

Software Product Lines: A succulent Minestrone with lots of Flavours

Giancarlo Succi
Department of Electrical and Software Engineering,

University of Calgary
2500 University Dr. NW., Calgary, AB, Canada T2N 1N4

E-mail: Giancarlo.Succi@enel.ucalgary.ca

Abstract
Software product lines aim at reducing the cost and
increasing the quality of software products by producing
multiple products synergistically. The underlying
assumption is that the benefits from the reuse of domain
specific software components will offset the extra cost for
the increased organizational complexity.
Product lines benefit from a collection of effects and
technologies, such as branding, minimal marginal costs,
network externalities, software reuse, and modularity in
the development process.

It is essential for a firm embracing a software product line
approach to determine the extent to which each of these
effects and technologies will be taken into account.
However, this is not an easy task because it requires a
deep understanding of the target market, its incumbents,
and the firm’s own position, and technical and financial
resources.

1. Introduction
Software product lines are one of the most recent
proposals to improve the effectiveness and the efficiency
of software firms.

The aim of software product lines is to produce multiple
products –often in a given domain, trying to exploit scope
economies. Scope economies arise when the cost to
develop multiple products or deliver multiple services
together is less than the sum of the cost of developing the
products or delivering the services individually. Scope
economies are common in knowledge intensive sectors
(Baumol et al., 1982). The underlying assumption is that
the benefits from the reuse of domain specific software
components will offset the extra cost for the increased
organizational complexity.

Software product lines are appealing; some research has
been already performed in the subject, such as (Bass et
al., 1999; De Baude and Knauber, 1998). Reuse has been
considered the cornerstone of software product lines –see
for instance the very clear paper of Poulin (1998).
Sometimes additional factors has been taken into account,
such as in (Clemens, 1999); in most of the cases, they
were mainly impeding factors.

We think that product lines do benefit from a collection of
phenomena and technologies, a very important one being
reuse. The selection of the target phenomena and
technologies to establish a software product line is a
strategic decisions based on several factors, such as the
structure of the market, the financial wealth of the
producers, the stability of the application domain, and so
on.

This paper is organized as follows. Section 2 provides a
definition of software product lines. Section 3 presents the
phenomena and the technologies that can support the
establishment of software product lines. Section 4
evidences the strategic decisions that are required to
establish a successful software product line. Section 5
draws some conclusions.

2. Software product lines
Software product lines are the establishment of a synergy
between the production of multiple products by a software
producer or a coordinated group of software producers.

The core idea is to aim at a synergy between the
production of multiple products motivated by presence of
scope economies: developing multiple products with
some interaction between the lifecycles of them is more
economically profitable than developing them
individually.

ILovato
G. Succi (June 1999) “Software Product Lines: a Succulent Minestrone with Lots of Flavours!” Proceedings of the 1999 International Conference on Software Engineering and Knowledge Engineering,(SEKE ’99), Kaiserslautern, Germany

Product lines do not require a single producer; also groups
of producers can implement them successfully. However,
the presence of group of producers require coordination,
either explicitly defined as a partnership –look for
instance at all the Sun-supported firms producing Java-
based software, or implicitly occurring as consequence of
standardization or other coordination mechanisms –look
at all the history of the Unix operating system. The work
by Gaio and Zaninotto (1998) contains an outstanding
discussion of this problem; unfortunately, no English
translation of it exists yet. In the remaining of this paper
we will use the term “producer” generically to refer both
to a single producer and to a group of producers.

Products need not be in the same problem or application
domain, even if it is more “natural” to exploit product
lines in a given domain because of network externalities
and software reuse –more on this later.

3. Phenomena and technologies supporting
software product lines
Scope economies do not just happen. They require careful
investment and smart strategies. In particular, it is
important to take advantages of phenomena and
technologies that support the establishment of profitable
product lines, such as:
� Branding
� Network externalities
� Minimal marginal costs of production
� Sharing of organizational costs
� Software reuse
� Modularity

Branding arises when people prefer a brand they have
experienced in the past based on expectations they have
on the future behaviour of such brand (Marder, 1997).
Branding is a psychological phenomenon. Branding is
especially strong in software, where the expectations of
quality, reliability, and usability of a product are usually
not met. Branding supports the establishment of a product
line. Users will feel more comfortable in buying a product
of a firm or a consortium if they are already satisfied by
another product with a similar brand from the same firm
or consortium or from a firm or consortium endorsing the
new product.

The marginal cost to produce an extra unit of a software
product is minimal. Therefore, producers can segment the
market freely, with the only constraint of opportunity
costs. This can be profitably used dealing with network
externalities.

Network externalities occur when users value a product
more when there are other users of such product or of
other “compatible” products (Economides, 1996).
Software is an industry with strong network externalities

coming from the need to exchange information between
users and products and the advantage of exchanging
experience among users of a product. Developers of
product lines can organize the cross-compatibility of the
different products to maximize network externalities;
users of a product in a product line will achieve much
higher benefit buying another product in the product line
rather than a product from competitors, ceteribus paribus.
In addition, the minimal marginal cost of software
products can be profitable used to enlarge network
externalities. Product lines developers can provide a
product in the product line free or at a substantial discount
creating value for the other, fully priced products in the
product line.

Sharing organizational costs refer possible positive
synergies in marketing and distributing the software
products in the line. In marketing, while advertising the
feature of one product of the line it is possible to evidence
the need for another product in the line. In distribution, it
is possible to take advantage of the distribution channels
of one product of the line to distribute also the other
product. Web-based marketing and distribution is an
example of such possible synergies; software products of
the same line may share the same web server and may
have in their pages links to each-others showing not only
the features of one product but the network externalities
arising from using multiple products.

Software reuse is the reuse of existing software
components in new products. Software reuse is believed
to increase productivity and quality. A product line offers
the opportunity of identifying common components in the
line, thus fully exploiting the advantages of software
reuse. Often product line reuse is based on domain-
centered software architectures (De Baude et al., 1998;
Bass et al., 1998).

Modularity is the attempt of reducing the complexity of
the production by organizing it into separate, cohesive
units that relate one-another according to a well-defined
protocol (Simos, 1982). Modularity can be applied to the
product, that is the software system being developed –this
is the essence not only of “Modular Programming” but
also of most of the proposed programming paradigms,
including object orientation, logic programming, and
functional programming. Modularity can be applied to the
development process itself. This is particularly useful in
software product lines where the complexity of
production tend to be very large.

4. Strategies and decisions
From the analysis of the phenomena and technologies it is
evident that there are two order of scope economies that
can come from product lines:

� Savings coming from the added value that products
in the product lines have for users with respect to
individual products

� Savings coming from distributing some of the fixed

costs of components across multiple products; this
include synergetic marketing (Churchill and Peter.,
1998), sharing distribution channels, software reuse

These scope economies are present throughout the
development cycle. Figure 1 presents a summary of this
view in a very simplified software product line lifecycle.

Taking advantage of these phenomena and technologies
may require expensive up-front and operational costs.
This is why, deciding on the production of product lines it
is important to determine where the savings are going to
be most relevant for the target product line and then
studying whether such savings are likely to require
feasible investments.

A careful analysis of the strategic positioning of the firm
is required, especially with reference to the supporting
phenomena and technologies. Factors requiring specific
attention follow.
� The structure of the market
� The position of the producer in the market
� The financial situation of the producer
� The structure of the users’ base
� The expected variability in the application domain
� The technical competence of the producers
� The quality of the process of the producer

The structure of the market is the first factor to take into
consideration. Producers should try to understand (1)
whether the market they plan to enter is a natural
monopoly, is an oligopoly, or is an open market(Baumol
et al., 1992); (2) the number, the mutual positions, and the
wealth of the incumbents; (3) the compatibility and
interoperability of the products of the incumbents; (4) the

relations between the target market and other lateral
markets in terms of compatibility or complementarity of
products. This understanding is important for introducing
any product, but is critical for product lines where to goal

is to achieve a synergy from the presence of multiple
products. If the market is a natural monopoly with a very
strong incumbent and very limited relations with other
markets, there is little hope to succeed at all. Open
markets with various relations with other markets are the
best for product lines and offer opportunities for network
externalities. In addition, the structure of the market
influences the possibility of sharing organizational costs
between products in the product line.

The position of the producer in the market refers to
whether the producer is a new entrant, an already
established incumbent or the market leader. This is
essential to understand the possibility to take advantage of
network externalities and branding effects. A new entrant
in a market close to lateral markets is unlikely to take
advantage of branding, but can still try to take advantage
of externalities, if some of the incumbents have products
that are open to or interoperable with compatible
products. An incumbent in a market open to later markets
can take full advantage of both branding and network
externalities to establish a software product line.

The financial situation of the producer, the reliability of
the predictions of the future users’ base and the expected
variability in the application domain are the key factors in
determining the scope of the strategy and consequently
the investment to make. Producers are not advised to
perform large up-front investments, such as establishing a
domain-oriented library of reusable components, when
1. they are short of funds, or
2. the target markets do not offer reliable predictions of

the future users’ base, or

Figure 1: Opportunities for scope economies in software product lines

Lifecycle Phase
Conception &
Organization

Design Development Marketing Deployment

Network
Externalities

Branding
Software

Reuse

Minimal
Marginal Costs

Sharing
Organizational

Costs

Modularity

3. the products are likely to change a lot without a
predictable variation pattern –for instance, for the
high rate of innovation.

On the contrary, when producers can invest money in
uncertain operations, when the market is fairly stable, or
when the variability of the application domain is
predictable it could be wise to establish a fully-fledged
reuse program.

In addition, the financial situation of the producers and
the structure of the users’ base influence strongly how to
take advantage of minimal marginal costs. The structure
of the users’ base is also a key factors in the
determination of the feasibility to share organizational
costs.

The technical competence of the producer must be
considered before starting a reuse program, especially if
couple with the introduction of new technologies, such as
object orientation. It would be risky to introduce object
orientation in a business environment with experienced
Cobol programmers, without an up-front commitment to
devote time and effort to training. In addition it is
important to analyze it before deciding to adopt any

business process reengineering or improvement strategy,
such as the adoption of a modular development process.

The quality of the process of the producer is a reference
point when deciding to adopt a modular production
process.

Table 1 contains a summary of the discussion. The rows
contain the major factors to consider before establishing a
given product line. Columns 3 to 8 contain the major
phenomena and technologies that help establishing a
product line. Column 2 refers to the strategic decision of
whether or not to start a software product line. An X in a
cell indicates that the corresponding factor should be
considered when deciding on taking advantage of the
corresponding phenomena / technology.

Notice that table 1 is clearly implying that it is not wise to
try to use all the phenomena and technologies to establish
one single software product line. Producers’ strategists
should careful select only the few essential ones. In
particular there can be successful product lines not taking
advantage at all on software reuse!

5. Conclusions
The establishment of a software product line is a complex
operation that requires considerable more attention than
just introducing a product, since there are complex
interactions among products in the product lines and
between products in the product lines and other
incumbent.

A successful introduction of a product line can rely on
phenomena and technologies, such as branding, network
externalities, minimal marginal costs of production,
sharing of organizational costs, software reuse, and
modularity.

Go/Stop

Branding Network

Externalities

Minimal
Marginal

Cost

Sharing
Org. Costs

Software
Reuse

Modularity

Structure of the
market X X X

Position of the
producer in the

market

X

X

Financial
situation of the

producer

X

X

Structure of the
users’ base

 X X X

Expected
variability in the

application
domain

X

Technical
competence of
the producers

X

Quality of the
process of the

producer

X

X

Table 1: Factors to consider when deciding on phenomena / technologies to support software product lines

However, such devices do not come for free and their
successful applications depend on a careful study of the
operating environment. In particular, producers should
always have a clear picture of what they are aiming to do,
where the competition is and what it is planning to do,
and what are the financial and technical resources
available.

This does not solve at all the problem of software product
lines, it just rationalize some of the problems involved
with their successful establishment.

Intentionally, some aspects have been completely left out
since they are more commonly found in software
engineering papers, such as the extent to which reuse
should be applied, the decision of generality vs.
specificity in the domain components, the prediction of
the variability in the domain, the model of externalities,
the role of a software architecture, and so on.

Also, as briefly mentioned, product lines require careful
coordination between products within the product line and
between subjects producing product lines.

Acknowledgements
This research has been partly funded by the University of
Calgary, the Canadian National Science and Engineering
Council, the Government of Alberta. The author thanks
Enrico Zaninotto for the stimulating discussions that are
the basis of this work, Francesca Pizzirani and Eric Liu
for diligently reviewing this manuscript.

References
Bass, L., G. Campbell, P. Clements, L. Northrop, D.

Smith. Third Product Line Practice Workshop
Report, CMU/SEI-99-TR-003, March 1999 (This
report can be found at the URL:
http://www.sei.cmu.edu/pub/documents/99.repor
ts/pdf/99tr003.pdf)

Bass, L., P. Clements, and R. Katzman. Software
Architecture in Practice, Addison Wesley, 1998.

Baumol, W.J., J.C. Panzar, and R.D. Willig. Contestable

Markets and The Theory of Industry Structure,
Harcourt Brace Jovanovich, Inc., 1982.

Clements, P. “Essential Product Line Practices”
Proceedings of the Ninth Annual Workshop on
Institutionalizing Software Reuse (WISR 9),
Austin, TX, January 1999 (This paper can be
found at URL:
http://www.umcs.maine.edu/~ftp/wisr/wisr9/fina
l-papers/Clements.html)

DeBaud, J.M., O. Flege, and P. Knauber. “PuLSE-DSSA
- A Method for the Development of Software
Reference Architectures”, Proceedings of the 3rd
International Workshop on Software
Architecture (ISAW-3), Orlando, FL, November
1998

DeBaud, J.M., and P. Knauber. “Applying PuLSE for
Software Product Line Development.”
Proceedings of the European Reuse Workshop
’98, Madrid, E, November 1998

Economides, N., The Economics of Networks,
International Journal of Industrial Organization,
16 (4) 1996

Gaio, L. and E. Zaninotto. Standardizzazione e modelli di
produzione post-fordisti CEDAM, Padova, I,
1998

Churchill, G.A. and J.P. Peter. Marketing – Creating
Value for Customers, 2nd Edition, Irwin
McGraw-Hill, 1998

Marder, E., The Law of Choice, Simon and Schuster Inc.,
1997

Poulin, J. “Software Architectures, Product Lines, and
DSSAs: Choosing the Appropriate Level of
Abstraction” Proceedings of the Eighth Annual
Workshop on Institutionalizing Software Reuse
(WISR 8), Ohio State University, Columbus, OH,
March 1997 (This paper can be found at URL:
http://www.umcs.maine.edu/~ftp/wisr/wisr8/pap
ers/poulin/poulin.html).

Simon, H., The Science of the Artificial, The MIT Press,
Cambridge, MA, 1982

