Feature Modularity
In Software Product-Lines

Don Batory _
Department of Computer Sciences
University of Texas at Austin

batory@cs.utexas.edu
WWW.CS.utexas.edu/users/dsh/

Copyright is held by the author/owner(s).
Presented at: Lipari School for Advances in Software Engineering
July 8 - July 21, 2007, Lipari Island, Italy

Feature Modularity
in Software Product-Lines

Don Batory
Department of Computer Sciences
University of Texas at Austin

batory@cs.utexas.edu
www.cs.utexas.edu/users/dshb/

Feature
Copyright is held by the author/owner(s). Oriented
Presented at: Lipari School for Advances in Software Engineering .

July 8 - July 21, 2007, Lipari Island, Italy Programmmg

Introduction

* A product-line is a family
of similar systems

— Chrysler mini-vans,
Motorola radios,
software

+ Motivation: economics

— amortize cost of building
variants of program

— design for family of
systems

» Key idea of product-lines

— members are
differentiated by features

— feature is product
characteristic that
customers feel is
important in describing
and distinguishing
members within a family

— feature is increment in
product functionality

Don Batory
UT-Austin Computer Sciences

intro2 !

-

Introduction

» History of applications

— 1986 database systems
1989 network protocols
1993 data structures
1994 avionics
1997 extensible compilers
1998 radio ergonomics
2000 prog. verification tools
— 2002 fire support simulator
— 2003 AHEAD tool suite
— 2004 robotics controllers
— 2006 peer-to-peer networks

is the study of feature
modularity in product-lines

— features are first-class
entities in design

— often implemented by
collaborations

Don Batory)
UT-Austin Computer Sciences intro3 !

-

Very Rich Technical Area...

* Integrates many subjects:
* compilers
e grammars
« artificial intelligence
+ databases
+ algebra
+ category theory
+ programming languages
» compositional programming
» compositional reasoning
* OO software design

* metaprogramming

+ domain-specific languages
+ declarative languages

* tensors

* generative programming

* model driven design

« verification

* collaborations

* refactoring

+ automatic programming

+ aspect-oriented programming

others...

Don Batory
UT-Austin Computer Sciences

intro4 !

-

Overall Goal

Tutorial Overview

» Place automation of large-scale software design
and construction on a practical and firm
mathematical foundation

» Feature orientation allows us to do this in a
simple way

e Tutorial shows how...

s

* Lecture 1: Introduction to FOP buck'le g
up!

* Lecture 2a: Tool Demos W\

* Lecture 2b: Verification of Feature Compositions

* Lecture 3: Program Refactoring, Synthesis, and

Model-Driven Design

Lecture 4: Feature Interactions and
Program Cubes

Don Batory .
UT-Austin Computer Sciences intro5

Don Batory .
UT-Austin Computer Sciences intro 6

Motivation

Introduction to FOP

a general approach to product synthesis

» Software products are:
* increasing in complexity
* increasing in costs to develop and maintain
+ decreasing in ability to understand

» Goal of SE is to manage and control complexity
* structured programming to
» object-oriented programming to] prggressively_
« component-based programming to... increasing abstractions

* Something is missing...
« future design techniques generalize today’s techniques
« tutorial to expose a bigger universe

Don Batory)
UT-Austin Computer Sciences intro7

Don Batory)
UT-Austin Computer Sciences intro8

Keys to the Future

Not Wishful Thinking...

* New paradigms will likely embrace:
— want software development to be automated
— not Java & C#, but high-level notations
— declarative specs — efficient programs

* Need simultaneous advance in all three fronts to
make a significant change

« Example of this futuristic paradigm realized
30 years ago

+ around time when many Al researchers gave up on
automatic programming

Don Batory .
UT-Austin Computer Sciences intro9

Don Batory

UT-Austin Computer Sciences intro 10

Relational Query Optimization

Keys to Success

Declarative query is mapped to an expression
» Each expression represents a unique program
» Expression is optimized using rewrite rules
Efficient program generated from expression

SaQL
select
statement

inefficient efficient

7
; A i
_’ relational relational code ’
m algebra m algebra generator

expression expression ’

efficient
program

» Automated development of query evaluation programs
hard-to-write, hard-to-optimize, hard-to-maintain
revolutionized and simplified database usage

*+ Used to specify and optimize query evaluation
programs

* |dentified fundamental operations of a domain
relational algebra

* Represented program designs as
compositions of relational operations

» Defined algebraic identities among operations to optimize
expressions

+ Compositionality is hallmark of great engineering models

Don Batory .
UT-Austin Computer Sciences intro 11

Don Batory .
UT-Austin Computer Sciences intro 12

Looking Back and Ahead

* Query optimization (and concurrency control) helped
bring DBMSs out of the stone age

* Holy Grail Software Engineering:

* Not obvious how to do so...

» Subject of this tutorial...

» series of ideas that generalize notions of
and lay groundwork for practical
and an
for software design

Don Batory .
UT-Austin Computer Sciences intro 13

Towards a Science of
Software Design

What motivates FOP and
how is it defined?

Don Batory .
UT-Austin Computer Sciences intro 14

Today’s View of Software

+ Today’s models of software are too low level

— expose classes, methods, objects as focal point of
discourse in software design and implementation

— difficult (impossible) to
 reason about construction of applications from components

+ produce software automatically from high-level specifications
(distance is too great)

* We need a more abstract way to specify and
reason about systems

A Thought Experiment...

Don Batory .
UT-Austin Computer Sciences intro 15

* Look at how people describe programs now...
don’t say which DLLs are used...

* Instead, say what a program offers its clients

why? because features align better with requirements

* We should specify systems as
few do this for software (now)
done in lots of other areas

Don Batory .
UT-Austin Computer Sciences intro 16

Dell Web Site
2l The Dl Online Store: Dulld Your System - Microsoft Inbemet Exploner A8 =101 =]
Be Ede Uew Fguortes Tock bk e = [
o]"
SYSTEM OPTIONS
Dell Precision Workstation 470 J
INTEL® AECIHS DURL PROTESE0R PERFORMARCE N AFLERLE, SIEEWISE CHASSIS
| KGN Piacessea muppsn 1AM Extences Mamary 08 Temralaoy
o Foon™ Procosaos T E0GHE, 2MB LT Cacin
Dual Core e " More Perfomance inthe Same Festpr

declarative DSL
to select features
of desired system

€ Inaek e an= Proosee 300G ZMB L2 Cashe [sdd 305
1 Rasn™ Precainot 7 I0GHE TMI LT Cache (ciednd in Prica]

2nd Processor (Must match speed selection abowe)

Stk ks ek

Don Batory
UT-Austin Computer Sciences

Chinese Menu — Declarative DSL

iz
i

i
it

i
5
]

.
.
m
0.
.
an
0,
0.
A1
L8

:
i

Don Batory
UT-Austin Computer Sciences

tro 18
intro l_:j

Methodology for Construction

* What methodology builds systems by
progressively adding details?

« Step-Wise Refinement
* Dijkstra, Wirth early 1970s

* abandoned in early 1980s as it didn’t scale...

* had to compose hundreds or thousands of transforms
(rewrites) to produce admittedly small programs

« recent work shows how SWR scales
— scale individual transform to a feature
— composing a few refinements yields an entire system

What is a Feature?

Don Batory intro 19 @ !
55

UT-Austin Computer Sciences

* Feature
* an elaboration or augmentation of an entity(s) that
introduces a new service, capability, or relationship

* increment in functionality

» Characteristics
« abstract, mathematical concept
* reusable
* interchangeable
* (largely) defined independently of each other

 lllustrate in next few slides

Don Batol .
A intro 20

UT-Austin Computer Sciences

5:
i

Tutorial on Features (Refinements)

Features are Interchangeable

Don Bat . !
T Aatn intro 21 —

UT-Austin Computer Sciences

—

Don Batory
UT-Austin Computer Sciences

intro 22 g ;

Features are Interchangeable

Features are Interchangeable

Don B: - .
gl intro 23 @

UT-Austin Computer Sciences

i |

Don Batory
UT-Austin Computer Sciences

intro 24 =
L

Features are Interchangeable

Features are Reusable

Don Bat . !
T Avstin intro 25 —

UT-Austin Computer Sciences l._.'

Don Batory . d
UT-Austin Computer Sciences intro 26 [ﬂl

Features are Functions!

——

O PersonPhoto beanie(PersonPhoto x)
!! !! PersonPhoto uncleSam(PersonPhoto x)

w PersonPhoto mustache(PersonPhoto x)

PersonPhoto lincolnBeard(PersonPhoto x)

Composing Features

Don Batory

UT-Austin Computer Sciences intro 27 [ﬂl

» Feature composition = function composition

= lincolnBeard(uncleSam(\ 8

Don Batory

UT-Austin Computer Sciences intro 28 [ﬂl

Large Scale Features

Composing Collaborations

» Called

 simultaneously modify multiple objects/entities
« refinement of single entity is called

« Example: Positions in US Government
» each defines a role

Mre] < 2[52]C

» At election-time, collaboration remains constant,
but objects that are refined are different

B$?A?135;?HWCOmPUtETSCie"CES intro 29 :_: . B?'?A?Jas(t?r:yCOmputerSciences intro 30 :_: .
Other Collaborations Example
» Parent-Child collaboration
Parent Child
* Professor-Student collaboration
Prof Student \Parent } ﬂ{ Ch.“ d ‘
[Parent]— Child |
Bg—?A?JaSt'?f‘rycomPUfefSCie"Ces intro 31 :_= : Bg'?A?Jas(!?;yCOmputerSciences intro 32 :_= :

Same Holds for Software!

Highly complex entities and relationships
In software can be synthesized by
composing generic & reusable
features

Feature Oriented Programming

Don Batory .
UT-Austin Computer Sciences intro 33

i
|

is the
study of feature modularity and programming
models for product-lines

+ a powerful form of FOP based on step-wise
development

+ advocates complex programs constructed from simple
programs by incrementally adding features

* How are features and their compositions modeled?

Don Batory .
UT-Austin Computer Sciences intro 34

The Theory

GenVoca and AHEAD

A Clue...

Don Batory .
UT-Austin Computer Sciences intro 35

i
f

» Consider any Java class C

* member could be a data field or method
* class C below has 4 members m1—m4

class C {
member ml;
member m2;
member m3;
member m4;

Don Batory .
UT-Austin Computer Sciences intro 36

Have You Ever Noticed...

« Contents of C can be distributed across an inheritance

Another Example...

» C23 decomposed further as:

hierarchy
class Cc1 {
member ml; class C2 extends Cl {
} member m2;
class C23 extends C1 { ¥
member m2;
member m3; class C3 extends C2
} member m3;
class C { class (€23 extends Cl { }
member ml; class C4 extends €23 { member m2;
member m2; member m4; member m3; = class C23 extends C3 {}
member m3; } }
member m4;
} class C extends C4 {}
Bg?A?Jas'!?nryComputer Sciences intro 37 ; Bg?A?Jas(!(i)nryComputer Sciences intro 38 ;
Observe... Look Familiar?? Remember Algebra?

+ Significance: class definition need not be
monolithic, but can be built by incrementally
composing reusable pieces via inheritance

* Nothing special about the placement of members
m1...m4 in this hierarchy except...

: member can be introduced as
long as all members it references are defined

* requirement for compilation, step-wise development

Don Batory .
UT-Austin Computer Sciences intro 39

-

* Consider sets and union
operation (VL)

+ Vector addition (+)

— is commutative

— commutative almost like inheritance

almost like inheritance...

Cl = [ml1,0,0,0]

Ccl ={m}
c2 = [0,m2,0,0]
c2 = { m2 }
C3 = [0,0,m3,0]
3 = {m3 }
C4 = [0,0,0,m4]
c4 = { mé }
C=Cl + C2 + C3 + C4
C=ClucC2uUcC3ucs

{ ml, m2, m3, mé } = [ml, m2, m3, m4]

Don Batory .
UT-Austin Computer Sciences intro 40

-

A Closer Analogy

Operation We Want...

* Vector (=)
» Vector join lays vectors end-to-end to define a path

Cl = (mllololo)
c2 = (0,m2,0,0) C1—C2—>C3—C4#C4—>C3—>C2—C1
c3 = (0,0,m3,0)
c4 = (0,0,0,m4)
B
—
path followed by
A — B is different
A—B#B— A A A than B — A:
B end point is the same
B?A?Jas‘!?nryc:)mputer Sciences intro 41 F

* Is not quite inheritance...

« want to add new methods, new fields, and refine existing
methods like inheritance

« also want constructors to be inherited and refined as well,
(inheritance doesn’t provide this)

class C; { class C, { _ |eclass ¢y, {
constructor, ° constructor, - constructor,
} } constructor,
}
The operation « we want is called
Don B ; |
Ug?Auas(!(i)nryComputer Sciences intro 42 F

Syntax of Class Refinement

Algebraic Formulation

» Suppose program P
has single class B

» Composition of R with
P defines a new

program N:
taer s (P casen
int x;

}

* Refinement R adds y, z()

Don Batory .
UT-Austin Computer Sciences intro 43

+ Base programs are Composition is an

// constant P N =R(P)
class B { int x; }
= R ®© P
yields:
* Refinements are class B {
int x;
// function R int y;
. void z(){...}
refines class B {)

int y;
void z(){...}

Treat programs as values
is metaprogramming

Don Batory .
UT-Austin Computer Sciences intro 44

Another Example

// constant C1

Method Refinement ala Inheritance

(] base method

class C { member ml; }
result =
refines class C { member m2; } // function C2
refines class C { member m3; } // function C3
refines class C { member m4; } // function C4 void foo() {
= . /* do something */
}
» Composition is an or
void foo() {
cC =c4(cC3(c2(c1)))
= /* do something */
=C4 o C3 @ C2 o Cl
}
B?A?Jas‘!?nryc:)mputer Sciences intro 45 F Bg?A?Jas(!(i)nryComputer Sciences intro 46
Connecting the Dots... Connecting the Dots...
« A has meaning when it
« Scalability implements a feature

* refinement is not limited to a single class

modularize refinements of multiple
classes

» adding new classes that can be refined is

Don Batory .
UT-Austin Computer Sciences intro 47

* ever add a new feature to an existing OO program?
+ several existing classes may be refined

» several new classes may be added

Don Batory .
UT-Austin Computer Sciences intro 48

Synthesis Paradigm

Note: each

Program P = featureZ e featureY e featureX | feature updates
multiple classes

class1 class2 class3 class4

featureX | :

'
_————

featureY

featureZ | ;

By composing features, packages of fully-formed classes are synthesized

Don Batory .
UT-Austin Computer Sciences intro 49 r

Contributors to this View...

» Many researchers have variants of this idea:

— Dijkstra, Wirth 68
— Dijkstra 68, Batory 84
— Kang 90, Gomaa 92...

— Reenskaug 92, Lieberherr 95,
Mezini 03

— Boerger 96
— Kiczales 97, et al.
— Ossher-Harrison-Tarr 99

Don Batory .
UT-Austin Computer Sciences intro 50

Connecting the Dots...

* You can always decompose software in this manner
« trick is that your refinements are reusable
« that’s the connection with features, product-lines
« features are reusable — so too must be their implementations

+ software that is not designed to be reusable, composable, etc. with
other software won’t be — this is or

(ICSE 1995)

— feature implementations are
designed with compositionality, reusability in mind

Don Batory . L
UT-Austin Computer Sciences intro 51 f

GenVoca

esis + A

The First Generation

Don Batory .
UT-Austin Computer Sciences intro 52

GenVoca (1988,1992)

» Equates constants, functions e A
with features or
or

+ Constants:
f —base program with feature f
h — base program with feature h

« set of constants
(base programs)

« functions

+ Functions (program refinements)

i ® x —adds feature i to program x

M={fh,...ij ...}
j ® x — adds feature j to program x

Function Composition

» Multi-featured applications are

appl=ief — application with features f and i
app2=jeh — application with features h and j
app3 =iejef — your turn...

Bg?A?Jas'!?nryComputer Sciences intro 53 ; Bg?A?Jas(!(i)nryComputer Sciences intro 54 ;
Expression Optimization Generalization of Relational Algebra
+ Constants, functions represent both a feature and its * Keysto SUPCGSS of Relat'onal Optlmlzers
implementation * expression representations of program designs
« different functions can be different implementations of the same feature * rewrite expressions using algebraic identities
k, ex // adds k with implementation #1 to x
k, ex // adds k with implementation #2 to x
* domain model is an for a domain or product-line
» When application requires feature k, it is a matter of optimization
to determine the best implementation of k — is set of operations (constants, functions) that represent
- counterpart of relational optimization stereo-typical building blocks of programs/members
- more complicated rewrites possible too — compositions define space of programs that can be synthesized
. See: given an algebra:
» Batory, et al. "Design Wizards and Visual Programming Environments
for GénVoca Generators”. IEEE TSE, May 2000. — there will always be algebraic identities among operations
— these identities can be used to optimize expression
representations of programs, like relational algebra
Bg?A?Jas(!li)nryComputer Sciences intro 55 ; Bg?A?Jas(t(i)nryComputer Sciences intro 56 ;

Scaling Program Generation

AHEAD:
The Next Generation

lgebraic Hierarchical Expressions for
pplication Design

Don Batory .
UT-Austin Computer Sciences intro 57

]
J

» Generating code for an individual program is OK,
but not sufficient

+ Today’s systems are ,
but groups of collaborating programs

client-server systems, tool suites (IDEs)

* Further,

architects routinely use many knowledge representations
formal models, UML models, makefiles, documents, ...

* Need 4 insights to capture these ideas

Don Batory .
UT-Austin Computer Sciences intro 58

Insight #1: Platonic Forms and Languages

Insight #2: Generalize Features

Each program representation captures different
information in different languages

A
Y
vAy <(()= vAg¢
<1 > DVQ <3 >
ZAA ! VA
A N !
4 D vAd
< >
N < >
v - DVQ

.ja\;aj |.htr;;lj |.cllassJ ‘ xml J \‘\.»perfj

We want all these representations in a single module

Don Batory .
UT-Austin Computer Sciences intro 59

i
i

* When a program is refined, any or all of its
representations may be updated

* Ex: Add a new feature F to program P changes:

code (to implement F)
documentation (to document F)
makefiles (to build F)

formal properties (to characterize F)
performance properties (to profile F)

* This is a collaboration

Don Batory .
UT-Austin Computer Sciences intro 60

Vectors and Vector Refinements

» A program is a vector of representations

Vector Representations

- : P1 F . PO
» Features refine vectors component-W|se
code, Acodeg . code,
PO P1 P2
F G
codey | —————| code code, « GenVoca model . . .
binary, Abinaryg . binary,
+ constant PO =
. . . + function F
binary, binary, binary,
make, Amakeg . make,
make, make;, make,
- - doc, Adoce . doc,
g + Still need another idea
0oc, _— doc;, doc,
Bg?A?Jas'!?nryComputer Sciences intro 61 ; Bg?A?Jas(t(i)nryComputer Sciences intro 62 ;
Insight #3: Generalize Modularity Modularization of Multiple Programs
- A is a containment hierarchy of related artifacts
system
J2EE EAR File \
client server
package / | \ / | \
/\ code UML HTML code UML HTML
class interface | | / \ | |

deployment HTML
methods fields methods constants descriptors files

* Generalize module hierarchies to arbitrary depth, contents

Don Batory .
UT-Austin Computer Sciences intro 63

i
J

*java, *.class state-machines *.html *.java, *.class class diagrams *.html

Modules contain all needed representations of a system

Don Batory .
UT-Austin Computer Sciences intro 64

-

Modules are Nested Vectors

» Program as vector idea recurses:
each subrepresentation can itself be a vector

Law of Composition

» Consider base program P and refinement R:

P=1[A4a, B, C, 1
system R =1[A2, + Cgs Dy]
}Stewx‘rc"em
] « implicit vector padding with blanks
client server + base programs have nulls (@)
Cwec Uw—c] SQWGJ Ust] « refinements have identity functions (i)
code, umL, HTML, code, umL, HTML,
* WhatisReP ?
* Module is a (nested) vector
* Name of a subrepresentation is unique;
it defines its index position in a vector
Bg?A?Jas‘!?nryComputer Sciences intro 65 F Bg?A?Jas(t(i)nryComputer Sciences intro 66 F
Law of Composition Inheritance!
* RePis:
2 = [A,, By, Cor class P {
R = [A, | . Cpr Dg] member Ap: Poo= DA By G]

RP = [AgA,, B,, Cg*C,, Dy 1

» Do you recognize this law?

Don Batory .
UT-Austin Computer Sciences intro 67

member B,;
member C;;

}

class R extends P {
member A;; R = [A, q D; 1
member Cg;
member D,

ReP = [A,eA,, B, C.eC,, D,]

class ReP extends R {}
Don Bat . |
U$?Auas!?nw00mputer Sciences intro 68 ?

Simple Implementation

 Module hierarchies = nested vectors

A =[Code, R.drc, Htm]

Code =[X.java, Y.java]

Htm =[W.htm, Z.htm]

Don Batory
UT-Austin Computer Sciences

intro 69 ﬁ

Simple Implementation

» Feature composition = directory composition

— produces directory isomorphic to inputs

= iy o T
E E = E
X.javaY.java W.htm Z.htm

l X.javaY.java

[]
x
2\
QO

X.java =

Don Batory

UT-Austin Computer Sciences intro 70

-

Simple Theory

» Result computed algebraically by
expanding and applying the law of composition

C=BeA
=[Codeg, R.drcg, Htmg] @ [Code,, R.drc,, Htm,]
=[Codeg ® Code,, R.drcg @ R.drc,, Htmg e Htm,]
=[[X.javag, Y.javag] e [X.java,, Y.java,], R.drcg @ R.drc,, [W.htmg,] @ [, Z.htm,]]

=[[X.javag ® X.java,, Y.javag e Y.java,], R.drcg @ R.drc,, [W.htmg, Z.htm,]]

Don Batory
UT-Austin Computer Sciences

intro 71 ﬁ

Note!

« Each expression defines an artifact to be produced

C =[[[Xjavag ® Xjava,,|Yjavag o Yjava,] [R.drcg o R.drc,|[[W.htmg| Z.htm,]]

Don Batory
UT-Austin Computer Sciences

intro 72 ﬁ

Polymorphism...

Example: Makefiles

» Composition operation e is
* law of composition says how vectors are composed

« different implementation of e for each representation

» e for code
» another e for html files, etc.

» But what does refining a non-code artifact mean?
» what general principle guides refinement?

» Instructions to build parts of a system

* When we synthesize code for a system,

we also have to synthesize a makefile for it

» Sounds good, but...

Bg?A?Jas'!?nryComputer Sciences intro 73 Bg?A?Jas(t(i)nryComputer Sciences intro 74 %
Makefile Makefile Refinements
note
collaborations!
mymake mymake \/&“[\&
main common clean main common clean
compile A depends | compile X delete *.class compile A depends | compile X delete *.class 8
compile B |:> compile Y compile B |:> compile Y 3
compile C compile Z compile C compile Z
compile D compile F gh
compile E delete *.ser g
a

command line> make main

Don Batory .
UT-Austin Computer Sciences intro 75

Question: what is a general paradigm for refining
non-code artifact types?

Don Batory .
UT-Austin Computer Sciences intro 76

Makefiles

<project > » class {
<target main dependss=“common” >=»Vvoid {
<compile A> {
<compile B>
<compile C>
</target> }
<target > » void {
<compile X>
<compile Y>
<compile Z>
</target> }
</project> }

Don Batory

Insight #4: Principle of Uniformity

» Treat all artifacts equally, as objects or classes
« create analog in OO representation

* Refine non-code representations same as code
representations

* That s, you can refine any artifact

» understand it as an object, collection of objects, or classes

Don Batory

UT-Austin Computer Sciences intro 77 E UT-Austin Computer Sciences intro 78 g
Big Picture Product Member Synthesis Overview
* Most artifacts today (HTML, XML, etc.) have . declarative DSL . generalizes RQO paradigm
a hierarchical structure " ‘l/ o “J « scales to large systems
. - ., EE:.»..... — ——i|
« But there is no refinement relationship among artifacts! . - - |
» what's missing are refinement operations for artifacts | artifacts of

* Need tools to refine instances of each artifact type
* MS Word?
 given such tools, scale step-wise refinement scales without bounds...

» Features modularize changes/additions to
+ so all artifacts (code, makefiles, etc.) are updated consistently

» Compositions yield consistent representations of a system
+ exactly what we want
»_simple, elegant theory behind simple implementation

Don Batory

UT-Austin Computer Sciences intro 79

-

generator artifactl

4

N h,eg,ef,
generator

artifact,

expression

4

composition

and optimization M{: generator

TITT

specified system

—

Don Batory
UT-Austin Computer Sciences

intro 80

-

Recommended Readings

Recommended Readings

+ Batory, O'Malley. “The Design and Implementation of Hierarchical Software Systems
with Reusable Components”. ACM TOSEM, October 1992.

» Batory, Sarvela, Rauschmayer. “Scaling Step-Wise Refinement”. |IEEE TSE, June 2004.

» Batory, Johnson, MacDonald, von Heeder. “Achieving Extensibility Through Product-
Lines and Domain-Specific Languages: A Case Study”. ACM TOSEM, April 2002.

» Batory, Chen, Robertson, Wang. “Design Wizards and Visual Programming
Environments for GenVoca Generators®. IEEE TSE, May 2000.

+ Batory, Singhal, Thomas, Sirkin. “Scalable Software Libraries”. ACM SIGSOFT 1993.

» Batory. “Concepts for a Database System Compiler”. ACM PODS 1988.

» Borger, Schulte. “Defining the Java Virtual Machine as Platform for Provably Correct
Java Compilation”. MFCS 1998.

» Baxter. “Design Maintenance Systems”. CACM, April 1992.

» Czarnecki, Eisenecker. Generative Programming — Methods, Tools and Applications.
Addison-Wesley 2000.

Czarnecki, Bednasch, Unger, Eisenecker. “Generative Programming for Embedded
Software: An Industrial Experience Report”. GPCE 2002.

Dijkstra. A Discipline of Programming. Prentice-Hall, 1976.
Ernst. “Higher-Order Hierarchies”. ECOOP 2003.

Garlan, Allen, Ockerbloom. “Architectural Mismatch or Why it is hard to build Systems
out of existing parts”. ICSE 1995.

Flatt, Krishnamurthi, Felleisen. “Classes and Mixins”. ACM POPL 1998.

Harrison, Ossher. “Subject-Oriented Programming (A Critique of Pure Objects)”.
OOPSLA 1993.

Kang, et al. “Feature Oriented Domain Analysis Feasibility Study”. SEI 1990.

Kang, et al. “FORM: A Feature-Oriented Reuse Method with Domain-Specific
Reference Architectures”. Annals of Software Engineering 1998, 143-168.

Kiczales, et al. “An Overview of AspectJ”. ECOOP 2001.

Don Batory

UT-Austin Computer Sciences intro81 !

-

Don Batory
UT-Austin Computer Sciences

intro82 !

-

Recommended Readings

Recommended Readings

+ Lieberherr. Adaptive Object-Oriented Software. PWS publishing, 1995.

* Mezini, Lieberherr. “Adaptive Plug-and-Play Components for Evolutionary Software
Development”. OOPSLA 1998.

* Mezini, Ostermann. “Conquering Aspects with Caesar”. AOSD 2003.

* Mezini, Ostermann. “Variability Management with Feature-Oriented Programming
and Aspects”. SIGSOFT 2004.

* McDirmid, Flatt, and Hsieh. “Jiazzi: new-Age Components for Old-Fashioned Java”.
OOPSLA 2001.

* Ossher and Tarr. “Using Multi-Dimensional Separation of Concerns to (Re)Shape
Evolving Software.” CACM October 2001.

* Ossher and Tarr. “Multi-dimensional separation of concerns and the Hyperspace
approach”. In Software Architectures and Component Technology (M. Aksit, ed.),
2002

* Reenskaug, et al. “OORASS: Seamless Support for the Creation and Maintenance of
Object-Oriented Systems”. Journal of OO Programming, 5(6): October 1992.

Simonyi. “The Death of Computer Languages, the Birth of Intentional Programming”.
NATO Science Committee Conference, 1995.

Smaragdakis, Batory. “Implementing Layered Designs with Mixin Layers”. ECOOP 1998.

Smaragdakis, Batory. “Scoping Constructs for Program Generators”. GCSE 1999.

Smaragdakis, Batory. “Mixin Layers: An Object-Oriented Implementation Technique for
Refinements and Collaboration-Based Designs “. ACM TOSEM April 2002.

Tarr, et al. “N Degrees of Separation: Multi-Dimensional Separation of Concerns”. ICSE
1999.

Van Hilst, Notkin. “Using Role Components to Implement Collaboration-Based Designs”.

OOPSLA 1996.

Don Batory
UT-Austin Computer Sciences

intro83 !

-

Don Batory
UT-Austin Computer Sciences

intro84 !

-

The AHEAD Tool Suite

Don Batory
Department of Computer Sciences
University of Texas at Austin

batory@cs.utexas.edu
www.cs.utexas.edu/users/dshb/

Feature
Copyright is held by the author/owner(s). Oriented
Presented at: Lipari School for Advances in Software Engineering

July 8 - July 21, 2007, Lipari Island, Italy Programming

Composer Tool

« Key toolin iS composer
e composer expands AHEAD expression to yield target system

feat321

composer

feat321 = feat3 ® feat2 ® featl

e

> composer -target=feat32l featl feat2 feat3

Don Batory
UT-Austin Computer Sciences tools 2

—f
f

Jak Files

* Program in extended-Java files
¢ Jak(arta) files

» Java + feature declarations, etc.
¢ Jak is an extensible language

* AHEAD is bootstrapped
* Most AHEAD tools are written in Jak

Don Batory
UT-Austin Computer Sciences tools3 ! ‘

Other Tools...

* Besides composer
— translates Jak files to Java files
— javac compiler
— Jak or Java file formatter/pretty-printer
« others...

composer lakzjava

> cd <model-directory>
> composer -target=...
>
> jak2java *.jak
>
> javac *.java
B'OFTAELSJZ(I?r:yComputer Sciences tools4 i

Jak-File Composition Tools

e composer invokes Jak-specific tools to compose
Jak files

¢ two tools now: jampack and mixin
¢ jak2java translates Jak to Java

jampack

Flattens “inheritance” hierarchies
¢ takes expression as input, produces single file as output
 basically macro expansion with a twist...

class top {
int a;

class top {

(froAm.jfglfl) void foo() {...} int a;
} void foo() {...}
- : K - [J
A jak jampackl J A.jak —»| jak2java H Ajava }
(from feat 2) or mixin refines class top { }
step #1 step #2
A jak P .
(from feat 3) }
B?TA?JZ(I?;yComDulerSciences tools 5 : ; B'??A?Jztl(ijr:y(:ompulerSciences tools6 : .
jampack mixin
e jampack may not be composition tool of choice * Encodes class and its refinements as an inheritance
 look at typical debugging cycle hierarchy
¢ problem: manual propagation of changes
¢ reason: jampack doesn't preserve feature boundaries SoUrCe “a/top.qjak”
class top { abstract class top$$A {
A.jak int a; int a;
(from f1) void foo() {...}[| '|veid fooO {...}
!) -
A.jak A.jak oT ; oo
(from f2) m (composed) _.| jak2java H Ajava | o SoUrCe “B/mid.jak”
refines class top { | <=
compose - blic cl t tends t A
translate int b; public class top extends top$$A {
Ajak debug int bar() {...}|——— |int b;
(from f3) update } int bar() {...}
propagate }
B?TA?JE:I?r:yComputerSciences tools 7 i ; B'DFTA?JZ(I?r:yCOmputerSciences tools8 i .

unmixin

» Edit, debug composed A .jak files

e unmixin propagates changes from composed file to
original feature files automatically

A.jak
(from feat 1)

e | <L unmixin je—) SR [~ jakziava | —{ Ajava |

(composed)

Composable Representations

e Current list...

. . AHEAD tools
*
— *.jak — extended Java files (Jakarta) are written in
— class extended Java.
— interface

— state machine (ex: embedded DSL) AHEAD has been
bootstrapped so
that its tools have

— *, equation — named expression files | been written using

AHEAD tools.
— *. b — grammar files
translate % . .
Ajak propagate debug — *,drc — design rule files
(from feat 3) update _ OtherS
Don Bat 7] Don Bat 7]
U$»1Auil(i)|1ry(:ompuler Sciences tools9 i U'Or'jAUZI(i)r:yCompuler Sciences tools 10 i
Demo... see files, Cultural Enrichment
composition
& Model Explorer - [R [Model]] 2/\/\._& =T . . .
Mol _reEat_Opons * Note algebraic underpinning...
| Model: = [T] | Navigator: 4= 4+ ED|CurremDirec1my |7 ‘ Editor: % (= | & e} ‘ Y
Tree Query Navigator ‘ : Cxfer AHEADCourse'3Toolintro'R h
IR // base yraumar for mini-YML. Define tokens first :‘
© [1class
& O zintertace - ——| [z — feat3zl e feat321
@ 9 3statern T TINES jak2java
& T 4eqn "{" LEFTP
@ [sure ") RIGHTE
® ?laj%fzr::;al’ /4 IDENTIFIER is predefined
mod | o [grammari 4/ Eirst production is start production
ref
tree & CJtwo Expr P = javac(jak2java(£3 e £f2 e £f1))
. thu equation : Exp
view [readme t | Exp Operator Expr :: Opr
I\ : (e
g — » Same paradigm as AHEAD
| LEFTP Expr RIGHTP :: PSurround L
; - progressively elaborating a containment hierarchy
Ln1 Col1
viewor [Euatian] (ous * can optimize expression (not this one...)
Status: Displayimg (he selected a lifac.
PN
Don Bat 1 I "] Don Bat "]
U?TAuzl?r:yComputerSciences flle view |_| tools11 i U'OFTAUZI?r:yComputerSciences tools12 7 ;

Cultural Enrichment

* To see connection, watch how module hierarchy is
transformed...
¢ adding new artifacts is example of module refinement

feat321

feat321 feat321

jak2java

A
composer

e AN 2 AN @ JONN

» Big picture: lots of operations on AHEAD modules
« seems that lots of optimizations are possible too...

A Simple Example

to illustrate concepts, tools

B‘??A?Jitt(ijlinompuler Sciences tools 13 7; B‘OF'TAE?;([?;yCompmer Sciences tools 14 7;
Domain of Graph Applications Example Family Members
* A grammar is a simple way to express family of o check
. . cycle checking
related applications
depth-first
* tokens are features graph search
« sentences are feature compositions directed connected regions
cycle checking
undirected depth-first vertex numbering
graph search
directed breadth-first connected regions undirected vertex numbering
graph search
breadth-first
B?TA?Jztt?r:yComputer Sciences tools 15 E B‘??Aiastl?r:ytiomputer Sciences tools 16 E

It is Easy to...

— Imagine a GUI tool
that allows you to
specify any possible

combination
8l (ol x]
graph type search type algorithms
« declarative language ® directed || ® depth [cycle
' undirected || T breadth [¥] number
* tool generates an I regions
explanation of your .
specification

 and identifies errors
(and suggests See next lecture on
corrections) when
combinations of features
are not possible

Don Batory
UT-Austin Computer Sciences tools 17

““‘

That's Easy...

» So too is creating the underlying FOP model:

Gpl = {
BFS — breadth first search
DFS — depth first search
functions
CYCLE — cycle checking
NUMBER — vertex numbering
REGIONS — connected regions
B‘??A?Jztl(i)r:yCompmer Sciences tools 18 E

Constructing Applications

PR L
graph type search type algorithms
@ directed (® depth [cycle demo

 undirected |) breadth [¥] number
[v] regions

e

I

automatic
mapping

graph_app = region e vertex e dfs e directed
= vertex e region e dfs e directed

Don Batory
UT-Austin Computer Sciences tools 19 i

Recommended Readings

« Batory, “A Tutorial on Feature Oriented Programming and the AHEAD Tool Suite”, January
2003.

« Batory, Sarvela, Rauschmayer, "Scaling Step-Wise Refinement", IEEE TSE, June 2004.

« Batory, Cardone, and Smaragdakis, “Object-Oriented Frameworks and Product-Lines”. SPLC
1999.

« Ernst, “Higher-Order Hierarchies”, ECOOP 2003.
« Holland, “Specifying Reusable Components Using Contracts”, ECOOP 1992, 287-308.
¢ Lee, Siek, and Lumsdaine, “The Generic Graph Component Library”, OOPSLA 1999.

¢ Lopez-Herrejon and Batory, “A Standard Problem for Evaluating Product-Line Methodologies”,
GCSE 2001.

* Smaragdakis and Batory, “Implementing Layered Designs with Mixin Layers”, ECOOP 1998.

« Smaragdakis and Batory, “Mixin Layers: An Object-Oriented Implementation Technique for
Refinements and Collaboration-Based Designs”, ACM TOSEM, March 2002.

Don Batory
UT-Austin Computer Sciences tools 20 i

Verification of
Feature Compositions

Don Batory
Department of Computer Sciences
University of Texas at Austin

batory@cs.utexas.edu
www.cs.utexas.edu/users/dshb/

Feature
Copyright is held by the author/owner(s). Oriented
Presented at: Lipari School for Advances in Software Engineering

July 8 - July 21, 2007, Lipari Island, Italy Programming

Introduction

« Fundamental problem: not all compositions
of features are correct

* but code can still be generated!

» and maybe code will still compile!

and maybe code will run for a while!

 impossible for users to figure out what went wrong!

Don Batory .
UT-Austin Computer Sciences verify 2

Introduction

* Must verify correctness of compositions automatically
« not all features are compatible
« selection of a feature may enable others, disable others

» Domain-specific constraints identify legal compositions

» Want process of applying/testing constraints to be
automatic
« too easy for users to make mistakes

* Presentation overview:
 tool demonstration
* present theory behind the tool

Don Batory .
UT-Austin Computer Sciences verlfy 3 ‘

Tool Demo

lllustrate on Graph Product Line
* has been applied to much larger examples

Declarative domain-specific language
 counterpart to Dell web page

Constraints propagated as selections are made
» cannot specify incorrect design

Can debug model specifications
* by verifying known properties of feature combinations

Don Batory .
UT-Austin Computer Sciences verlfy 4

Tool Demo

File Help
Reset | Open Cfg:. Save Cfg | Open Eqn:. Save Eqn. _DB Table | Formulas Dehug_ger Help
(R [<] :
Feature Diagrams and Grammars
bt (The Theory Behind The Tool)
\:ECnnnected . - -
1 StrongC e o) i =
. | | BFS || weighted () Directed
[Cycle
) []DFs [] Unweighted 2 Undirected
[] MSTPrim ? Featu re
[MSTHruskal Grammar e .
- Diagram
[] Shartest -
B?‘TAEL;JZ(I?;yCompulerSciences VerifyS B'??A?Jztl(ijr:y(:ompulerSciences VerifyG
Feature Diagrams How To Read Feature Diagrams
are standard product-line notations .
« declarative way to specify products by selecting features * Mar?datory — features that are req_UIred d
* Optional — features that are optional O
* FDs are trees: e And — all subfeatures (children) are selected
* leaves are primitive features « Alternative — only 1 subfeature can be selected
« internal nodes are compound features
« parent-child are containment relationships * Or — 1+ or O+ subfeatures can be selected
@] @
Pulls Trailer ‘ Transmission ‘ ‘ Car Body Pulls Trailer ‘Transmission | ‘ Car Body
‘ Gasoline ‘ ‘ Electric Manual Automatic ‘ Gasoline ‘ ‘ Electric Manual Automatic
B?TA?JE:I?r:yComputerSciences Verify7 B'??Azztl?r:y(:omputerSciences VerifyS

Another Example

» Whatis a legal product specification?
- Eis?
- Ris?

- Sis?

e Sound familiar?
— de Jonge and Visser 2002:

— “GenVoca Grammars” 1992:
grammar defines

in which features can be composed

Don Batory
UT-Austin Computer Sciences

verify 9 E

Recall GPL Model

épl = {
BFS — breadth first search
DFS — depth first search
functions
CYCLE — cycle checking
NUMBER — vertex numbering
STRONGC — strongly connected
Don Batt .
U'??Auzl?;yCompmer Sciences verlfy 10

GPL Grammar

Gpl : Alg+ [Src] Wgt Gtp;

Gtp : DIRECTED | UNDIRECTED ;
Wgt : WEIGHTED | UNWEIGHTED ;
0O

Src : DFS | BFS ; o

Alg : NUMBER | CONNECTED | STRONGC

| CYCLE | MSTPRIM | MSTKRUSKAL | SHORTEST ;

each token is an
AHEAD

constant or

function

Prog = NUMBER e CYCLE e BFS ¢ UNWEIGHTED e DIRECTED

Don Batory
UT-Austin Computer Sciences

verify 11 E

Mapping of FDs to Grammars

S : el [e2] en ;

. S..

S:el] e2]| en;

. S+ ..

S:el] e2] en;

Don Batory .
UT-Austin Computer Sciences verlfy 12

Example: Convert FD to Grammar

R:glhlij;

S:af[b]c;

» Application defined by Feature Model = sentence of grammar E

* Resulting grammar is a (1992)

Don Batory .
UT-Austin Computer Sciences verify 13

i
J

Grammars and Propositional Formulas

Feature
Grammar | ——]
Diagram
| 2
Propositional
Formula
B'OF'TAE\;JE;(I?;yCompmer Sciences verify 14

Propositional Formula

» Set of boolean variables and a propositional logic
predicate that constrains values of these variables

e Standard —, v, A, =, < operations

* Nonstandard:
» atmostl(e;...e,) — at most one g, is true

Mapping Productions to Formulas

Don Batory .
UT-Austin Computer Sciences verlfy 15

]
i

» Given production: R:P1]|..|Pn;

* R can be referenced in two ways:

.. R+ ...
(choose 1 or more) R&Pl1vP2v..vPn
. R.. R& (P1vP2v..vPn)
(choose 1) A atmost1(P1,P2, ..., Pn)

Don Batory .
UT-Austin Computer Sciences verlfy 16

Mapping Patterns to Formulas

Example: Grammars to Formulas

e T1T2..Tn:-P » Convert each production, pattern to formula
» Take conjunction of all formulas
formula: PoTL A PesT2 A . A PesTh Conjoin root of grammar
E:RS; EC>RNE&S
e« T1[T2]..Tn:Q Riglhlis RS (@vhvi)~
A atmostl(g, h, i)
formula: QoTIAT2=Q N ... A QeTh S:a[b]c: S<=a "~ b=>S ™ S<>¢
grammar E —
propositional formula
B?TA?JZ(I?;yComputer Sciences verify 17 E B?TAE?;(:i)nryCompmer Sciences verify 18
Last Example Recap
car * We can map any AHEAD model or
) Feature Diagram to a propositional formula
| Pulls Trailer | | Engine | | Transmission | | Car Body |
* But what about constraints?
| Gasoline | | Electric | | Manual | | Automatic |
Caré=PCB ~ Caré=>Tr ~ Caré=PEng ~ Pt=>Car additional, propositional formulas
~ conjoined onto grammar formula
Tré&(Auto v Man) ™ atmost1(Auto,Man)
A » Ex: if features i and b are incompatible,
Eng <D (Ele v Gas) add the formula

Car

Don Batory
UT-Austin Computer Sciences

verify 19

|
J

ivb= —(bni

Don Batory .
UT-Austin Computer Sciences verlfy 20

Example: Additional Constraints in GPL

GPL Model Specification

 Straight from Graph Algorithm Text

Required Required Required
Algorithm Graph Type | Weight Search
Vertex Numbering Any Any BFS,
DFS
Connected Components UNDIRECTED | Any BFS,
DFS

Strongly Connected DIRECTED Any DFS
Components

Cyele Checking Any Any NFS

Gpl : Alg+ [Src] Wgt Gtp;
Gtp : DIRECTED | UNDIRECTED ;
Wgt : WEIGHTED | UNWEIGHTED ;
Src : DFS | BFS ; > grammar
Alg : NUMBER | CONNECTED

| STRONGC | CYCLE | MSTPRIM

| MSTKRUSKAL | SHORTEST ;
%%
NUMBER implies Gtp and Src;
CONNECTED implies UNDIRECTED and Src;
CYCLE implies Gtp and DFS;
SHORTEST implies DIRECTED and WEIGHTED;

J \

> constraints
STRONGC implies DIRECTED and DFS;

|:> MSTKRUSKAL or MSTPRIM implies

Minimum Spanning Tree UNDIRECTED | WEIGHTED | None

- . Bp— PR—— . UNDIRECTED and WEIGHTED; _J

Single-Source Shortest Path | DIRECTED WEIGHTED | Mone
Don Batory . Don Batory . _
UT-Austin Computer Sciences Ve”fy 21 UT-Austin Computer Sciences Ve”fy 22 E

 An AHEAD Model is a propositional formula!
* primitive features and compound features are variables

e Grammar:
« specifies order in which features are composed
« ordering very important for AHEAD

» Additional propositional constraints:
» weed out incompatible feature combinations

Declarative Domain-Specific Languages

Don Batory .
UT-Austin Computer Sciences verlfy 23

GenVoca Feature
Grammar Diagram
RN
Propositional DDSLs
Formula
B'OFTAE?FS(I?r:yComputer Sciences verify 24 E

Declarative Languages

Constraint Propagation

» Features enable declarative program specifications
« that's what feature diagrams are for!
 counterpart of SQL, Dell web pages

* Want a declarative GUI DSL that acts like a
syntax-directed editor
 user selects desired features

* tool precludes specifying incorrect programs

Pnes | Open Ty | Svw g | Open i | Save | (0] Table | Forrmias | Detsegger | | sk

uuuuuuu

» 1980’s result from Artificial Intelligence

* boolean constraint propagation (BCP) algorithm

* takes a boolean predicate, set of variable assignments as input,
deduces other variable assignments as output

« very simple, efficient algorithm

» See: Forbus and de Kleer,
Building Problem Solvers, MIT Press 1993.

» BDDs (Binary Decision Diagrams) are also popular

Don Batory
UT-Austin Computer Sciences

verify 25

-

Don Batory
UT-Austin Computer Sciences

verify 26

-

Debugging Feature Models

Debugging Feature Models

very useful model debugging aid

* We know features A and B are compatible
* let P4 b€ the predicate of our feature model
* Podel A A A B must be satisfiable

that is, is there a product that has both A and B?

« off-the-shelf tool that automatically determines if a boolean predicate is
satisfiable

« very efficient

» Basis for feature model debugging

¢ provide a script of compatible, incompatible features and
verify that our feature model has these properties

« solver confirms known properties of a model

Don Batory
UT-Austin Computer Sciences

verify 27

Don Batory
UT-Austin Computer Sciences

verify 28 i

Experience There’s More...
» Has worked well... » Benavides noticed you could add numerical
attributes to grammar
J DTIME = VIDED.DTIME + ‘
- INTERNET.DTIME
° Predicates are Simple Services '“.'I'.'.'.'I""'"'""'""""""gPRICE=VIDEO.PRICE+INTERNET.PRICE%
i DTIME = POWERLINE.DTIME +
. - . Wideo on Internet | ADSL.DTIME + WIRELESS.DTIME |
» Reason: architects think in terms of features : . 1 Demand i [
- if predicates were really complicated Lﬁf.'fﬂi”..”_ﬂﬂ;” WIRELESS PRICE
— architects couldn’t design W]EEWEES_,
— people couldn’t program e Power Lina | ADSL | | Wiralass
— because it would be too difficult I _—
. L. . . L. |DTII’\-1Ein {1000..2000}' iDTIME |n-{15[|0__250[|}| IDTII’vIEin{SDE'E' .4E'E'U}|
hd We are maklng eXp||C|t What IS |mp||C|t now... | PRICE in {;cuo..zcuo} | | PRICE‘ in {100..200} | i Pmica in {150..250} |
B?TA?JZ(I?;yComputer Sciences verify 29 B?TAE?;(;i)nryCompmer Sciences verify 30 E
There’s More... and is Very Exciting! Future

» Allow features to have additional parameters
* property lists

» Generalize predicates to include constraints on
numeric variables
* select product that maximizes/minimizes criteria

* restrict products based on performance requirements, criteria
 use standard

» see: Benavides, et al. “Automated Reasoning on Feature
Models”, CAISE 2005

Don Batory .
UT-Austin Computer Sciences verlfy 31

e Basic result:

 does there exist a system that satisfies the following set of
constraints?

» Research: to find optimal system configurations
automatically

* true automatic programming!

 counterpart to relational query optimizers

Don Batory .
UT-Austin Computer Sciences verlfy 32 f}

Recommended Readings

Batory and O'Malley. “The Design and Implementation of Hierarchical Software Systems with Reusable
Components”. ACM TOSEM, October 1992.

Batory and Geraci. “Composition Validation and Subjectivity in GenVoca Generators”, IEEE TSE, Feb 1997.

Batory, “Feature Models, Grammars, and Propositional Formulas”, SPLC 2005.

Benavides, Trinidad, and Ruiz-Cortes, “Automated Reasoning on Feature Models”, Conference
on Advanced Information Systems Engineering (CAISE), July 2005.

Beuche, Papajewski, and Schroeoder-Preikschat, “Variability Management with Feature Models”, Science of
Computer Programming, Volume 53, Issue 3, Pages 333-352, December 2004.

Czarnecki and Eisenecker. Generative Programming: Methods, Tools, and Applications. Add.-Wes., 2000.
Forbus and de Kleer, Building Problem Solvers, MIT Press 1993.

de Jong and Visser, “Grammars as Feature Diagrams”, 2002.
http://www.cwi.nl/events/2002/GP2002/papers/dejonge.pdf

Neema, Sztipanovits, and Karsai, “Constraint-Based Design Space Exploration and Model Synthesis”,
EMSOFT 2003, LNCS 2855, p. 290-305.

Perry, “The Logic of Propagation in the Inscape Environment”, ACM SIGSOFT 1989.

Zhang, Gao, Jacobsen, “Towards Just-in-time Middleware Architectures”, AOSD 2005.

Don Batory . e
UT-Austin Computer Sciences verify 33 ! :

Program Refactoring,
Program Synthesis,
and Model Driven Design

Don Batory
Department of Computer Sciences
University of Texas at Austin

batory@cs.utexas.edu
www.cs.utexas.edu/users/dshb/

Feature
Copyright is held by the author/owner(s). Oriented
Presented at: Lipari School for Advances in Software Engineering 2

July 8 - July 21, 2007, Lipari Island, Italy Programmmg

Don Batory
UT-Austin Computer Sciences

This Lecture

» Sketch where | see
» automated software design & maintenance is headed

» Essential complexity of software structure

* is exposed when program construction and design is viewed as
a computation

» programs are values
« transformations map programs to programs
 operators map transformations to transformations

Don Batory
UT-Austin Computer Sciences meta 2

-

Architectural Metaprogramming

» Lies at core of many important areas in software
design and maintenance:

« refactorings are transformations

« feature-based and aspect-based software synthesis use
transformations

» model driven design uses both to map

» Lecture reveals a bigger world in which FOP lies

Don Batory F
UT-Austin Computer Sciences meta3 i

Relationship of Design to Set Arithmetic

* |s basic to engineering

tools enable engineers to
express designs by adding, subtracting, and transforming
volumes from which properties of designs are derived

» Architectural metaprogramming offers a program analog:
programs can be added, subtracted, and transformed

¢ set arithmetic captures essential design concepts

Don Batory
UT-Austin Computer Sciences meta4

Upcoming Topics — Four “Mini” Talks

+ Basics of
then reflect on 2006 advances in

« Danny Dig & Ralph Johnson (lllinois)

« Roberto Lopez-Herrejon (Oxford) & Christian Lengauer (Passau)

¢ Salva Trujillo & Oscar Diaz (Basque Country)

 All topics describe systems that have been built
« step back and give a simple explanation of their results

i

Personal Edi

c
=8
1= =
=g}
==
g8
[}
[Shery
)
Q
gl
@ 2
=0

Architectural
Metaprogramming

tion

scalable solutions for
mission-critical designs

Don Batory meta i/ Don Batory meta o
UT-Austin Computer Sciences eta 5 _l UT-Austin Computer Sciences eta 6 l_,‘
Architectural Metaprogramming 15t Operation: + (Sum)
* Programs are e LetD = class D { and C = class C {
void compute() int x;
{.} void inc() {...}
 Hereis a value C"'ﬁ)f_{ } }
(Java definition of class C): | \ig'inc() .3
,
. . i class D { e D+C=
Here is another value: void compute() class D { class C {
{} void compute() int x;
. {.} void inc() {...}
} }
Don Batory meta = Don Batory meta B
UT-Austin Computer Sciences eta 7 _l UT-Austin Computer Sciences eta 8 l_,‘

Another Example

+ (Sum) is Disjoint Set Union

— — » Has expected properties
 Let Cl — J|classC{ and C2 — |classC{ P Prop
} void comp() {.-} U]()ti()1(1inc() {3 * 0 is identity (null program)
¥ P=0+P=P+0
e commutative (because disjoint set union is commutative)
A+P=P+A
° Cl + C2 - class C { class C { * associative (because disjoint set union is associative)
void comp () {} _ (A+B)+C:A+(B+C)
void inc() {...}
}
B?:‘?:t?nry(:omputer Sciences meta 9 ; B?A?:‘t?nry(:nmputer Sciences meta 10 ;
2"d Operation: — (Sub) 3'd Operation: Distributive Transformations

* Subtraction is set difference is a function that maps programs to other

(D+C)-C=D programs

—in program “p” replace name “q” with “r”

» Has expected properties:

- Left associative P-C-D=((P-C)-D) class C { class C {

in’ x; int z;

« Not commutative P-C#C-P voiaine() ..} = void inc() {.. 7 ..}

« Identity P-0=P } }
B?E\Ai:lt?nry(:omputer Sciences meta 11 E B?TAi:lt?nrndmputer Sciences meta 12 E

Another Example

A Key Property of Distributive Transformations

» Transformations we consider over + and —
class D { class D {
void compute() void compute()
{} = {3}
) ' f(A+B)=f(A) +f(B)
} }
f(C—-D) =f(C) - f(D)
» Called a :
» avalue x such that f(x) = x
L . _ _ * Here’s an example...
« Distributive transformations have lots of fixed points
Don Batory meta 1 Don Batory meta 1
UT-Austin Computer Sciences eta 13 f UT-Austin Computer Sciences eta 14 f
Example of Distributivity Structures & Properties
— what are the parts and how are they connected?
class D { class D {
void compute() void compute() a solid bounded by six equal squares,
{1} Rename(| {.} , C.x, C.2) cube the angle between any two adjacent
.) faces is aright angle.
} }
_ +
Rename(|| 3% © ¢ ,Cx, C.2) e of structure — attributes derivable from structure
- int x;
void inc() {..x..} Rename(| void inc() {..x..} |, C.x, C.2)
y 3 « surface area = 6E? ; where E is edge length
e volume = E3
Don Batory meta 15 Don Batory meta 16];

UT-Austin Computer Sciences

UT-Austin Computer Sciences

Software Analogs

of a program is a

In this lecture, ructure
| focus on program structure.

Results on properties
are presented elsewhere.

bgrams —

#2:. Advances in Program Refactoring

Don Batory
UT-Austin Computer Sciences meta 17

Don Batory
UT-Austin Computer Sciences meta 18

Refactoring

Evolution of APIs

* |s a program transformation that changes the structure of a
program,
* rename methods
« move method from subclass to superclass

* Most design patterns are end-products of refactorings

e Common IDEs (Eclipse, Visual Studio, IntelliJ)
have refactoring tools or plug-ins

* Here’s an interesting refactoring problem

» Use of components (e.g. frameworks, libraries) are
common in software development
 build systems faster and cheaper

of a component —
set of (Java) interfaces and classes that are exported to
application developers
« ideally, APIs don't change, but of course they do!

* Need an easy and safe way to update applications when
component’s API changes

Don Batory
UT-Austin Computer Sciences meta 19

Don Batory
UT-Austin Computer Sciences meta 20

A Common API Change

MMovin Mathad

Note: although component code changes,
client code must also change

But a component developer doesn’t have the client code

This Change is a Meta-Expression

Prew = P‘H[Pmd]

|io call It L
class host { class home { class bar class host { class home { class bar {
static X m(..,home f) Xxm(.){ ... void y() static X m(..,home f) Xxm(){..} void y() {
{..}) {..})
void b() { host.m(..,f) host.m(..,f) void b() { host.m(..,f) host.m(..,f)
} } } } } }
} } } }
— ——) — —)
B?:‘?:t?nrycomputer Sciences meta 21 ; B?:J:tl?"ry(:ﬂmpme' Sciences ptpe ;
Other Common API Changes Result
_ * Dig & Johnson paper:
* Move Field
“How do APIs Evolve: A Story of Refactoring”
Jour. Software Maintenance & Evolution:
* Delete Method) Research & Practice 2006
 usually done after a method is renamed or moved
« Change Argument Type * Manually analyzed change logs, documentation, etc. of
« ex: replace argument type with its supertype ((jfl)f(f)eK"entZVI\irlfggﬁ of 5 medium to large systems
to
. Replace Method Call ¢ Eclipse, Struts, JHotDraw...
» with another that is semantically equivalent and in the same class F q 80% of API ch ¢ .
e Found over 00 changes are refactorings
« Lots of others... ¢ means LOTS of tedious & error-prone updates can be
. limi k ts all be writt t i
prefiminary work stiggests afl can be Wrtien as meta expressions « explain elegance of their solution using architectural metaprogramming
B?E\Ai:lt?nry(:omputer Sciences meta 23 E B?TAi:lt?nrndmputer Sciences meta 24 E

In the Future

» Programmers will use advanced IDEs that “mark”
API classes, methods, fields

 only way marked elements can change is by refactorings (B)
 “private” component edits modeled by transformations (€)

BBO ° .BZOB]_. version — |version

0 1

transformations to be applied
to update client code w.r.t.
B —_ changes in API

» APl updates B is a projection of changes where

Client Update Meta-Function U

Ul | client = B client — | version + |version
program program 0 il
f - -
client = B client | | 4-|version| | — |version <+ |version
program code 0 0 1
-

this is not how

f result is presented by
Dig and Johnson;

itis an architectural

:B client + |version

“private” edits are removed code 1 et g
N results
B?:‘?:t?nrycomputer Sciences meta 25 ; B?:J:tl?"ry(:ﬂmpme' Sciences meta 26 ;
In the Future
* |DEs will be
» IDEs will create update functions like U for distribution
« distribute meta-functions, not components

#3: Advances in Program Synthesis
» IDEs will apply functions to code bases to automatically update them
» Architectural metaprogramming is at the core of this technology
B?E\Ai:lt?nrycomputer Sciences meta 27 E Bi‘::lt?"rycnmpmer Sciences meta 28 E

Background

* Previous lectures have presented basic ideas on
feature modularity and product lines

e But now, let’s look inside the structure of features
and see how it is related to

« find similarities and differences between aspects and features

What Are FOP Features?

Don Batory
UT-Austin Computer Sciences meta 29

» |If we peer inside features we see familiar ideas popularized
by AOP

¢ here | use ideas of AOP

— adds new members to existing classes
¢ corresponds to metaprogramming addition

— modifies methods at particular points,
called
¢ quantification means advise all parts of a program — distributivity!
 advice is a distributive transformation
« advice is behavior-extending not behavior-preserving

* No “subtraction” in AOP or in FOP

Don Batory
UT-Austin Computer Sciences meta 30 f

Introduction

* Incrementally add new members, classes

Program P

class C {
void foo(){..}
int i;
String b;

}

class D {
String bar;
int ent(){..}

}

Meta-Algebra Interpretation

P=C.b+ C.foo + C.i + D.bar + D.cnt

Program P

Don Batory
UT-Austin Computer Sciences meta 31

class C {
void foo(){..}
int i;
String b;

}

class D {
String bar;
int ent(){..}

}

Don Batory
UT-Austin Computer Sciences meta 32 f

Advice

» Defined in terms of events called
« when method is called
« when method is executed
* when a field is updated

: when patrticular join points occur, execute a given
piece of code

» Although advice has a “dynamic” interpretation, we can
give it a “static” metaprogramming interpretation

Advice Example

Program P

class C {
int i,5;
void setI (int x){ i=x; }
void setd (int x){ j=x; }
}

after(): execution (void C.set*(..))
{ print (*hi~); }

B?:izt?nrycamputer Sciences meta 33 F B?A?Ji‘t?nry(:nmputer Sciences meta 34 F
Meta-Algebra Interpretation Structure of Features
» Features are metaprogramming functions that:
Program P + advise (a) an existing program (x)
class C { * introduce new terms (l) adds new changes existing code to
int i,3; code integrate new functionality
void setI’(int x){ i=x; }
void setd’ (int x){ j=x; } F (x) = if + a (x)
}
after() : execution (void C.set*(..)) . .
{ print(*hi®); } e Composition:
= i, + I +
P = c.i + c.j + C.setI’ + C.setJd’ G(F(B)) Ig ag(lf a'f(b))
Don Batory meta 36];

Don Batory
UT-Austin Computer Sciences meta 35

UT-Austin Computer Sciences

In the Future

* Many (narrow) domains will be well-understood
¢ know problems, solutions

» Complexity controlled by standardization ™
« programs specified declaratively using “standard” features (like Dell) I M

Architectural
Metaprogramming
Professional Edition

» Compilers will be
« inhale source code
* generate meta-expression, maybe optimize expression
« evaluate to synthesize program

c
=8
1= =
=]
==
g8
[}
on
)
Q
gl
3 2
=0

L=

* Architectural metaprogramming is at core of these <calable solutions for
technologies mission-critical designs

UT-Austin Computer Sciences UT-Austin Computer Sciences

Don Batory meta 37 |"_] 4 Don Batory meta 38 |"_] 4

Big Picture Example

» Refactorings and advice are both transformations
Program P

» Suppose | have a refactoring and advice to apply to a class C {
program. What does it mean to compose them? int 1,3;
void SETI (int x){ i=x; }
) .) Rename void/SETJ (int x){ j=x; } |, c.set*, C.SET*
» Advice does not modify a refactoring (1)

) : execution (void C.SET* ..))

a refactoring is not a language construct; aft : :
rint (“hi”); }

there are no join points in a refactoring

. . . . change method \
» Refactoring can modify programs that include advice names change advice
declaration
Don Batory meta 39 B Don Batory meta 40 =1

UT-Austin Computer Sciences ' UT-Austin Computer Sciences '

Meta-Algebra

* Remember differential operators in calculus?
* they transform expressions

d(a+b+c) = da + db + dc
oy oy dy 9y

each term is transformed

* Rename refactoring is similar
— it transforms each term of a meta expression

B(i+ a(x)) = B(i) + B(a) (B(x))

meta4l ?

Don Batory
UT-Austin Computer Sciences

Homomorphisms

* Such a mapping is an example of a:

* structure-preserving map between aigebiras

» Grounded in
« theory of mathematical structures and their relationships

* more later...

Don Batory
UT-Austin Computer Sciences meta 42

How Meta-Calculation Proceeds

Program P

class C {
int i,q;
void SETI (int x){ i=x; }
Rename(void SETJ (int x){ j=x; } |, C.set*, C.SET*)
}
after() : execution (void C.SET* [..))
{ print(“hi~”); }

C.SETI + C.SETJ)

HI (cC.i + C.j +

meta 43

Don Batory
UT-Austin Computer Sciences

Recap

» Architectural meta-algebra is getting more
interesting

« refactorings are operators on meta expressions that have
higher-precedence than advice

» The rewrite rules for a refactoring R is:

R(a+b) =R(a) + R(Db)
R(a-b) =R(a) -R(Db)
R(aeb) =R(a) e R(Db)

Don Batory
UT-Austin Computer Sciences meta 44

Another Interesting Question

What does AspectJ really do?

Basic Differences of FOP and AspectJ

Don Batory
UT-Austin Computer Sciences meta 45

-

» Aspects don’t compose

* to this day, you cannot express all aspect files as a composition
of simpler aspect files

* reason: rules for ordering around, before, after advice are
incomprehensible

» see AspectJ documentation
* Unbounded quantification

» AspectJ applies advice after all introductions have been made
» FOP applies advise at different stages of program development

* Why does AspectJ use unbounded quantification?

Don Batory
UT-Austin Computer Sciences meta 46

-

Tutorial — Method Refinement

* Features refine individual methods by before,
around, after advice

Aspects Originate From MetaClasses ~1990

C
before
void m() —fF—=—--- code
after
feature(base)
B?E‘Ai:lt?nry(:omputer Sciences meta 47 ﬁ

» Don't think of programs, think of interpreters and
interpreters with new features

program interpreter load program
_ add(y({..})
void load() -~~~ add(x(O{..})
void methcall()1———--— code
print(“hi”);

eature3(feature2(featurel(base)))

—hi

void x() {..r(

Don Batory
UT-Austin Computer Sciences meta 48

-

Insight

Example of Quantification

* When you define advise or introductions in AspectJ,
you are refining (adding features to) the Java interpreter!
« effects of advice are PROGRAM WIDE
 advises entire program ()
* “unbounded” advice basic to AOP

* When you refine a program in FOP
« effects of advise limited to the current state of a program’s design
« “bounded advice”

* Historically, incremental software design (e.g., agile
programming) never “refines” interpreters, only “programs”

Program P’

class C {
int i,3,k ;
void setI '(int x){ i=x;
void setd '(int x){ j=x;
void setK’ (int x){ k=x;

e

after(): execution (void set*(..))
{ print(“hi"); }

P’ =hi®(C.k + C.setK + C.i+C.j+C.setI+C.setd)

Don Batory
UT-Austin Computer Sciences meta 49

-

Don Batory
UT-Austin Computer Sciences meta 50

-

Example of Quantification

Different Kinds of Quantification

Program P

class C {
int i,5,k ;
void setI’ (int x){ i=x; }
void setd’ (int x){ j=x; }

void setK (int x){ k=x }

after () : execution (void set*(..))
{ print (*hi”); }

P = C.k + C.setK + hi®(C.i+C.j+C.setI+C.setd)

* May need both because they are doing
semantically different things for different purposes
» bounded advice standard for program synthesis

» unbounded advice used for — program-wide
constraints

» Architectural metaprogramming shows these
distinctions

Don Batory
UT-Austin Computer Sciences meta 51

-

Don Batory
UT-Austin Computer Sciences meta 52

-

Looking Forward

* Notice:

« refactorings
* advice
¢ introductions

* modify of code
but could also modify of grammars, makefiles,
xml documents, MDD models ... as well

* Generalizing meta-algebra beyond code structures
to non-code structures...
« theory applies to all documents that can be synthesized

‘i
1wl
Architectural

Metaprogramming
Enterprise Edition

c
=8
1= =
=]
==
g8
[}
on
)
Q

gl
3 2
= 0o
-

scalable solutions for
mission-critical designs

B?:i:t?nrycamputerScwences meta 53 :::= . S?A?J:t?nry(:nmputerScwences meta 54 :::= ;
Introduction MDD Tools
| D) is an emerging * OMG'’s
paradigm for software creation « define models in terms of UML
e uses « transform models using graph transformations (QVT)
¢ encourages automation) .]
« exploits data exchange standards » First and best works I've seen is Vanderbilt's
and
* Model is written in a DSL Tata’s MDD work and tools
« captures particular details of program’s design
¢ several models are needed to specify a program
pecify a prog « Lots of other groups:
 Eclipse
» Microsoft's Software Factories
» Borland
¢ program synthesis is transforming high-level models into .
executables (which are also models)
¢ Bezivin “Everything is a Model”
B?E‘A?J:t?nry()omputerSc\ences meta 55 :::= . B(;E‘A?J:tt?nry()omputerSc\ences meta 56 :::= ;

Metaprogramming Connection

» MDD embraces concept that
program development is a

MDD is a metaprogramming

 Common example

java source

Interesting Question

paradigm
javac
— models are values
— transformations are functions that class files
map models to models
Don Batory meta 57

UT-Austin Computer Sciences

» |Ifjavac is a transformation, is it distributive?

javac is not distributive!

Separate Class Compilation

that makes it so...

Although there is research by Ancona et. al. on

Don Batory
UT-Austin Computer Sciences

meta 58

More Typical MDD Example: PinkCreek

* Work with S. Trujillo and
O. Diaz

» Portlet is a web component

* PinkCreek is an MDD case
study for synthesizing
portlets

» Uses transformations to
map an annotated state
chart (SC) to different
representations
(Java, JSP code)

)i
ctrl
act-sk view-sk
! |
aft view
code-sk jsp-sk
!
code isp

Portlet Synthesis Metaprogram

Don Batory
UT-Austin Computer Sciences

meta 59

SC
l [Tk faw (SC APSLpce-usr APSLyt ay-usr AT8Kygr s ATSPysr) |

Folictrl = tsc2etrl \OW1 o

Ctrl PSLact-sk = Totrizact (FSLgeri):
PSLace = APSLace-usr ® PSLace-sk/
PSLyiew-sk = Tetrlzview (PSLcee1) /
PSLyjaw = APSLyjaw-usr * PSLyiaw-sk’

act-sk view-sk ek = Tactzjer (P6Tuct) !

Jakgpge = AJakye, * Jakg:

l l IsPsk = Tyiewzijsp (PSLyiew)
JISPcode = AJSPyusy * ISPk’

codes ISPeode }

aCt V|eW Praw = { P8Lgpyy, PSL,oe, PSLyj.,. Jak
return P,/
| :
code-sk jsp-sk
code jsp

Don Batory
UT-Austin Computer Sciences

meta 60 F

In the Future

Another Interesting Question...

As FOP and MDD are both
metaprogramming paradigms,
how do they combine?

» Features “extend” or “refine” models

F(x)=i+a(x)

* An example:

Don Batory
UT-Austin Computer Sciences

meta 61 ;“

-

. F . .
java source refined java source
|
is the F—>F’
. mapping a
Javac i homomorphism? fVac
M open question
, F '
class files — refined class files
F(x)=1+ a(x)
Don Batory meta 62 :"

UT-Austin Computer Sciences

Fundamental Relationship

How Commuting Diagrams are Created

* Relationship between transformations that
derive models and those that refine models

MO M1

Pushout | - T

DO ————— D1

Gommuting Diagram

B oF .G oH oK

statechart O (@) (@) (0] (@)
java source @ (@) @ o (@}
bytecode @ (@) @ (@} (@}
jarfile @ (@) (@] (@} O

* Begin with derivation of representations of base program
» Each feature refines each of these representations

Don Batory
UT-Austin Computer Sciences

meta63 -

-

Don Batory meta64

UT-Austin Computer Sciences

Property of Commuting Diagrams

(@) (@)
@) (5 (') (@) (@)
@) (@] (@) (') (@)
©) (©] (@)

* Given model in upper left, often want to compute model in lower right
» Any path from upper left to lower right should produce same result
e Each path represents a different metaprogram that produces same result

Example: Refining State Charts in PinkCreek

Don Batory
UT-Austin Computer Sciences

meta 65

-

» Features refine state charts by adding
new states, transitions, annotations, etc.

sView

B ase &(slSearch ﬂ sZSelectﬂsBSummaryﬂsd;ReserveﬂsSItinerary)
Seat e Base @

sView

sISearchﬂs2Selectﬂs3swmawﬂsAReserveﬂSSI tinerary s6Seating

A T 1] l {) §

¢ T T U _/

B?A?J:tt?nry(:nmputer Sciences meta 66 E

How State Charts are Refined in PinkCreek

base
portlet

sc0

|

ctrlo

/

act-sk0 =
view-skO
act0 l

view0

code-sk0 l

l jsp-sko

code0 l
jspo

refined {
portlet

scl

|

ctrll

T mir e (4Fgar AFagr_usre AFyiawusre SFoode.usre -

4Poerl = T'cerllace (4Facs
APact.ak = T'cerlZace (AFeerids
APrigw-ak = T'cerliview (AFotrils
4Pact = AFact-usr * AFact-ski

F—

/

act-skl
i view-sk1

actl |

i viewl

code-sk1 l

) jsp-sk1

codel l
jspl

Commuting Diagrams in PinkCreek

Don Batory
UT-Austin Computer Sciences

meta 67

-

» Features map space of
artifacts by refining them

» Composing features
sweeps out the
commuting diagrams to
traverse to synthesize
portlet representations

Don Batory F
UT-Austin Computer Sciences meta 68 i

Portlet Synthesis

» Start at upper left
compute nodes on
lower right

* #1: refine models and
then derive

e #2: derive representations and
then refine

» #2is faster by a factor of 2-3

» Diagrams tell us different ways
in which programs can be
synthesized

Don Batory
UT-Austin Computer Sciences meta 69

-

Benefit: Interesting Optimization

* Which way is faster?
* (A) compose transformations
 (B) transform compositions

see ICSE 2007 paper
by Trujillo et al.

500 |

450 ——B St
400 —_A-T =
350
300 ——A /
8 250 /
s 500 ——A+B-T 7/
150 -
100 |
50 - .
0 —m— : : ‘ : : !

1 2 5 10 15 20 283

features

Don Batory
UT-Austin Computer Sciences

meta 70

-

Experience

e Qur tools initially did not satisfy properties
commuting diagrams
« synthesizing via different paths yielded different results
» exposed errors in our tools & specifications

 Significance of commuting diagrams

Don Batory
UT-Austin Computer Sciences

meta 71

-

In the Future

» Theory, methodology, tools of architectural
metaprogramming use elementary ideas from

» where homomorphisms, pushouts, commuting diagrams arise...

« finding utility in relating software structures to mathematical
structures

* preliminary results are encouraging

Don Batory
UT-Austin Computer Sciences

meta 72

-

A Brief Tutorial on Category Theory

A Brief Tutorial on Category Theory

is a directed

graph with special /D
properties 0

* Nodes are ,
edges are

* Arrows are maps that
compose

* Arrow composition is
associative

Io¥oYels
tyayiyey

* |dentity arrows

B?:‘?:t?nry(:omputer Sciences meta 73 ﬁ B?A?:‘t?nry(:nmputer Sciences meta 74 ﬁ
A Category — Look Familiar? Functors
v is a directed portlet Structure preserving map between 2 categories
h with I
grap \tlyl Specia 0 « embedding of category J into B such that J's connectivity properties
properiies s¢ are preserved
« Nodes are ctrlo between isomorphic categories
edges are ' / * map each object, arrow in J to the corresponding object, arrow in B
act-sko 0 b0
* Arrows are maps that view-sk0 Jl ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, . l
compose acto | 1 bl
l viewO /J 777777777777777777777777777777777 .
* Arrow composition is code-sko | S N\ o \
associative | ispsko e T N .
i6 | b6
de0 I O >
. Identit imolied code0 i3 { b3 |
entity arrows are implie isp0 i7 b7
category J category B
B?E‘Ai:lt?nry(:omputer Sciences meta 75 ﬁ B?TAi:lt?nrndmputer Sciences meta 76 ﬁ

Functors — Look Familiar?

Next Steps

» Structure preserving map between 2 categories

« embedding of category J into B such that J's connectivity properties
are preserved

between isomorphic categories
* map each object, arrow in J to the corresponding object, arrow in B

» Can express many of the ideas of architectural
metaprogramming in terms of categorical concepts

 Much more to come...

STO S(Il
ctrlo ctrll
/ N features
act0 N actl are functors
l ______ viewp——M - l wiewl
code® ixodeo l
jspo jspl
base portlet refined portlet
B?:‘?:t?nrycomputer Sciences meta 77 B?:J:tl?"ry(:ﬂmpme' Sciences meta7g ;
Conclusions
» Extraordinarily good at: | « Not good at:
* languages * languages
» compilers » compilers
 optimizations optimizations
Conclusions « analyses « analyses
. for programming in the | * Programming inthe
because we: because we don’t
 understand abstractions fu”y:
« their models + understand abstractions
« their relationships * their models
« their integration + their relationships
* their integration
Don Batory meta 79 Don Batory meta 80 £

UT-Austin Computer Sciences

UT-Austin Computer Sciences

My Message: Getting Closer

In the Future...

* Fundamental ideas of metaprogramming
e programs are values, transformations, operators

» Provide a simple explanation of technologies that are being
developed and built in isolation — there is a lot in common
with simple mathematical descriptions

» Recent work in program refactoring, synthesis, and
model driven design are raising level of automation
* success is not accidental

+ examples of paradigm called architectural metaprogramming
that we are only now beginning to recognize

« Build tools, languages, and compilers to
implement metaprogramming abstractions

* improve structure of programs
* higher-level languages & declarative languages
 IDEs will be component evolution calculators

» compilers will be program calculators

» our understanding of programs, their representations, and their
manipulation will be greatly expanded beyond source code

» Exciting future awaits us

Don Batory meta 81

UT-Austin Computer Sciences

-

Don Batory
UT-Austin Computer Sciences meta 82

-

Recommended Readings

Recommended Readings

* Ancona, Damiani, Drossopoulou. “Polymorphic Bytecode: Compositional Compilation for Java-like
Languages”, POPL 2005.

« Batory. “Multi-Level Models in Model-Driven Development, Product-Lines, and Metaprogramming”,
IBM Systems Journal, 45#3, 2006.

« Batory. “From Implementation to Theory in Product Synthesis”, POPL 2007 keynote.
* Bezivin. “From Object Composition to Model Transformation with the MDA”, TOOLS'USA 2001.
« Binkley, et al. “Automated Refactoring of Object Oriented Code into Aspects”, ICSM 2005.

« Brown, Booch, lyengar, Rumbaugh, Selic. “An MDA Manifesto”, Chapter 11 in Model-Driven
Architecture Straight from the Masters, Frankel and Parodi, Editors, Meghan-Kiffer Press, 2004.

« Cole, Borba. “Deriving Refactorings for AspectJ”, AOSD 2005.

« Dig, Comertoglu, Marinov, Johnson. “Automated Detection of Refactorings in Evolving Components”,
ECOOP 2006.

« Dig, Johnson. “How do APIs Evolve? A Story of Refactoring”, Journal of Software Maintenance and
Evolution, 18#2, 2006.

* Hanenberg, et al. “Refactoring of Aspect-Oriented Software”. Net.ObjectDays 2003.

« Kleppe, Warmer, Bast. MDA Explained: The Model-Driven Architecture -- Practice and Promise,
Addison-Wesley, 2003.

* Kulkarni, Reddy. “Model-Driven Development of Enterprlse Applications”, in UML Modeling
Languages and Applications, Springer LNCS 3297, 2005

* Lopez-Herrejon, Batory, and Lengauer. “A Disciplined Approach to Aspect Composition”, PEPM 2006.

« Monteiro, Fernandes. “Towards a Catalog of Aspect-Oriented Refactorings”, AOSD 2005.
« Pierce. Basic Category Theory for Computer Scientists, MIT Press, 1991.

* Schmidt. “Model-Driven Engineering”. IEEE Computer 39(2), 2006.

« Smith. “A Generative Approach to Aspect Oriented Programming”, GPCE 2004.

* Sunyé, Pollet, Le Traon, Jézéquel. “Refactoring UML Models”. Int Conf. UML, 2001.

« Sztipanovits, Karsai. “Model Integrated Computing”, IEEE Computer, April 1997.

« Trujillo, Batory, Diaz. “Feature Oriented Model-Driven Development: A Case Study for Portlets”, ICSE
2007.

¢ Zhang, Lin, Gray. “Generic and Domain-Specific Model Refactoring using a Model Transformation
Engine”, in Model-driven Software Development, Springer 2005.

Don Batory
UT-Austin Computer Sciences meta 83

-

Don Batory
UT-Austin Computer Sciences meta 84

-

Feature Interactions and
Program Cubes

Don Batory
Department of Computer Sciences
University of Texas at Austin

batory@cs.utexas.edu
www.cs.utexas.edu/users/dshb/

Feature
Copyright is held by the author/owner(s). Oriented
Presented at: Lipari School for Advances in Software Engineering 2

July 8 - July 21, 2007, Lipari Island, Italy Programmmg

Feature Interactions

Are unavoidable

Features interact by changing each others code
or behavior

This lecture looks at one fundamental form of
feature interaction called

« there are other forms of interaction

Formalized as tensors (multi-dimensional arrays)

Don Batory
UT-Austin Computer Sciences tensors 2

-

A Micro Example

Don Batory
UT-Austin Computer Sciences tensors 3

-

The Calculator Model

* Product line of calculators
+ what operations do you want in your calculator?

XTI - - (D)]

Base, // base program } constant 25

Add, // add
Sub, // subtraction functions L]

Form, // format

FormeAddeBase

* How to express calculators with optional front-ends?
* none, command-line, GUI,, GUI,, etc

Don Batory
UT-Austin Computer Sciences tensors 4

-

Refactor Model C: Separate Core from GUI

Model Synthesis

c Gui, Core « We are synthesizing models!
B - A is a model of models
ase Base Base + product-line of FOP models
MM = [Core, Gui,, Gui,, ..., Gui,]
=]
» Features _of MM are themselves base models or
Add Add Add model refinements!
Core = [Base, Add, Sub, Form ...] // base calculator model
Sub Sub Sub Gui,; = [Base, Add, Sub, Form ...] I/ Gui, extensions to Core
Gui, = [Base, Add, Sub, Form ...] I Gui, extensions to Core
B?A?Jas‘!?nryc:)mputer Sciences tensors 5 F Bg?ABuas(!(i)nryComputer Sciences tensors 6 F
Model Synthesis
» To get desired model, compose Core with desired Gui
C = Gui, ® Core /1 original model
Desired = Gui, e Core /I desired model
Tensors

» To specify a calculator need pair of expressions
» expression to produce a model
» expression to produce a calculator

* Now let’s look at the mathematics behind all this

Don Batory
UT-Austin Computer Sciences tensors 7

-

Don Batory
UT-Austin Computer Sciences tensors 8

-

Tensors

* n-dimensional arrays

* The of a tensor is the number of array indices
required to describe it
» cube is a 3D array (tensor of rank 3)
* matrix is a 2D array (tensor of rank 2)
» vectoris a 1D array (tensor of rank 1)
 scalaris a 0D array (tensor of rank 0)

* Number of elements along an index is its

» Example: a rank 3 tensor of dimension (2,5,7) is a

3-dimensional array of size 2 x 5 x 7

Don Batory
UT-Austin Computer Sciences

tensors 9

Basic Tensor Concepts

of tensor

» Cross product of

of indices indicates rank elements of 2 tensors

» name of index is unimportant -
Tij ® Sy, = Mijkm

* M. — tensorof rank 2

1)

* My, -

Scalar is rank 0

T is of rank t dim dt

tensor of rank 4 Sisofrank s dim ds

* Mis of rank t+s
dim dtxds

Don Batory
UT-Austin Computer Sciences

tensors 10

Tensor Product Example

* R=[AB,C] tensor rank 1 dim 3
« S,=[D,E,F,G] tensorrank 1dim4

AD AE AF AG
R®S, = BD BE BF BG

ChD CE CF CG

result is tensor of
rank 2 = 1+1

dimension 3X4

Don Batory
UT-Austin Computer Sciences

tensors 11

i
J

Tensor Product Example

« T,=[X,Y]

tensor rank 1 dim 2

AD AE AF AG

(R®S)®T,=

result is tensor of
rank 3 = (1+1)+1

ADY AEY AFY AGY G dimension (3X4)X2

BDY BEY BFY BGY

CDY CEY CFY CGY

Don Batory
UT-Austin Computer Sciences

tensors 12

i
J

Tensor Contraction

» Aggregation of entries of a tensor reduces its rank

+ Example: contracting k index of tensor T;,,, yields S;

Tensor Contraction

scalar = Xy Tuym
S, =2 T
im k "ikm rank 2
rank 3 dimension There are 3! different
dim (3X4X2) =). . summation orders
(3%2) ZI Z"k 2m lem all yield the same
‘ scalar result
ANV AN AN AI‘X ,X
ADY AEY AFY AGY ADY +AEY* AFY + AGY = , :
o~ |:> L 2m z| Zk lem
BDY BEY BFY BGY i BDY + BEY+ BFY+ BGY
5X m 5X _
CDY CEY CFY CGY| “ | cDY+CEY+ CFY+CGY [-
Bg?Aias‘(?nryCOmputer Sciences tensors 13 F B?ABuas(t(i)nryComputer Sciences tensors 14
Tensor Projection
* Remove elements from dimensions
* not a classical operation in tensor calculus
* similar to data cubes of database systems
} i} Program Cubes
c M'Jk Hie(1..3) ke (1..3) M'Jk g
C
c, Z ,
% B,
B, B,
B, B,
B, B,
AL A A CTA A A A
Pon Batory tensors 15 Don Batory tensors 16

UT-Austin Computer Sciences

-

UT-Austin Computer Sciences

Program Cubes (PCs)

Generalize Interpretation

Are a fundamental design technique in FOP

Givenmodel F=[F,, ...F, F,]

/l notice vector

Let program G=Fg+F,+F,+F,

» where + denotes composition operator e

Can write G as:
G=X ic8421) Fi

« An FOP model is a vector
*F=[F, ..F, F;]
* no longer a set
* tensor of rank 1, dimension n

* A program G=2 8421 F
* is a projection of model F
that includes only the needed features
» features in the vector are in composition order
« vector is then contracted to a scalar

Don Batory
UT-Austin Computer Sciences tensors 17

]
J

Don Batory
UT-Austin Computer Sciences tensors 18

Program Cubes

Program Cubes

* Use n rank-1 FOP models called
to specify features or indices along a
dimension

..c M
czcs

* A 3-D model M with ¢

A, B, C as dimension B,

models .
A= [A, .. A]

B = [By,..B,] B2

«C=1[C,...C. B,

A1 A2 A3 ; Aa

* Mis atensor produc: A®B®C

Don Batory
UT-Austin Computer Sciences tensors 19

i
i

« M has axbxc entries .G M
c,
C,
» Entry My, implements the B
B3
(A, B;, Cy) B,
« examples shortly B,
A, A, A, A,
B$?A?Jas(!?nw00mputer Sciences tensors 20

N-Dimensional Models

» A program is now specified by n expressions
* 1 per dimension

* Program P in product-line of M has 3 expressions:
P=AstA; + A, =263 A
P=B;+B,+B;+B, =X 7432 B

P=Cq+Cy =Zke(9,1)Ck

Contracting Tensors

Don Batory

UT-Austin Computer Sciences tensors 21

i
J

» The 3-expression specification of P is translated
into an M expression scalar by contracting M
along each dimension

P=2X ic (6,3,1) 2 j€(7,4,3,2) 2 (9,1) Mijk

Aindices B indices C indices

* Really a projection and contraction to a scalar:

P=2 ijk (I1 ic (6,3,1) I1 j€(7,4,3,2) I1 ke (9,1) Mijk)

Don Batory

UT-Austin Computer Sciences tensors 22

i
J

Contracting Tensors

P=Zcon) Zic(7432) 2 ic(63.1) M;;

C indices B indices A indices

« Commutativity property of tensor contraction

Significance is Scalability!

Don Batory

UT-Austin Computer Sciences tensors 23

]
J

« Complexity of program is # of features

» Given n dimensions with d features per dimension

» program complexity is O(d")
* using cubes O(dxn)

» ex: program P specified by 3x4x2 features of M or
only 3 + 4 + 2 dimensional features!

Don Batory

UT-Austin Computer Sciences tensors 24

1
J

Academic Legacy Academic Legacy
° 13 ” Or [13 ”»
» classical problem in Programming Languages
* see papers by: Cook, Reynolds, Wadler, Torgensen « Tarr. Ossher IBM
« focus is on achieving data type and operation
extensibility in a type-safe manner .
Y P * Cubes are tensor formulation of MDSoC and
fenturos Expression Problem
* review a micro example (~35 line programs)
—— how operation j
'/ \ is ivrvnplemerlltedJ in .
structure (i.j) '~ structure i + then a large example (~35K line programs)
features . synthesis of the AHEAD Tool Suite
tensor entries are
refinements
« finally techniques to prove orthogonality of dimensions
Bg?A?Jas‘!?nryComputer Sciences tensors 25 r B?ABuas(;i)nryComputer Sciences tensors 26
Calculator Matrix
* View product-line as a matrix
» Tensor product of Calc, ® GUI, = CT,,
: GUI model
Micro Example A
GUlI, Cmd GUl, ... Core
.
Calculator Model revisited Form | Form, Form, Form, ~ TForm
Cale < sub [Sub, Sub, Sub, ... | Sub
model
Add | Add, Add, Add, ... |Add
| Base|Base, Base, Base, ... | Base
B?i]A?Jas(!li)nryComputer Sciences tensors 27 F B$?ABKJES(I?HWCOmpUtef Sciences tensors 28

Calculator Synthesis is Tensor Contraction

» Define which GUI features to compose
» MyCalc = GUI, + Core
 project and contract the matrix

GUI, Cmd GUl, Core
Form| Form, Form, Form, Form
Sub| Sub, Sub, Sub, Sub
Add| Add, Add, Add, Add
Base| Base, Base, Base, Base
Don Batory tensors 29

UT-Austin Computer Sciences

1
J

Calculator Synthesis is Tensor Contraction

» Define which GUI features to compose
+ MyCalc = GUI, + Core
* project and contract the matrix

GUl, + Core

+
Form| Form, + Form
Sub| Sub, + Sub
Add| Add, + Add
Base| Base, + Base

Don Batory e

UT-Austin Computer Sciences

Calculator Synthesis is Tensor Contraction

Calculator Synthesis is Tensor Contraction

» Define which Calc features to compose
+ MyCalc = Add + Base
* project and contract the matrix

GUl, + Core

Form| Form, + Form
Sub| Sub, + Sub
Add[Add, + Add
Base| Base, + Base

Don Batory
UT-Austin Computer Sciences tensors 31

1
J

» Define which Calc features to compose
+ MyCalc = Add + Base
* project and contract the matrix

MyCalc = Add, + Add + Base, + Base

process is symmetrical GUI, + Core
get equivalent result if add[Add, : Add -
rows are contracted
et Base| Base,; + Base

Don Batory
UT-Austin Computer Sciences tensors 32

Calculator Synthesis is Tensor Contraction

Define which Calc features to compose

+ MyCalc = Add + Base
* project and contract the matrix

Calculator Synthesis is Tensor Contraction

Define which Calc features to compose

+ MyCalc = Add + Base
 project and contract the matrix

GUI, Cmd GUl, Core
Form| Form, Form, Form, Form
Sub| Sub, Sub, Sub, Sub
Add| Add, Add, Add, Add
Base| Base, Base, Base, Base
Don Batory tensors 33 F

UT-Austin Computer Sciences

GUl, Cmd GUI, Core
Add[Add, Add, Add, Add
+ + + + +
Base| Base, Base, Base, Base
Don Batory tensors 34 F

UT-Austin Computer Sciences

Calculator Synthesis is Tensor Contraction

» Define which GUI features to compose
» MyCalc = GUI, + Core
 project and contract the matrix

GUI, Cmd GUI, Core
Add[Add, Add, Add, Add
+ + + + +
Base| Base, Base, Base, Base

Don Batory
UT-Austin Computer Sciences

tensors 35

Calculator Synthesis is Tensor Contraction

» Define which GUI features to compose
+ MyCalc = GUI, + Core
 project and contract the matrix

MyCalc = Add, + Base, + Add + Base

GUl, + Core

Add| Add, Add
+ + +
Base

+
Base Base1

Don Batory
tensors 36

UT-Austin Computer Sciences

Calculator Synthesis is Tensor Contraction

When to Use Multiple Dimensions?

* Note generated expressions are not syntactically
identical
+ columns, rows:

MyCalc = Add, + Add + Base, + Base

* rows, columns:

MyCalc = Add, + Base, + Add + Base

» Expressions are equal because Add and Base,
are commutative (orthogonal)
+ see how we prove this property later...

* Rule: When adding a feature requires the
lock-step updating of many other features

» row feature updates all columns

+ column feature updates all row features

Don Batory

UT-Austin Computer Sciences tensors 37

]
J

Don Batory

UT-Austin Computer Sciences tensors 38

Perspective

A Macro Example

Synthesizing the AHEAD Tool Suite

» So far, our models customize
« set of all such programs is a

is an integrated set of programs,
each with different capabilities
» MS Office (Excel, Word, Access, ...)

* Question: Do features scale to tool suites?
« product-line of tool suites

Don Batory

UT-Austin Computer Sciences tensors 39

i
i

Don Batory

UT-Austin Computer Sciences tensors 40

IDEs: A Tool Suite

« suite of tools to write, debug, document programs
« AHEAD variant: Java language extensibility

compiler

formatter edit debugger

(state machine DSL) :_

In principle, features scale!!!

The Problem — Declarative IDE

=10

Optional Tools

Optional Java Extensions

[v] State Machines [v] JediiJavaDoc
[¥] Templates

[] Code Quotes

[C] Container Data Structures
[] Layers

[] Localld

[C] Formatter
G ate IDE

[v] Debugger enerate

[C] Editor

[_] Composer

From this declarative DSL spec, how do we generate AHEAD tools?

Bg?A?Jas'!?nryComputer Sciences tensors 41 g Bg?A?Jas(!?nryComputer Sciences tensors 42 E
Define Dimensional Model #1 Define Orthogonal Model #2
« AHEAD Model of Java Language Dialects » Tools can be specified by a different, orthogonal model
J=[Java, Sm, Tmpl, Ds, ...]
IDE = [Parse, ToJava, Harvest, Doclet, ... 1]
» Dialects of Java specified by expression
 Different tools have different expressions
Jak = Tmpl + Sm + Java // java + jak2java = ToJava + Parse
// state machines +
// templates
jedi = Doclet + Harvest + Parse
Don Batory Don Batory tensors 44 F

UT-Austin Computer Sciences tensors 43

-

UT-Austin Computer Sciences

Tool Specification

* Defined by a pair of expressions
* one defines tool language
+ other defines tool actions

* ex: jedi (i.e., javadoc) for the Jak dialect of Java

jedi Tmpl + Sm + Java /I using J Model

jedi = Doclet + Harvest + Parse //using IDE Model

» Synthesize jedi by projecting and contracting the
tensor product of the J and IDE models

Tensor for jedi

* Rows are language features
» Columns are tool features

» Entries are modules (refinements) that implement a
language feature for a tool feature

» Shows relationship between IDE and J models

Don Batory
UT-Austin Computer Sciences tensors 45

Doclet Harvest Parse
Java JDoclet JHarvest JParse
Cube
Sm SDoclet SHarvest SParse for
jedi
Tmpl TDoclet THarvest TParse
Bg?A?Jas(!(i)nryComputer Sciences tensors 46 F

Tensor for jedi

» Composition of these modules yields jedi

» Synthesize jedi expression by contracting the
tensor according to its dimensional expressions

Doclet Harvest Parse
Java JDoclet JHarvest JParse
Tensor
Sm SDoclet SHarvest SParse for
jedi
Tmpl TDoclet THarvest TParse

Contract the Tensor!

* IDE expression
jedi =Doclet + Harvest + Parse

* Tells us the column summation order

Don Batory
UT-Austin Computer Sciences tensors 47

Doclet + Harvest + Parse
.|. L
Java JDoclet JHarvest + JParse Sum remaining
columns
Sm SDoclet + SHarvest + SParse
Tmpl TDoclet + THarvest + TParse
B$?A?Jas(!?nw00mputer Sciences tensors 48 ?

Now Contract the Rows

» J expression
jedi = Tmpl + Sm + Java

* Tells us the row summation order

Harvest + Parse

+

Doclet

Java [JDocIet + JHarvest + JParse]
+ + now add

Resulting Expression

jedi = (TDoclet + THarvest + TParse) +
(SDhoclet + SHarvest + SParse) +
(JDhoclet + JHarvest + JParse)

Sm [SDoclet + SHarvest + SParse] Tmpl Row
+ +
Tmpl [TDoclet + THarvest + TParse]
B?'?A?Jas(!?nryComputerSciences tensors49 ! i Bg?A?Jas(t?nryComputerSciences tensors 50 | i
Using Cubes to Generate Product-Line Tensor
e Tool Suites... * That relates J and IDE models
* Rows are language features
_ » Columns are tool features
EZ IDEspec =101 + Entries implement feature interactions (refinements)

Optional Java Extensions

Optional Tools

[v] State Machines [v] Jedi/JavaDoc

[Templates [Formatter

[_] Code Quotes

Generate IDE

[v] Debugger
[_] Container Data Structures

[Layers
[_] Localld [_] Composer

[C] Editor

Don Batory
UT-Austin Computer Sciences

tensors51 !

-

Parse ToJava Harvest Doclet Signat
Java JParse J2Java JHarvest JDoclet JSig
Sm SParse S2Java SHarvest SDoclet SSig
Tmpl TParse T2Java THarvest TDoclet TSig
Ds DParse D2Java DHarvest DDoclet DSig
Don Batory rensors5 |

UT-Austin Computer Sciences

-

To Synthesize IDE Tools

* Project unneeded rows and columns
+ directly from IDE GUI input
» example: jedi, jak2java for Java + Sm + Tmpl

Parse ToJava Harvest Doclet

Java JParse J2Java JHarvest JDoclet
Sm SParse S2Java SHarvest SDoclet
Tmpl TParse T2Java THarvest TDoclet

Don Batory

UT-Austin Computer Sciences tensors 53

Tensor for IDE Tools

* Contract rows
* Note the semantics of the result...

Parse ToJava Harvest Doclet
Java JParse J2Java JHarvest JDoclet
+ + + +
Sm SParse S2Java SHarvest SDoclet
Tmpl TParse T2Java THarvest TDoclet

Don Batory

UT-Austin Computer Sciences tensors 54

Yields Expression For Each Tool Feature!

Parse = TParse + SParse + JParse
ToJava = T2Java + S2Java + J2Java
Harvest = THarvest + SHarvest + JHarvest
Doclet = TDoclet + SDoclet + JDoclet

* And we know expressions for each tool!

jak2java = ToJava + Parse

Doclet + Harvest + Parse

jedi

Don Batory

UT-Austin Computer Sciences tensors 55

-

IDE Generator is Simple

* For each selected tool, evaluate its expression

Optional Tools

[v] JediiJavaDoc
[_] Formatter

[v| Debugger

[_] Editor

[Composer

Don Batory

UT-Austin Computer Sciences tensors 56

Generator of IDE Tool Suite

"‘ \’/ . Im-_ _

Engineer

h,+g,+f
;“-ﬁ generator tl—

jak2j avaj

h+g,+f,
_‘ generator
cube

jedi

generatorNs*%*fs

= generator :]—'

Don Batory

UT-Austin Computer Sciences

tensors 57

1
J

Experimental Results

Don Batory
UT-Austin Computer Sciences

tensors 58

1
J

Bootstrapping AHEAD

* We contracted a tensor of rank 3,

dimension (8x6x8) to generate 5 tools of the
AHEAD Tool Suite

Tool Features

Lang

Features
Lang

3rd dimension captures
Features

Don Batory

language feature interactions

UT-Austin Computer Sciences

tensors 59

1
J

Bootstrapping AHEAD

» Contract tensor to produce IDE model, from which
we can generate tool expression

Tool Features

—

IDE Model

Sum 3 dimension
Sum rows

Don Batory
UT-Austin Computer Sciences

tensors 60 E

Results of AHEAD Bootstrap Tensor Representations Scale!!

* 90 distinct features

* Micro example ~150 LOC total

+ Typical tool contains 20-30 features
» most tools share 10 features

* AHEAD example ~150K LOC total
* Generated Java for each tool is ~35K LOC

» Generating well close to 150K from simple, declarative
specifications
+ exactly what we want

» Making designs for multiple tools to conform to a tensor much
+ controlling the complexity of tool suites

Don Batory L Don Batory L
UT-Austin Computer Sciences tensors 61 F UT-Austin Computer Sciences tensors 62 F

Contracting Tensors

* We assumed a basic property of tensors

Proving Commutativity Properties

of Tensors + commutativity property that we have to verify
On going work... » Cubes need not be orthogonal, as next example
shows

Don Batory L Don Batory |
UT-Austin Computer Sciences tensors 63 F UT-Austin Computer Sciences tensors 64 I

Example of Non-Orthogonal Cube

* A non-orthogonal Cube

So What?

void run() {
lit.print();

}

void run() 1
Super () .run() ;
lit.eval();

}

void run() {
Super () .run()

void run() {
Super () .run() ;

» Contract tensors differently to provide different views of
software

+ viewing modules from language feature viewpoint or tool feature view
point is occasionally useful

add.print() ; } add.eval(); (@) » Properties derived in one view (contraction), might not hold
;i in other views
void run() { void run() { + Edits or code repairs performed in one view might not work
lit.print O |« by rows first lit.print() correctly in other views
add.print () lit.eval();
lit.eval(); by coumns—— | add.print()
add.eval () ; first add.eval(); * Need consistent views!!
} (b) } () » simple design changes can make a cube orthogonal
Bg?A?Jas‘!?nryComputer Sciences tensors 65 F B?ABuas(t(i)nryComputer Sciences tensors 66 F
A Fix: An Orthogonal Cube Properties to Preserve
* An orthogonal cube and its contraction
void run() {pr(); }/void run() void runf() * For atensor A of rank 2:
void pr() { Super().run(); ev(); } |{ prO): ev(); }
{ lit.print(); } [veid ev() { lit.eval(); } Zi Zk Aik = Zk zi Aik
void pr() { void ev() { void pr() {
Super () .pr(); Super () .ev(); lit.print ();
add.print () ; add.eval();) add.print(); * For a tensor of rank n, there are n! summation orders,
! } @] |7 all must produce equivalent results
void ev(){
lit.eval();
dd. 10): . . .
y Ty « Need algorithms to verify these properties
B?TA?JZ;?anomputer Sciences tensors 67 O i tensors 68

-

UT-Austin Computer Sciences

-

Orthogonality Property

* Reduces to testing 2D matrix

a; ap;

ar|a»
Zfefﬁ.’)Z;‘eN.Z} Afj = zfef[.ij Afj 4

&y + @y + ap i+ a) = ay +ap + ay + ay

ie(l,2)

» For the above to be equal, the following must hold

ay + aj;y = a; + ay

» composition of the bottom left and upper right quadrants
must commute

a,, and a,, commute if

* (1) they do not add or refine the same member

« they add or refine non-overlapping sets of methods and
variables

* (2) they do not refer to members added by each
other

» Both conditions are easy to verify;
the hard part is doing so efficiently

* brute force doesn’t work as it would be hideously slow

Bg?A?Jas'!?nryComputer Sciences tensors 69 ﬁ Bg?A?Jas(!(i)nryComputer Sciences tensors 70 ﬁ
Essence of the Algorithm Example: Bali Tools of ATS
) _) TOOLS
* For an arbitrary rank, dimension tensor T ' Bali
Base CodGen | Bali2Jak Bali2Javacc | Composer Bali2Layer
« For every member m added or refined in feature F, store it Lo gome. bal. |codegen [ballale [Pabavace feomposer Eiﬁt}i;}l?
along with the coordinates of F in T in a hash table N lect b2AGUI
G. [WithReqFea- | require reqComposer |reqB2Javacc | reqComposer
. . ey . . . ture
« If a prior definition of m exists (meaning it was added or Without | |
refined by another feature G), see if the coordinates of F
and G conflict and if they do, see if F and G can belong in
the same product
« if so, T is not orthogonal feature
model
.. . grammar
« Similar analysis for references
» Almost linear in the size of the code base \ceTool iff codeGen:
Sg?Aias(zLyComputer Sciences tensors 71 ﬁ Bg?A?Jas(!(i)nryComputer Sciences tensors 72 ﬁ

Example Error

Another Error

TOOLS
» Require refines method defined in Composer Bali
Base CodGen | Bali2Jak Bali2Javacc | Composer Bali2Layer
L [Core kemel. bali, | codegen | Dali2jak baliZjavacc | composer bali2Iayer.
A visitor, col- b210ptns,
public Object driver(String[] args) throws Throwable { N lect b2IGUIL
setVersion("v2003.02.17") ; G. [WithReqFea- | require reqComposer |reqB2Javacc | reqComposer
T ture
Collector collector = collectSources(inpFiles) ; Without |
return collector ;
}
public Object driver(String args[]) throws Throwable { grammar
setVersion("v2002.09.03") ;
return Super(String[]).driver(args) ;
}
act 1 iff codeGen;
Don B] Don B]
Ug?Auas'!(i)nryComputer Sciences tensors 73 ; Ug?AuaS(;iJnrycompmer Sciences tensors 74 ;
Example Error Other Statistics
» Require and Codegen both refine method in Bali e Fast — didn’t find errors in JPL
public Object driver(String args[]) throws Throwable {
return parseTree ;
} Product Dim. #of #Hof Code Base Program Time to
Line Features [Programs{Jak/Java LOC| Jak/Java Run
LOC (seconds)
public Object driver(String args[]) throws Throwable { Bali Product Line 2 17 8 12K/16K 8K/12K 5
S e O et) Graph Product Line |2 18 80 | 1800/1800 | 700/700 3
} e e e TRt sEeE Java Product Line 3 70 56 34K/M48K 22K/35K 20
public Object driver(String args[]) throws Throwable {
setVersion("v2002.09.03") ;
return Super(String[]).driver(args) ;
}
Don Batory tensors 76

Don Batory

UT-Austin Computer Sciences tensors 75

-

UT-Austin Computer Sciences

-

Insights

* Oddly, we didn’t find serious errors in the ATS

designs
« only benign (inconsequential) errors were found

» Created these designs long before we had any

analysis tools
+ suggests that creating orthogonal tensors is not difficult

Final Comments

Don Batory

UT-Austin Computer Sciences tensors 77

-

Don Batory
UT-Austin Computer Sciences

tensors 78

-

Future Work

Recommended Readings

« Commutativity or “orthogonal” properties have a
simple description in category theory
* deep interconnection with our use of tensors

» Other forms of feature interactions

+ generalization of the ideas presented here seem to account for
many of such interactions

+ developing theories and supporting tools for this

» Additional analyses

« want to analyze product-lines to ensure that all legal
compositions of features yield type safe programs

» Thaker, Batory, Kitchin, Cook.
“Safe Composition of Product Lines”, GPCE 2007

Batory, Lopez-Herrejon, Martin, “Generating Product-Lines of Product Families”,
Automated Software Engineering 2002.

Batory, Liu, Sarvela, “Refinements and Multi-Dimensional Separation of Concerns”, ACM

Sigsoft 2003.

M. Calder, M. Kolberg, E.H. Magill, and S. Reiff-Marganiec, “Feature Interaction:

A Critical Review and Con

sidered Forecast”.Computer Networks, January 2003.

Cook “Object-Oriented Programming versus Abstract Data Types”. Workshop on
Foundations of Object-Oriented Languages, Lecture Notes in Computer Science, Vol.
173. Spring-Verlag, (1990) 151-178

Harrison and Ossher, “Subject-Oriented Programming (A Critique of Pure Objects)”,

OOPSLA 1993, 411-427.

Kay, “Tensor Calculus”, Shaums Outlines, 1988.

J. Liu, D. Batory, and C. Lengauer. "Feature Oriented Refactoring of Legacy

Applications”, ICSE 2006.

Don Batory

UT-Austin Computer Sciences tensors 79

Don Batory
UT-Austin Computer Sciences

tensors 80

-

Recommended Readings

* Ossher and Tarr, “Using Multi-Dimensional Separation of Concerns to (Re)Shape
Evolving Software.” CACM 44(10): 43-50, October 2001.

* Reynolds “User-defined types and procedural data as complementary approaches to
data abstraction”. Reprinted in C.A. Gunter and J.C.Mitchell, Theoretical Aspects of
Object-Oriented Programming, MIT Press,1994.

* Thaker, “Design and Analysis of MultiDimensional Program Structures”, M.Sc. Thesis,
Dept. Computer Sciences, University of Texas at Austin, 2006.

» Thaker, Batory, Kitchin, Cook, “Towards Safe Composition of Product-Lines”, GPCE
2007.

» Tarr, Ossher, Harrison, and Sutton, “N Degrees of Separation: Multi-Dimensional
Separation of Concerns”, ICSE 1999.

* Torgensen “The Expresion Problem Revisited. “Four new solutions using generics”,
ECOOP 2004.

+ Wadler “The expression problem”. Posted on the Java Genericity mailing list (1998)

Don Batory
UT-Austin Computer Sciences tensors 81 !

