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1. Introduction

Philosophers since Hume have struggled with the logical problem of induction, but

children solve an even more difficult task — the practical problem of induction. Children

somehow manage to learn concepts, categories, and word meanings, and all on the basis of

a set of examples that seems hopelessly inadequate. The practical problem of induction

does not disappear with adolescence: adults face it every day whenever they make any

attempt to predict an uncertain outcome. Inductive inference is a fundamental part of

everyday life, and for cognitive scientists, a fundamental phenomenon of human learning

and reasoning in need of computational explanation.

There are at least two important kinds of questions that we can ask about human

inductive capacities. First, what is the knowledge on which a given instance of induction

is based? Second, how does that knowledge support generalization beyond the specific

data observed: how do we judge the strength of an inductive argument from a given set of

premises to new cases, or infer which new entities fall under a concept given a set of

examples? We provide a computational approach to answering these questions.

Experimental psychologists have studied both the process of induction and the nature of

prior knowledge representations in depth, but previous computational models of induction

have tended to emphasize process to the exclusion of knowledge representation. The

approach we describe here attempts to redress this imbalance, by showing how

domain-specific prior knowledge can be formalized as a crucial ingredient in a

domain-general framework for rational statistical inference.

The value of prior knowledge has been attested by both psychologists and machine

learning theorists, but with somewhat different emphases. Formal analyses in machine
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learning show that meaningful generalization is not possible unless a learner begins with

some sort of inductive bias: some set of constraints on the space of hypotheses that will be

considered (Mitchell, 1997). However, the best known statistical machine-learning

algorithms adopt relatively weak inductive biases and thus require much more data for

successful generalization than humans do: tens or hundreds of positive and negative

examples, in contrast to the human ability to generalize from just one or few positive

examples. These machine algorithms lack ways to represent and exploit the rich forms of

prior knowledge that guide people’s inductive inferences, and that have been the focus of

much attention in cognitive and developmental psychology under the name of “intuitive

theories” (Murphy & Medin, 1985). Murphy (1993) characterizes an intuitive theory as “a

set of causal relations that collectively generate or explain the phenomena in a domain.”

We think of a theory more generally as any system of abstract principles that generates

hypotheses for inductive inference in a domain, such as hypotheses about the meanings of

new concepts, the conditions for new rules, or the extensions of new properties in that

domain. Carey (1985), Wellman & Gelman (1992), and Gopnik & Meltzoff (1997)

emphasize the central role of intuitive theories in cognitive development, both as sources

of constraint on children’s inductive reasoning and as the locus of deep conceptual change.

Only recently have psychologists begun to consider seriously the roles that these intuitive

theories might play in formal models of inductive inference (Gopnik and Schulz, 2004;

Tenenbaum, Griffiths and Kemp, 2006; Tenenbaum, Griffiths and Niyogi, in press). Our

goal here is to show how intuitive theories for natural domains such as folk biology can,

when suitably formalized, provide the foundation for building powerful statistical models

of human inductive reasoning.

Any familiar thing can be thought about in a multitude of ways, and different kinds

of prior knowledge will be relevant to making inferences about different aspects of an

entity. This flexibility poses a challenge for any computational account of inductive
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reasoning. For instance, a cat is a creature that climbs trees, eats mice, has whiskers,

belongs to the category of felines, and was revered by the ancient Egyptians – and all of

these facts could potentially be relevant to an inductive judgment. If we learn that cats

suffer from a recently discovered disease, we might think that mice also have the disease;

perhaps the cats picked up the disease from something they ate. Yet if we learn that cats

carry a recently discovered gene, lions and leopards seem more likely to carry the gene

than mice. Psychologists have confirmed experimentally that inductive generalizations

vary in such ways, depending on the property involved. Our computational models will

account for these phenomena by positing that people can draw on different prior

knowledge structures – or different intuitive theories – within a single domain, and by

showing how very different patterns of inference can arise depending on which of these

theories is triggered.

Our models aim for both predictive and explanatory power. As in any mathematical

modeling, we seek accounts that can provide close quantitative fits to human judgments

across a range of different tasks or contexts, with a minimum number of free parameters

or ad hoc assumptions. At the same time, we would like our models to explain why people

make the inductive generalizations that they do make, and why these judgments are

mostly successful in the real world – how people can reliably come to true beliefs about

the world from very limited data. In the spirit of rational analysis (Anderson, 1990;

Oaksford & Chater, 1998), or Marr’s (1982) computational-theory level of analysis, we will

assume that people’s inductive capacities can be characterized as approximations to

optimal inferences, given the structure of the environments and the task contexts that

they have adapted to over the course of evolution and development. Our mission as

modelers is then to characterize formally the nature of the optimal inference mechanism,

the relevant aspects of environmental structure and task context, and the interaction

between these components.
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Our core proposal has two components. First, domain-specific knowledge that

supports induction in different contexts can be captured using appropriate families of

probabilistic models defined over structured representations: in particular, relational

systems of categories such as taxonomic hierarchies or food webs. These structured

probabilistic models are far from being complete formalizations of people’s intuitive

domain theories; they are minimalist accounts, intended to capture only those aspects of

theories relevant for the basic inductive inferences we study. Second, knowledge in this

form can support inductive generalization by providing the prior probabilities for a

domain-general Bayesian inference engine. Both of these claims are necessary for

explaining how people’s inductive inferences can be so successful, and perhaps

approximately optimal, with respect to the world that we live in. The structured

representations of intuitive domain theories are important because the world contains

genuine structure: a tree-structured representation of biological species is useful, for

example, because it approximates the structure of the evolutionary tree. Bayesian

inference is important because it provides a normative and general-purpose procedure for

reasoning under uncertainty. Taking these two components together – rational

domain-general statistical inference guided by appropriately structured intuitive domain

theories – may help to explain the uniquely human capacity for learning so much about

the world from so little experience.

Our work goes beyond previous formal models of induction which either do not

address the rational statistical basis of people’s inferences, or find it difficult to capture

the effects of different kinds of knowledge in different inductive contexts, or both. In one

representative and often-cited example, the similarity-coverage model of Osherson, Smith

and colleagues, the domain-specific knowledge that drives generalization is represented by

a similarity metric (Osherson et al., 1990). As we will see below, this similarity metric has

to be defined in a particular way in order to match people’s inductive judgments. That
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definition appears rather arbitrary from a statistical point of view, and arbitrarily

different from classic similarity-based models of other cognitive tasks such as

categorization or memory retrieval (Nosofsky, 1986; Hintzman et al., 1978). Also, the

notion of similarity is typically context-independent, which appears at odds with the

context-dependent nature of human inductive reasoning. Even if we allow some kind of

context-specific notion of similarity, a similarity metric seems too limited a representation

to carry the richly structured knowledge that is needed in some contexts, or even simple

features of some reasoning tasks such as the strong asymmetry of causal relations. In

contrast, the knowledge that drives generalization in our theory-based Bayesian

framework can be as complex and as structured as a given context demands.

The plan of this chapter is as follows. Section 2 provides a brief review of the

specific inductive tasks and phenomena we attempt to account for, and Section 3 briefly

describes some previous models that have attempted to cover the same ground. Section 4

introduces our general theory-based Bayesian framework for modeling inductive reasoning,

and describes two specific instantiations of it that can be used to model inductive

reasoning in two important natural settings. Section 5 compares our models and several

alternatives in terms of their ability to account for people’s inductive judgments on a

range of tasks. Section 6 discusses the relation between our work and some recent findings

that have been taken to be problematic for Bayesian models of induction. Section 7

concludes and offers a preview of ongoing and future research.

2. Property induction

This section reviews the basic property induction task and introduces the core

phenomena that our models will attempt to explain. Following a long tradition (Rips,

1975; Carey, 1985; Osherson et al., 1990; Sloman, 1993; Heit, 1998), we will focus on

inductive arguments about the properties of natural categories, in particular biological
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species categories. The premises of each argument state that one or more specific species

have some property, and the conclusion (to be evaluated) asserts that the same property

applies to either another specific species or a more general category (such as all

mammals). These two kinds of arguments are called specific and general arguments,

respectively, depending only on the status of the conclusion category.

We use the formula P1, . . . Pn
prop
−−−→ C, to represent an n-premise argument where Pi

is the ith premise, C is the conclusion and prop indicates the property used. We will often

abbreviate references to these components of an argument. For example, the argument

Gorillas have T4 hormones

Squirrels have T4 hormones

All mammals have T4 hormones

might be represented as gorillas , squirrels
T4
−−→ mammals .

The most systematic studies of property induction have used so-called “blank

properties”. For arguments involving animal species, these are properties that are

recognized as biological but about which little else is known — for example, anatomical or

physiological properties such as “has T4 hormones” or “has sesamoid bones”. As these

properties are hardly “blank” – it is important that people recognize them as deriving

from an underlying and essential biological cause – we will instead refer to them as

“generic biological properties”.

For this class of generic properties, many qualitative reasoning phenomena have

been described: Osherson et al. (1990) identify 13, and Sloman (1993) adds several others.

Here we mention just three. Premise-conclusion similarity is the effect that argument

strength increases as the premises become more similar to the conclusion: for example,

horses
T4
−−→ dolphins is weaker than seals

T4
−−→ dolphins . For general arguments, typicality

is the effect that argument strength increases as the premises become more typical of the

conclusion category. For example, seals
T4
−−→ mammals is weaker than
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horses
T4
−−→ mammals , since seals are less typical mammals than horses. Finally, diversity

is the effect that argument strength increases as the diversity of the premises increases.

For example, horses, cows, rhinos
T4
−−→ mammals is weaker than

horses, seals, squirrels
T4
−−→ mammals .

Explaining inductive behavior with generic biological properties is a challenging

problem. Even if we find some way of accounting for all the phenomena individually, it is

necessary to find some way to compare their relative weights. Which is better: an

argument that is strong according to the typicality criterion, or an argument that is

strong according to the diversity criterion? The problem is especially difficult because

arguments that are strong according to one criterion may be weak according to another:

for example, seals, squirrels
T4
−−→ mammals has premises that are quite diverse, but not

very typical of the conclusion. For this reason, rather than trying to account for isolated

qualitative contrasts between pairs of arguments, we will assess the performance of

computational models in terms of how well they can predict relative argument strengths

across multiple datasets each containing a large number of arguments of the same form.

The strength of an argument depends critically on the property involved, because

changing the property will often alter the inductive context. Many researchers have

described related effects (Gelman & Markman, 1986; Heit & Rubinstein, 1994; Shafto &

Coley, 2003; Smith et al., 1993), and we mention just three of them. Gelman & Markman

(1986) showed that children reason differently about biological properties (eg “has cold

blood”) and physical properties (eg “weighs one ton”) — for example,

brontosaurus
cold blood
−−−−−−→ triceratops is relatively strong, but

brontosaurus
one ton
−−−−−→ triceratops is relatively weak. Heit & Rubinstein (1994) showed that

anatomical or physiological properties and behavioral properties are treated differently by

adults. While anatomical or physiological properties typically support default,

similarity-like patterns of inductive reasoning, behavioral properties may depend less on
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generic similarity and more on shared ecological roles. Finally, Shafto & Coley (2003)

argue that disease properties may draw on causal knowledge about predator-prey

interactions, and thus may be treated differently from arguments about generic biological

properties. For example, salmon
leptospirosis
−−−−−−−→ grizzly bears may be judged stronger than

grizzly bears
leptospirosis
−−−−−−−→ salmon , where leptospirosis stands for “carry leptospirosis

bacteria”. This asymmetry has no justification in terms of the similarity between salmon

and grizzly bears, which is presumably symmetric or nearly so, but it seems sensible from

the perspective of causal reasoning: knowing that grizzly bears eat salmon, it seems more

likely that grizzly bears would catch some disease from salmon than that any specific

disease found in grizzly bears necessarily came from the salmon that they eat.

Our aim has been to develop a unifying computational framework that can account

for many of the phenomena mentioned above. We will focus in this chapter on modeling

reasoning about two kinds of properties: the classic setting of generic biological properties,

and causally transmitted properties such as diseases (Shafto & Coley, 2003) that give rise

to very different patterns of judgment. Before introducing the details of our framework,

we summarize several existing models of property induction and describe how we hope to

improve on them.

3. Previous models

The tradition of modeling property induction extends at least as far back as the

work of Rips (1975). Here we summarize a few of the more prominent mathematical

models that have been developed in the intervening 30 years.

3.1 Similarity-coverage model

The similarity-coverage model (SCM) of Osherson et al. (1990) is perhaps the best

known mathematical model of property induction. It predicts the strength of inductive

arguments as a linear combination of two factors, the similarity of the conclusion to the
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premises and the extent to which the premises “cover” the smallest superordinate

taxonomic category including both premises and conclusion. The SCM has some

appealing properties. It makes accurate predictions for generic biological properties, and

it uses a simple equation that predicts many different kinds of judgments with a minimum

of free parameters. Yet the SCM has two major limitations. First, it can only use domain

knowledge that takes the form of pairwise similarities or superordinate taxonomic

categories. The model is therefore unable to handle inductive contexts that rely on

knowledge which cannot be expressed in this form. Second, the SCM lacks a principled

mathematical foundation: the accuracy of its predictions depends critically on certain

arbitrary choices which specify the mathematical form of the model.

This arbitrariness shows up most clearly in the formal definition of coverage: the

average over all instances i in the superordinate class of the maximal similarity between i

and the examples in the premise set. We refer to this (standard) version of SCM as

“MaxSim.” Osherson et al. (1990) also consider a variant we call “SumSim,” in which

coverage is defined by averaging the summed similarity to the examples over all instances

of the superordinate class. Generalization based on the summed similarity to exemplars or

weight traces is the foundation for many other successful models of categorization,

learning and memory (Nosofsky, 1986; Kruschke, 1992; Hintzman et al., 1978), and can be

interpreted in rational statistical terms as a version of nonparametric density

estimation (Ashby & Alfonso-Reese, 1995; Silverman, 1986). Yet despite these precedents

for using a summed-similarity measure, Osherson et al. (1990) advocate MaxSim, or some

weighted combination of MaxSim and SumSim – perhaps because SumSim performs

dramatically worse than MaxSim in judging the strength of general arguments (see

Section 5). Since Osherson et al. (1990) do not explain why different measures of setwise

similarity are needed in these different tasks, or why SumSim performs so much worse

than MaxSim for inductive reasoning, the SCM is less principled than we might like.
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3.2 Feature-based models

As Goodman (1972) and Murphy & Medin (1985) have argued, similarity is a vague

and elusive notion, and it may be meaningless to say that two objects are similar unless a

respect for similarity has been specified. Instead of founding a model directly on similarity

judgments, an alternative is to start with a collection of object features, which might

plausibly be observable perceptually or have been previously learned. 1 In some settings,

it will be necessary to assume that the features are extracted from another kind of input

(linguistic input, say), but in general the move from similarity to features is a move

towards models that can learn directly from experience.

The feature-based model of (Sloman, 1993) computes inductive strength as a

normalized measure of feature overlap between conclusion and example categories.

Sloman (1993) presents a quantitative comparison with the SCM: the results are not

conclusive, but suggest that the model does not predict human judgments as accurately as

the SCM. The model, however, predicts some qualitative phenomena that the SCM

cannot explain. More recently, Rogers & McClelland (2004) have presented a

feature-based approach to semantic cognition that uses a feedforward connectionist

network with two hidden layers. This connectionist approach is more ambitious than any

of the others we describe, and Rogers & McClelland (2004) apply their model to a diverse

set of semantic phenomena. One of the applications is a property induction task where the

model makes sensible qualitative predictions, but there has been no demonstration so far

that the model provides good quantitative fits to human judgments.

From our perspective, both feature-based models share the limitations of the SCM.

Despite the range of applications in Rogers & McClelland (2004), it is not clear how either

model can be extended to handle causal settings or other inductive contexts that draw on

sophisticated domain knowledge. Both models also include components that have been

given no convincing justification. The model of Sloman (1993) uses a particular
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mathematical measure of feature overlap, but it is not clear why this should be the right

measure to use. Rogers & McClelland (2004) provide no principled explanation for the

architecture of their network or their strategy for computing the strength of inductive

arguments, and their model appears to rely on several free parameters.

3.3 A Bayesian analysis

Heit (1998) presented a computational theory where property induction is modeled

as Bayesian inference. This inference engine is essentially the same as we describe below in

Section 4.1. Applying a Bayesian analysis to any specific case of property induction

requires a prior distribution over hypotheses about the extension of the property in

question. Heit does not specify a formal method for generating priors, nor does he test his

model quantitatively against any specific judgments. He shows that it captures several

qualitative phenomena if it is supplied with the right kinds of priors, and that appropriate

priors could allow it to handle both blank and non-blank properties. He also suggests how

priors could be extracted from long-term memory: the probability of a hypothesis could

be proportional to the number of familiar features that can be retrieved from memory and

that have the same extension as that hypothesis. But it is far from clear that this

suggestion would, if implemented, yield appropriate priors; as we show below, a simple

version of this idea does not perform nearly as well as the SCM’s gold standard in

predicting human judgments.

Our framework adopts a Bayesian approach to inference like Heit’s, but we

emphasize the importance of modeling the form and the origins of appropriate priors. A

formal account of how the learner’s prior is structured and where it comes from provides

two distinct advantages. First, it leads to strong quantitative models, predicting people’s

inductive judgments as well or better than any previous approach. More importantly, it

adds genuine explanatory power. Most of the knowledge that supports induction is
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captured by the prior, and a computational theory should be as explicit as possible about

the knowledge it assumes and how that knowledge is used. It has long been argued that

different inductive contexts lead to quite different patterns of generalization behavior, but

whether this is due to the operation of different kinds of knowledge, different mechanisms

of reasoning, or both, has not been so clear. We will argue that a single general-purpose

Bayesian reasoning mechanism may be sufficient, by showing explicitly how to generate

priors that can capture two important and very different kinds of domain knowledge, and

that can strongly predict people’s judgments in appropriately different inductive contexts.

4. The theory-based Bayesian framework

Our framework includes two components: a Bayesian engine for inductive inference,

and a language for specifying relevant aspects of domain theories and using those theories

to generate prior probability distributions for the Bayesian inference engine. The Bayesian

engine reflects domain-general norms of rational statistical inference and remains the same

regardless of the inductive context. Different domain theories may be appropriate in

different inductive contexts, but they can often be formalized as instances of a single

unifying scheme: a probabilistic process, such as diffusion, drift or transmission, defined

over a structured representation of the relevant relations between categories, such as

taxonomic or ecological relations.

4.1 The Bayesian inference engine

Assume that we are working within a finite domain containing n categories. We are

interested in a novel property, Q, that applies to some unknown subset of these categories.

Let H be the hypothesis space of all logically possible extensions for Q — the set of all

possible subsets h of categories in the domain, each of which could a priori be the

extension of the novel property. Since there are n categories, the number of hypotheses is
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2n. To each hypothesis we assign a prior probability p(h), where p(h) is the probability

that h includes all and only the categories with property Q.

Suppose now that we observe X, a set of m labeled objects where the labels indicate

whether each category in X has property Q. We want to compute p(y has Q|X), the

probability that object y has property Q given the examples X. Summing over all

hypotheses in H, we have:

p(y has Q|X) =
∑

h∈H

p(y has Q,h|X) (1)

=
∑

h∈H

p(y has Q|h,X)p(h|X). (2)

Now p(y has Q|h,X) equals one if y ∈ h and zero otherwise (independent of X). Thus:

p(y has Q|X) =
∑

h∈H:y∈h

p(h|X) (3)

=
∑

h∈H:y∈h

p(X|h)p(h)

p(X)
(4)

where the last step follows from Bayes’ rule.

The numerator in Equation 4 depends on the prior p(h), as well as on the likelihood

p(X|h), the probability of observing the labeled examples X given that h is the true

extension of Q. The likelihood p(X|h) should in general depend on the process assumed to

generate the observations in X. Here, for simplicity we will assume that p(X|h) ∝ 1 for all

hypotheses consistent with X, and p(X|h) = 0 otherwise.2 A hypothesis h for the

extension of property Q is consistent with a set of labeled examples X if h includes all

positively labeled categories in X and excludes all negatively labeled categories in X.

Then Equation 4 is equivalent to

p(y has Q|X) =

∑

h∈H:y∈h,h consistent with X

p(h)

∑

h∈H:h consistent with X

p(h)
(5)

which is the proportion of hypotheses consistent with X that also include y, where each

hypothesis is weighted by its prior probability p(h). The probability of generalizing to y
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will thus be high to the extent that it is included in most of the high-prior-probability

hypotheses that also include the observed examples X.

Other inferences can be formulated similarly. For example, the probability that all

categories in a larger class Y (e.g., all mammals) have property Q could be formalized as:

p(Y has Q|X) =

∑

h∈H:Y ⊂h,h consistent with X

p(h)

∑

h∈H:h consistent with X

p(h)
(6)

Note that a Bayesian approach needs no special purpose rules for dealing with

negative evidence or arguments with multiple premises. Once the prior distribution p(h)

and the likelihood p(X|h) have been specified, computing the strength of a given

argument involves a mechanical application of the norms of rational inference. Since we

have assumed a simple and domain-general form for the likelihood above, our remaining

task is to specify appropriate domain-specific prior probability distributions.

4.2 Theory-based priors

Generating the prior distributions used in Equations 5 and 6 appears to be a

difficult problem – for either the cognitive modeler or the human reasoner. Somehow we

need to specify 2n numbers: p(h) for each of the logically possible hypotheses h in H. We

cannot simply assign all hypotheses equal prior probability; without any inductive biases,

meaningful generalization would be impossible (Mitchell, 1997). Explicitly enumerating

the priors for all 2n hypotheses is also not an option. This would introduce far more

degrees of freedom into the model than we could ever hope to test empirically. More

importantly, it would fail to capture the most interesting aspect of these priors – that they

are not just lists of numbers, but rather the products of abstract systems of knowledge, or

intuitive theories. Induction with different kinds of properties – such as anatomical

features, behavioral tendencies, or disease states of animal species – will require different

kinds of priors because we have qualitatively different kinds of knowledge that we bring to
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bear in those contexts. Our priors for induction can change when we learn new facts, but

the biggest changes come not from statistical observations that might simply favor one

hypothesis over another. Priors can change most dramatically, and can change globally

across a large slice of the hypothesis space, when we acquire qualitative knowledge that

alters our intuitive domain theories: when we learn about a new species with unexpected

characteristics, such as whales or ostriches, or we learn something surprising about how

various species might be related, such as that whales and dolphins are mammals, or we

learn some new principle about how properties are distributed over species, such as that

diseases tend to spread through physical contact or food.

The heart of our proposal is a way to understand formally how intuitive domain

theories can generate the prior probabilities needed for induction. Two aspects of intuitive

theories are most relevant for constructing priors for property induction: representations

of how entities in the domain are related to each other, and processes or mechanisms

operating over those relational structures that give rise to the distribution of properties

over entities. To be concrete, we will assume that each of the n categories in a domain can

be represented as a node in a relational structure, such as a directed or undirected graph.

Edges in the graph represent relations that are relevant for determining inductive

potential, such as taxonomic or causal relations among categories. Priors are generated by

a stochastic process defined on this graph, such as a diffusion process, a drift process, or a

noisy transmission process. These processes can be used to capture general beliefs about

how properties of various types tend to be distributed over related categories in the

domain. Once we have sufficiently characterized the relational structure and the stochastic

generating process, that will fully specify the 2n numbers in the prior. By choosing

different kinds of structures and stochastic processes we can capture different kinds of

knowledge and account for qualitatively different patterns of inductive reasoning. In this

chapter we describe and test two such models, one for reasoning about generic biological
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properties such as anatomical and physiological features, and another for reasoning about

causally transmitted properties such as diseases.

4.2.1 A theory for generic biological properties.

The prior distribution for default biological reasoning is based on two core

assumptions: the taxonomic principle and the mutation principle. The taxonomic

principle asserts that species belong to groups in a nested hierarchy, and more precisely,

that the taxonomic relations among species can be represented by locating each species at

some leaf node of a rooted tree structure. Tree-structured taxonomies of species appear to

be universal across cultures (Atran, 1998), and they also capture an important sense in

which species are actually related in the world: genetic relations due to the branching

process of evolution. Outside of intuitive biology, tree-structured taxonomies play a

central role in organizing knowledge about many systems of natural-kind and artifact

categories (Rosch, 1978), as well as the meanings of words that label these categories

(Markman, 1989; Tenenbaum & Xu, 2000).

The structures of people’s intuitive taxonomies are liable to deviate from scientific

phylogenies in non-negligible ways, since people’s theories are based on very different

kinds of observations and targeted towards predicting different kinds of properties. Hence

we need some source of constraint besides scientific biology in order to generate the

particular tree-structured taxonomy that our model will use. We have explored several

different approaches to reconstructing taxonomic trees that best characterize people’s

intuitive theories. One possibility is to perform hierarchical clustering on people’s explicit

judgments of similarity for all pairs of species in the domain. Hierarchical clustering could

also be applied to more implicit measures of psychological distance between species: for

example, we could represent each animal using a set of behavioral and morphological

features (e.g., “lives in water”, “has a tail”), and set the distance between two animals to

be the distance between their feature vectors. We could also use more structured domain
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knowledge that might obviate the need for any bottom-up clustering. Both direct

judgments of pairwise similarity and ratings of feature-category associations have been

collected for many of the standard domains of animal species used in studying reasoning

about generic biological properties (Osherson et al., 1990), and these data sets provide a

convenient basis for comparing different modeling frameworks on equal grounds. Figure 1a

shows a taxonomic tree that was reconstructed for ten mammal species, based on

hierarchical clustering over a set of features collected by Osherson and colleagues (and

slightly augmented as described below in Section 5.1).

Some simple and intuitive prior distributions p(h) can be generated using the

taxonomic principle alone. For instance, we could assign a uniform probability to each

hypothesis corresponding to one of the 19 taxonomic clusters (including singleton species)

shown in the tree, and zero probability to all other sets of species. We call this the

“strict-tree model”. It corresponds roughly to some informal accounts of taxonomically

driven induction (Atran, 1995), and it can qualitatively reproduce some important

phenomena, such as diversity-based reasoning. Essentially this prior has also been used

successfully to explain how people learn words that label taxonomic object categories. But

to see that it is not sufficient to explain biological property induction, compare the

arguments seals , squirrels
T4
−−→ horses and seals , cows

T4
−−→ horses . The second appears

stronger than the first, yet under the intuitive taxonomy shown in Figure 1, the strict-tree

model assigns them both the same strength, since each set of premises is compatible with

only one hypothesis, the set of all mammals.

The solution to this problem comes from realizing that in scientific biology, the

assumption that every property is strictly confined to a single taxon is false. Properties

arise randomly via mutations, and through a combination of chance and natural selection,

two species may share a property even if it occurs in no common ancestor. Convergent

evolution is particularly likely for survival-significant traits of interest to people (e.g.,
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being warm-blooded, having an eye, being able to fly or swim, forming long-term

monogamous pair bonds). A more veridical folk theory of generic biological properties

should thus generate a prior that allows some probability (perhaps small) of a property

occuring in two or more disjoint taxa.

To capture these patterns in how generic biological properties are distributed, our

theory will assume that novel properties are generated by a mutation-like stochastic

process defined over the tree structure specified by the taxonomic principle. We refer to

this second assumption as the mutation principle, and the Bayesian model of induction

that uses the resulting prior as the “evolutionary model”. Intuitively, we can imagine a

property that arises at the root of the tree and spreads out towards the leaves. The

property starts out with some value (on or off) at the root, and at each point in the tree

there is a small probability that the property will mutate, or switch its value. Whenever a

branch splits, both lower branches inherit the value of the property at the point

immediately above the split, and mutations thereafter occur independently along the

lower branches. For example, if a property is absent at the root of the tree in Figure 1a,

but switches on at the two points marked in Figure 1d, then it would apply to just horses,

cows, dolphins and seals.

More formally, the mutation process is characterized by a single parameter λ,

specifying the average rate at which mutations occur. Mutations are modeled as

transitions in a two-state Markov chain defined continuously over the tree, with

infinitesimal matrix [−λ, λ;λ,−λ]. The probability that two points in the tree separated

by a branch of length t will have different values (present or absent) for a given property is

then 1−e−2λt

2
. For simplicity we assume here that any property is equally likely to be

present or absent at the tree root, and that mutations are equally likely in both directions

(present → absent, absent → present), but more generally, prior knowledge about the

nature or distribution of a feature could bias these probabilities. A mutation history for a
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property Q is an assignment of zero or more mutations to branches of the tree, together

with a specification of the state of the property (present or absent) at the root of the tree.

The Markov mutation model allows us to assign a probability to any hypothetical

mutation history for a property, based only on whether the property changes state

between each pair of branch points on the tree. This is almost but not exactly what we

need. Bayesian property induction requires a prior probability p(h) that some novel

property Q applies to any possible subset h of species. A mutation history for property Q

induces a labeling of all leaf nodes of the tree – all species in the domain – according to

whether Q is present or absent at each node. That is, each mutation history is consistent

with exactly one hypothesis for Bayesian induction, but the mapping from mutation

histories to hypotheses is many-to-one: many different mutation histories, with different

probabilities, will specify the same distribution of a property Q over the set of species. We

define the prior probability p(h) that a new property Q applies to some subset h of species

to be the sum of the probability of all mutation histories consistent with h. This prior

(and all the resulting Bayesian computations) can be computed efficiently using belief

propagation over the tree, as described more formally in Kemp, Griffiths, et al. (2004).

For small trees, it can also be approximated by taking many samples from a simulation of

the mutation process. We randomly generate a large number of hypothetical mutation

histories with probability proportional to their likelihood under the Markov mutation

model, by first choosing the property’s state at the tree root and then following the causal

direction of the mutation process down along all branches of the tree to the leaf nodes.

We can estimate the prior p(h) for each hypothetical labeling h of the leaf nodes as the

frequency with which mutation histories consistent with h occur in this sample.

The prior generated by this mutation principle has several qualitative features that

seem appropriate for our problem. First, unlike the strict-tree model described above, the

mutation process induces a non-zero prior probability for any logically possible extension
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of a novel property (i.e., any of the 2n hypotheses in the full hypothesis space H). The

prior is “smooth” with respect to the tree: the closer two species lie in the tree, the more

likely they are to share the same value for a novel property. Properties are more likely to

switch on or off along longer branches (e.g., the mutation history in Figure 1b is more

likely than in 1c). Hence p(h) will be higher for properties that hold only for a highly

distinctive taxonomic group of species, such as the aquatic mammals or the primates, than

for properties that hold only for a less distinctive taxonomic group, such as the “farm

animals” ({horses , cows}). Multiple independent occurences of the same property will be

rare (e.g., the mutation history in Figure 1b is more likely than in 1d, which is more likely

than in 1e). Hence the prior favors simpler hypotheses corresponding to a single

taxonomic cluster, such as {dolphins , seals}, over more complex hypotheses corresponding

to a union of multiple disjoint taxa, such as the set {dolphins , seals , horses , cows ,mice}.

The lower the mutation rate λ, the greater the preference for strictly tree-consistent

hypotheses over disconnected hypotheses. Thus this model captures the basic insights of

simpler heuristic approaches to taxonomic induction (Atran, 1995), but embeds them in a

more powerful probabilistic model that supports fine-grained statistical inferences.

Several caveats about the evolutionary model are in order. The mutation process is

just a compact mathematical means for generating a reasonable prior for biological

properties. We make no claim that people have conscious knowledge about mutations as

specifically biological phenomena, any more than a computational vision model which

appeals to an energy function claims that the visual system has explicit knowledge about

energy. It is an open question whether the biological principles guiding our model are

explicitly represented in people’s minds, or only implicitly present in the inference

procedures they use. We also do not claim that a mutation process is the only way to

build a prior that can capture generalizations about generic biological properties. The key

idea captured by the mutation process is that properties should vary randomly but
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smoothly over the tree, so that categories nearby in the tree are more likely to have the

same value (present or absent) for a given property than categories far apart in the tree.

Other stochastic processes including diffusion processes, Brownian motion, and Gaussian

processes will also capture this intuition, and should predict similar patterns of

generalization (Kemp & Tenenbaum, submitted). The scope of such “probabilistic

taxonomic” theories is likely to extend far beyond intuitive biology: there may be many

domains and contexts where the properties of categories are well described by some kind

of smooth probability distribution defined over a taxonomic-tree structure, and where our

evolutionary model or some close relative may thus provide a compelling account of

people’s inductive reasoning.

4.2.2 A theory for causally transmitted properties.

The evolutionary model in the previous section is appropriate for reasoning about

many kinds of biological properties, and perhaps some kinds of nonbiological but still

taxonomically distributed properties as well, but other classes of properties give rise to

very different patterns of inductive generalization and will thus require differently

structured priors. For instance, in some contexts inductive generalization will be

asymmetric: the probability of generalizing a property from category A to category B will

not be the same as the probability of generalizing the same property from B to A. Earlier

we described one biological context where induction is frequently asymmetric: reasoning

about disease properties, such as the probability that grizzly bears will have a disease

given that salmon do, or vice versa. In this section we show how to capture this sort of

inductive reasoning within our theory-based Bayesian framework.

The formal model we present could be appropriate for many properties whose

distributions are governed by asymmetric causal relationships among categories, but for

concreteness, we will assume that the domain comprises a set of species categories, and

the novel property is a disease spread by predator-prey relations between species. Two
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abstract principles of an intuitive theory are relevant in this context; these principles are

analogous to the taxonomic and mutation principles underlying the evolutionary model in

the last section. First, a structured representation captures the relevant relations between

entities in the domain: in this context, we posit a set of directed predator-prey relations.

An example of such a food web is shown in Figure 4a. Second, a stochastic process defined

over that directed-network structure generates prior probabilities for how novel properties

are distributed over species: here, the process is designed to capture the noisy arrival and

transmission of disease states.

As with the mutation process for generic biological properties presented above, we

can describe this noisy-transmission process by explaining how to generate a single

hypothetical property. If we draw a large sample of hypothetical properties by repeating

this procedure many times, the prior probability for each hypothesis about how to

generalize a particular novel property will be proportional to the number of times it

appears in this sample. The transmission process has two parameters: b, the background

rate, and t, the transmission probability. The first parameter captures the knowledge that

species can contract diseases from causes external to the food web. For each species in the

web, we toss a coin with bias b to decide whether that species develops the disease as a

result of an external cause. The second parameter is used to capture the knowledge that

diseases can spread from prey to predator up the food web. For each edge in the graph,

we toss a coin with bias t to determine whether it is active. We stipulate that all species

reachable by active links from a diseased animal also contract the disease. We refer to the

Bayesian model using this prior as the “causal transmission model”.

Figure 2 shows one possible outcome if we sample a property from the causal

transmission process. We see that two of the species develop the disease for reasons

unrelated to the foodweb, and that four of the causal links are active (Figure 2a). An

additional three species contract the disease by eating a disease-ridden species (Figure
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2b). Reflecting on these simulations should establish that the prior captures two basic

intuitions. First, species that are linked in the web by a directed path are more likely to

share a novel property than species which are not directly linked. The strength of the

correlation between two species’ properties decreases as number of links separating them

increases. Second, property overlap is asymmetric: a prey species is more likely to share a

property with one of its predators than vice versa.

Although the studies we will model here consider only the case of disease

transmission in a food web, many other inductive contexts fit the pattern of asymmetric

causal transmission that this model is designed to capture. Within the domain of

biological species and their properties, the causal model could also apply to reasoning

about the transmission of toxins or nutrients. Outside of this domain, the model could be

used, for example, to reason about the transmission of lice between children at a day care,

the spread of secrets through a group of colleagues, or the progression of fads through a

society.

4.2.3 Common principles of theory-based priors.

It is worth noting several deep similarities between these two theory-based Bayesian

models, the evolutionary model and the causal transmission model, which point to more

general aspects of our approach. In each case, the underlying intuitive theory represents

knowledge on at least two levels of abstraction. The lower, more concrete level of the

theory specifies a graph-structured representation of the relevant relations among species

(taxonomic neighbors or predators), and a stochastic process that distributes properties

over that relational structure, which is characterized by one or two numerical parameters

controlling its degree of stochasticity. At a higher level, each theory specifies the form of

the structure and stochastic process that are appropriate for reasoning about a certain

domain of entities and properties: generic biological properties, such as anatomical and

physiological attributes, are distributed according to a noisy mutation process operating
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over a taxonomic tree; diseases are distributed according to a noisy transmission process

operating over a directed food web.

For a fixed set of categories and properties, the lower level of the theory is all we

need to generate a prior for inductive reasoning. But the higher level is not just a

convenient abstraction for cognitive modelers to talk about – it is a critical component of

human knowledge. Only these abstract principles tell us how to extend our reasoning

when we learn about new categories, or a whole new system of categories in the same

domain. When European explorers first arrived in Australia, they were confronted with

many entirely new species of animals and plants, but they had a tremendous head start in

learning about the properties of these species because they could apply the same abstract

theories of taxonomic organization and disease transmission that they had acquired based

on their European experience. Abstract theories appear to guide childrens’ conceptual

growth and exploration in much the same way. The developmental psychologists Wellman

& Gelman (1992) distinguish between “framework theories” and “specific theories”, two

levels of knowledge that parallel the distinction we are making here. They highlight

framework theories of core domains – intuitive physics, intuitive psychology, and intuitive

biology – as the main objects of study in cognitive development. In related work

(Tenenbaum, Griffiths and Kemp, 2006; Tenenbaum, Griffiths and Niyogi, in press), we

have shown how the relations between different levels of abstraction in intuitive theories

can be captured formally within a hierarchical probabilistic model. Such a framework

allows us to use the same Bayesian principles to explain both how theories guide inductive

generalization and how the theories themselves might be learned from experience.

Each of our theory-based models was built by thinking about how some class of

properties is actually distributed in the world, with the aim of giving a rational analysis of

people’s inductive inferences for those properties. It is therefore not surprising that both

the evolutionary model and the causal transmission model correspond roughly to models
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used by scientists in relevant disciplines — formalisms like the causal transmission model

are used by epidemiologists, and formalisms like the evolutionary model are used in

biological classification and population genetics. The correspondence is of course far from

perfect, and it is clearest at the higher “framework” level of abstraction: constructs such

as taxonomic trees, predator-prey networks, the mutation process or the transmission

process, may in some sense be shared across intuitive theories and scientific theories, even

while the specific tree or foodweb structures, or the specific mutation or transmission rate

parameters, may differ in important ways.

Even though it may be imperfect and abstract, this correspondence between the

world’s structure and our models’ representations provides an important source of

constraint on our approach. If we were free to write down just any sort of probabilistic

model as the source of a prior probability distribution, it would be possible to give a

“rational analysis” of any coherent inductive behavior, but it is not clear how much

explanatory value that exercise would have. By deriving priors from intuitive theories that

at some deep level reflect the actual structure of the world, it becomes clearer why these

priors should support useful generalizations in real-world tasks, and how they might

themselves be acquired by a rational learner from experience in this world. Our approach

can be extended to other inductive contexts, by formally specifying how the properties

covered by those contexts are distributed in the world; Kemp and Tenenbaum (submitted)

consider two other important contexts in addition to those discussed here.

Our primary goal here has been to characterize the knowledge that guides

generalization (theory-based priors), and the input-output mapping that allows this

knowledge to be converted into judgments of inductive strength (Bayesian inference). Our

work is located at the most abstract of Marr’s levels — the level of computational theory

(Marr, 1982) — and we make no commitments about the psychological or neural processes

by which people make inductive judgments. Inference in both of our models can be
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implemented using efficient approximate methods that have appealing correlates in the

traditional toolkit of cognitive processes: for instance, belief propagation over Bayesian

networks, which can be seen as a kind of rational probabilistic version of spreading

activation. We find it encouraging that efficient and psychologically plausible

implementations exist for our models, but we are not committed to the claim that

inference in these Bayesian networks resemble cognitive processing in any detailed way.

Finally, it is worth emphasizing that our models have not attempted to capture all

or most of the content and structure of people’s intuitive theories. We are modeling just

those aspects of theories that appear necessary to support inductive reasoning about

properties in fairly specific contexts. We are agnostic about whether people’s intuitive

theories contain much richer causal structures than those we attempt to model here

(Carey, 1985), or whether they are closer to light or skeletal frameworks with just a few

basic principles (Wellman & Gelman, 1992).

5. Testing the models of property induction

We now describe two series of experimental tests for the theory-based Bayesian

models introduced in the previous section. In each case, we consider multiple sets of

inductive arguments whose strengths have been rated or ranked by human judges, and we

compare these subjective argument strengths with the theoretical predictions of the

models. We will also compare with several alternative models, including the classic

similarity-coverage model and multiple variants within our Bayesian framework. The

latter comparisons allow us to illustrate the distinctive importance of both ingredients in

our approach: an appropriate representation of the relevant aspects of a domain’s

structure, and an appropriate probabilistic model for how properties of the relevant type

are distributed over that structure.
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5.1 Reasoning about generic biological properties

We begin by looking at the classic datasets of Osherson, Smith and their colleagues,

on inductive reasoning with generic biological properties. Five datasets will be considered.

The two “Osherson” datasets are taken from Osherson et al. (1990). The “Osherson

specific” set contains 36 two-premise arguments, of the form gorillas , squirrels −→ horses .

The conclusion category of each of these arguments is the same: horses . The two premise

categories vary across arguments, but are always drawn from the set of ten mammal

species shown in Figure 1. Various generic biological predicates are used across different

arguments; in this section we drop references to the specific property assuming it is one of

these generics. The “Osherson general” set contains 45 three-premise general arguments,

of the form gorillas , squirrels , dolphins −→ mammals . The conclusion category of each of

these arguments is always mammals , while the three premise categories again vary across

arguments and are drawn from the set of ten mammal species shown in Figure 1. The

three “Smith” data sets are similar, but they draw on different and fewer mammal

categories (Smith et al., 1993).

We compare people’s judgments of argument strength in these five datasets with the

predictions of five computational models for induction with generic biological properties.

Two are theory-based Bayesian models: the evolutionary model, in which the prior is

generated by a mutation process defined on a taxonomic tree of species categories, and the

strict-tree model, in which the prior is simply a uniform distribution over taxonomic

clusters of species (without the possibility of a property arising in multiple disconnected

branches of the taxonomy). Another model is inspired by Heit’s proposal for a Bayesian

analysis (see Section 3.3), in which the prior probability of a hypothesis is based on the

number of familiar properties that can be retrieved from memory and that have the same

extension as that hypothesis. We call this the “raw-feature model”, because it embodies a

prior that is based directly on raw experience, without the benefit of a structured domain
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theory that might help people to reason sensibly in cases that go substantially beyond

their experience. The details of the raw-feature model are explained below. Finally, we

consider two versions of the similarity-coverage model, MaxSim and SumSim, which

respectively compute similarity to the set of premise categories in terms of the maximum

or summed similarity to those categories (see Section 3.1).

In order to predict the strengths of arguments about a particular set of species, each

of these models requires some way to represent people’s prior knowledge about those

species. We can compare the models on equal footing by grounding the knowledge

representations for each model in a matrix of judged species-feature associations collected

by Osherson and colleagues. Participants were given 48 familiar species and 85 familiar

features (mostly anatomical or ecological properties, such as “has a tail” or “lives in

water”) and asked to rate the relative “strength of association” between each species and

each feature. Participants gave ratings on a scale that started at zero and had no upper

bound. In order to model the behavioral judgments described below, we supplemented

these data with feature ratings for two additional species, cows and dolphins, to give a

total of 50 species. We also substituted the judged features of collies for dogs (because

dogs appeared as a premise category in some of the argument judgment tasks, but not in

the feature rating task). Ratings were linearly transformed to values between 0 and 100,

then averaged. Let F be the resulting 50 × 85 matrix of average species-feature

associations. We also consider analogous binary matrices Fθ obtained by thresholding the

average ratings at some level θ. Let S(F ) be a 50 × 50 matrix of species-species

similarities, computed based on Euclidean distances between the two feature vectors in F

representing each pair of species.

For evaluating the predictions of the SCM models, we used the entries of S(F ) to

determine the necessary similarities between species. The taxonomic tree for the

evolutionary and strict-tree models was constructed by running hierarchical agglomerative
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(“average linkage”) clustering on S(F ), restricted to just the species categories involved in

each experiment. The prior for the raw-feature model was defined from the thresholded

species-feature matrices Fθ, inspired by the proposal of Heit (1998). (We treat the

threshold θ as a free parameter of the model, to be optimized when fitting judgments of

argument strength.) We assume that the features participants retrieve from memory

correspond to the columns of Fθ, plus an additional feature corresponding to all the

animals. The prior p(h) assigned to any hypothesis h for the extension of a novel property

is proportional to the number of columns of Fθ (i.e., the number of familiar features) that

are distributed as h specifies – that apply to just those categories that h posits.

Hypotheses that do not correspond to any features in memory (any column of Fθ) receive

a prior probability of zero.

All of these models (except the strict-tree model) include a single free parameter:

the mutation rate in the evolutionary model, the balance between similary and coverage

terms in MaxSim and SumSim, or the feature threshold θ in the raw-feature model. Each

model’s free parameter was set to the value that maximized the average correlation with

human judgments over all five datasets.

Figure 3 compares the predictions for all five of these models on all five datasets of

argument strength judgments. Across these datasets, the predictions of the evolutionary

model are better than or comparable to the best of the other models. This success

provides at least some evidence that the model’s core assumptions – a taxonomic-tree

structure over species and a mutation-like distribution of properties over that tree – do in

fact characterize the way people think and reason about generic biological properties.

More revealing insights come from comparing the performance of the evolutionary model

with that of the other models.

The strict-tree model captures the general trends in the data, but does not predict

people’s judgments nearly as accurately as the evolutionary model. This is because,
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without the mutation principle, the strictly taxonomic hypothesis space is too rigid to

capture the graded degrees of support that more or less diverse premise sets provide for

inductive generalization. For example, in the Osherson-general experiment, the strict-tree

model assigns the same probability (100%) to cows , dolphins , squirrels −→ mammals and

seals , dolphins , squirrels −→ mammals , because in both cases the set of all mammals is the

only hypothesis consistent with the examples. The evolutionary model correctly

distinguishes between these cases, recognizing that the first premise set is better spread

out over the tree and therefore provides better evidence that all mammals have the novel

property. An intuitive explanation is that it feels very difficult to imagine a property that

would be true of cows, dolphins, and squirrels but not all mammals, while it seems more

plausible (if unlikely) that there could be some characteristic property of aquatic

mammals (seals and dolphins) that might, for some unknown reason, also be true of

squirrels or rodents, but no other animals. The mutation principle matches this intuition:

the highly specific hypothesis {seal, dolphin, squirrel} can be generated by only two

mutations, one on a very long branch (and thus relatively likely), while the hypothesis

{cows, dolphins, squirrels} could only arise from three mutations all on relatively short

branches.

This problem with the strict-tree model is hardly restriced to the specific pair of

arguments cited above, as can be seen clearly by the dense vertical groupings of

datapoints on the right-hand side of the plots in Figure 3. Each of those vertical groupings

corresponds to a set of arguments that are judged to have very different strengths by

people, but that all receive maximum probability under the strict-tree prior, because they

are consistent with just the single hypothesis of generalizing to all mammals.

The raw-feature model is more flexible than the strict-tree model, but is still not

sufficient to capture the diversity effect, as can be seen by its dramatically worse

performance on the datasets with general arguments. Consider the premise sets
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dolphins , chimps , squirrels and dolphins , seals , horses . It is difficult to think of anatomical

or physiological properties that apply to all of the animals in the first set, but only some

of the animals in the second set. None of the features in our dataset is strongly associated

with dolphins, chimps and squirrels, but not also seals and horses. The raw-feature model

therefore finds it hard to discriminate between these two sets of premises, even though it

seems intuitively that the first set provides better evidence that all mammals have the

novel property.

More generally, the suboptimal performance of the raw-feature model suggests that

people’s hypotheses for induction are probably not based strictly on the specific features

that can be retrieved from memory. People’s knowledge of specific features of specific

animals is too sparse and noisy to be the direct substrate of inductive generalizations

about novel properties. In contrast, a principal function of intuitive domain theories is to

generalize beyond people’s limited specific experiences, constraining the kinds of possible

situations that would be expected to occur in the world regardless of whether they have

been previously experienced (McCloskey et al., 1980; Murphy & Medin, 1985; Carey,

1985). Our framework captures this crucial function of intuitive theories by formalizing

the theory’s core principles in a generative model for Bayesian priors.

Taken together, the performance of these three Bayesian variants shows the

importance of both aspects of our theory-based priors: a structured representation of how

categories in a domain are related and a probabilistic model describing how properties are

distributed over that relational structure. The strict-tree model incorporates an

appropriate taxonomic structure over categories but lacks a sufficiently flexible model for

how properties are distributed. The raw-feature model allows a more flexible prior

distribution for properties, but lacking a structured model of how categories are related, it

is limited to generalizing new, partially observed properties strictly based on the examples

of familiar, fully observed properties. Only the prior in the evolutionary model embodies
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both of these aspects in ways that faithfully reflect real-world biology – a taxonomic

structure over species categories and a mutation process generating the distribution of

properties over that tree – and only the evolutionary model provides consistently strong

quantitative fits to people’s inductive judgments.

Turning now to the similarity-based models, Figure 3 shows that their performance

varies dramatically depending on how we define the measure of similarity to the set of

premise categories. MaxSim fits reasonably well, somewhat worse than the evolutionary

model on the two Osherson datasets but comparably to the evolutionary model on the

three Smith datasets. The fits on the Osherson datasets are worse than those reported by

Osherson et al. (1990), who used direct human judgments of similarity as the basis for the

model rather than the similarity matrix S(F ) computed from people’s feature ratings. We

used the species-feature associations here in order to compare all models (including the

raw-feature model) on equal terms, but we have also compared versions of the

evolutionary model and the similarity-coverage models using the similarity judgments of

Osherson et al. (1990) to build the taxonomic tree or compute MaxSim or SumSim scores

(Kemp & Tenenbaum, 2003). In that setting, too, the evolutionary model consistently

performs at least as well as MaxSim.

SumSim is arguably the least successful model we tested. Its predictions for the

strengths of general arguments are either uncorrelated with or negatively correlated with

people’s judgments. Although the good performance of MaxSim shows that a

similarity-based model can describe people’s patterns of inductive reasoning, the poor

performance of SumSim calls into question the explanatory value of similarity-based

approaches. As mathematical expressions, the SumSim and MaxSim measures do not

appear very different, beyond the presence of a nonlinearity in the latter case. This

nonlinearity turns out to make all the difference; it is necessary for similarity-based

models to predict diversity-based inductive reasoning. Because the total inductive
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strength of an argument under SumSim is a linear function of the inductive strength

associated with each premise category, the model assigns highest strength to arguments in

which each of the premise categories would individually yield the strongest one-premise

argument. This preference goes against diversity, because the categories that make for the

best single-premise arguments tend to be quite similar to each other. For instance, unlike

people, SumSim assigns a higher strength to horses, cows, rhinos −→ mammals than to

horses, seals, squirrels −→ mammals , because the strength of a generalization from the

individual premise categories horses , cows or rhinos to mammals are some of the

strongest in the domain – significantly higher than from less typical mammals such as

seals or squirrels .

We can see why SumSim fails, but there is no principled a priori justification within

the similarity-based paradigm for adopting the nonlinear MaxSim rather than the linear

SumSim as a model of inductive generalization. The SumSim measure has if anything

greater precedent in other similarity-based models of learning, categorization, and memory

(Nosofsky, 1986; Kruschke, 1992; Hintzman et al., 1978). Osherson et al. (1990) do not

attempt to justify the preference for MaxSim – it just seems to fit people’s intuitions

better in the particular task of property induction. That is fine as far as a descriptive

model goes, but not very satisfying if one of our goals is to explain why people’s intuitions

work the way that they do.

In contrast, the theory-based Bayesian approach we have presented offers a

principled and rational explanation for why people make the judgments that they do on

these inductive reasoning tasks. People’s judgments are approximately optimal, with

respect to our evolutionary model that combines the inferential optimality of Bayesian

principles with a prior based on how the properties of natural species are distributed in

the real world. This rational approach can also explain why some Bayesian model variants

fare better than others. The raw-feature and strict-tree models yield substantially poorer
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descriptive fits to human judgments, and each is based on a prior that neglects a key

principle of how natural categories and properties are structured which the evolutionary

model properly incorporates. Finally, our approach could explain why the most successful

similarity-based models of induction work the way they do, and in particular, why they

are based on the maxsim mechanism rather than the more standard sumsim operation. In

Kemp & Tenenbaum (2003) and Kemp, Griffiths, et al. (2004) we show that under certain

conditions, MaxSim (but not SumSim) provides an efficient heuristic approximation to the

ideal computations of the evolutionary Bayesian model. Hence at some level of analysis,

and under certain circumstances, human inductive reasoning could be well described as a

similarity-based computation – but which similarity-based computation that is, and why

it works the way that it does, would still be best explained by an analysis in our

theory-based Bayesian framework.

5.2 Reasoning about causally transmitted properties

A second set of studies was intended to evaluate the descriptive power of the

Bayesian causal-transmission model, our model for inductive reasoning about diseases and

other causally transmitted properties, and also to show how different theory-based

Bayesian models can be used to account for different patterns of inductive reasoning that

arise with different kinds of properties.

We work with data from experiments by Shafto, Kemp, Bonawitz, Coley and

Tenenbaum (submitted); see also (Shafto et al., 2005). Participants were first trained to

memorize the structure of the food webs shown in Figure 4. They were also familiarized

with the correct taxonomic groupings for these species categories. After this initial

training, participants were asked to judge the strength of inductive arguments about one

of two kinds of properties: a disease property (“has disease D”) or a genetic property

(“has gene XR-23”). All arguments had a single premise and a specific conclusion, and the
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stimuli exhaustively explored all arguments of this form. That is, every pair of categories

appeared as a premise-conclusion pair in some argument. Participants also provided

pairwise similarity ratings between the species in each food web, and we again used

hierarchical clustering to recover representations of people’s taxonomic trees for these

categories. The recovered taxonomies are shown in Figure 4. Free parameters for all

models (the mutation rate in the evolutionary model, the background and transmission

rates for the causal transmission model) were set to values that maximized the models’

correlations with human judgments.

We hypothesized that participants would reason very differently about disease

properties and genetic properties, and that these different patterns of reasoning could be

explained by theory-based Bayesian models using appropriately different theories to

generate their priors. Specifically, we expected that inductive inferences about disease

properties could be well approximated by the causal-transmission model, assuming that

the network for causal transmission corresponded to the food web learned by participants.

We expected that inferences about genetic properties could be modeled by the

evolutionary model, assuming that the taxonomic structure over species corresponded to

the tree we recovered from participants’ judgments. We also tested MaxSim and expected

that it would perform similarly to the evolutionary model, as we found for the previous set

of studies.

Figure 5 shows that these predictions were confirmed. High correlations were found

between the causal-transmission model and judgments about disease properties, and

between the evolutionary model and judgments about genetic properties. Morever, we

observed a double dissociation between property types and model types. The

causal-transmission model correlates weakly or not at all with judgments about genetic

properties, while there is no significant correlation between the evolutionary model and

judgments about disease properties. This double dissociation is the clearest sign yet that
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when our Bayesian models fit well, it is not simply because they are using sophisticated

general-purpose inference principles; their success depends crucially upon using a

theory-generated prior that is appropriately matched to the domain structure and

inductive context.

The performance of MaxSim was also as hypothesized: highly correlated with

inductive judgments about genetic properties (like traditional “blank” properties), but

poorly correlated with judgments about disease properties when participants were familiar

with relevant predator-prey relations. This result should not be surprising. It is

well-known that similarity-based approaches have difficulty accounting for inductive

reasoning beyond the context of generic biological properties, when some other relevant

knowledge is available to people (Smith et al., 1993; Medin et al., 2003; Shafto & Coley,

2003). The usual interpretation of similarity’s shortcomings expresses a general pessimism

about computational models of common-sense reasoning: different kinds of properties or

inductive contexts just call for fundamentally different approaches to reasoning, and

cognitive scientists should not hope to be able to give a principled general-purpose

account for all – or even a large class – of everyday inductive inferences.

Our theory-based Bayesian framework offers a more optimistic view. We have

separated out the general-purpose inferential mechanisms from the context-specific

knowledge that guides those mechanisms, and we have introduced a potentially quite

general way of modeling relevant aspects of contextual knowledge, in terms of relational

structures over categories and stochastic processes for generating distributions of

properties over those structures. It is at least a start towards explaining more precisely

how induction in different contexts operates, and how apparently quite different patterns

of reasoning in different contexts or domains could be given a unifying and rigorous

explanatory account.
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6. The generality of Bayesian models of induction

Bayesian models have recently been shown to provide strong accounts of many core

inductive capacities, not just the property induction tasks we consider here. Examples

include Bayesian models of concept learning and categorization (Anderson, 1991;

Tenenbaum, 2000), similarity judgment (Shepard, 1987; Tenenbaum & Griffiths, 2001),

rule induction (Oaksford & Chater, 1994; McKenzie & Mikkelsen, 2000), word learning

(Tenenbaum & Xu, 2000; Xu & Tenenbaum, in press), causal judgment and covariation

assessment (Anderson, 1990; McKenzie, 1994; Griffiths & Tenenbaum, 2005; Steyvers et

al., 2003), detection of suspicious coincidences (Griffiths & Tenenbaum, in pressa), and

predictions about the magnitudes or durations of everyday events (Griffiths & Tenenbaum,

in pressb). Yet the generality of Bayesian approaches has not gone unchallenged.

Over the last decade, Murphy and Ross (e.g., Murphy & Ross, 1994, this volume)

have explored a set of natural inductive prediction tasks for which people’s judgments

often do not seem to follow Bayesian principles. In their studies, participants are

presented with partial descriptions of objects or individuals and asked to predict other

aspects of these entities. Murphy and Ross focus on cases where the partially described

entity could belong to one of several mutually exclusive categories, each of which suggests

different predictions about the properties to be predicted. For instance, a person walking

up to a house could be either a real estate agent, a burglar, or a cable TV worker, and

knowing that the individual belonged to one of those categories would make it seem more

or less likely that he would examine the doors of the house. Murphy and Ross find that

participants often base their predictions on only the single most probable category (given

a partial entity description), rather than averaging the predictions of all categories

weighted by their probability, as would be prescribed by a Bayesian analysis of prediction

with category uncertainty (Anderson, 1991).

At first glance, these results might appear to be in conflict with our proposed
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Bayesian mechanism for property induction (in particular, Equations 5 and 6). However,

important computational differences exist between our tasks and analyses and those of

Murphy and Ross. In our models, we posit that learners implicitly consider a very large

number of alternative hypotheses for how to generalize a novel property. These hypotheses

need not – and in most cases, almost surely could not – be represented consciously and

explicitly in people’s minds. More fundamentally, the hypotheses in our models do not

reflect mutually exclusive alternatives for categorizing an entity, but rather mutually

exclusive candidate extensions for a novel property. We use a Bayesian framework to

model learners’ uncertain beliefs about a property to be predicted – what subset of entities

the property holds for – rather than uncertain beliefs about the categories that entities

belong to. Each entity typically falls under many such hypotheses for the extension of a

novel property, and which hypotheses an entity falls under is not in doubt; that is given

by the structure of the learner’s domain theory. The uncertainty in our tasks comes from

providing incomplete information about the property to be predicted – participants are

given only one or a few examples of entities that have the property – rather than from

providing incomplete information about the entities over which predictions are to be made.

Hence there is no direct tension between the Murphy and Ross findings and our work.

It remains an open question why human reasoning appears to incorporate

uncertainty in a fully Bayesian fashion for some kinds of inductive inferences but not

others. Murphy and Ross (this volume) suggest several possibilities, and they argue

against explanations based on simple psychological processing factors such as the

complexity or naturalness of the task. Another possibility that should be explored is a

rational analysis that takes into account key computational differences in different

inductive tasks – a “rational metanalysis”, so to speak. Perhaps human reasoners are

more likely to consider multiple alternative hypotheses in prediction tasks where doing so

is more likely to lead to a substantial improvement in accuracy. Previous studies of
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Bayesian concept learning are consistent with this conjecture (Tenenbaum, 2000), but

much more systematic investigation is required to assess the importance of this factor

relative to others.

7. Conclusions and open questions

Conventional models of induction focus on the processes of inference rather than the

knowledge that supports those inferences. Inference mechanisms are typically given fully

explicit and mathematical treatments, while knowledge representations are either ignored

or boiled down to place-holders like a similarity metric or a set of features that at best

only scratch the surface of people’s intuitive theories. This focus probably stems from the

natural modeler’s drive towards elegance, generality, and tractability: the knowledge that

supports induction is likely to be messy, complex, and specific to particular domains and

contexts, while there is some hope that one or a few simple inference principles might

yield insight across many domains and contexts. Yet this approach limits the descriptive

power and explanatory depth of the models we can build, and it assigns a second-class

status to crucial questions about the form and structure of knowledge. Our goal here is to

return questions of knowledge to their appropriate central place in the study of inductive

inference, by showing how they can be addressed rigorously and profitably within a formal

Bayesian framework.

Every real-world inference is embedded in some context, and understanding how

these different contexts work is critical to understanding real-world induction. We have

argued that different contexts trigger different intuitive theories, that relevant aspects of

these theories can be modeled as generative models for prior probability distributions in a

Bayesian reasoning framework, and that the resulting theory-based Bayesian models can

explain patterns of induction across different contexts. We described simple theories for

generating priors in two different inductive contexts, a theory for generic biological
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properties such as genetic, anatomical or physiological features of species, and a theory for

causally transmitted properties such as diseases, nutrients, or knowledge states. We

showed that Bayesian models based on a prior generated by each theory could predict

people’s inductive judgments for properties in the appropriate context, but not

inappropriate contexts.

Intriguingly, both of these generative theories were based on principles analogous to

those used by scientists to model analogous phenomena in real biological settings. In

showing their success as descriptive models of people’s intuitive judgments, we begin to

provide an explanation for people’s remarkable ability to make successful inductive leaps

in the real world, as the product of rational inference mechanisms operating under the

guidance of a domain theory that accurately reflects the true underlying structure of the

environment.

Of course, just specifying these two theory-based models is far from giving a

complete account of human inductive reasoning. It will be a challenging long-term project

to characterize the space of theories that people can draw upon, and the processes by

which they are acquired and selected for use in particular contexts (see Shafto, Coley, and

Vitkin, this volume). Perhaps the most immediate gap in our model is that we have not

specified how to decide which theory is appropriate for a given argument. Making this

decision automatically will require a semantic module that knows, for example, that words

like “hormone” and “gene” are related to the generic biological theory, and words like

“disease” and “toxin” are related to the theory of causal transmission. How best to

integrate some form of this semantic knowledge with our existing models of inductive

reasoning is an open question.

We have discussed theories that account for inductive reasoning in two contexts, but

it is natural and necessary to add more. Some of our ongoing work is directed toward

developing and testing models beyond the tree- and network-based models described here.
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For example, in Kemp and Tenenbaum (submitted), we show how reasoning about

properties such as “can bite through wire” can be modeled as Bayesian inference over a

linear structure representing a dimension of strength, rather than a tree or a network

representing taxonomic or foodweb relations (Smith et al., 1993). In other work, we are

extending our approach to account for how multiple knowledge structures can interact to

guide property induction; in particular, we are looking at interactions between networks of

causal relations among properties and tree structures of taxonomic relations among

species. Finally, in addition to broadening the scope of theory-based Bayesian models, we

have begun more fundamental investigations into how these probabilistic theories can

themselves be learned from experience in the world (Kemp, Perfors, & Tenenbaum, 2004),

and how learners can infer the appropriate number and complexity of knowledge

structures that best characterize a domain of categories and properties (Shafto et al.,

2006). These problems are as hard to solve as they are important. Yet we believe we are in

a position to make real progress on them – to develop genuine insights into the origins and

nature of common sense – using models that combine the principles of Bayesian inference

with structured knowledge representations of increasing richness and sophistication.
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Footnotes

1Note that a feature-based version of the SCM is achieved if we define the similarity

of two objects as some function of their feature vectors. Section 5 assesses the

performance of this model.

2More complex sampling models could be appropriate in other circumstances, and

are discussed in Tenenbaum & Griffiths (2001) and Kemp & Tenenbaum (2003). For

instance, an assumption that examples are randomly drawn from the true extension of Q

might be particularly important when learning word meanings or concepts from ostensive

examples (Tenenbaum and Xu, 2000; Xu and Tenenbaum, in press).
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Figure Captions

Figure 1. (a) A folk taxonomy of mammal species. (b-e) Examples of mutation histories.

Figure 2. One simulated sample from the causal-transmission model, for the foodweb

shown in Figure 4a. (a) Initial step showing species hit by the background rate (black

ovals) and active routes of transmission (black arrows). (b) Total set of species with

disease via background and transmission.

Figure 3. Comparing models of property induction with human judgments, for reasoning

in a default biological context with generic anatomical or physiological properties. Each

row of plots shows the performance of a single model over all data sets; each column shows

the performance of all models over a single data set. In each plot, individual data points

represent the strengths of individual inductive arguments. The x-value of each point

represents the argument’s predicted strength according to a given model, while the y-value

represents the argument’s subjective strength according to the mean judgments of human

experimental participants.

Figure 4. Multiple relational structures over the same domains of species. (a) A directed

network structure capturing food web relations for an “island” ecosystem. (b) A rooted

ultrametric tree capturing taxonomic relations among the same species. (c) A directed

network structure capturing food web relations for a “mammals” ecosystem. (d) A rooted

ultrametric tree capturing taxonomic relations among the same species.

Figure 5. Comparing models of induction with human judgments, for two kinds of

properties: disease properties and genetic properties. Both kinds of property-induction

tasks were studied for two different systems of species categories, an “Island” ecosystem

and a “Mammals” ecosystem, as shown in Figure 4. Plotting conventions here are the

same as in Figure 3.
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