered by a lab
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with standard flow cytometric capability (4 colors) that wants to build an 11-variable

model. To be applicable to real-world applications, our approach must contend with

two issues: first, it must enable us to model more molecules then we can measure

simultaneously; second, it must be able to do this while minimizing the number of

required experiments. In the case of m = 4 and n = 11, measuring all possible

overlapping subsets necessitates
(

11
4

)
= 330 experiments, clearly a requirement that

is prohibitively expensive and time consuming. Therefore, this algorithm is created

with two goals: to model the variables as accurately as possible, while requiring as

few experiments as possible. We find that in our domain, we are able to closely repro-

duce the results from a dataset in which all 11 variables are measured simultaneously,

using ~15 measurements of 4 molecules each.

5.2 Approach

In this section, we describe the method, including a general overview as well as the

specifics of the implementation. Although we apply this method to scale up from

4 molecules to 11, the same approach can be used for different values of m and n

and, as alluded to previously, the motivating application for this algorithm is large

scale models (dozens-hundreds molecules, increasing as the measurement capability

increases).

5.2.1 Overview

A cell’s complete signaling network is highly interconnected, and distant causal links

(separated by numerous other molecules) probably exist between many pairs of pro-

teins. However, as the connection between a protein and its ancestor becomes more

distant, the causal effect of the ancestor fades, as does the statistical dependence

between child and ancestor. Out of the complete signaling network, therefore, some

variables will be largely irrelevant to the activity of certain others. We will use this

fact to constrain our search. For each variable, we will find those variables with which

it is more intimately connected (relative to all the molecules measured), and consider
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only those as potential parents and children in our model structure search.

How does this procedure work? First, we measure each molecule with each other

molecule (pairwise). We use this data to define correlation neighborhoods, defined as

the set of those variables that have sufficiently high correlation to each other to enable

us to consider them as potential parents, children, close ancestors or descendants of

each other. Next, we expand this neighborhood with respect to individual molecules,

by defining potential parents or (possibly distant) ancestors, based on a molecule’s

response to specific perturbation of other variables.

Based on these two steps, we have, for each signaling molecule, a set of variables

that are in its correlation neighborhood, and a set of variables that are its potential

parents (possibly more distant), based on perturbation data (these are ”potential

perturbation parents”). Note that the perturbation parents may or may not be in the

molecule’s correlation neighborhood. Together, these two sets constitute a molecule’s

’extended neighborhood ’—the set of all variables that we allow as potential parents or

children of the molecule. See Figure 5-1 for an illustration of correlation and extended

neighborhoods, and Figure 5-2 for an overview of this approach.

We use the extended neighborhoods to constrain our search, such that in the

random search, only graphs in which permitted parent/child sets are proposed are

considered; other graphs are rejected offhand. A permitted parent/child combination

is one in which the parent and child are in each others’ extended neighborhood (or

more precisely, one in which the proposed parents of a child are in its extended

neighborhood). Note that since correlation neighborhoods are based on a symmetric

metric (correlation), then if variable X is in Y ’s correlation neighborhood, then Y

is necessarily in X’s correlation neighborhood. However, it is not transitive, so for

the same X and Y , if Z is in Y ’s correlation neighborhood, this does not necessarily

imply that Z is also in X’s correlation neighborhood.

Constraining the search space limits the number of variables with which each

variable must be measured simultaneously, and leads to a substantial saving in the

number of necessary simultaneous measurements. However, each permitted parent

set/child combination must still be measured simultaneously. How is this achieved?
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Figure 5-1: Pictorial illustration of correlation and extended neighborhoods.
Within the complete signaling network in a cell, a particular signaling molecule (cir-
cled in red) is likely to exist within a particular neighborhood of other molecules
(shaded circle). The connections in the network indicate a physical or mechanis-
tic interaction, which may be accompanied by a statistical correlation. We assume
that molecules which affect each other will show some correlation, and that closer
interactions will, in general, show higher correlation than farther ones. A molecule
may also have more distant, poorly correlated ancestors that may be detected using
perturbations (shaded squares).
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Figure 5-2: Flow diagram of our approach. 1. Initial experiments define correla-
tion and extended neighborhoods. 2. Further experiments are selected based on the
initial experiments. 3. Structure learning is performed with an implementation that
constrains the search according to extended neighborhoods (as detailed in the text).
4. Resulting model includes all variables, even though the set was not measured
simultaneously.
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If the number of variables in an extended neighborhood does not exceed m− 1, then

the variable and all its extended neighborhood can be measured simultaneously. This

is the simplest case. In our example, because m = 4, this means a variable must have

no more than 3 members in its extended neighborhood, a situation which is hard

to guarantee. To stretch our capabilities further, we make a biologically motivated

assumption pertaining to the perturbation parents. Perturbation parents, which are

not in a potential child’s correlation neighborhood, are not well correlated with the

child (by definition of correlation neighborhood). Therefore, we assume that it is

necessary to observe the dependence of the child on the perturbation parent only

in that condition in which the potential perturbation parent is perturbed. In that

condition, it is actually not necessary (and sometimes not possible) to measure the

potential parent anyway; rather, an inhibited parent is assumed to be at level ’low’,

an activated parent is assumed to be at level ’high’ (see Section 4.3.2 in the previous

chapter). Therefore, it is sufficient to measure the potential child in that condition,

without measuring the potential perturbation parent.

In practice, this translates to the following situation. If a variable has more

than m variables in its extended neighborhood (counting itself), the perturbation

parent (or parents) which are not in its correlation neighborhood are not measured

simultaneously but instead are appended on, their values taken from an independent

experiment. (See Figure 5-3 for an illustration.) In other words, for each treatment

condition, the values of the perturbation parent are kept consistent with its distri-

bution under that condition, but any specific dependence between that perturbation

parent and its potential child are lost or minimized, except under the condition in

which the parent is perturbed. This approach will work if at least one of the following

conditions hold: either the dependence of the child on the parent is only sufficiently

detectable under the perturbation condition anyway (this may be the case, especially

for a distantly connected ancestor), or the parent and child are each sufficiently ho-

mogenous under a particular condition, such that dependencies can be preserved even

when each are sampled independently. Since we know the parent and child are not

well correlated, the former condition is likely to be satisfied. The latter condition is
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probably more variable, and for this reason we do not rely on it. In cases where it is

true, this approximation should work particularly well.

So far we have handled the case in which an extended neighborhood includes up

to m members, and the case in which the correlation neighborhood includes up to m

members, and extended neighborhood members are appended on from independent

experiments. What about the case in which a correlation neighborhood contains

more than m members? This is a truly problematic case, because in this case it

is not possible to observe the child with all of its possible parents simultaneously,

and we have no assumptions available that enable us to ease the requirement for

simultaneous measurement. In this case, we have no choice but to permit parent

set/child combinations which include the child with up to any set of m− 1 variables

out of its correlation neighborhood. In the case where the variable is in fact regulated

by a complex function involving more than m− 1 parents, our algorithm will fail to

find this relationship.

There are a number of ways in which we minimize the number of required experi-

ments. First, we only require each variable to be measured with each other pairwise,

neglecting the measurement with each other tuple. This dramatically reduces the

number of experiments required to initially assess correlations (in the m = 4, n = 11

case, from 330 to about 12-13). We then take one further step to reduce this number.

We assume that if variable X and variable Y are highly correlated (correlation above

some minimal threshold, higher then that required for membership in the correlation

neighborhood), then a third variable Z which is very weakly correlated with X (be-

low some maximal threshold) will not be highly correlated with Y . In this case, Z

need not be measured with Y , as it is automatically excluded from Y ’s correlation

neighborhood. We call this assumption approximate transitivity of correlations. See

Figure 5-4 for an illustration. This assumption reduces the number of experiments,

in our domain, to ~7-8 (from ~12-13).
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Figure 5-3: Appending perturbation parents which cannot be measured
simultaneously. Panel A. Variable X3 has 3 other variables in its correlation neigh-
borhood, as well as a potential perturbation parent, X6. X6 is not in X3’s correlation
neighborhood, as they are not well correlated (inset). Panel B. Possible search query
in which X3 is the child of all its potential parents. For m = 4, it is not possi-
ble to score this local conditional probability distribution by measuring all variables
involved. Panel C. To score this query, data in which X3 and its correlation neigh-
borhood were measured is supplemented with data from a separate experiment, in
which X6 is measured. X6—X3 dependence will not be preserved in the ’background’
distribution, unless the levels of X6 and X3 are fairly homogenous within a particular
experimental condition. However, in the X6—perturbation condition (yellow shaded
area), the level of X6 is known because it is determined experimentally (by the per-
turbation). Therefore, under this condition, the X6—X3 dependence is observable.
When we use this approach, we are making the assumption that this perturbation—
condition dependence is sufficient for the perturbation parent to emerge as a parent
in the learned Bayesian network structure.
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Figure 5-4: Assumption of approximate transitivity of correlations is used
to eliminate certain measurements. Panel A. Variables X3 and X4 are very well
correlated, variables X3 and X6 are very poorly correlated. Panel B. In accordance
with their correlations, X4 is in the correlation neighborhood of X3, while X6 is
not. The dotted inner circle depicts the ’inner neighborhood’ of variables that are
particularly well correlated with X3 (the cutoff for these highly correlated variables
is more stringent than the cutoff for membership in the correlation neighborhood.
See Section 5.2.3). Panel C. Because of the correlation between X3 and X4, and the
lack of correlation between X3 and X6, we assume that X6 is not in X4’s correlation
neighborhood, without measuring X4 and X6 together.
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5.2.2 Assumptions and Limitations

In the previous sections, we made statements that encompass some assumptions of

our method, and alluded directly to several others. Here, we explicitly state the

assumptions used in the development of this heuristic, approximate approach. Al-

though these are necessary to enable us to model a number of variables that exceeds

our measurement capability, we attempted to keep our assumptions biologically mo-

tivated and biologically reasonable. The success of our approach will depend heavily

on the legitimacy of our assumptions.

Assumption There exists an independent component to each parent/child relationship

Because we base the correlation neighborhoods on pairwise data, we implicitly

make the assumption that the dependence of a child variable on each parent

can be detected independently. This results from a pairwise dependence, and

is detectable when the child is observed with the particular parent in isola-

tion. With this assumption, we neglect any complex relationship that lacks

an independent component between the child and an individual parent, such

as an XOR relationship. We neglect this type of relationship out of necessity,

as including it would necessitate performing far more experiments (in order to

consider each variable with each other tuple). Although this assumption is not

ideal, we note that most biological relationships are not strictly nonpairwise

relationships, such as XOR. Typically, even in cases of complex, multi-parent

combinatorial regulation, each parent maintains an independent influence rela-

tionship component with each child. Additionally, as the number of experiments

grows, or as the number of measurable variable grows, this assumption can be

relaxed.

Assumption Correlation weakens with distance

We constrain our search using correlation neighborhoods, which are defined

based on the strength of correlations. Thus, we assume that relationships

demonstrating weaker correlation are less important, in that they are less likely
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to be closely linked ancestors or dependents. If we define a distance metric as

the number of links connecting between two proteins (i.e. how many signaling

molecules are needed to transfer the affect from the parent to the child), then we

are assuming that the more distantly connected variables have a weaker correla-

tion than closely connected ones. This assumption is not valid when a variable

has a close but noisy (and therefore weakly correlated) connection. If the noisy

connection is ’outranked’ by other, higher correlation connections, it will not

be included in the correlation neighborhood and therefore the connection will

not be found. As with the previous point, as the number of experiments and/or

the measurement capability increase, this limitation will be diminished.

Assumption Signal in perturbation condition is sufficient to detect dependence of child on

perturbation parent

As explained in the previous section, when the number of variables in an ex-

tended neighborhood exceed m, any perturbation parents which are not in the

correlation neighborhood are not measured simultaneously with the other neigh-

borhood members; their values are taken from an independent experiment. A

specific statistical dependency cannot be established in the nonperturbed con-

dition; however, in the perturbed condition, one can be established because

the value of the perturbational parent is known even though it is not mea-

sured (since it is experimentally fixed). This assumes that the contribution

of the perturbation parent is felt primarily in the condition under which it is

perturbed, and that the background distribution can be sufficiently estimated

from the overall distribution of both parent and child, in the other conditions.

It is straightforward to assume that the perturbation parent’s contribution is

not strong in the nonperturbed conditions: since it is not part of the correlation

neighborhood, then by assumption 1, it is not a strong predictor of the child.

However, this assumption can be problematic when the background (nonpertur-

bational conditions) is altered by measuring the child and perturbation parent

separately. This is because edge orientation is determined by contrasting the
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conditional dependence of the child on the parent in the perturbation condition

to that in the background conditions (See Chapter 2). Implicit in this assump-

tion is the idea that for a particular condition, both the child and the parent

have a sufficiently homogenous distribution, such that they can each be mea-

sured separately without dramatically changing their dependence. When this

assumption is satisfied, then we are able to orient edges in the same way as we

would with a complete, fully simultaneously measured dataset. Otherwise, it

can be expected that edges will persist, but their orientation might be reversed.

Assumption Node indegree does not exceed m− 1 + p

Where p is the number of (uncorrelated) perturbation parents. Our approach

is limited by the constraints of the measurement technology. Though this lim-

itation is important for small m values, it quickly becomes insignificant as m

grows. Today’s cutting edge technology (m ≈ 12) allows an indegree of at least

11, certainly more than sufficient for most signaling molecules.

Assumption Approximate transitivity of correlations

Let us define the correlation cutoff for inclusion in a correlation neighborhood

to be c, and let us define a higher value, h, as well as a lower value, l, such

that h > c > l. Then for any pair of variables X, Y with correlation greater

than h, if there exists a third variable Z with correlation less than l to X, then

it is assumed that it will not be sufficiently highly correlated with Y in order

to be included in its correlation neighborhood; in other words, the correlation

between Z and Y is assumed to be less than c. (In Figure 5-4, Panel B, the

inner dotted circle depicts variables with correlation h or higher, the outer circle

depicts the correlation neighborhood, or variables with correlation c or higher.

The variable indicated with a green circle (X6) has correlation l or less to X3.)

While this assumption appears reasonable, it too can be relaxed if the resources

to perform a greater number of experiments are available.
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5.2.3 Details of implementation

Defining correlation neighborhoods For each variable, its correlation neighbor-

hood was defined to be the set of variables which were correlated with correlation

coefficient > 0.5 under any condition. We selected these criteria to be nonstringent

to reduce the likelihood that connections would be missed. Additionally, we wanted

to ensure that a parent which had even a weak individual relationship component

would have a good chance of being included. Conditions were considered separately

because it is possible for a parent to be predictive of a child only under particular

stimulations (e.g. when the cell is in a particular state or when certain signaling

pathways are activated). For each particular domain, this parameter can be set in

accordance with the correlation levels found among the variables, defining it more

stringently in a highly correlated domain, and more laxly in a more loosely connected

domain.

Identifying perturbation parents for inclusion in extended neighbor-

hoods Each perturbation condition involved the inhibition or activation of a partic-

ular molecule (see previous chapter for details). In each such condition, we identified

which molecules were affected by detecting a shift in the median of one half standard

deviation when compared to the background distribution. Perturbation parents were

then added to the list of correlation parents to form the extended neighborhood.

Selecting experiments As described above, we wish to perform experiments

first in order to define the correlation neighborhoods and extended neighborhoods,

and then in order to measure each variable with all members of its correlation neigh-

borhood (and extended neighborhood), simultaneously if possible. For our first round

of experiments, the variables in each 4-color set are selected randomly. The four vari-

ables in the first set are examined for levels of correlation- if any pairs are correlated

with coefficient (actually the absolute value of the coefficient) exceeding 0.5, they are

included in each others correlation neighborhood. If any are correlated with coefficient

exceeding 0.7, they are considered ’highly correlated’ and are used to eliminate fu-

ture experiments (via the approximate transitivity of correlations assumption). This
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works as follows: if in a future experiment a member of a highly correlated pair is

found to have ’low correlation’ (defined as a coefficient < 0.2 in all conditions) with

another variable, then it is deemed unnecessary to perform an experiment in which

the other member of the highly correlated pair is measured with the poorly corre-

lated variable. This procedure is repeated until all pairwise combinations, with the

exception of those that get eliminated in this fashion, have been performed.

After all pairs have been identified, additional experiments are performed so that

all members of each correlation neighborhood are measured simultaneously, if possi-

ble (i.e. if the correlation neighborhood size does not exceed m). If not, each set of

size m from the correlation neighborhood can be measured. If this becomes cumber-

some from the perspective of the number of experiments required (something that

could easily happen if the size of the neighborhood is large compared to m), then it

is possible to constrain the correlation neighborhood further, by using a more strin-

gent cutoff for the correlation coefficient. Alternatively, it is possible to use prior

biological knowledge to constrain the neighborhood. In this domain, no correlation

neighborhood was larger than m, so we did not contend with this issue.

When possible, the perturbation parents are also measured simultaneously (i.e.

the entire extended neighborhood together). If this is not possible, then perturbation

parents which are not members of the correlation neighborhood are removed one by

one, until the number of variables to be measured together no longer exceeds m.

These perturbation parents are then appended by taking their values from a separate

experiment. Removal of the parents from the measured set proceeds as follows: the

parents whose perturbation caused a stronger response in the child are removed first

(such that when it is only possible to measure a subset of the perturbation parents

along with the correlation neighborhood, the weakest parents are those that get mea-

sured). This is because we anticipate that the stronger parents are more likely to

demonstrate a sufficiently prominent affect to establish themselves as parents based

only or primarily on the condition in which they are perturbed. In case a query

should ask for just a subset of the perturbation parents, if the correlation set size is

smaller than m − 1, the perturbation parents are also measured individually along
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with the correlation neighborhood. This ensures that a query involving only a few

perturbation parents will be able to use actual measured values, whenever possible.

Constraining the search Once the set of measurements have been performed,

they are used to constrain the search. In each query of the random search (described

in the previous chapter), if a parent set is proposed that has been measured with the

proposed child, then that query is allowed to continue, and data from the relevant

experiment is used to score this local interaction. If the query involves a parent set

that has not been measured with the child, then it is allowed to continue only if the

subset of the parent set that remains after the child’s perturbation parents have been

excluded has been measured with the child. That is, if the parent set includes only

variables that have been measured with the child, and perturbation parents of the

child, then the search is allowed to continue. When this occurs, the local interaction

is scored using the measured set that includes all the nonperturbation parents, as

well as as many of the perturbation parents as possible, along with values for the

perturbation parents, taken from an independent experiment. Note that because we

use the set of performed experiments, rather than the extended neighborhoods, to

constrain the search, we are enabling connections that are not technically permitted.

This could occur if, for instance, in the early experiments in which we survey each pair,

a variable is measured with various other variables which are not in its correlation

neighborhood. We employ this approach to enable maximal flexibility, just in case a

potential parent is somehow missed, or in case our assumptions are imperfect. We

also try a more constrained approach, allowing only members of the same extended

neighborhood to influence each other.

Making pseudo 4-color data This work is designed as a proof of principle

project, for which it is convenient to have a ’ground truth’ model. In this case, we

wish to use multiple overlapping 4-color experiments in order to build an 11-variable

model. We use an 11-color dataset, on which we have already performed Bayesian

network analysis (see previous chapter) to define our ground truth model. We then

need to create pseudo 4-color data, in order to test our approach. We do this simply

by constraining which sets of variables we permit in our search (see above). In the
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case when we wish to append the values of a perturbation parent from an independent

experiment, we simulate an independent experiment by taking the original values and

randomly permuting them within each condition.

5.3 Results

In this section, we present results from three independent attempts at learning an 11-

variable model from measurements of 4-colors each. We present both model results

and an analysis of the number of experiments required to build the model in this

particular domain.

5.3.1 Number of experiments required

A thorough analysis of the number of experiments required is difficult to perform,

because the number depends heavily on the particular strength (and weakness) of

correlations found in the domain. Strong correlations will help to reduce the number

of experiments needed to cover all variable pairs, but may lead to a combinatorial

increase in the number of experiments needed to cover all variables in the correlation

neighborhood, unless m is large relative to the correlation neighborhood size. Weak

correlations in the domain do not enable a saving in the number of experiments nec-

essary to cover all variable pairs, but may result in smaller correlation neighborhoods.

To assess approximately how many experiments would be needed, we start by

asking how many experiments must be performed to measure each pair of variables

in a set of size n, using measurement groups of size m. We are not aware of an exact

solution for this problem. However, we can find an upper and lower bound. For a

lower bound, we assume that in each measurement, we cover
(

m
2

)
total pairs. Since we

need to measure
(

n
2

)
total pairs, this gives us a lower bound of

(n
2)

(m
2 )

. This lower bound

is not an exact solution, because after a few experiments, it is no longer possible to

measure
(

m
2

)
unique pairs in each experiment.

Let’s see how this works. Consider a situation with m = 4 and n = 10. We

start by measuring variable 1 with 3 other variables, let’s say variables 2, 3 and 4.
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This gives: Experiment1 = [1234]. This experiment covers
(

m
2

)
=

(
4
2

)
= 6 pairs:

1 and 2, 1 and 3, 1 and 4, 2 and 3, 2 and 4, 3 and 4. Focusing on pairs with

variable 1, we continue with Experiment2 = [1567], which also covers 6 pairs, as

does our next experiment: Experiment3 = [18910]. At this point, we have measured

variable 1 with all possible other variables, and, additionally, we have also measured

a substantial number of pairs consisting of other variables. If we could continue

like this, we would need exactly the number of measurements in our lower bound.

However, we soon run into a situation in which we cannot eliminate
(

m
2

)
pairs in each

experiment, because we cannot measure m unique variables together (by ”unique” we

mean variables that have not been measured together previously). Consider our next

experiment, focusing on pairs with variable 2. We have already measured 2 with 1, 3

and 4, so our next experiment should draw from variables 5 and above. If we select

Experiment4 = [2567] then we are covering only 3 pairs, (2 and 5, 2 and 6, 2 and

7), because variables 5, 6 and 7 have already been measured together (in experiment

2). We can choose more carefully, say, Experiment4 = [2586], an experiment which

covers 5 pairs (2 and 5, 2 and 8, 2 and 6, 5 and 8, 8 and 6), but we cannot find any

combination of variables which includes 2 and covers a total of 6 unique pairs. This

problem becomes more prevalent as we continue our measurements of all pairs.

We know that measuring all pairs requires at least
(n

2)
(m

2 )
, but we also know, from

the above description, that this number is too low. For an upper bound, consider

dividing the space into sets of size m/2 (in our case, sets of size 2, say, variable 1

with variable 2, variable 3 with variable 4, etc). This yields n
m/2

subsets, each of size

m/2 (in our case, 11/2 = 5.5 subsets, which we round to 6). Now to make sure we

include each variable pair, we measure each pair of subsets together (we can do this,

because the subsets are each of size m/2). This requires
( n

m/2

2

)
measurements. For our

problem, this is 15 measurements, not far from the actual number required, which

appears to be 12. (This is not bad for an upper bound, especially considering we

rounded the number of subsets up to 6) 1. We thank Erik Demaine, MIT Computer

1We can also assess our upper bound by comparing to the lower bound. Our lower bound is
(n
2)(m

2 )
≈ n2/m2. Our upper bound is

( n
m/2
2

)
=

( 2n
m
2

)
= 2n2

m2 − n
m , so it is n/m less than twice the lower

bound.
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Science, for help with this formulation.

From this number, we can subtract the experiments that are eliminated due to

the approximate transitivity of correlations assumption, which will depend heavily

on the correlations found in the domain. In our domain, we were able to reduce the

number of experiments needed for the pair coverage step to about 7, a savings of

about 5 experiments.

Finally, it is then necessary to measure each extended correlation set, and, in

cases where the correlation neighborhood exceeds the size of m, it is necessary to

measure each set of m from the correlation set. For an extended correlation set

size of s, with a correlation set size of c, this step takes about n/s experiments if

s < m, but takes approximately n/c ∗ (s − c) (where s − c is the average number of

uncorrelated perturbation parents per extended neighborhood) if s > m and when

the correlation neighborhood is bigger than m, this step can take up to n/c ∗
(

c
m

)
∗

(s− c) experiments. However, in many cases experiments become redundant due to

symmetry in correlation neighborhoods and shared perturbation parents, so these are

approximate upper bounds. In our case, c was approximately 3 (never exceeding m)

and s approximately 5, requiring about 8 experiments.

5.3.2 Model results

Because we start with a random variable set for our first experiments, there is a certain

degree of randomness in which specific sets of variable subsets are measured. The

specific subsets can change the model results, because in the search we may considered

all measured sets (see Section 5.2.3). For this reason, we present below results from

two independent selections of variable subset (each starting with a different random

ordering of the variables), as well as one result from a more strictly constrained search

allowing only connections within extended correlation neighborhoods. Aside from the

details given in Section 5.2.3, all other aspects of the implementation are as described

in Chapter 4.

Model result I: Search constrained to extended correlation neighbor-

hoods This model result uses just 8 experiments, the number required in our domain
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A. Original model from 11-color dataset

B. Model I: Results from 8 overlapping 4-color subsets
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A. Original model from 11-color dataset

B. Model I: Results from 8 overlapping 4-color subsets
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Figure 5-5: Model I: Results from 8 4-color experiments. Panel A shows the
original model, from the full 11-color dataset. Panel B shows the model inferred using
8 4-color data subsets. Although only 8 experiments were used in the search, another
7 were necessary in order to heuristically determine which measurements to include
in the search. The edges in both models are annotated with edge confidence values,
obtained by averaging 100 high scoring models.
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to cover all extended neighborhoods as described in Section 5.2.3. However, it still

effectively requires ~15 experiments in all, as ~7 experiments are required to elucidate

the correlation neighborhoods. Figure 5-5 shows the model result with edge confi-

dence levels included. The result from the full 11-color dataset (from Chapter 4) is

included for convenience. The result is identical to the original results at any confi-

dence cutoff up to 0.8. At a higher confidence cutoff value, differences exist between

the two models. In particular, this model result has mostly higher confidence values

for most edges. If the original confidence cutoff of 0.85 is employed, 6 edges are above

the cutoff in this model whereas in the original they are below it, and one edge makes

the confidence cutoff in the original model but not in this result. Recall that the edge

confidence values are based on model averaging results, essentially a weighted average

of a compendium of high scoring models (see Chapter 4 for details).

Model result II and III: Search includes all available measured subsets

Figure 5-6 and Figure 5-7 show the results from two separate sets of measured variable

subsets. The measurements covering the extended neighborhoods are identical (and

identical to the ones used in Figure 5-5), but the initial measurements used to establish

correlation neighborhoods are distinct. The result from the full 11-color dataset is

included for convenience. The model in Figure 5-6 is nearly identical to the original

model at confidence level 0.76. However, even at this cutoff value, it has an extra edge

(P38→Plcγ) that is not seen in the original model. When the original confidence level

of 0.85 is used, this model includes 7 edges that are lower confidence in the original

model (mostly the same edges as in Figure 5-5), and one edge that is higher confidence

in these results (as before, this edge is PIP3→PIP2).

The third result (Figure 5-7) is identical to the original at confidence cutoff

value 0.66. At the original cutoff value, this model includes 6 additional edges

(the same edges as found in the other two results) and excludes one (also the same,

PIP3→PIP2).
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A. Original model from 11-color dataset

B. Model II: Results from 15 overlapping 4-color subsets
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Figure 5-6: Model II: Results from 15 4-color experiments. Panel A shows
the original model, from the full 11-color dataset. Panel B shows the model inferred
using 15 4-color data subsets. The edges in both models are annotated with edge
confidence values, obtained by averaging 100 high scoring models.
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A. Original model from 11-color dataset

B. Model II: Results from 15 overlapping 4-color subsets
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Figure 5-7: Model III: Results from an independent set of 15 4-color ex-
periments. Panel A shows the original model, from the full 11-color dataset. Panel
B shows the model inferred using 15 4-color data subsets (7 of which are distinct
from those used in Figure 5-6). The edges in both models are annotated with edge
confidence values, obtained by averaging 100 high scoring models.
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5.4 Discussion

In this chapter, we describe an approximate, heuristic approach to apply Bayesian

network structure inference to signaling pathways in a domain in which the entire

variable set can not be observed simultaneously. We learn the network structure

using measurements of overlapping subsets of the variable set. Our approach seeks

to minimize the number of experiments measured while maximizing the accuracy

of model inference, by employing a set of biologically motivated assumptions. In

our domain, we find that, using approximately 15 measurements of 4-color variable

subsets, we are able to infer a model structure that closely resembles the original

structure inferred from a fully measured, 11-color dataset.

Models results consistently contained higher confidence edges than the original

models, in all 3 results, and, as a result, consistently had ~6 more edges than the

original model, given the original cutoff value of 0.85. This result is not surprising, and

stems from the fact that the search space is greatly constrained. In an unconstrained

search space, each high confidence model is likely to have small variations, edges

that appear in a relatively small percent of models. These are edges that express

weaker dependencies, or dependencies that can be explained equally (or approximately

equally) well by different edges, such that a different one appears in different high

scoring models. These more minor edges explain some of the dependencies found

in the entire domain, thus reducing the prevalence of other edges. For this reason,

the edge confidence values in the original model are generally lower than in these

constrained models. (The surprising result is PIP3→PIP2, which consistently has

a lower confidence value. There appears to be no obvious reason for this result. It

is possible that the original result simply had, due to the randomness of the search

process, a particularly high confidence value for this edge).

The shift in confidence values can actually be problematic, as a dense model is

harder to interpret and validate, and it is harder to determine which are the more

dominant, reliable edges. An interesting point for future work would be to devise a

method to rank the model edges that is distinct from model averaging. One straight-
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forward approach would assess the contribution of each edge to the model score.

Another point for future work includes a more thorough theoretical treatment of the

number of experiments required, given in terms of the size of the correlation neigh-

borhoods, the extended neighborhoods, m and n.

Or approach uses just 15 4-color experiments to accurately reproduce the results

of an 11-color experiment (albeit with a shift in confidence). However, these results,

particularly with regard to the number of measurements needed, are relevant for our

particular domain, with its set of variables and treatment conditions. A different

domain may have a very different correlation landscape, leading to very different

requirement for experiments; furthermore, it may violate our assumptions to varying

degrees, yielding poorer results. Our work has an additional caveat: because we

simulate 4-color data using an 11-color dataset (see Section 5.2.3), our data may be

cleaner than data taken from actual independent experiments, which may contain

more variability. We do not believe this will be a major source of variation, as the

data is a moderately large sample drawn from the same distribution, and individual

flow cytomtery runs are highly reproducible (data not shown). Nevertheless, the

results must be interpreted with caution, as they are not conclusive regarding the

number of experiments needed or about the success of the modeling effort.

Although we present an example in which we scale up from a 4 variable measure-

ment capacity to an 11 variable model, our intent is to enable a larger measurement

capability to scale to larger models, say, from 10 variables measured to models of 50-

100. How would our approach differ for these larger scale models? We can expect to

need a larger number of experiments in order to initially cover each pair of variables.

For scaling from 10 variables to a 50 variable model, our lower bound calls for 25

experiments, and the upper bound calls for 45. This number grows for a 100 vari-

able model: 110 experiments according to the lower bound, 190 in the upper bound.

These numbers may appear prohibitive but, depending on the correlation landscape

of the particular variable set, a large number of these may be eliminated using the

assumption of approximate transitivity of correlations. Note that as the number of

variables measured in an experiment grows, this assumption eliminates experiments
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more quickly and efficiently, since the low and high correlations can be found more

easily.

The large scale models have the distinct advantage that, in contrast to the smaller

scale models, it is unlikely that an experiment measuring all of the members of an

extended correlation neighborhood will be infeasible. This claim is based on the

assumption that most signaling molecules have constrained in—degrees, so that a

measurement capability of ~10 molecules can easily accommodate each variable and

its likely parents, whereas this does not hold true for a 4-color measurement capabil-

ity. This fact also constrains the number of experiments that are necessary, because

the combinatorial step of measuring the correlation neighborhood with each pertur-

bation parent, or the subsets of size m from the correlation neighborhood, is likely to

be unnecessary. Although the details in terms of the number of experiments needed,

and the success of the results will depend on various factors (prominently, the corre-

lation landscape of the domain, and the particular dependencies among the variables,

respectively), we anticipate that larger scale models will prove more amenable to this

approach than smaller models.

This work proffers an approach for approximate model inference in a pathway

with a number of molecules exceeding our measurement capabilities. Although our

results are specific to just one particular variable set, they nonetheless indicate the

possibility that this approach is both feasible (in terms of the number of experiments

required) and effective (in terms of the modeling results). It is our hope that this

method can be used to infer increasingly large signaling pathway models. Particularly

as measurement capabilities improve, it may be possible to build highly integrated

models involving numerous canonical pathways, in order to discover points of cross

talk, enrich our knowledge of various pathways, and enable a truly systems approach

even in relatively uncharted domains.
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Chapter 6

Discussion and Future Directions

In this dissertation, we explore the use of multiparameter flow cytometry data to

learn signaling pathway structure. We find that when cells are stimulated in het-

erogeneous ways, and specific perturbations are performed, we are able to infer a

network structure that is consistent with the structure described in the literature.

We further explored the problem of a partially observable set- when only a subset

of the variables can be measured in each experiment, due to technical limitations-

and find that when we make a number of specific, biologically plausible assumptions,

more limited datasets can also be used to learn a signaling pathway structure.

We demonstrate the use of Bayesian network structure learning for the elucida-

tion of signaling pathway models. However, as discussed in Chapters 2 and 5, this

approach has a number of shortcomings and limitations, among them the nonideality

of perturbations, abundance of hidden nodes in the domain (which hinder inference

of causal connections), and acyclicity constraint. Due to such limitations, model

results will often fall short of an accurate representation of the actual signaling path-

way structure; therefore, it is necessary to interpret model results with caution, and

confirm suggested connections via wet lab validation. In one view, Bayesian network

analysis can be considered an in silico generator of testable hypotheses. We note that

many of the limitations we have discussed can be addressed with technological ad-

vances and/or modification of the algorithm to render it better suited to the specific

modeling domain, pointing to a useful direction for future work.
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In our work, we treat single cells as biological replicates (in fact, the idea for using

single cell data evolved from a search for data with many replicates). Large numbers

of single cells are informative because they are not identical (or even necessarily

similar) to each other. This fact is in contrast to the simplifying assumption we

implicitly make when we work with lysates, in which we assume that cells respond

in concert to an experimental condition. Often it is true that there is a detectable

overall shift; however, this change may not be representative of the ”average cell”

in the population, especially if the population is in fact multimodal. Even when the

population contains just one discernable distribution, great variability exists between

cells. This may be due to the presence of cellular subsets, as perhaps our CD4+ cells

contained ’impurities’ in the form of other cell types, or perhaps there existed subsets

among the CD4+ cells themselves (such as, e.g., TH1 and TH2 cells), which behave

differently. Even for a very pure population, however, it is easy to imagine reasons

for heterogeneity ranging from differences in cell cycle stage to variation in cell state

(in terms of concentration of proteins and small molecules) to genetic and epigenetic

heterogeneities. We ignore the presence of subsets, but specifically take advantage

of intercellular variability, to examine how molecules in CD4+ cells covary, and how

they appear to influence each other probabilistically.

It is also possible to seek out these subsets, or, more explicitly, to specifically exam-

ine different populations. We could profile cell cycle markers, and compare molecular

interactions between different cell cycle stages. Alternatively, an interesting study

may compare signaling pathway connections in samples from healthy subjects versus

cancer patients. On the surface, there is nothing new in this idea- indeed, compar-

isons between healthy and unhealthy samples is a staple in disease research. Even

using multidimentsional flow cytometry, in fact, Irish et al examined the response of

various molecules to various conditions in various patients (and compared to a healthy

control population) in an elegant study [39]. Irish and colleagues, however, collapsed

the single cell measurements into a single metric—geometric mean–disregarding the

molecular distributions. Our approach takes this analysis a step further, suggesting

a comparison not only of the response of the molecules themselves (e.g. a shift),
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but also of their interdependencies, in response to different conditions and among

different patients. Thus, the use of distribution information translates to an added

dimension in this type of analysis, enabling also an examination of changes in specific

intermolecular influences.

We have discussed how single cell data enables a probabilistic analysis of molecular

dependencies, due primarily to the ease in acquiring a large sample size. Yet another

advantage is the accessibility of specific, rare cellular subsets, generally not amenable

to standard analyses due to difficulties in isolation and insufficient sample quantities.

Assuming these cellular subsets are detectably distinct, our approach easily extends to

the analysis of their signaling pathway behavior. Rather then analyze their signaling

pathway directly (this could be difficult, due to the relative small number of these

cells), we build a signaling pathway model based on a ’background,’ standard cell type,

and then profile the rare cells to detect distinct differences. In this way, we may be

able to assess the differences between rare immune subtypes and their ’parental’ cell

line, between transformed cells and their healthy counterparts, and between elusive,

chemoresistant tumor cells and neighboring chemosensitive cells in the same tumor.

As these examples illustrate, the advantage of using single cells goes beyond the

advantages of large sample size. Furthermore, as we alluded to above, signaling path-

way analysis can go beyond an attempt at learning pathway structure, to a more in

depth analysis of differences among cells, which may include subtle differences such

as, e.g., a difference in model parameters, in addition to distinct changes in molecular

connectivity. Existing computational methods will likely need to be modified in order

to extract relevant information in a biologically meaningful way. We hope that with

appropriate computational tools, the analysis of single cell data will lead to improve-

ments in understanding of cellular biology and disease states, in accurate and specific

diagnostics, and in more specifically tailored and perhaps personalized therapies for

human disease.
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