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Abstract. Processes involving change over time, uncertainty, and rich relational
structure are common in the real world, but no general algorithms exist for learn-
ing models of them. In this paper we show how Markov logic networks (MLNs),
a recently developed approach to combining logic and probability, can be applied
to time-changing domains. We then show how existing algorithms for parameter
and structure learning in MLNs can be extended to this setting. We apply this ap-
proach in two domains: modeling the spread of research topics in scientific com-
munities, and modeling faults in factory assembly processes. Our experiments
show that it greatly outperforms purely logical (ILP) and purely probabilistic
(DBN) learners.

1 Introduction
Stochastic processes involving the creation and modification of objects and relations
over time are widespread, but relatively poorly studied. Examples of such systems in-
clude social networks, manufacturing processes, bioinformatics, natural language, etc.
Until recently, graphical models like DBNs and HMMs were the most powerful rep-
resentations for reasoning about stochastic sequential phenomena. However, modeling
relational domains using these graphical models requires exhaustively representing all
possible objects and the relations among them. Such a model is both hard to learn and
difficult to understand. For example, consider a social network such as an evolving sci-
entific community. One might wish to model the spread of topics across the various
groups of researchers. This might mean discovering rules such as “An author’s inter-
est in topics in the future is influenced by the interests of his main collaborators and
the communities in which he has recently participated.” Such rules, being probabilistic,
cannot be encoded using pure first-order logic. But a DBN or an HMM would require
a model for each individual researcher, and would not generalize from one author to
another.

In recent years, researchers have proposed many approaches to combining aspects
of first-order logic with probabilistic representations [6]. The most powerful of these
is Markov logic networks (MLNs), which combine Markov networks and (for the first
time) the full power of first-order logic [14]. However, these models lack the dynamic
nature of DBNs and HMMs. Previously, we introduced dynamic probabilistic relational
models (DPRMs) [15] and relational dynamic Bayesian networks (RDBNs) [17] for
modeling relational stochastic processes, but no learning methods have been proposed
for these models, limiting their applicability.

In this paper we extend MLNs to model time-changing relational data. We term
this extension DMLNs. Learning DMLNs is relatively easy, requiring only straightfor-
ward modifications to an MLN learner. We apply DMLN learning in two domains: the



evolution of research topics in high-energy physics and fault modeling of mechanical
assembly plans. Our experiments show that DMLNs greatly outperform a purely prob-
abilistic approach (DBN learning) and a purely logical approach (ILP).

In the next section, we cover MLNs. Then, we introduce DMLNs and describe the
learning methods for them (see [16] for more details). Finally, we report our experi-
mental results and conclude with a discussion of related and future work.

2 Markov Logic Networks
A Markov network (also known as Markov random field) is a model for the joint distri-
bution of a set of variables X = (X1, X2, . . . , Xn) [5]. It is composed of an undirected
graph G on the variables and a set of non-negative potential functions φ k for the state
of each clique in the graph. The joint distribution represented by a Markov network is
given by P (X = x) = 1

Z

∏
k φk(x{k}) where x{k} is the state of the kth clique (i.e.,

the state of the variables that appear in that clique). Z , known as the partition function,
is given by Z =

∑
x∈X

∏
k φk(x{k}. Markov networks are often conveniently repre-

sented as log-linear models, with each clique potential replaced by an exponentiated
weighted sum of features of the state: P (X = x) = 1

Z exp(
∑

j wjfj(x)). This paper
will focus on binary features, fj(x) ∈ {0, 1}. In the presence of large cliques, logical
functions of the state of the cliques can be used as features leading to a more compact
representation than the potential-function form. MLNs take advantage of this.

A first-order knowledge base (KB) can be seen as a set of hard constraints on the
set of possible worlds: if a world violates even one formula, it has zero probability. The
basic idea in MLNs is to soften these constraints: when a world violates one formula
in the KB it is less probable, but not impossible. The fewer formulas a world violates,
the more probable it is. Each formula has an associated weight that reflects how strong
a constraint it is: the higher the weight, the greater the difference in log probability
between a world that satisfies the formula and one that does not, other things being
equal.

Definition 1. [14] A Markov logic network L is a set of pairs (Fi, wi), where Fi is
a formula in first-order logic and wi is a real number. Together with a finite set of
constants C = {c1, c2, . . . , c|C|}, it defines a Markov network ML,C as follows:

1. ML,C contains one binary node for each possible grounding of each predicate
appearing in L. The value of the node is 1 if the ground predicate is true, and 0
otherwise.

2. ML,C contains one feature for each possible grounding of each formula F i in L.
The value of this feature is 1 if the ground formula is true, and 0 otherwise. The
weight of the feature is the wi associated with Fi in L.

Thus there is an edge between two nodes of ML,C iff the corresponding ground
predicates appear together in at least one grounding of one formula in L. An MLN can
be viewed as a template for constructing Markov networks. The probability distribution
over possible worlds x specified by the ground Markov network M L,C is given by

P (X =x) =
1
Z

exp

(
F∑

i=1

wini(x)

)
(1)



where F is the number formulas in the MLN and n i(x) is the number of true groundings
of Fi in x. As formula weights increase, an MLN increasingly resembles a purely logi-
cal KB, becoming equivalent to one in the limit of all infinite weights. In this paper we
focus on MLNs whose formulas are largely function-free clauses and assume domain
closure, ensuring that the Markov networks generated are finite [14]. In this case the
groundings of a formula are obtained simply by replacing its variables with constants
in all possible ways.

3 Modeling Relational Stochastic Processes
Traditionally, graphical models like dynamic Bayesian networks (DBNs), hidden Markov
models (HMMs), etc., have been used to model the joint distribution of variables in-
volved in complex stochastic processes. They have been quite successful in practice
(e.g., [12]), but they cannot be used to compactly model complex domains with multiple
classes, objects and relationships. Modeling such domains requires the representational
power of first-order logic. DPRMs [15] and RDBNs [17] provide some of it, and could
in principle be learned using ILP and PRM learning techniques, but to date this has not
been attempted. In this paper, we instead extend MLNs and their learning algorithms
[14, 11] to dynamic domains. This extension turns out to be quite straightforward, and
gives us the full power of MLNs in dynamic domains. We experimentally demonstrate
the effectiveness of this approach.

3.1 Dynamic Markov Logic Networks
In a relational stochastic process, the world is not static. A ground predicate can be true
or false depending on the time step t. To model a dynamic relational domain we use
the following approach:

1. Instead of standard first-order predicates, we use fluents, a special form of predicate
having an additional time argument. Time is modeled as a non-negative integer
variable. Each predicate in the network is now of the form R(x 1, . . . , xn, t), where
t denotes time.

2. Our model includes a successor function succ(t), which maps the integer t, repre-
senting time, to t + 1, i.e., succ(0) = 1, succ(1) = 2, and so on.

3. We define a dynamic Markov logic network (DMLN) to be a set of weighted for-
mulas defined on the fluents.

4. Each formula in the DMLN contains exactly one variable denoting a time slice, and
constants may not be used as a fluent’s time argument. For example, we disallow
formulae such as:
∀Auth, Topic, t, t′ : Writes(Auth, Topic, t) => Writes(Auth, Topic, t′).
The only exception to this is that we allow formulas where all time arguments are
the constant 0; these represent the initial distribution.

5. To enforce the first-order Markov assumption, each term in each formula in the
DMLN is restricted to at most one application of the succ function, i.e., a term
such as succ(succ(t)) is disallowed. This precludes a ground predicate at time t
from depending on ground predicates at time t − 2 or before.

Given the domain of constants, i.e., the objects at each time slice and the time range
of interest, the DMLN will give rise to a ground Markov network whose nodes corre-
spond to the grounding of the predicates (fluents) for each time slice.



3.2 Learning DMLNs
As is common in graphical models, we divide learning DMLNs into two separate prob-
lems: parameter learning and structure learning.

The weights of a DMLN can be learned in the same manner as in MLNs, by max-
imizing the likelihood of a relational database [14]. (A closed-world assumption is
made, whereby all ground atoms not in the database are assumed false.) However, as in
Markov networks, this requires computing the expected number of true groundings of
each formula, which can take exponential time. Although this computation can be done
approximately using Markov chain Monte Carlo (MCMC) inference [5], Richardson
and Domingos found this to be too slow. Instead, they maximized the pseudo-likelihood
of the data, a widely used alternative measure [3]. If x is a possible world (relational
database) and xl is the lth ground atom’s truth value, the pseudo-log-likelihood of x
given weights w is

log P ∗
w(X =x) =

n∑
l=1

log Pw(Xl =xl|MBx(Xl)) (2)

where MBx(Xl) is the state of Xl’s Markov blanket in the data (i.e., the truth values of
the ground atoms co-occuring with it in some ground formula). Computing the pseudo-
likelihood and its gradient does not require inference, and is therefore much faster.

3.3 Structure Learning in DMLNs
In theory one can learn a fully general DMLN for any relational stochastic process.
In other words, one could use a single large example to store a history of the entire
relational process and learn a DMLN which does not obey the first-order Markovian
restrictions. However, this might lead to an unintuitive model and costly inference. In
addition, if the number of time slices is large, formulas involving the time variable may
become complex and difficult to learn.

However, we can make certain restrictions on the formulas learned and also equip
the learner with background knowledge, making the task easier. We divide the structure
learning problem into distinct classes depending on the information provided to the
learner:

Learning DMLNs with a Markovian assumption: Like learning in a DBN, we can
split the domain into multiple examples. Each example, corresponding to a time
step t, is a pair of states at time t and t + 1. When learning, one can avoid formulas
which only involve predicates at time t. A model learned in this way is automati-
cally first-order Markovian and stationary.

Learning in presence of background knowledge: The learner is provided with a set
of formulas as background knowledge and allowed to modify existing formulas and
add a small number of additional formulas so as to maximize the likelihood of the
data.

Learning with templates: In ILP systems learning becomes practical only when com-
bined with a declarative bias. For example, when learning a relational stochastic
process involving actions, one might want to make sure that each formula contains
at least one action. This restriction can be specified using templates. Other forms of
bias include restricting the number of predicates in a formula, defining an order on
the predicates to be considered during search, creating new predicates and formulas
for them, etc.



All of these cases can be handled by appropriately extending the MLN learning tech-
niques [11], as we now show.

The structure learned is the one that maximizes the pseudo-likelihood of the database
[11]. The algorithm starts with a set of unit clauses and greedily adds or modifies clauses
that give the best pseudo-likelihood. At every iteration, weights for all candidate struc-
tures are learned. To do this, the weights are initialized to their values from the previous
iteration and they quickly converge to the optimum. Each new candidate clause is ob-
tained by adding or removing predicates from already present clauses, or flipping the
signs of the predicates. One of two search techniques is used: (i) a beam search where
a set of b best clauses is selected and modified until the pseudo-likelihood ceases to
improve, and finally the clause which gives the best pseudo-likelihood is added, or (ii)
shortest-first search where all good clauses of a smaller length l are added before adding
any of a higher length.

The above algorithm may be combined with the first-order Markovian assumption
and templates to learn DMLNs. As we will see in the experiments below, no other
techniques are needed.

In this paper, we apply our learned model to infer a distribution over the immediately
succeeding time step. Additionally, in our examples, all the state variables are observed.
So, we use a standard Gibbs sampler for inference.

4 Experiments
In this section we learn DMLNs for two domains in an effort to answer the following
questions about methods for learning models of relational stochastic processes.
Q1 Do DMLNs outperform purely logical approaches such as ILP?
Q2 Do DMLNs outperform purely probabilistic methods such as DBN learning?
Q3 Can formulas that model the dynamics of a relational world be learned, and do such

formulas outperform pure parameter learning?
Q4 Does enforcing the Markovian assumption improve the accuracy of a learned DMLN?
Q5 Do templates help in learning better DMLNs?

We investigate these questions by applying our algorithms to problems in two do-
mains: (a) modeling the spread of research topics in the theoretical high-energy physics
community, and (b) modeling faults in factory assembly processes.

4.1 Evolution of Topics in High-Energy Physics
For our first domain we used the dataset from the KDDCup 2003 [8] which is a col-
lection of papers from the theoretical high energy physics (hep-th) area of arXiv.org.
This dataset consists of 30,000 papers authored by 9,000 scientists over 10 years. We
restricted the author set to scientists who have published at least 10 papers. To iden-
tify the topics of the papers we ran Kleinberg’s burst-detection algorithm [10] on the
words appearing in the titles and abstracts of the papers. We intersected the top “bursty”
words with words appearing in highly-cited papers and chose the top fifty. Thus, each
paper may be associated with multiple topics. In addition, we clustered both authors
and journals using K-means, and added a relation connecting them to their clusters. We
organized this dataset into constants of different types, e.g., Author, Paper, Journal,
etc., and predicates, e.g., AuthorOf, HasTopic, Cites, etc.

Our task was modeling the evolution of topic popularity over time. Specifically, we
wished to predict the distribution of each author’s paper topics for one year, given the
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Fig. 1. DMLNs outperform the other methods at predicting author-topic distributions.

distribution over previous years along with citation patterns, and the interests of scien-
tific communities in which she publishes. The test predicate was set to Authored(A, To-
pic, Year).

We compared DMLNs with five alternative methods: a purely logical approach (the
CLAUDIEN ILP engine [4]), a purely probabilistic method (DBN learning), and three
approaches that use only statistics concerning the author’s topic distribution in previ-
ous years. These latter approaches include predicting the most recent topic distribu-
tion (LYr), predicting the average of distributions across the last three years (Avg), and
extrapolating the average gradient of the topic distributions over the last three years
(Gdnt). To compute probabilities using CLAUDIEN, we associate a very high weight
(of 20) with each formula. We used three test sets, the topic distributions for years 2000,
2001 and 2002, always using a training set consisting of the data up to the test year. Our
results were similar for all three years, so we report results only for 2002.

We compared structure learning with and without background knowledge. The knowl-
edge consisted of formulas such as: authors’ future interests are influenced by their past
interests, collaborators’ interests, and the interests of highly cited authors from the same
author cluster; authors are more likely to publish on “bursting” topics than on “dead”
ones; authors publish on topics that are “hot” in their favorite journals or other journals
in the same journal cluster; etc. We used these formulas first as the complete struc-
ture (i.e., we only performed parameter learning) and then as background knowledge
(here we learned additional formulas). Learning DMLNs without background knowl-
edge does better than CLAUDIEN, DBN learning and the other methods, but the differ-
ence is insignificant. Both knowledge-based approaches did well, and we report on the
latter approach, which was marginally better.

We present our results by plotting the negative log-likelihood (Figure 1(a)) and the
precision-recall curves (Figure 1(b)). Each measure has its own advantages: the nega-
tive log-likelihood directly measures the quality of the probability estimates, while the
precision-recall curves are insensitive to the large number of true negatives (i.e., ground
predicates that are false and predicted to be false). The figures show clearly that DMLNs
learned with background knowledge surpass all other approaches in this domain.

4.2 Faults in Manufacturing Assembly Plans
For our second test, we used a completely-observable version of Sanghai et al.’s

[15, 17] manufacturing domain. An example in this domain is an execution trace of



an assembly plan comprised of actions such as Paint, Polish, Bolt, etc. There are
three classes of objects: Plate, Bracket and Bolt, with propositional attributes such
as weight, shape, color, surface type, hole size and hole type, and relations for the parts
to which they are attached. Actions are performed at every time step and are fault-
prone; for example, a Weld action may fail or may weld two incorrect objects based on
their similarity to the original objects. This gives rise to uncertainty in the domain and
the corresponding dependence model for the various attributes. Given the simulated
execution trace of a plan in this domain, we wished to use learning to recover each
action’s exact fault model.

Since it is clear that DMLN parameter learning
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would excel in this domain if given a good set of
formulas, we compared DMLN learning (with no
background knowledge) to CLAUDIEN and DBN
learning. Our goal was to answer questions Q3, Q4
and Q5 by learning structure in various settings, i.e.,
without any help, splitting the examples into time
slice pairs, and using templates. We considered a
template that made the following restrictions: 1) at
most one action predicate per clause, 2) only negated
action predicates in clauses, 3) at most five predi-
cates per clause, and 4) biasing to shorter clauses.

Figure 2 shows the negative log-likelihood of
unbiased DMLN learning, DMLNs with a Marko-
vian assumption, and DMLNs with templates, com-
pared with ILP and DBN learning, when applied to
a 1000-step assembly plan with 100 objects. These
results illustrate the ability of DMLNs to learn both

the relational structure and the probabilistic parameters of a time-changing process.
DBNs have the disadvantage that they separately learn formulas for each ground pred-
icate, while CLAUDIEN has the disadvantage that it gives inaccurate probability pre-
dictions. DMLNs combine the capabilities of each. We also note that templates and
formulas obeying the first-order Markovian assumption lead to improved learning.

We also tested our algorithms on plans of varying length. As expected, every algo-
rithm improves with an increasing number of time slices.

The DMLN structure learning algorithm took around 7 hours on the hep-th data and
5 hours on the assembly data. CLAUDIEN was allowed to run for a maximum of 15
hours on both the datasets.
5 Discussion
Several researchers have worked on temporal prediction in relational domains like so-
cial networks. Successful models include preferential attachment [2] and its extensions.
But, many of these models are domain specific and do not explicitly represent uncer-
tainty. DMLNs allow easy specification of complex models using first-order formulae.
Learning probabilistic relational planning rules has also received some attention [13].
These application-specific techniques may be viewed in terms of DMLN learning.

In recent years, much research has focused on combining uncertainty with first-
order logic (or some subset of it) [6]. Relational Markov models (RMMs) [1] and logical



hidden Markov models (LOHMMs) [9] can be viewed as special cases of DMLNs. Dy-
namic object-oriented Bayesian networks (DOOBNs) [7] combine DBNs with OOBNs,
but no learning algorithms for them have been proposed.

In conclusion, we have shown that MLNs can be successfully extended to learn-
ing models of relational stochastic process. Experimental results show that DMLNs are
more accurate than previous approaches, such as DBN learning and ILP. Some direc-
tions for future work include handling continuous variables, learning in the presence
of missing data and hidden state, modeling object creation and deletion, and applying
DMLNs to other complex real-world problems.
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