
Chapter ��

Class Dictionaries

Class dictionaries are more sophisticated propagation pattern customizers than are class
dictionary graphs� With a class dictionary we can choose not only the detailed structure of
objects� but also an application�speci�c notation for describing the objects succinctly� This
notation allows us to describe �input stories� for propagation patterns� For example� for a
restaurant administration program we can write a story that describes today�s menu�

Objects are important for object�oriented design and programming� but they are too
bulky to look at or to produce by hand� An example of an object is

Compound�

�op� MulSym��

�args� ArgList�

Variable�

�v� DemIdent �a��

Variable�

�v� DemIdent �b����

Can we �nd a more succinct way to describe objects than the textual object notation or�
even worse� the statements of a programming language 	e�g�� constructor calls
� Which
information is essential in the objects� We certainly need the values of the atomic objects
and some information about how those atomic objects are grouped together into larger
objects� In the above example we need to know that a and b are atomic objects of the
expression� This grouping can be expressed with some extra strings that we put between
the atomic objects to allow a program to recover an object from a sentence� We use the
word sentence simply to mean a sequence of terminals� It can be a proper English or French
sentence or a stylized sentence� or it can be anything� To make a complete sentence out of
a b� we use a few extra terminals� �� a b�� Although much shorter than the above object� it
conveys the same information if we use a class dictionary to interpret �� a b��

We �rst study how we can assign a concise sentence to an object� The goal in the back
of our mind is to make the sentences expressive enough so that we can recover the objects
automatically�

��

��

Consider again the meal example� We would like to describe a meal with a sentence
such as

Appetizer	

Melon

Entree	

Steak Potato Carrots Peas

Dessert	

Cake

instead of using the object notation� We can achieve this with the class dictionary in Fig�
����� A sentence is like a story about an object� The stories can be concise� like the one
above� or verbose� and it is the class dictionary designer who decides� For example� the
above meal description could be given by the following sentence�

At Hotel Switzerland you will enjoy

Melon as an appetizer

Steak Potato Carrots Peas as entree

and Cake as a delicious dessert

You will enjoy a splendid view of the Alps during good weather

It is easy to adjust the class dictionary in Fig� ���� so that meals are represented in the
above verbose form as sentences� All we need is to replace the �rst class de�nition by

Meal � �At Hotel Switzerland you will enjoy�

Appetizer �as an appetizer�

Entree �as entree and�

Dessert �as a delicious dessert
�

�You will enjoy a splendid view of the Alps during good weather
�

If sentences are like stories about objects� then class dictionaries are like templates for
stories� A class dictionary prescribes precisely how we have to write the stories about the
application objects� Class dictionary design is like designing story templates�

We can also look at a sentence as describing a family of objects� We select a speci�c
object from the family by selecting a class dictionary that is compatible with the sentence�
From this point of view a sentence is like a propagation pattern� both are customized by a
class dictionary�

Conceptually� a class dictionary is very similar to a class dictionary graph� A class
dictionary can be viewed as a class dictionary graph with comments required to de�ne the
input language�

Concrete syntax 	also known as syntactic sugar
 is used to �sweeten� the syntax of the
sentences� Below are examples of construction� alternation� and repetition class de�nitions
which show where concrete syntax may be used�� We call the concrete syntax elements
tokens�

�Legal class dictionary� page ��� ����	

�� CHAPTER ��� CLASS DICTIONARIES

Meal �

�Appetizer	� Appetizer

�Entree	� Entree

�Dessert	� Dessert

Appetizer 	 Melon � ShrimpCocktail

ShrimpCocktail � �Shrimp Cocktail� Shrimps Lettuce CocktailSauce�

CocktailSauce � Ketchup HorseRadish

Entree 	 SteakPlatter � BakedStuffedShrimp

SteakPlatter � Steak Trimmings

BakedStuffedShrimp � StuffedShrimp Trimmings

Trimmings � Potato �veggie�� Vegetable �veggie�� Vegetable

Vegetable 	 Carrots � Peas � Corn

Dessert 	 Pie � Cake � Jello

Shrimps � Shrimp �Shrimp�

Shrimp �

Melon � �Melon�

Lettuce �

Ketchup �

Steak � �Steak�

Potato � �Potato�

Carrots � �Carrots�

Peas � �Peas�

Cake � �Cake�

Pie � �Pie�

Jello � �Jello�

Corn � �Corn�

StuffedShrimp � �Stuffed Shrimp�

HorseRadish �

Figure ����� Meal language

��

Construction class�

Info �

�Demeter System� �t� Trademarked

�followed� �by�

�Law of Demeter� NotTrademarked�

�developed� �at� Northeastern

Each part may have some syntax associated with it that can appear before or after the
part�

Alternation class�

Fruit	 Apple � Orange �common�

�weight� �weight� DemNumber �end�

The alternatives of an alternation class may not contain syntax�

Repetition class�

List � �begin� �list�

��before�each� Element �after�each��

�end� �list�

List � �first� Element

��separator� �prefix� Element �suffix��

�terminator�

Syntax is not allowed between the �rst element and the repeated part� To specify
the language de�ned by a class dictionary� we �rst translate a class dictionary into a class
dictionary without common parts� that is� into a �at class dictionary� The class dictionary
without common parts� is then used as a printing table to print a given object�� The
collection of all printed legal objects constitutes the language of the class dictionary�

The expansion of common parts is best demonstrated with an example� Consider the
class dictionary

Basket � �contents� Fruit�List

Fruit�List � �Fruit�

Fruit 	 Apple � Orange �common�

�weight� �weight� DemNumber �end�

Apple � �apple�

Orange � �orange�

After expansion of common parts

�Class dictionary
attening� page ��� ����	
�Printing� page ��� ����	

�� CHAPTER ��� CLASS DICTIONARIES

�� flat class dictionary

Basket � �contents� Fruit�List

Fruit�List � �Fruit�

Fruit 	 Apple � Orange

Apple � �apple�

�weight� �weight� DemNumber �end�

Orange � �orange�

�weight� �weight� DemNumber �end�

The common parts are �attened out to all the construction classes� therefore we call
the expanded class dictionaries �at� Flat class dictionaries are usually not written by the
user but are produced from non�at class dictionaries by tools� Flat class dictionaries are
a useful intermediate form� Notice that the �attening operation is well de�ned since there
can be no cycles of alternation edges in a class dictionary graph�

For �at class dictionaries it is straightforward to de�ne a printing operation� that is
applicable to any object� We determine the class of the object and look up the class def�
inition� Then we print the object according to the class de�nition� including the concrete
syntax� For example� to print an Apple�object� we �rst print weight followed by printing a
DemNumber�object followed by printing end� The set of all legal objects in printed form
for some class dictionary G is the language de�ned by G� The language de�ned by G is
sometimes called the set of sentences de�ned by G�

To demonstrate the printing algorithm we use the above class dictionary for baskets�
Consider the following Basket�object that we want to print�

Basket �

� contents � Fruit�List �

Apple �

� weight � DemNumber ��� � �

Orange �

� weight � DemNumber ��� � � �

When we print it� we get the following output�

�� sentence describing a Basket�object

apple weight � end

orange weight � end

If we change the class dictionary to

Basket � �basket� �contents� Fruit�List

Fruit�List � ��� �Fruit� ���

Fruit 	 Apple � Orange �common�

�weight� �weight� DemNumber

Apple � �apple�

Orange � �orange�

�Printing� page ��� ����	

����� PARSING �

the same object appears as

basket

� apple weight � orange weight � �

���� PARSING

We know how a class dictionary de�nes a language by assigning a sentence to each object�
An object represents the structure of a given sentence relative to a class dictionary� A class
dictionary is closely related to a grammar� the main di�erence being that a grammar de�nes
only a language and a class dictionary additionally de�nes classes� 	Knowledge of grammars
is not a prerequisite for understanding this section�
 Examples of two grammars� using the
Extended Backus�Naur Form 	EBNF
 notation are in Fig� �����

�� Grammar �

Basket � �Apple � Orange�

Apple � �apple� �weight� DemNumber �end�

Orange � �orange� �weight� DemNumber �end�

�� Grammar �� almost a class dictionary

Basket � Fruit�List

Fruit�List � �Fruit�

Fruit � Apple � Orange

Apple � �apple� �weight� DemNumber �end�

Orange � �orange� �weight� DemNumber �end�

Figure ����� Two grammars de�ning the same language

The di�erences between a grammar and a class dictionary are

� A grammar is usually shorter than a class dictionary since it is not concerned about
object structure�

� A grammar does not have labels to name parts�

� A grammar does not have common parts� it is like a �at class dictionary�

� The syntax for grammars and class dictionaries is di�erent but grammars can be
written in a form that is close to a class dictionary 	see Grammar � in Fig� ����
�

Normally we are interested in de�ning an object by reading� its description from a
text �le� We call such a description a sentence that de�nes an object� A special kind of
object� called a tree object� is de�ned by a sentence� It is called a tree object since its

�Parsing� page ��� ���	

�� CHAPTER ��� CLASS DICTIONARIES

underlying graph structure� given by the reference relationships between the objects� is a
tree� Not every object is a tree object for some sentence� There are also circular objects
and objects that share subobjects� An object o is said to be a tree object for a sentence
s if its structure is a tree and not a general graph� Tree objects o have the property that
printing o and reading the sentence again returns an object identical to the original object
o� Not every object needs to be a tree object since many objects are built under program
control� and there is never a need to read them from a text �le�

The class dictionary contains all the information that is usually put into a grammar
for de�ning a language� Therefore standard parser generator technology can be used to
generate a parser automatically from the class dictionary� The parser takes as input a
sentence in some �le and returns the corresponding tree object� The grammar given in the
class dictionary de�nes how to build the tree object�

We want to restrict ourselves to a subset of all class dictionaries that promote good
�object story writing�� We want the stories to be easy to read and write and learn� We also
want the stories to be unique so that no two di�erent stories describe the same object�

Therefore we introduce the concept of an ambiguous class dictionary� A class dictionary
is ambiguous if there exist two distinct objects that map to the same sentence when they
are printed� An example of an ambiguous class dictionary is�

Basket � �fruits� Fruit�List

Fruit�List � �Fruit�

Fruit 	 Apple � Orange

Apple � �apple�

Orange � �apple�

The sentence �apple apple� represents four di�erent kinds of baskets�

� A basket with two apples

� A basket with one apple and one orange

� A basket with one orange and one apple

� A basket with two oranges�

Therefore� the class dictionary is ambiguous�
We want to avoid ambiguous class dictionaries� therefore we need an algorithm to check

whether a class dictionary is ambiguous� Not all problems are algorithmically solvable and
computer scientists have found many computational problems that are provably not algo�
rithmically solvable� Indeed� the class dictionary ambiguity problem cannot be solved by
an algorithm� This can be proved by a reduction that shows that if the class dictionary
ambiguity problem is solvable� then one of the provably unsolvable problems 	Post�s cor�
respondence problem
 is solvable� This leads to a contradiction and therefore the class
dictionary ambiguity problem is not algorithmically solvable�

We need to look for a work�around regarding the checking of a class dictionary for
ambiguity� The solution is to restrict our attention to a subset U of all class dictionaries
that are useful in practice and for which we can solve the ambiguity problem e�ciently�

����� PARSING ��

We also need to �nd a subset U so that we can e�ciently check whether a class dictionary
belongs to U or not�

We choose U to be the set of LL	�
 class dictionaries� We can e�ciently check whether
a class dictionary is LL	�
� and in fact all LL	�
 class dictionaries are not ambiguous� An
LL	�
 class dictionary has to satisfy two rules� We will learn Rule � shortly� Rule � is more
technical and is explained in the next section and in the theory part of the book�

The LL	�
 class dictionaries tend to de�ne languages that are easy to learn and read�
LL	�
 class dictionaries are therefore very useful in practice especially in an environment
where languages change frequently�

We parse class dictionaries by so�called recursive descent parsing� which will be explained
next� This explains in detail how an object is constructed from a sentence� Recursive descent
parsing is a standard concept from compiler theory� refer to your favorite compiler book
	for example� �ASU���
 to learn how recursive descent parsing is used to build compilers�

A sentence is made up of terminals� There are two kinds of terminals� namely terminals
with a value and terminals without a value� A number such as ��� is a terminal with a
value and it represents an object of terminal class DemNumber� As a rule� terminals with
values are representing objects belonging to a terminal class� Terminals without values
correspond to the terminals appearing in the class dictionary� For example� apple orange are
two terminals that correspond to the two terminals in the following class dictionary�

Fruits � Apple Orange

Apple � �apple�

Orange � �orange�

We also call the terminals without value tokens� Notice that we overload the token concept
since the syntax elements in a class dictionary are also called tokens�

Recursive descent parsing is best explained by mapping class dictionaries into syntax
graphs 	also called syntax charts or syntax diagrams
 which are widely used for de�ning
programming languages� In a syntax graph� classes are shown inside rectangles and tokens
inside ovals� For every class there is one syntax graph� The syntax graph of a construction
class

A � B��B�� � � � Bn�

is given in Fig� ����

...... B1 B2 BnA

Figure ���� Syntax graph construction

The syntax graph of a repetition class

A � �S ����

is given in Fig� �����
The syntax graph of a repetition class

�� CHAPTER ��� CLASS DICTIONARIES

; S

A

Figure ����� Syntax graph repetition

A � S � ��� S�

is given in Fig� �����

A S

;

Figure ����� Syntax graph repetition 	nonempty

The syntax graph of an alternation class

A � B�jB�j � � � jBn�

is given in Fig� �����

...
...

B1

B2

Bn

A

Figure ����� Syntax graph alternation

The parser works like a train that is trying to load a sentence while traversing the syntax
graphs� 	The sentence is broken into a sequence of terminals by a scanner�
 The train enters
the start syntax chart which corresponds to the start class of the class dictionary� Whenever
the train enters a rectangle it moves to the syntax graph of the class in the rectangle�
Whenever the train enters an oval it loads the token� provided it is the next terminal in
the sentence to be parsed� The train stops and signals a syntax error if there is a di�erent
terminal in the input sentence�

The train has to make a decision whenever it comes to an intersection� We assume
that the decision is made with a look�ahead of only one terminal and that no backtracking

����� PARSING ��

will be necessary� In a syntax graph that corresponds to a repetition class there is one
branching point with a branching factor of �� In a syntax graph that corresponds to a
construction class there are as many branching points with branching factor � as there are
optional elements� In a syntax graph that corresponds to an alternation class there is one
branching point with a factor of n� where n is the number of classes on the right side of the
alternation class de�nition�

To de�ne the decision process more formally we have to de�ne the �rst set first	S

for every class S�� first	S
 is the set of all terminals that can appear as �rst terminal in a
sentence of S� A branch gets labeled with the set first	S
� When S may derive the empty
string� we de�ne that first	S
 contains epsilon�

We give several representative examples of how to compute �rst sets� We describe �rst
sets as sets of strings between quotes� epsilon� and terminal class names� �terminal�class�
DemIdent is used for class DemIdent 	similarly for other terminal classes
 and epsilon stands
for the empty string�

� Construction classes�

A � B C

B � �is�

first�A� � first�B� � �is�

A � B� C� �is�

first�A� � first�B� union first�C� union �is�

A � DemString� DemNumber� DemIdent

first�A� �

��terminal�class� DemString�

�terminal�class� DemNumber� �terminal�class� DemIdent�

A � B C

B � DemIdent�

C � �else� DemString�

first�A� � first�B� union first�C� union epsilon

� ��terminal�class� DemIdent� epsilon� �else��

epsilon is in the �rst set since the language of A contains the empty string as a legal
sentence�

A � B C

B � DemIdent�

C � �else� DemString

first�A� � first�B� union first�C� removing epsilon

� ��terminal�class� DemIdent� �else��

�First sets� page ��� ����	

�� CHAPTER ��� CLASS DICTIONARIES

� Repetition classes�

A � �DemIdent�

first�A� � ��epsilon�� �terminal�class� DemIdent�

A � �is� �DemIdent�

first�A� � �is�

A � �DemIdent� �is�

first�A� � first�DemIdent� union �is�

� ��terminal�class� DemIdent� �is��

� Alternation classes�

A 	 B � C

B � �b�

C � �c�

first�A� � first�B� union first�C� � ��b�� �c��

A 	 B � C

B � �DemIdent�

C � �c�

first�A� � first�B� union first�C�

� ��terminal�class� DemIdent� �epsilon�� �c��

To simplify the decision process at a branching point we make the following assumption�

� We require that all the branches at a branching point in an alternation class de�nition
have disjoint �rst sets 	Rule �
�

With this restriction it is easy for the train to make these decisions� At an alternation
class branching point� compare the next input terminal in the sentence to be parsed with
the �rst sets of the branches� If the next input terminal is contained in any of those �rst
sets we take that branch� Otherwise an error message is printed unless epsilon is in the
�rst set of one branch� in which case this epsilon branch will be taken� According to Rule
�� only one branch may contain epsilon�

At a construction class branching point� we check whether the next input terminal is in
the �rst set of what is inside the square brackets� If it is� we take the path that brings us
to the optional terminal� otherwise� we take the other branch�

At a repetition class branching point� we check whether the next input terminal is in
the �rst set of what is inside the curly brackets� If it is� we take the path through the loop�
else we take the other branch�

This description implies that we have to compute the �rst function not only for classes�
but for classes that might be preceded by terminals� This is a straightforward generalization�
If the class is preceded by a string then the �rst set contains only that string�

����� LL��� CONDITIONS AND LEFT�RECURSION ��

We have seen that an error message can be generated at a branching point inside an
alternation class de�nition� At a branching point inside a construction or repetition class
de�nition we will never generate an error message� However� the parser generates an error
message at nonbranching points� namely whenever a speci�c terminal is expected and that
terminal is not the next input terminal�

We now extend the parser described above so that it returns a tree object for a given
input string� This tree object stores the structural information about the string� but not all
the details� None of the strings in the grammar de�nition will show up in the tree object�

Whenever the train starts a new syntax graph G that corresponds either to a con�
struction or repetition class de�nition� a class instance is created� If G is de�ned by a
construction class� the values of the parts will be assigned recursively when the syntax
graphs of the classes on the right side are traversed� If G is de�ned by a repetition class� a
list of objects will be created� It will be a list as long as the number of repetitions of objects
of the class on the right side of the repetition class� Whenever the train starts a new syntax
graph G that corresponds to an alternation class� the tree object remains unchanged�

The basket examples at the end of the last section also serve as examples for parsing�

���� LL��� CONDITIONS AND LEFT�RECURSION

The LL	�
 conditions for a class dictionary consist of two rules�� These conditions exclude
ambiguous class dictionaries while being checkable e�ciently� We have already discussed the
�rst LL	�
 rule since it is needed by the parsing algorithm� The �rst LL	�
 rule requires that
the �rst sets of the alternatives of an alternation class are disjoint� The second LL	�
 rule
is needed to make class dictionaries nonambiguous� To de�ne Rule � we need to introduce
follow sets�

follow	A
 for some vertex A consists of all terminals that can appear immediately after

a sentence of L	A
� L	A
 is the set of all printed A�objects� The follow sets are computed
with respect to the start class� which is the �rst class appearing in the class dictionary� For
terminals of terminal sets� the corresponding terminal class name is given� If the end of �le
can appear after a sentence of L	A
� then follow	A
 contains eof�

Consider the example class dictionary

Basket � �contents� SeveralThings

SeveralThings � �Thing�

Thing 	 Apple � Orange �common� �weight� DemNumber

Apple � �apple�

Orange � �orange�

Some of the follow sets are

follow	Thing
 � f eof� �apple�� �orange� g�
follow	SeveralThings
 � f eof g�

The follow set of Thing contains eof since a Thing�object can be the last thing in a
basket� It contains �apple� since an apple may appear after a Thing�object�

�LL��� conditions� page ��� ����	

�� CHAPTER ��� CLASS DICTIONARIES

Now we can formulate the second and last rule of the LL	�
 conditions
Rule ��

For all alternation classes

A 	 A� �

 � An

if an alternative� say A�� contains empty in its �rst set first	A�
� then first	A�
� first	A
�
��� have to be disjoint from follow	A
�

The following example motivates Rule �� The class dictionary

Example � �l� List �f� Final

List 	 Nonempty � Empty

Nonempty � �first� Element �rest� List

Empty �

Element � �c�

Final 	 Empty � End

End � �c�

violates Rule ��
We choose A� to be Empty and A� to be Nonempty and A to be List� The relevant �rst

and follow sets are

first�Empty� � �empty�

first�NonEmpty� � ��c��

follow�List� � ��c�� eof�

Now 	rst�NonEmpty� is not disjoint from follow�List� and therefore Rule � is violated�
The following two objects have the same corresponding sentence

object �	

	Example�

�l� 	Empty��

�f� 	End���

object �	

	Example�

�l� 	Nonempty��first� 	Element�� �rest� 	Empty���

�f� 	Empty���

In both cases� the sentence c is printed� For object �� c is printed by the End�object�
For object �� c is printed by the Element�object�

Violation of the LL	�
 conditions does not necessarily imply that the class dictionary is
ambiguous� For example� the following class dictionary is not LL	�
 but it is not ambiguous�

Example � �l� List �f� Final

List 	 Nonempty � Empty

����� LL��� CONDITIONS AND LEFT�RECURSION ��

Nonempty � �first� Element �rest� List

Empty �

Element � �c�

Final 	 End

End � �c�

Rule two of the LL	�
 conditions is violated� follow�List� contains �c� and so does
	rst�Nonempty�� But we cannot �nd two distinct objects that are mapped to the same
sentence by the printing function g print� This example however shows parsing ambiguity�
When the parser sees the �c� terminal in the input while parsing an Example�object� it
does not know whether to build a Nonempty or an Empty�object in part l� The �rst �c�
terminal has two di�erent interpretations� We can represent it as an Element�object or as
an End�object�

The LL	�
 conditions force the object printing algorithm g print	
 to have a useful
property� We can always retrieve the object from the output of the printing algorithm�
The LL	�
 conditions are su�cient for g print to be a bijection 	i�e�� onto and one�to�one

between tree objects and sentences� If a �at class dictionary G satis�es the LL	�
 Rules �
and � then the function g print	G��
 is a bijection from C�objects in TreeObjects	G
 to
L	C
� A �at class dictionary is a class dictionary where all common parts and terminals
have been pushed down to the construction classes�

The inverse of g print is function g parse � for all � � TreeObjects	G

� � g parse	G� class of �� g print	G��

������ Left�Recursion

The LL	�
 rules exclude a certain kind of left�recursion�
Informally� a class dictionary is left�recursive if it contains paths along which no input

is consumed� An example of such a class dictionary is

Basket � �contents� Contents

Contents 	 Fruit � Basket

Fruit 	 Apple � Orange

Apple � �apple�

Orange �

There is left�recursion that involves the two classes

Basket � �contents� Contents

Contents 	 Fruit � Basket

We can go through the cycle Basket� Contents any number of times without consuming
input�

This kind of left�recursion is a special case of LL	�
 condition violation� speci�cally� a
Rule � violation� Consider the �rst sets of the two alternatives of Contents�

first�Fruit� � ��apple�� empty�

first�Basket� � ��apple�� empty�

�� CHAPTER ��� CLASS DICTIONARIES

The two �rst sets are not disjoint and therefore Rule � is violated�
Left�recursion can appear in a second form� consider the class dictionary graph

Mother � �has� Child

Child � �has� Mother

Here the LL	�
 conditions are satis�ed but we still have left�recursion� This kind of
left�recursion is excluded by the inductiveness axiom� which is discussed in the chapter on
class dictionary design techniques 	Chapter ��
�

���� SUMMARY

A class dictionary D de�nes a language through the following mechanism� We consider
all objects de�ned by the class dictionary graph G contained in D� This set is called
TreeObjects	D
� We apply the print function which prints each object in TreeObjects	D
�
and we call the resulting set Sentences	D
� This is the language de�ned by D�

To facilitate the writing� understanding� and learning of sentences� we use a subset of
class dictionaries� called LL	�
 class dictionaries� An LL	�
 class dictionary is not ambigu�
ous� and has other desirable properties� Speci�cally� di�erent alternatives of an alternation
class are introduced by di�erent tokens�

This chapter explained the parsing process in detail� which takes a class dictionary and
a sentence and constructs the corresponding object�

The relationships between class dictionaries and class dictionary graphs is summarized
in Fig� ����� Four properties are considered in the �gure� nonambiguous� LL	�
� inductive�

LL(1)

12

3

4

5

6
7 8

91011

class dictionaries

nonleft−recursive

nonambiguous

inductive

Figure ����� Venn diagram for class dictionaries

nonleft�recursive� Inductive class dictionaries are discussed in Chapter �� but we give here
the intuition� A class dictionary is inductive if it contains only good recursions� that is�
recursions that terminate� Ideally� a class dictionary should satisfy all four properties�
If the properties were independent� sixteen di�erent sets would be de�ned by the four

����� SUMMARY �

properties� However� there are only eleven because of the implication relationships between
the properties 	LL	�
 implies nonambiguous� LL	�
 and inductive imply nonleft�recursive
�

We show example members for some of the eleven sets�

�� Nonambiguous� nonLL	�
� noninductive� and left�recursive

A � B C

B 	 E � C

C � �c�

E � E

�� LL	�
� left�recursive� noninductive� Fig� ����

BA

Figure ����� LL	�
� left�recursive� noninductive

A � B

B � A

� LL	�
� nonleft�recursive� inductive� Fig� ����

A

Figure ����� LL	�
� nonleft�recursive� inductive

A �

�� Nonambiguous� nonLL	�
� left�recursive� inductive

A � B

B 	 A � C

C � �c�

�� Ambiguous� nonLL	�
� inductive

�� CHAPTER ��� CLASS DICTIONARIES

A � B C

B 	 U � V

C 	 G � H

U � �c�

V �

G � �c�

H �

�� Ambiguous� nonLL	�
� noninductive� left�recursive

A 	 B � C

B � B

C �

���� EXERCISES

Exercise ���� 	Design and implementation objective

Write a class dictionary that de�nes Lisp lists� assuming that the atoms are only iden�
ti�ers� Your language should handle the following examples�

��

�a b c�

�a �a b c� d�

�a �a b �� c � a b�� d�

etc

Write a program for the class dictionary that counts the number of atoms in a Lisp list�

The answer for the above examples should be

� � � etc�

Verify that your class dictionary satis�es the LL	�
 properties�

Exercise ���� Write an adaptive program so that it removes all while statements from a
Modula�� program� We assume that the class dictionary for Modula�� contains the following
class de�nitions�

StatementSeq � Statements ���� Statements�

Statements � Statement�

Statement 	 WhileStat � IfStat

WhileStat � �while�

You can assume that Statements is used only in StatementSeq�

Exercise ���� 	Programming for given class dictionary objective

The following class dictionary de�nes the data structures used by company Zeus Inc�

���	� EXERCISES ��

CustomerList � �Customer�

Customer �

�customerNumber� DemNumber �customerName� DemString

�customerAddress� Address �telephone� DemNumber

�contracts� ContractList

Address �

�street� DemString �city� DemString

�state� DemString �zip� DemNumber

�phone� DemNumber

ContractList � Contract �Contract�

Contract �

�contractNumber� DemNumber �deliveryAddress� Address

�date� DemString �remarks� DemString

ContractLines

ContractLines � ContractLine �ContractLine�

ContractLine �

Part �quantity� DemNumber

�discount� DemNumber �amount� DemNumber

Part �

�partNumber� DemNumber �description� DemString

�price� DemNumber

The company Zeus Inc� has to send a letter to all customers who bought part number
����� Write an adaptive program that prints out the addresses of all customers who ordered
part ����� The format of the addresses is unimportant� as long as the street� city� state�
and ZIP code is contained in each address�

Exercise ���� 	Design and implementation objective

�

�� Invent a notation for describing any given position on a chess board� write a class
dictionary for it� and write a program that prints the number of white pieces on a
given board�

�� Give a sample input that describes a board with about �ve pieces on it�

� Give the same board position in the object notation�

Exercise ���	 Consider the following class dictionary�

�� CHAPTER ��� CLASS DICTIONARIES

A � �B�

B 	 C � D

C � �xxx� A �if� B� �yyy�

D �

Check the following inputs for syntactical correctness� For each input that is syntacti�
cally correct� give the object in the object notation�

� � � xxx if ��� yyy

� a b c xxx � � yyy

� xxx if yyy

Exercise ���
 	Programming for given class dictionary objective

A post�x expression is an expression where the operator comes after the arguments�

For example� � � �� is a post�x expression that evaluates to ���
Consider the following post�x expression language�

Example � ExpressionList

ExpressionList � � Expression �

Expression 	 Simple � Compound

Simple � �v� DemNumber

Compound � �� �argument�� Expression �argument�� Expression

Operator ���

Operator 	 MulSym � AddSym � SubSym

MulSym � ���

AddSym � ���

SubSym � ���

Write a program that returns the list of evaluations of the post�x expressions� For
example� if the input contains � � � �� then the program returns the list 	� ��
�

Exercise ���� 	Programming for given class dictionary objective

Write a program that operates on a grammar that satis�es the following class dictionary

Grammar � �Rule�

Rule � �ruleName� DemIdent Body �
�

Body 	 Construct � Alternat � Repetit

Construct � ��� �partsAndSyntax� List�AnySymbol�

Alternat � �	� �alternatives� BarList�DemIdent�

List�S� � �S�

BarList�S� � S ���� S�

SandwichedSymbol � �first� AuxList Symbol �second� AuxList

Repetit � ��� �first� AuxList �nonempty� DemIdent �

��� SandwichedSymbol ��� �second� AuxList

AnySymbol 	 Symbol � OptSymbol � Aux

���	� EXERCISES ��

Symbol � ��� �labelName� DemIdent ��� � �symbolName� DemIdent

OptSymbol � �� SandwichedSymbol ���

Aux 	 Token

Token � �v� DemString

AuxList � � Aux �

Write a program that prints the list of all rules with a Construct body�
Write a program that prints out all label names�
Example�

A � �x� B �y� DemIdent

B � �x� DemIdent

The output should look like	

with Construct body � �A B�

labels � �x y x�

Your algorithm should be linear time and space in the length of the input grammar�

Exercise ���� 	Programming for given class dictionary objective

Consider the following class structure�

Tree � �proper� �root� DemNumber �left� TreeOrLeaf �right� TreeOrLeaf

TreeOrLeaf 	 Tree � Leaf

Leaf � �leaf� DemNumber

All instances of class Tree are binary search trees� All numbers that occur in the left
subtree are smaller than the root� and all numbers that occur in the right subtree are greater
than the root�

Write a method search for class Tree that takes as argument a number� and returns � if
the number is in the tree and � otherwise�

Exercise ��� 	Programming for given class dictionary objective

Write a translator for the following language�

Statement 	 ForStatement � PrintStatement

ForStatement � �for� DemIdent �	�� �lower� DemNumber �to� �upper� DemNumber

�do� Statement

PrintStatement � ��print� IdentList ���

IdentList � DemIdent � DemIdent�

The purpose of the translator is to expand the for statements and produce a sequence
of lists� They re�ect the assignments made by the for statements� The following example
should make the semantics of this language clear�

Example� The input

for i	�� to � do

for j 	�� to � do �print j i�

�� CHAPTER ��� CLASS DICTIONARIES

should output

�� ��

�� ��

�� ��

�� ��

Exercise ����� 	Programming for given class dictionary objective

Write a semantic checker for the language of the last problem� Verify that every variable
that occurs in the print statement is assigned within a for statement�

Example�

for i	�� to � do �print x�

is illegal�

Exercise ����� Consider the grammar

Person � �name� �name� DemIdent �bittenBy� �bittenBy� DogList�

DogList � �Dog�

Dog �

�dogName� �dogName� DemIdent

�owner� Person

Check the following three inputs for syntactical correctness� For those that are correct�
draw the object�

name Peter

bittenBy �dogName� Barry name Jeff

�dogName� Bless name Linda

name Ana

bittenby

name bittenby

Exercise ����� Consider the following class dictionary�

S � �a� S� �b�

	Input �nding objective
 Give three distinct elements belonging to the language de�ned
by this class dictionary�

	Language objective
 Give a precise de�nition of the language de�ned by this class
dictionary� Give a proof that the class dictionary de�nes exactly the described language�

���
� BIBLIOGRAPHIC REMARKS ��

���	 BIBLIOGRAPHIC REMARKS

The meal example is from �LR��b��

� Compiler theory�

The concepts of recursive descent parsing� �rst sets� follow sets� and the LL	�
 condi�
tions are reused from compiler theory� See for example �ASU����

� Grammar�based programming�

There are few papers about object�oriented programming using a grammar�based ap�
proach� An early paper that goes in this direction is �San���� which describes the Lithe
language� In Lithe� class names are used as the nonterminal alphabet of a grammar�
For manipulating objects� Lithe does not use message passing� but syntax�directed
translation�

A grammar�based approach to meta programming in Pascal has been introduced
in �CI���� �Fra��� uses grammars for de�ning data structures� �KMMPN��� intro�
duces an algebra of program fragments� The POPART system treats grammars as
objects �Wil��� The synthesizer generator project also uses a grammar�based ap�
proach �RT���� GEM described in �GL��b� is the predecessor of Demeter� The EBNF
grammar notation is due to �Wir����

� Program enhancement� �Bal��� proposes a frame�based object model to simplify pro�
gram enhancement which has some similarities to the Demeter system�

� Knowledge engineering� Many papers in knowledge engineering propose an approach
similar to the one used in the Demeter system� Minsky proposed an object�oriented
approach to knowledge representation �Min����

The language KL�ONE �BS��� is an object�oriented knowledge representation language
based on inheritance� KL�ONE was used in the late seventies� A class is called
a concept in KL�ONE� Concepts are subdivided into primitive and de�ned concepts�
Primitive concepts can be speci�ed by a rich set of necessary conditions� A role belongs
to a concept and describes potential relationships between instances of the concept
and those of other closely associated concepts 	i�e�� its properties� parts� etc�
� Roles
are the KL�ONE equivalent to two�place predicates� The components of a KL�ONE
concept are its superconcepts and the local internal structure expressed in ��� roles and
��� constraints� which express the interrelations among the roles� The roles and the
constraints of a concept are taken as a set of restrictions applied to the superconcepts�
Superconcepts are thought of as approximate descriptions� whereas the local internal
structure expresses essential di�erences�

There are several di�erent kinds of roles� of which the role set is the most important�
A role set captures the commonality among a set of individual role players� Role sets
themselves have structure� Each role set has a value restriction 	given by a type
�
and number restrictions to express cardinality information� KL�ONE supports role
set restrictions that add constraints on the �llers of a role with respect to some con�
cepts� KL�ONE uses a graphical language and the JARGON �Woo��� language to

�� CHAPTER ��� CLASS DICTIONARIES

specify concepts� JARGON is a stylized� restricted� English�like language for describ�
ing objects and relationships� KL�ONE has been further developed in NIKL �KBR����
�Mor���� and KL�TWO �Vil����

Classes de�ned by predicates 	or generators �Bee���
 allow automatic classi�cation of
objects� This shifts an important burden from the user to the system 	where it surely
belongs
� and it is very useful in knowledge acquisition and maintenance�

When classes are de�ned by predicates� it is necessary to study the complexity of the
subsumption problem� The subsumption problem consists of deciding whether one
class is a subclass of another class� It is well known that the subsumption problem
can easily become intractable 	for a summary see �PS���� for the original article see
�BL���
�

Frame�based description languages 	including KL�ONE� a recent paper is �PS���
 are
related to the Demeter system in the following way� A class dictionary de�nes a concept
language that allows us to de�ne concepts in terms of classes de�ned in the class
dictionary and restrictions expressed in terms of instance variables� Such a concept
language de�nes a subsumption algorithm that computes whether one concept is a
subconcept of another�

Sheu �She��� proposes to put a logic�programming knowledge base as an interface
between the user and an object�oriented system�

Object�oriented knowledge representation for spatial information is proposed in the
paper �MK����

� Object�oriented design�

A good overview is given in �Weg����

� Theory of program data�

The work of Cartwright promotes a constructive approach to data speci�cation� called
domain construction� and is a precursor of our work on class dictionaries �Car����
The idea of domain construction has its roots in the symbolic view of data pioneered
by John McCarthy and embodied in the programming language Lisp� The domain
construction approach to data speci�cation views a data domain as a set of symbolic
objects and associated operations satisfying the following three constraints�

� Finite constructibility� Every data object is constructed by composing functions�
called constructors�

� Unique constructibility� No two syntactically distinct objects denote identical
elements of the domain universe�

� Explicit de�nability� Every operation� excluding a small set of primitive functions
serving as building blocks� is explicitly de�ned by a recursive function de�nition�

Cartwright uses subset de�nition to de�ne noncontext�free types like height�balanced
binary trees or nonrepeating sequences of integers� Quotient de�nitions are used to
de�ne types containing objects that are not uniquely constructible� such as �nite sets
and �nite maps�

����� SOLUTIONS ��

The Demeter approach also falls into the constructive method of data de�nition� At
the moment we do not support subset and quotient de�nitions since they are di�cult
to handle at compile�time�

The constructors in the Demeter system come from construction and repetition classes�
Alternation classes don�t provide constructors�

���
 SOLUTIONS

Solution to �����

 inputs�

a b

a a b b

a a a b b b

This class dictionary de�nes the language anbn� We prove this by induction on n�

Base For n � � it is true� When the optional symbol is missing� we get ab�

Step Induction hypothesis� Assume that the above class dictionary de�nes the language
anbn for all n � m��� n � �� We want to show this fact for n � m� Consider entering
the optional symbol S� one additional time� This adds one a and one b to am��bm��

which by the induction hypothesis belongs to the language� Therefore we get that
ambm also belongs to the language�

Chapter ��

Style Rules for Class

Dictionaries

In this chapter we present several style rules related to the structural organization of classes�
De�ning the class dictionary for an application is a very important and interesting task� The
class dictionary determines all the data structures� which in turn determine the e�ciency
of the algorithms� The class dictionary also in�uences the reusability of the resulting code�

There is a need to break large class dictionaries into modular pieces that are easier to
manage� This topic of modularization will be discussed elsewhere� In this chapter we have
collected a set of useful design techniques for those modular pieces of class dictionaries�

The style rules cover several topics� avoiding bad recursion in class structures� optimiza�
tion of class structures� parameterization� systematic structuring and naming� functional
dependency normalization� and notational issues such as viscosity�

���� LAW OF DEMETER FOR CLASSES

The class dictionary graphs of object�oriented applications often contain cycles which means
that the class de�nitions are recursive� The goal of the Law of Demeter for classes is to
avoid bad recursions in class structures� that is� recursions which cannot terminate�

If a class dictionary graph does not contain any cycle� we can build complex objects from
simple objects inductively� The reason is obvious� We can topologically sort any acyclic
directed graph� and the topological order tells us in what order to build the objects� As
class dictionary graphs become more and more complex� which means there may be more
and more cycles� we can still build objects inductively and incrementally as long as every
cycle has a way out of cycles� We call such class dictionaries inductive� Otherwise we have
to build �nite cyclic objects for any vertex on those cycles� We argue that noninductive
class dictionary graphs should be avoided most of the time�

Consider the class dictionary graph in Fig� ����a� When we construct a class dictio�
nary graph slice anchored at vertex Nonempty� vertex Nonempty forces all the outgoing
construction and inheritance edges to be included in the slice� Vertex List must have the
only outgoing alternation edge List�� Nonempty� because it has an incoming construction

��

����� LAW OF DEMETER FOR CLASSES �

(a) (b)

(c) (d)

EmptyEmpty

List

Nonempty Element

List

Nonempty Element

List

Nonempty Nonempty ElementElement

List

rest

first

rest

first

rest

first

rest

first

Figure ����� Illustration of class dictionary graph slices

edge� Fig� ����b shows the only class dictionary graph slice anchored at vertex Nonempty�

Consider the class dictionary graph in Fig� ����c� In Fig� ����d we show one of the
class dictionary graph slices anchored at vertex Nonempty� The di�erence from the above
case is that we can select alternation edge List�� Empty instead of taking alternation edge
List�� Nonempty�

In the class dictionary graph of Fig� ����a� a Nonempty�object must contain an Element�
object and a List�object� A List�object must always be a Nonempty�object�an in��
nite recursion� In Fig� ����b� this in�nite recursion is expressed by the cycle formed by
Nonempty

rest�� List and List�� Nonempty� This cycle is forced to be included�

In the class dictionary graph of Fig� ����c� a Nonempty�object must contain an Element�
object and a List�object� But a List�object can be an Empty�object� In this case� we don�t
have an in�nite recursion� We can have a Nonempty�object that is a list containing only one
element� an Element�object� The Empty�object is used here for the end of the list�

Comparing the two class dictionary graphs in Fig� ����a and ����c� we can build only
cyclic Nonempty�objects from the �rst class dictionary graph in Fig� ����a� but we can build
acyclic Nonempty�objects of any size based on the Nonempty�objects of smaller size for the
second class dictionary graph� We call the second class dictionary graph an inductive class
dictionary graph� The �rst class dictionary graph is not inductive�

To introduce the Law of Demeter for classes� we reuse reachability concepts and the
class dictionary graph slice concept introduced earlier�

A vertex w in a semi�class dictionary graph is said to be reachable from a vertex v by
a path of length n� if there is a knowledge or an inheritance path of length n from v to w�

�� CHAPTER ��� STYLE RULES FOR CLASS DICTIONARIES

A semi�class dictionary graph is cycle�free if there is no v � V such that v is reachable
from v by a path of at least length ��

A semi�class dictionary graph is inductive if it satis�es the inductiveness rule� The
inductiveness rule is� For all vertices v there exists at least one cycle�free class dictionary
graph slice anchored at v�

The purpose of the inductiveness rule is

�� To make each recursion well de�ned and to guarantee that the inductive de�nitions of
the objects associated with the vertices of the class dictionary graph have a base case�
Informally� the rule disallows classes that have only circular objects�

�� To exclude certain useless symbols from the grammar corresponding to a class dictio�
nary graph� There are two kinds of useless symbols� the ones that cannot be reached
from the start symbol and the ones that are involved in an in�nite recursion� The
inductiveness rule excludes useless symbols of the in�nite recursion kind�

� To allow a tool to generate more code for groups of classes that satisfy this rule�

Car

Motor

motorbelongsto

Figure ����� Car and motor

Sometimes� people may want to keep their class dictionary graphs noninductive for
some purposes� as shown in Fig� ����� Every Car�object must have a Motor�object� Every
Motor�object must have a Car�object on which it is installed� Therefore we propose an
approximation of the inductiveness rule�

The Law of Demeter for Classes is�
Maximize the number of inductive vertices of a class dictionary graph��

Maximizing the number of inductive vertices in a class dictionary graph minimizes the
complexity of building objects and the software associated with them� Fewer objects are
forced to be cyclic� Further motivation for the Law of Demeter for classes includes

�The Law of Demeter for classes is di�erent from the Law of Demeter �for functions� in class form
discussed in Chapter 	

����� LAW OF DEMETER FOR CLASSES ��

� The objects de�ned by noninductive vertices must all be cyclic� Classes that de�ne
only cyclic objects should be used only when absolutely needed� It is harder to reason
about them�

� Cyclic objects are harder to manipulate because of the danger of in�nite loops�

It is useful to discuss three dimensions of class dictionary design�

� C� number of common parts of abstract classes�

� F� number of vertices that are not inductive�

� L� LL	�
 violations� Count the number of di�erent violations of Rule � and Rule ��

programming
spaceparsing

subspace

inductive plane

0

C

L

gra
mma

r l
inebi

je
ct
io
n

li
ne

cd graph
subspace

parsing
subspace

F

Figure ���� Three dimensions of class dictionary design

Figure ��� shows the design programming space in the three dimensions�

� Pure data model subspace� class dictionary graphs 	labeled as cd graph subspace in
Fig� ���

Initially� when we develop a class structure� we put it into the class dictionary graph
subspace� We will have many LL	�
 violations and the class dictionary graph might
not be inductive�

� Inductive class dictionaries plane

�� CHAPTER ��� STYLE RULES FOR CLASS DICTIONARIES

We improve the class dictionary graph and turn it into a class dictionary graph without
noninductive vertices� This brings us into the inductive plane� We also maximize the
common parts� which moves us away from the grammar line 	traditional grammars
don�t have common parts
�

� Parsing subspace

We improve the class dictionary graph and turn it into a class dictionary with zero
LL	�
 violations� This moves us onto the bijection line� For class dictionaries on the
bijection line� there is a bijection between sentences and tree objects�

���� CLASS DICTIONARY GRAPH OPTIMIZATION

The goal of class dictionary graph optimization is to improve the class organization while
keeping the set of objects invariant� This involves �inventing� abstract classes to minimize
the total size of the class dictionary graph�� Our algorithms are programming�language
independent and are useful to programmers who use languages such as C!!� Class dictio�
nary graph optimization has applications to design� reverse engineering and optimization of
programs�

We formalize the concept that two sets of class de�nitions de�ne the same set of objects�
A class dictionary graph D� is object�equivalent to a class dictionary graph D� if

Objects	D�
 � Objects	D�

The size of a class dictionary graph is the number of construction edges plus one quarter
the number of alternation edges�

The constant one quarter is arbitrary� All that is important is that this constant is
smaller than a half� The reason is that we want the class dictionary in Fig� ����a to be
smaller than the class dictionary in Fig� ����b�

Fruit

Apple Orange

Weight Apple Orange

Weight

weight

weight weight

(a) (b)

Figure ����� a has smaller size than b

�Class dictionary graph minimization� page ��� ����	

����� CLASS DICTIONARY GRAPH OPTIMIZATION ��

Anyway� we want alternation edges to be cheaper than construction edges since alter�
nation edges express commonality between classes explicitly� This leads to better software
organization through better abstraction and less code duplication�

The class dictionary graph minimization problem is de�ned as follows� Given a class
dictionary graph� �nd an object�equivalent class dictionary graph of minimal size� Class
dictionary graph minimization means more than moving common parts �as high as possible�
in the class dictionary graph� It also minimizes the number of alternation edges�

In other words� we propose to minimize the number of edges in a class dictionary graph
while keeping the set of objects invariant� Our technique is as good as the input it gets� If
the input does not contain the structural key abstractions of the application domain then
the optimized hierarchy will not be useful either� following the maxim� garbage in�garbage
out�

However if the input uses names consistently to describe a class dictionary graph then
our metric is useful in �nding good hierarchies� However� we don�t intend for our algorithms
be used to restructure class hierarchies without human control� We believe that the output
of our algorithms makes valuable proposals to the human designer who then makes a �nal
decision�

Our current metric is quite rough� we just minimize the number of edges� We could
minimize other criteria� such as the amount of multiple inheritance or the amount of repeated
inheritance� A class B has repeated inheritance from class A� if there are two or more
edge�disjoint alternation paths from A to B� The study of other metrics is left for future
investigations�

������ Minimizing Construction Edges

Even simple functions cannot be implemented properly if a class dictionary graph does not
have a minimal number of construction edges� By properly we mean with resilience to
change�

Consider the class dictionary in Fig� ����� which is not minimized�

length

weight

weight

DemNumberCoin

radius height

width Brick

Figure ����� Class dictionary to be minimized

Suppose we implement a print function for Coin and Brick� Now assume that several
hundred years have passed and that we �nd ourselves on the moon where the weight has a
di�erent composition� a gravity and a mass� We then have to rewrite our print function for
both Coin and Brick�

After minimization of the number of construction edges in Fig� ���� we get the class
dictionary in Fig� ����� In this minimized class dictionary we implement the print function

�� CHAPTER ��� STYLE RULES FOR CLASS DICTIONARIES

Coin � �radius� Number

Brick � �width� Number �length� Number �height� Number

Weight�related 	 Coin � Brick �common� �weight� Number

Figure ����� Optimized class dictionary

for Coin with the method�

void Coin		print�� �

radius �� print��� Weight�related		print����

The advantage of the optimization is that information about weights is now isolated to
one class� If we change information about weights� we have to update only one class� For
example� after the change of the weight composition� we get the new class

Weight�related 	 Coin � Brick �common� �mass� Number �gravity� Number

We reimplement the print function for this new class and no change is necessary for
classes Brick and Coin�

In summary� if the class dictionary graph has a minimal number of construction edges
and the functions are written following the strong Law of Demeter 	for functions
� the soft�
ware is more resilient to change� The strong Law of Demeter says that a function f attached
to class C should call only functions of the immediate part classes of C� of argument classes
of f including C� and of classes that are instantiated in f� A disadvantage of construction
edge minimization is that it creates multiple inheritance� Therefore� it is not always strictly
followed�

������ Minimizing Alternation Edges

Consider the following nonminimal class dictionary graph�

Occupation 	

Undergrad�student � TA � Professor � Adm�assistant

�common� �ssn� Number

Student 	 Undergrad�student � TA �common� �gpa� Real

Faculty 	 Professor � TA �common� �course�assigned� Course

Professor �

TA �

Adm�assistant �

Course �

Undergrad�student � �major� Area

Area 	 Economics � Comp�sci

����� CLASS DICTIONARY GRAPH OPTIMIZATION ��

Economics �

Comp�sci �

University�employee 	 TA � Professor � Adm�assistant

�common� �salary� Real

Change the class de�nitions for Occupation and University employee to

Occupation 	 Student � University�employee �common� �ssn� Number

University�employee 	 Faculty � Adm�assistant �common� �salary� Real

We have now reduced the number of alternation edges by three at the expense of adding
repeated inheritance� By repeated inheritance we mean that a class is inherited several times
in the same class� In the above example� class Occupation is inherited twice in class TA�

Occupation �� University�employee �� Faculty �� TA

�� Student �� TA

However� not only alternation edges are reduced� but also the amount of multiple in�
heritance� which we propose as another metric to produce good schemas from the software
engineering point of view�

Class dictionary graph minimization consists of two steps�

� Construction edge minimization� This is an easy task� we abstract out the common
parts and attach them to an alternation class� If there is no appropriate alternation
class� we introduce a new one�

� Alternation edge minimization� Alternation edge minimization is in general a compu�
tationally expensive problem 	it is known to be NP�hard
� but there is a special case�
called the tree property� case� where there is an e�cient algorithm�

To minimize the construction edges� we use the concept of a redundant part� In a �rst
approximation a construction edge with label x and target vertex v is called redundant in
a class dictionary graph� if there is more than one x�labeled construction edge going into
v� This de�nition of redundant part is adequate for many practical situations� To cover all
cases� it needs to be slightly generalized� A construction edge with label x and target vertex
v is called redundant if there is a second construction edge with label x and target vertex
w such that v and w have the same set of associated classes�

A class dictionary graph has a minimal number of construction edges if it does not
contain any redundant construction edges�

Alternation edge minimization solves the following problem� Given a class dictionary
graph D with a minimal number of construction edges� �nd a class dictionary graph D�

such that the total number of alternation edges of D� is minimal� and so that D and D� are
object�equivalent�

Next we consider a special case of the alternation edge minimization problem� This
creates an interesting link between single inheritance and a property of class dictionary
graphs� called the tree property�

�Tree property� page ��� ����	

�� CHAPTER ��� STYLE RULES FOR CLASS DICTIONARIES

De�nition A class dictionary graph G is called a single inheritance class dictionary
graph� if for each vertex v in G� v has at most one incoming alternation edge�

A class dictionary graph can become an object�equivalent� single inheritance class dic�
tionary graph if and only if its sets of associated vertices satisfy the tree property� 	The set
of associated vertices of a vertex is the set of all the concrete subclasses�
 The set of associ�
ated vertices of a vertex can be regarded as an inheritance cluster� If all inheritance clusters
in a class dictionary graph are pairwise disjoint or in a proper subset relationship� then the
class dictionary graph can become an object�equivalent single inheritance class dictionary
graph� Furthermore� by checking whether the sets of associated vertices of a class dictionary
graph satisfy the tree property� we are e�ectively transforming such a class dictionary graph
into a single inheritance class dictionary graph�
De�nition A collection of subsets of a set S has the tree property if for any pair of subsets
of S one element of the pair is completely contained in the other� or if the two subsets are
disjoint�

When a collection of subsets has the tree property� the graph having the subsets as
vertices and the subset relationships as edges is a tree�

When the tree property is satis�ed� it is easy to reorganize the class dictionary graph
into a single inheritance class dictionary graph� The set inclusion relationships describe the
inheritance structure�

Consider the following example� The class dictionary in Fig� ���� satis�es the tree
property� The classes associated with ChessPiece are a superset of the classes associated
with O
cer� Therefore we can transform the class dictionary into the object�equivalent

ChessPiece 	 Queen � King � Rook � Bishop � Knight � Pawn

Officer 	 Queen � King � Rook

Figure ����� Class dictionary that satis�es tree property

class dictionary in Fig� ����� which is single inheritance�

ChessPiece 	 Officer � Bishop � Knight � Pawn

Officer 	 Queen � King � Rook

Figure ����� Single inheritance class dictionary

���� PARAMETERIZATION

Good abstractions in a class dictionary have numerous bene�ts� The class dictionary usually
becomes cleaner and shorter� and an object�oriented program that uses the class dictionary

����� PARAMETERIZATION ��

will have less duplication of functionality� The goal of abstraction is to factor out recurring
patterns and to make an instance of the recurring pattern where it is used�

Parameterization uses auxiliary parameterized classes for reinforcing the abstraction
mechanism�

Consider the following class dictionary that introduces two classes 	Department and
Division
 by using two parameterized classes 	Organization and List
� The parameters are
used to express the degree of variability of the parameterized class�

Organization�SubOrganization� SuperOrganization� �

�contains� List�SubOrganization�

�partOf� SuperOrganization�

�managedBy� Employee

List�P� � �P�

Division � �Division�

�org� Organization�Department� Company�

Department � �Department�

�org� Organization�Employee� Division�

This class dictionary is much better than the following one� which does not use parameterized
classes�

Division � �Division�

�contains� DepartmentList

�partOf� Company�

�managedBy� Employee

DepartmentList � �Department�

Department � �Department�

�contains� EmployeeList

�partOf� Division�

�managedBy� Employee

EmployeeList � �Employee�

The parameterized version is more �exible� It is a well known principle that solving a
more general problem than the one under consideration often yields a better solution for
the given problem� It is likely that the insight gained from the generalized problem will be
of future bene�t�

The following example shows how to de�ne parameterized lists without a repetition
class� using the terminology of the Lisp programming language�

List�E� 	 Nil � Cons�E�

Cons�E� � �car� E �cdr� List�E�

Nil �

�� CHAPTER ��� STYLE RULES FOR CLASS DICTIONARIES

In the next example we use parameterization to personalize a language� We de�ne a
language Sandwiched� which encloses an instance sandwiched between two lists of strings�
The following class dictionary 	version �

Sandwiched�P� �

�left� StringList �s� P �right� StringList

Repetit � ���

�first� StringList �nonempty� Instance �

��� �s� Sandwiched�Instance� ���

�second� StringList

OptionalInstance �

�� �s� Sandwiched�LabeledInstance� ���

is better than 	version �

SandwichedLabeledInstance �

�left� StringList LabeledInstance �right� StringList

Repetit � ���

�first� StringList �nonempty� Instance �

��� SandwichedLabeledInstance ���

�second� StringList

OptionalInstance �

�� SandwichedLabeledInstance ���

Both class dictionaries use

Instance � Vertex

LabeledInstance � �label� Label� Vertex

A sentence for Repetit� version � is

� �start� � Family � �end�

A sentence for OptionalInstance� version � is

 �arg�� Exp �

However� a sentence for Repetit� version � is

� �start� � �urban� Family � �end�

which is not allowed by version ��
Although we use abstraction� we cannot precisely formulate the recurring pattern�

Therefore the language de�ned by the second class dictionary is larger� Version � is preferred
since it de�nes exactly what we want�

It is acceptable to make the language larger if you can introduce a nice abstraction� It
is much better to parameterize the abstraction and avoid enlarging the language� The right
abstraction simpli�es programming�

���	� REGULARITY �

���� REGULARITY

Good label names� class names� and parameterized class names signi�cantly improve the
readability of the associated object�oriented programs� We have adopted the following
conventions� class and parameterized class names always start with a capital letter� Label
names start with a lowercase letter�

It is important that the instance variable names have a succinct mnemonic interpreta�
tion� Therefore it is often advisable to introduce labels for the purpose of better naming
only�

To facilitate the writing of adaptive programs� it is advisable that terminal classes be
bu�ered by construction classes� Instead of using

Order �

�orderNumber� DemNumber

�quantity� DemNumber

�customerNumber� DemNumber

�price� DemNumber

it is better to use

Order �

�orderNumber� OrderNumber

�quantity� Quantity

�customerNumber� CustomerNumber

�price� Money

OrderNumber � �v� DemNumber

Quantity � �v� DemNumber

CustomerNumber � �v� DemNumber

Money � �v� DemNumber

This leads to a more regular class structure for which it is easier to write adaptive
software�

To summarize this section we propose the following design rule� calledTerminal�Bu�er

rule�

Usually� a terminal class should be used only as the only part class of a construc�
tion class� The label of the terminal class should be unimportant� for example�
it could be always �v�� This leads to the desired bu�ering of terminal classes�

������ Regular Structures

We use the adjective regular in an informal way� We say that a class dictionary has a
regular structure if similar classes are de�ned similarly� Regular de�nitions are without
exception easier to learn� use� describe� and implement� They also make a class dictionary
more reusable�

As an example we consider a fragment of the Modula�� grammar� compare it with
the corresponding fragment of the Pascal grammar and demonstrate that the Modula��
grammar is more regular�

�� CHAPTER ��� STYLE RULES FOR CLASS DICTIONARIES

�� Part of Modula�� grammar

Statement � Statements�

Statements 	 IfStatement � RepeatStatement

StatementSequence � Statement ���� Statement�

IfStatement �

�if� �condition� Expression

�then� �thenPart� StatementSequence

�end�

RepeatStatement �

�repeat�

StatementSequence

�until� �condition� Expression

This Modula�� grammar is better than the corresponding fragment of the Pascal gram�
mar�

�� Part of Pascal grammar

Statement 	 BeginEnd � IfStatement � RepeatStatement

StatementSequence � Statement ���� Statement�

BeginEnd � �begin� StatementSequence �end�

IfStatement �

�if� �condition� Expression

�then� �thenPart� Statement

RepeatStatement �

�repeat�

StatementSequence

�until� �condition� Expression

Notice how the Modula�� grammar is more systematic� Both if�statements and repeat�
statements contain statement sequences and this is expressed in the same way for both kinds
of statements� In the Pascal class dictionary� however� if�statements and repeat�statements
are treated di�erently� A class� called BeginEnd� is needed� which turns several statements
into one� This class is needed in the if�statement through class Statement�

���	 PREFER ALTERNATION

Alternation classes should be used whenever possible� The reason is that a well designed
object�oriented program will not contain an explicit conditional statement for the case anal�
ysis that needs to be done for an alternation class�

For example� one way to de�ne a Prolog clause is

Clause � �head� Literal

�	�� �rightSide� LiteralList� �
�

However� the following de�nition will give a cleaner object�oriented program�

���
� PREFER ALTERNATION ��

Clause 	 Fact � Rule �common� �
�

Fact � �fact� �head� Literal

Rule � �rule� �head� Literal �	��

�rightSide� LiteralList

Although the concrete syntax is slightly di�erent� both de�nitions of a Prolog clause
store the same information� A program that processes a clause corresponding to the �rst
de�nition will contain a conditional statement that tests whether rightSide is non�nil� A
program that processes a clause corresponding to the second de�nition will delegate the
conditional check to the underlying object�oriented system and it will not be explicitly
contained in the program� In this case it was necessary to add the keywords �fact� and
�rule� to the language because of the look�ahead of one symbol requirement�

There are other reasons� besides having shorter programs� for using alternation in a
class dictionary�

� Modularity� The class dictionary is more modular� If we change the de�nition of a
rule we don�t have to change the de�nition of Clause�

� Space� The objects can be represented with less space since a fact will not have an
instance variable rightSide that is always nil�

� Ease of adaptive programming�

Consider the following example� A � B C� D�
 If C and D are mutually exclusive
and exactly one is present� it is better to use A � B X
 X 	 C � D

The object�oriented program for the second version will send a message to the object
in instance variable X and the underlying object�oriented system will determine whether
we have an instance of C or D� There is no need for an explicit conditional statement to
distinguish between the two possible types of X�

However the program for the �rst version will contain at least one explicit conditional
statement�

To compare the class dictionaries further� consider the following programming task�
Given a PrologProgram�object� print the list of all the Rule�objects that are contained in the
PrologProgram�object�

For the second class dictionary� we can use

�operation� void print�rules��

�traverse�

�from� PrologProgram �to� Rule

�wrapper� Rule

�prefix� �� cout �� this� ��

For the �rst class dictionary� we can use

�operation� void print�rules��

�traverse�

�from� PrologProgram

�� CHAPTER ��� STYLE RULES FOR CLASS DICTIONARIES

�via� Clause

�to LiteralList

�carry� �in� Clause� cin � �� this ��

�along� �from� Clause �to� LiteralList

�wrapper� LiteralList

�prefix� �� cout �� cin� ��

���
 NORMALIZATION

When de�ning the class dictionary for database type applications� the theory of normal
forms is relevant� The class dictionary should be written in normalized form� Normalization
will make it easier to extend the class dictionary and it enforces a more systematic and
clean organization� The normalization is based on the concepts of key and functional

dependency�
In the following we adopt de�nitions from the relational database �eld to class dictio�

naries that describe object�oriented databases� The adopted de�nitions serve in turn as
style rules for class dictionaries� The motivation behind these de�nitions is to introduce the
concept of a normalized class with respect to functional dependencies�

De�nition� An instance variable V � of some class C is functionally dependent on
instance variable V � if for all instances of class C each value of V � has no more than one value
of V � associated with it� In other words� the value of the instance variable V � determines the
value of instance variable V �� We also use the terminology� V � functionally determines

V �� The concept of functional dependency is easily extended to sets of instance variables�
De�nition� A key for a class C is a collection of instance variables that 	�
 functionally

determines all instance variables of C� and 	�
 no proper subset has this property�
The concept of the key of a class is not a property of the class de�nition but rather a

fact about an intended use of a class� that is� the intended set of instances�
Consider the class

Employee �

�employeeNumber� DemNumber

�employeeName� DemString

�salary� DemNumber

�projectNumber� DemNumber

�completionDate� DemString

The key is employeeNumber� Several problems with this class de�nition are�

� Before any employees are recruited for a project� the completion date of a project can
be stored only in a strange way� by making an instance of class Employee with dummy
employee number� name� and salary�

� If all employees should leave the project� all instances containing the completion date
would be deleted�

� If the completion date of a project is changed� it will be necessary to search through
all instances of class Employee�

����� COGNITIVE ASPECTS OF NOTATIONS ��

Therefore it is better to split the above class de�nition into two�

Employee �

�employeeNumber� DemNumber

�employeeName� DemString

�salary� DemNumber

�projectNumber� DemNumber

Project �

�projectNumber� DemNumber

�completionDate� DemString

The key for Employee is employeeNumber and for Project it is projectNumber�
The reason why the �rst Employee class has problems is that the project number de�

termines the completion date� but projectNumber is not a part of the key of the Employee
class� Therefore we de�ne that a class is normalized if whenever an instance variable is
functionally dependent on a set S of instance variables� S contains a key�� We recommend
that classes be normalized�

It is often the case that there are no functional dependencies among the instance vari�
ables of a class� For example� the class Assignment� which is de�ned by

Assignment � �variable� DemIdent �assignedValue� Expression

does not have a functional dependency among its two instance variables� In such classes all
instance variables are a part of the key� and the concept of normalization is trivial�

���� COGNITIVE ASPECTS OF NOTATIONS

We want the notations de�ned by class dictionaries to be easy to read� write and modify�
What is important in a notation to make it that way� Here is some advice from cognitive
psychology�

� Opportunistic planning 	which means to adapt the planning to circumstances without
regard to principles
� The notation must allow for opportunistic planning rather than
require a �xed strategy� It has been repeatedly shown that users prefer opportunistic
planning� High�level and low�level decisions are mixed� development in one area is
postponed because potential interactions are foreseen� the descriptions are frequently
modi�ed�

However� opportunistic planning can hinder reusability� The use of individual mod�
eling approaches may lead to nontransferable models� A method for system design
should provide enough �exibility to allow designers to make full use of their creative
resources while guiding them towards uniform descriptions�

� Order independence� The descriptions should be order independent as much as possi�
ble� What is needed is to decouple the meaning of the description from the �nal text
order as much as possible�

�This de�nition is a derivative of the Boyce�Codd normal form from relational database theory	

�� CHAPTER ��� STYLE RULES FOR CLASS DICTIONARIES

� Viscosity� A viscous notation resists local changes� Correspondingly� a viscous nota�
tion contains many dependencies between its parts� so that a small change requires
several implied adjustments� The notation should have the right amount of viscosity�
Viscous notations cause more work� yet they often have advantages� Their higher
redundancy helps to detect certain errors and sweeping accidental changes are less
likely� The extra work involved in using viscous notations may encourage users to
think about their requirements more carefully�

� Role�expressiveness� The reader of a sentence must discover the role of each component
of the sentence� Notations that show their structure clearly are called role�expressive�

Since the reader of a sentence has to recognize the intentions from the text� the presence
of keywords reliably associated with particular intentions is helpful� This implies that
each part of a class should be introduced by some keyword� This in turn implies that
each alternative of an alternation class should start with a di�erent keyword� Therefore
the need for role�expressiveness is a strong motivator to use the LL	�
 conditions for
class dictionaries� The LL	�
 conditions improve readability� a fact that is well known
since the early days of Pascal in the late ����s� Role�expressiveness also implies that
keywords should not be overused� each keyword should indicate one intention� A rich
set of keywords� however� also has disadvantages� It makes the language less uniform
and increases the vocabulary to be learned�

To make a notation easier to use it is often necessary to provide tool support� These tools
should keep track of dependencies that are expressed by a sentence� and the tools should
make the dependencies easily accessible to the user 	for example� by cross�referencing or
browsing
�

���� EXTENDED EXAMPLES

In this section we show some extended examples that have been designed with the techniques
explained in this section�

������ VLSI Architecture Design

The functionality and structure that is put onto a chip is often naturally expressed in
parameterized form� n�bit carry�look�ahead adder� n�bit multiplier� n�bit sorter� n�bit bus�
n�processor array� etc� It is very natural to de�ne the hardware on a chip in our class
dictionary notation and then to express the functionality of the chip as an object�oriented
program� The next class dictionary de�nes the structure of a Batcher sorting network in
parameterized form� The structure of a sorting network is simple� The input consists of n
numbers that are split into two parts of equal size� Each half is sorted in parallel by a sorting
network of half the size� The output of the two half�sized sorting networks is sent through a
merging network� The output from the merging network is the the desired sorted sequence�
Such recursive structures have many applications� For example� a Batcher odd�even merging
network has a similar structure� Therefore we parameterize the structure description and
introduce the parameterized classes DivideAndConquerNetwork� Induction� and NonTrivial�

���� EXTENDED EXAMPLES ��

Merge � �network� DivideAndConquerNetwork�List�Comparator��

Sort � �network� DivideAndConquerNetwork�Merge�

DivideAndConquerNetwork�Q� �

�input� �input� List�DemNumber�

�output� �output� List�DemNumber�

�local� �local� Induction�Q�

Induction�Q� 	 NonTrivial�Q� � Trivial�Q�

NonTrivial�Q� �

�left� �left� DivideAndConquerNetwork�Q�

�right� �right� DivideAndConquerNetwork�Q�

�postProcessing� �postProcessing� Q

Trivial�Q� �

List�S� � �S�

Comparator � �c�

It is interesting that at this level of abstraction merging and sorting are almost identical�
The only di�erence is that the sorting network uses a merger for post processing and the
merging network uses a list of comparators� This class dictionary can be used in several
ways for simulating� for example� sorting networks�

The parameterized class DivideAndConquerNetwork will be useful for many other appli�
cations�

An example sentence for a Merge�object is

input � � � �

output � � � �

local

left

input �!

output �� ��

local

right

input �� ��

output �� ��

local

postProcessing

c c

Indentation is used to show the recursive structure of the network�
In the next example we de�ne the structure of a Newton�Raphson pipeline� The pa�

rameterized classes are� ProcessorArray and List�

NR � �array� ProcessorArray�NewtonRaphsonElement�

ProcessorArray�Processor� �

�input� �input� Ports

�local� �processors� List�Processor�

�output� �output� Ports

��� CHAPTER ��� STYLE RULES FOR CLASS DICTIONARIES

List�Processor� � �Processor�

Register � �Register�

�input� �i� DemReal

�local� �store� DemReal

�output� �o� DemReal

NewtonRaphsonElement � �NewtonRaphsonElement�

�input� �input� Ports

�local�

�argumentSave� Register

�estimateSave� Register

�output� �output� Ports

Ports � �argument� DemReal �estimate� DemReal

The parameterized class ProcessorArray will have many more applications than just
de�ning a Newton Raphson pipeline�

������ Business Applications

We describe the example from �TYF��� in our class dictionary notation� The constraints
are not formulated in the class dictionary� Instead� they are formulated as part of the
object�oriented program that works on the data�

Company � �divisions� List�Division�

Organization�SubOrganization� SuperOrganization� �

�contains� List�SubOrganization�

�partOf� SuperOrganization�

�managedBy� Employee

List�P� � �P�

Division � �Division�

�org� Organization�Department� Company�

Department � �Department�

�org� Organization�Employee� Division�

Employee 	 Manager � Engineer �

Technician � Secretary

�common�

�belongsTo� Department�

�manages� Department�

�heads� Division�

�marriedTo� Employee�

�skills� List�Skill�

�assignedTo� List�Project�

Project �

�requiredSkills� List�Skill�

����� SUMMARY ���

�location� Location

Manager � �Manager�

Engineer � �Engineer�

�hasAllocated� PC

�belongsToProfAssoc� List�ProfAssoc�

Technician � �Technician�

Secretary � �Secretary�

Skill � �skill�

PC � �pc�

ProfAssoc � �assoc�

Location � �location�

Next we describe a class dictionary for an other company� The classes Order� Customer�
and Product are normalized� This example shows the bu�ering of terminal classes�

Company �

�orders� �orders� List�Order�

�customers� �customers� List�Customer�

�products� �products� List�Product�

Order � �Order� �orderNumber� OrderNumber

�orderDate� Date

�customer� Customer

�quantityOrdered� DemNumber

�product� Product

Customer � �Customer� �customerNumber� CustomerNumber

�customerName� Name

�customerAddress� Address

Product � �Product�

�productNumber� ProductNumber

�productName� Name

�productPrice� Money

Address �

OrderNumber � DemNumber

CustomerNumber � DemNumber

ProductNumber � DemNumber

Name � DemString

Money � DemNumber

Date �

List�P� � �P�

��� SUMMARY

This chapter used to play an important role in the Demeter Method� With the advent of
adaptive software� the role of the chapter has diminished somewhat� The rules described

��� CHAPTER ��� STYLE RULES FOR CLASS DICTIONARIES

here are still useful since a clean class dictionary is important�

����� EXERCISES

Exercise ���� What is the relationship between a noninductive vertex and a useless vertex�
A vertex is useless� if it cannot be instantiated in a �nite� noncyclic object�

����� BIBLIOGRAPHIC REMARKS

� Database design�

A paper by John and Diane Smith �SS��� outlines some of the features of the Deme�
ter system� Their aggregation generalization concepts correspond to our construc�
tion alternation concepts�

Normalization of relational databases is explained in �Ull��� and �Sal���� For inter�
esting relationships between relational database design and object�oriented database
design see �Kor����

Types and subtypes are discussed in �HO����

� Complexity�

Whether the language equivalence problem for deterministic context�free grammars
is decidable or not is an open problem� Class dictionaries not using recursion de�ne
regular expressions of a restricted form 	LL	�
 restrictions
� The equivalence problem
for general regular expressions is NP�hard �GJ����

� Transformations�

The term �promotion of structure� is from �SB����

� Predecessor�

Since ���� we have designed or participated in the design of numerous class dictio�
naries of various sizes� ranging from a couple of lines to a few hundred lines� Some of
these class dictionaries were written for the predecessor of Demeter� GEM �GL��b��
The class dictionaries were used for applications such as silicon compilation for Zeus
�GL��a�� translation between intermediate forms for automatic test generation� trans�
lation of algebraic speci�cations into Prolog� programming language implementation�
etc�

� Cognitive aspects�

�Gre��� describes cognitive dimensions of notations�

Chapter ��

Case Study� A Class Structure

Comparison Tool

In this chapter we go through the process of developing a simple programming tool for com�
paring class dictionaries� We use the Demeter Method for adaptive software development
that we developed piece by piece in earlier chapters� The Demeter Method allows you to de�
velop adaptive software� which is highly generic software that needs to be instantiated� The
Demeter Method is a two�phase software development method� In phase one the adaptive
software is developed and in phase two the adaptive software is instantiated by customizers�
The phases are used iteratively�

Adaptive software consists of three parts�

� succinct constraints C on customizers

� initial behavior speci�cations expressed in terms of C

� behavior enhancements expressed in terms of C

The succinct constraints express the set of permissible customizers� A key ingredient
to adaptiveness is that the constraints are succinct� that is� they are expressed in terms
of partial knowledge about a larger structure� The initial behavior speci�cations express
simple behavior� The behavior enhancements express in terms of the constraints� how the
simple behavior is enhanced to get the desired behavior�

The constraints are graph constraints that are expressed� for example� in terms of edge
patterns and propagation directives� The initial behavior speci�cations are propagation
patterns� possibly with transportation directives� but without the wrappers� They de�ne
traversals and transportations� The enhancements are the vertex and edge wrappers�

���� THE DEMETER METHOD

We �rst give a summary of the method�

��

��� CHAPTER ��� CASE STUDY� A CLASS STRUCTURE COMPARISON TOOL

������ The Demeter Method in a Nutshell

The following artifacts are derived from the use cases�

� Derive a class dictionary�

Start with requirements� written in the form of use cases and a high�level structural
object model that describes the structure of application objects� The structural object
model provides the vocabulary for expressing the use cases� A use case describes a
typical use of the software to be built� From the high�level structural object model we
derive a class dictionary to describe the structure of objects� The class dictionary has
secondary importance since� after the project is complete� it is replaceable by many
other class dictionaries without requiring changes or only a few changes to the rest of
the software�

� Derive traversal and transportation patterns without wrappers�

For each use case� focus on subgraphs of collaborating classes that implement the use
case� Focus on how the collaborating classes cluster objects together� Express the
clustering in terms of transportation patterns� Express the collaborations as propaga�
tion patterns that have minimal dependency on the class dictionary� The propagation
patterns give an implicit speci�cation of the group of collaborating classes� focusing
on the classes and relationships that are really important for the current use case�

� Derive the wrappers�

Enhance the propagation patterns by adding speci�c functionality through wrappers
at vertices or at edges of the class dictionary� The wrappers use the object clusters�
Derive test inputs from use cases and use them to test the system�

Next we describe the steps taken during adaptive software development and maintenance
in more detail�

������ Design Checklist

We give a summary of the software engineering process for adaptive software� When applying
the Demeter Method� the following activities are performed iteratively�

�� Develop maintain use cases 	and the high�level object structure

Use cases are used throughout adaptive software development and maintenance� Use
cases are often described in English� Sometimes a class dictionary is developed to
de�ne a use case notation and a tool is used to test the software after development
by driving it with use cases written in the use case notation� In other words� the use
cases serve as test scripts�

Use cases are used to develop and test class dictionaries and propagation patterns�

Organize use cases into a list where the easy use cases are �rst and the most complex
uses cases are last� Find relationships among the use cases such as when one use case
calls another use case or when one use case is a re�nement of another use case� The list
of use cases you produce should contain a small set of functionally simpli�ed use cases

