
Feature ModularityFeature Modularity
i S ft P d ti S ft P d t LiLiin Software Productin Software Product--LinesLines

Don Batory
Department of Computer Sciences

University of Texas at Austin
batory@cs utexas edubatory@cs.utexas.edu

www.cs.utexas.edu/users/dsb/

Copyright is held by the author/owner(s).
Presented at: Lipari School for Advances in Software EngineeringPresented at: Lipari School for Advances in Software Engineering
July 8 - July 21, 2007, Lipari Island, Italy

Feature ModularityFeature Modularity
i S ft P d ti S ft P d t LiLiin Software Productin Software Product--LinesLines

Don Batory
Department of Computer Sciences

University of Texas at Austin
batory@cs utexas edubatory@cs.utexas.edu

www.cs.utexas.edu/users/dsb/

Copyright is held by the author/owner(s).
Presented at: Lipari School for Advances in Software EngineeringPresented at: Lipari School for Advances in Software Engineering
July 8 - July 21, 2007, Lipari Island, Italy

IntroductionIntroduction

• A product-line is a family
of similar systems

• Key idea of product-lines
– members are

– Chrysler mini-vans,
Motorola radios,
software

members are
differentiated by features

software

• Motivation: economics
– feature is product

characteristic that
customers feel is

– amortize cost of building
variants of program

important in describing
and distinguishing
members within a family– design for family of

systems
members within a family

– feature is increment infeature is increment in
product functionality

Don Batory
UT-Austin Computer Sciences intro 2

IntroductionIntroduction

• Feature Oriented
Programming (FOP)

• History of applications
– 1986 database systemsg g ()

is the study of feature
modularity in product-lines

y
– 1989 network protocols
– 1993 data structures
– 1994 avionics

– features are first-class
entities in design

– 1994 avionics
– 1997 extensible compilers
– 1998 radio ergonomics

2000 ifi i l
– often implemented by

collaborations

– 2000 prog. verification tools
– 2002 fire support simulator
– 2003 AHEAD tool suite
– 2004 robotics controllers
– 2006 peer-to-peer networks

Don Batory
UT-Austin Computer Sciences intro 3

Very Rich Technical Area...Very Rich Technical Area...

• Integrates many subjects:
• compilers • metaprogrammingp
• grammars
• artificial intelligence
• databases

• domain-specific languages
• declarative languages
• tensors• databases

• algebra
• category theory

tensors
• generative programming
• model driven design

ifi ti• programming languages
• compositional programming
• compositional reasoning

• verification
• collaborations
• refactoringp g

• OO software design • automatic programming
• aspect-oriented programming

th

Don Batory
UT-Austin Computer Sciences intro 4

others...

Overall GoalOverall Goal

• Place automation of large-scale software design
and construction on a practical and firmand construction on a practical and firm
mathematical foundation

• Feature orientation allows us to do this in a
simple ways p e ay

• Tutorial shows howTutorial shows how...

Don Batory
UT-Austin Computer Sciences intro 5

Tutorial OverviewTutorial Overview

• Lecture 1: Introduction to FOP buckle
p!

• Lecture 2a: Tool Demos

up!

• Lecture 2b: Verification of Feature Compositions

• Lecture 3: Program Refactoring, Synthesis, and
Model-Driven Design

• Lecture 4: Feature Interactions and
Program CubesProgram Cubes

Don Batory
UT-Austin Computer Sciences intro 6

Introduction to FOPIntroduction to FOPIntroduction to FOPIntroduction to FOP

a general approach to product synthesis

Don Batory
UT-Austin Computer Sciences intro 7

MotivationMotivation

• Software products are:
• increasing in complexity

i i i t t d l d i t i• increasing in costs to develop and maintain
• decreasing in ability to understand

• Goal of SE is to manage and control complexity• Goal of SE is to manage and control complexity
• structured programming to
• object-oriented programming to
• component-based programming to...

progressively
increasing abstractionsp p g g

• today’s design techniques are too low-level,
expose too much detail to make application’s design,
construction and modification simplep

• Something is missing...
• future design techniques generalize today’s techniques
• tutorial to expose a bigger universe

Don Batory
UT-Austin Computer Sciences intro 8

Keys to the FutureKeys to the Future

• New paradigms will likely embrace:

– Generative Programming (GP)
– want software development to be automated

– Domain-Specific Languages (DSLs)
– not Java & C#, but high-level notations

– Automatic Programming (AP)
– declarative specs → efficient programs

• Need simultaneous advance in all three fronts to
make a significant change

Don Batory
UT-Austin Computer Sciences intro 9

Not Wishful Thinking...Not Wishful Thinking...

• Example of this futuristic paradigm realized
30 years ago30 years ago

• around time when many AI researchers gave up on• around time when many AI researchers gave up on
automatic programming

Don Batory
UT-Austin Computer Sciences intro 10

Relational Query OptimizationRelational Query Optimization

• Declarative query is mapped to an expression
• Each expression represents a unique program
• Expression is optimized using rewrite rules
• Efficient program generated from expressionSQL

select
statementstatement

inefficient
relational

efficient
relational
algebra

code
generatorparser algebra

expression
optimizer algebra

expression
generator

declarative
domain-specific

automatic
programming

efficient
programgenerative

programming

Don Batory
UT-Austin Computer Sciences intro 11

language

Keys to SuccessKeys to Success

• Automated development of query evaluation programs
• hard-to-write, hard-to-optimize, hard-to-maintain
• revolutionized and simplified database usage

• Used algebra to specify and optimize query evaluation
programsprograms

• Identified fundamental operations of a domain
• relational algebra

• Represented program designs as expressions
• compositions of relational operations

• Defined algebraic identities among operations to optimize
expressions

Compositionality is hallmark of great engineering models• Compositionality is hallmark of great engineering models
Don Batory
UT-Austin Computer Sciences intro 12

Looking Back and AheadLooking Back and Ahead

• Query optimization (and concurrency control) helped
bring DBMSs out of the stone agebring DBMSs out of the stone age

• Holy Grail Software Engineering:

Repeat this success in other domainsRepeat this success in other domains

• Not obvious how to do so...

• Subject of this tutorial…j

• series of simple ideas that generalize notions of
modularity and lay groundwork for practical
compositional programming and an algebra basedcompositional programming and an algebra-based
science for software design

Don Batory
UT-Austin Computer Sciences intro 13

Towards a Science of Towards a Science of
Software DesignSoftware Design

What motivates FOP and
how is it defined?

Don Batory
UT-Austin Computer Sciences intro 14

Today’s View of SoftwareToday’s View of Software

• Today’s models of software are too low level

– expose classes, methods, objects as focal point of
discourse in software design and implementation

– difficult (impossible) to
• reason about construction of applications from componentspp p
• produce software automatically from high-level specifications

(distance is too great)

• We need a more abstract way to specify and
reason about systems

Don Batory
UT-Austin Computer Sciences intro 15

A Thought Experiment...A Thought Experiment...

• Look at how people describe programs now...
• don’t say which DLLs are used...

• Instead, say what features a program offers its clients

Program1 = feature_X + feature_Y + feature_Z

Program2 = feature X + feature Q + feature RProgram2 feature_X feature_Q feature_R

• why? because features align better with requirements

• We should specify systems as compositions of features
• few do this for software (now)
• done in lots of other areas

Don Batory
UT-Austin Computer Sciences intro 16

Dell Web SiteDell Web Site

d l ti DSLdeclarative DSL
to select features
of desired system

Don Batory
UT-Austin Computer Sciences intro 17

Chinese Menu Chinese Menu –– Declarative DSLDeclarative DSL

Don Batory
UT-Austin Computer Sciences intro 18

Methodology for ConstructionMethodology for Construction

• What methodology builds systems by
progressively adding details?p g y g

• Step-Wise Refinement
• Dijkstra, Wirth early 1970s

• abandoned in early 1980s as it didn’t scale...y

• had to compose hundreds or thousands of transforms
(rewrites) to produce admittedly small programs

• recent work shows how SWR scales
– scale individual transform to a feature
– composing a few refinements yields an entire system

Don Batory
UT-Austin Computer Sciences intro 19

What is a Feature?What is a Feature?

• Feature
• an elaboration or augmentation of an entity(s) that g y()

introduces a new service, capability, or relationship
• increment in functionality

• Characteristics
• abstract, mathematical conceptabstract, mathematical concept
• reusable
• interchangeable

(largely) defined independently of each other• (largely) defined independently of each other

• Illustrate in next few slides

Don Batory
UT-Austin Computer Sciences intro 20

Tutorial on Features (Refinements)Tutorial on Features (Refinements)

Don Batory
UT-Austin Computer Sciences intro 21

Features are InterchangeableFeatures are Interchangeable

Don Batory
UT-Austin Computer Sciences intro 22

Features are InterchangeableFeatures are Interchangeable

Don Batory
UT-Austin Computer Sciences intro 23

Features are InterchangeableFeatures are Interchangeable

Don Batory
UT-Austin Computer Sciences intro 24

Features are InterchangeableFeatures are Interchangeable

Don Batory
UT-Austin Computer Sciences intro 25

Features are ReusableFeatures are Reusable

Don Batory
UT-Austin Computer Sciences intro 26

Features are Functions!Features are Functions!

PersonPhoto beanie(PersonPhoto x)

h l S (h)PersonPhoto uncleSam(PersonPhoto x)

PersonPhoto mustache(PersonPhoto x)PersonPhoto mustache(PersonPhoto x)

PersonPhoto lincolnBeard(PersonPhoto x)PersonPhoto lincolnBeard(PersonPhoto x)

Don Batory
UT-Austin Computer Sciences intro 27

Composing FeaturesComposing Features

• Feature composition = function compositionFeature composition = function composition

= lincolnBeard(uncleSam())

Don Batory
UT-Austin Computer Sciences intro 28

Large Scale FeaturesLarge Scale Features

• Called Collaborations (1992)
i lt l dif lti l bj t / titi• simultaneously modify multiple objects/entities

• refinement of single entity is called role

• Example: Positions in US Government
• each defines a roleeach defines a role

VicePrez Vice
Prez

....

Don Batory
UT-Austin Computer Sciences intro 29

Composing CollaborationsComposing Collaborations

• At election-time, collaboration remains constant,
but objects that are refined are differentbut objects that are refined are different

Prez VicePrez Prez

f f
Don Batory
UT-Austin Computer Sciences intro 30

Example of dynamic composition of collaborations

Other CollaborationsOther Collaborations

• Parent-Child collaboration

Parent Child

• Professor-Student collaborationProfessor Student collaboration

Prof Student

Don Batory
UT-Austin Computer Sciences intro 31

ExampleExample

DonSteve AlexKelly Mark

Prof Student

Prof Student

Parent Child

Parent Child

Don Batory
UT-Austin Computer Sciences intro 32

Parent Child

Same Holds for Software!Same Holds for Software!

Highly complex entities and relationshipsg y p p
in software can be synthesized by

composing generic & reusable p g g
features

Don Batory
UT-Austin Computer Sciences intro 33

Feature Oriented ProgrammingFeature Oriented Programming

• Feature Oriented Programming (FOP) is theFeature Oriented Programming (FOP) is the
study of feature modularity and programming
models for product-lines

• a powerful form of FOP based on step-wise
developmentdevelopment

• advocates complex programs constructed from simple
programs by incrementally adding features

• How are features and their compositions modeled?

Don Batory
UT-Austin Computer Sciences intro 34

The TheoryThe TheoryThe TheoryThe Theory

GenVoca and AHEAD

Don Batory
UT-Austin Computer Sciences intro 35

A Clue...A Clue...

• Consider any Java class C
b ld b d t fi ld th d• member could be a data field or method

• class C below has 4 members m1—m4

class C {
member m1;member m1;
member m2;
member m3;

b 4member m4;
}

Don Batory
UT-Austin Computer Sciences intro 36

Have You Ever Noticed…Have You Ever Noticed…

• Contents of C can be distributed across an inheritance
hierarchyhierarchy

class C1 {
member m1;

}}

class C23 extends C1 {
member m2;

b 3member m3;
}

class C4 extends C23 {

class C {
member m1; {

member m4;
}

class C extends C4 {}

member m2;
member m3;
member m4;

}
=

Don Batory
UT-Austin Computer Sciences intro 37

class C extends C4 {}}

Another Example...Another Example...

• C23 decomposed further as:

class C2 extends C1 {
member m2;member m2;

}

class C3 extends C2

class C23 extends C1 {
member m2;

class C3 extends C2
member m3;

}

member m3;
} = class C23 extends C3 {}

Don Batory
UT-Austin Computer Sciences intro 38

Observe…Observe…

• Significance: class definition need not be
monolithic but can be built by incrementallymonolithic, but can be built by incrementally
composing reusable pieces via inheritance

• Nothing special about the placement of members
m1…m4 in this hierarchy except...t s e a c y e cept

• no-forward references: member can be introduced as
long as all members it references are definedlong as all members it references are defined

• requirement for compilation, step-wise developmentq p , p p

Don Batory
UT-Austin Computer Sciences intro 39

Look Familiar?? Remember Algebra?Look Familiar?? Remember Algebra?

• Consider sets and union
operation (∪)

• Vector addition (+)

– commutative
almost like inheritance...

– is commutative
almost like inheritance

C1 = { m1 }

C2 = { m2 }

C1 = [m1,0,0,0]

C2 = [0,m2,0,0]

C3 = [0 0 m3 0]
C3 = { m3 }

C4 = { m4 }

C3 = [0,0,m3,0]

C4 = [0,0,0,m4]

C = C1 ∪ C2 ∪ C3 ∪ C4

= { m1, m2, m3, m4 }

C = C1 + C2 + C3 + C4

= [m1 m2 m3 m4]= [m1, m2, m3, m4]

Don Batory
UT-Austin Computer Sciences intro 40

A Closer AnalogyA Closer Analogy

• Vector join (→)
• Vector join lays vectors end-to-end to define a path• Vector join lays vectors end-to-end to define a path
• Not commutative! – Order of composition matters!

C1 = (m1,0,0,0)
C2 = (0,m2,0,0)
C3 (0 0 m3 0)

C1 → C2 → C3 → C4 ≠ C4 → C3 → C2 → C1

C3 = (0,0,m3,0)
C4 = (0,0,0,m4)

B

B

AAA → B ≠ B → A

path followed by
A → B is different

than B → A;
end point is the same

Don Batory
UT-Austin Computer Sciences intro 41

B end point is the same

Operation We Want...Operation We Want...

• Is not quite inheritance...

• want to add new methods, new fields, and refine existing
methods like inheritance

• also want constructors to be inherited and refined as wellalso want constructors to be inherited and refined as well,
(inheritance doesn’t provide this)

class C2 {
constructor2

}

class C12 {
constructor1
constructor2

=
class C1 {

constructor1
} } constructor2

}
}

The operation we want is called class refinement
Don Batory
UT-Austin Computer Sciences intro 42

The operation ● we want is called class refinement

Syntax of Class RefinementSyntax of Class Refinement

• Suppose program P
has single class B

• Composition of R with
P defines a newhas single class B P defines a new
program N:

class B { int x; }
class B {

int x;
int y;

• Refinement R adds y, z()
void z(){...}

}

refines class B {
int y;
void z(){...}

}

Don Batory
UT-Austin Computer Sciences intro 43

}

Algebraic FormulationAlgebraic Formulation
• Base programs are constants

// constant P

• Composition is an expression

// constant P

class B { int x; }

N = R(P)

= R ● P

• Refinements are functions

• yields:

class B {
i t

// function R

refines class B {
i t

int x;
int y;
void z(){...}

}
int y;
void z(){...}

}

}

Treat programs as values
is metaprogramming

Don Batory
UT-Austin Computer Sciences intro 44

is metaprogramming

Another ExampleAnother Example

class C { member m1; } // constant C1

refines class C { member m2; } // function C2
refines class C { member m3; } // function C3
refines class C { member m4; } // function C4

Composition is an expression or named expression

{ ; } //

• Composition is an expression or named expression

C = C4(C3(C2(C1))) Note:C = C4(C3(C2(C1)))

= C4 ● C3 ● C2 ● C1

Note:
both notations
are equivalent

Don Batory
UT-Austin Computer Sciences intro 45

Method Refinement ala InheritanceMethod Refinement ala Inheritance

result = method refinement ● base methodresult =

void foo() {
/* before stuff */

method_refinement ●

void foo() {

base_method

=
/ before stuff /
super.foo();
/* after stuff */

}

●
void foo() {

/* do something */
}

void foo() {
/* before stuff */ is s bstit tion or an/* before stuff */
/* do something */
/* after stuff */

}

=
is substitution or an
equivalent encoding

Don Batory
UT-Austin Computer Sciences intro 46

Connecting the Dots...Connecting the Dots...

• ScalabilityScalability
• refinement is not limited to a single class

• collaborations modularize refinements of multiple
classes and add new classes

» adding new classes that can be refined is critical

Don Batory
UT-Austin Computer Sciences intro 47

Connecting the Dots...Connecting the Dots...
• A collaboration has meaning when it

implements a featurep

• ever add a new feature to an existing OO program?

• several existing classes may be refined

• several new classes may be added

Don Batory
UT-Austin Computer Sciences intro 48

Synthesis ParadigmSynthesis Paradigm

Program P = featureXfeatureY ●
Note: each

feature updatesfeatureZ ●

class1 class2 class3 class4

Program P = featureXfeatureY ● feature updates
multiple classes

featureZ ●

class1 class2 class3 class4

featureX

featureYfeatureY

featureZ

By composing features, packages of fully-formed classes are synthesized

Don Batory
UT-Austin Computer Sciences intro 49

Contributors to this View…Contributors to this View…

• Many researchers have variants of this idea:

– refinements – Dijkstra, Wirth 68
– layers – Dijkstra 68, Batory 84layers Dijkstra 68, Batory 84
– product-line architectures – Kang 90, Gomaa 92…
– collaborations – Reenskaug 92, Lieberherr 95, g , ,

Mezini 03
– program verification – Boerger 96
– aspects – Kiczales 97, et al.
– concerns – Ossher-Harrison-Tarr 99

Don Batory
UT-Austin Computer Sciences intro 50

Connecting the Dots...Connecting the Dots...
• You can always decompose software in this manner

• trick is that your refinements are reusable
th t’ th ti ith f t d t li• that’s the connection with features, product-lines

• features are reusable – so too must be their implementations

• software that is not designed to be reusable, composable, etc. with
other software won’t be – this is co-design or
designing to a standard

• Architectural Mismatch (ICSE 1995)Architectural Mismatch (ICSE 1995)

• Product-Line Design – feature implementations are
designed with compositionality, reusability in minddesigned with compositionality, reusability in mind

Don Batory
UT-Austin Computer Sciences intro 51

GenVocaGenVocaGenVocaGenVoca

Genesis + Avoca

Th Fi t G tiThe First Generation

Don Batory
UT-Austin Computer Sciences intro 52

GenVoca (1988,1992)GenVoca (1988,1992)

• Equates constants, functions
with features

• A domain model
or product-line model

• Constants:
f base program with feature f

or GenVoca model M

• set of constantsf – base program with feature f
h – base program with feature h

set of constants
(base programs)

• functions
• Functions

i ● x – adds feature i to program x

• functions
(program refinements)

j ● x – adds feature j to program x
M = { f, h, ... i, j, ... }

Don Batory
UT-Austin Computer Sciences intro 53

Function CompositionFunction Composition

• Multi-featured applications are expressions

app1 = i ● f – application with features f and i

app2 = j ● h

app3 = i ● j ● f

– application with features h and j

– your turn...y

Given a GenVoca model we canGiven a GenVoca model, we can
create a family of applications by

composing features

Don Batory
UT-Austin Computer Sciences intro 54

Expression OptimizationExpression Optimization

• Constants, functions represent both a feature and its
implementation

• different functions can be different implementations of the same feature

k1 ● x // adds k with implementation #1 to x
k ● x // adds k with implementation #2 to x

• When application requires feature k, it is a matter of optimization
t d t i th b t i l t ti f

k2 ● x // adds k with implementation #2 to x

to determine the best implementation of k
• counterpart of relational optimization
• more complicated rewrites possible too…

• See:
• Batory, et al. ”Design Wizards and Visual Programming Environments

for GenVoca Generators”. IEEE TSE, May 2000.

Don Batory
UT-Austin Computer Sciences intro 55

Generalization of Relational AlgebraGeneralization of Relational Algebra

• Keys to success of Relational Optimizers
• expression representations of program designs
• rewrite expressions using algebraic identities

• Here’s the generalization:g

• domain model is an algebra for a domain or product-line

i t f ti (t t f ti) th t t– is set of operations (constants, functions) that represent
stereo-typical building blocks of programs/members

– compositions define space of programs that can be synthesized

• given an algebra:

– there will always be algebraic identities among operations
these identities can be used to optimize expression– these identities can be used to optimize expression
representations of programs, like relational algebra

Don Batory
UT-Austin Computer Sciences intro 56

AHEAD:AHEAD:
The Next GenerationThe Next Generation

Algebraic Hierarchical Expressions for
Application Design

Don Batory
UT-Austin Computer Sciences intro 57

Scaling Program GenerationScaling Program Generation

• Generating code for an individual program is OK,
but not sufficient

• Today’s systems are not individual programs,
but groups of collaborating programsbut groups of collaborating programs

• client-server systems, tool suites (IDEs)

• Further, systems are not solely defined by code

• architects routinely use many knowledge representations
• formal models, UML models, makefiles, documents, ...

• Need 4 insights to capture these ideasg p

Don Batory
UT-Austin Computer Sciences intro 58

Insight #1: Platonic Forms and LanguagesInsight #1: Platonic Forms and Languages

• Each program representation captures different
i f i i diff linformation in different languages

htmljava perfclass xml

program

• We want all these representations in a single module

.html.java .perf.class .xml

p g

Don Batory
UT-Austin Computer Sciences intro 59

Insight #2: Generalize FeaturesInsight #2: Generalize Features

• When a program is refined, any or all of its
representations may be updated

• Ex: Add a new feature F to program P changes:

• code (to implement F)
• documentation (to document F)
• makefiles (to build F)makefiles (to build F)
• formal properties (to characterize F)
• performance properties (to profile F)
• …

• This is a collaboration

Don Batory
UT-Austin Computer Sciences intro 60

Vectors and Vector RefinementsVectors and Vector Refinements

• A program is a vector of representations
• Features refine vectors component wise• Features refine vectors component-wise

P0

d

P1

d

P2

d
GF

code0

binary

code1

binary

code2

binarybinary0

make0

binary1

make1

binary2

make2make0

doc0

make1

doc1

make2

doc2

Don Batory
UT-Austin Computer Sciences intro 61

0 1 2

Vector RepresentationsVector Representations

• We are reducing
program synthesis to P0FP1 •p g y
vector composition code0ΔcodeFcode1 •

• GenVoca model
• constant P0
• function F

binary0ΔbinaryF
•

binary1
=

•

• Feature composition
= vector composition

make0ΔmakeFmake1 •

= vector composition

• Still need another idea

doc0ΔdocFdoc1 •

Don Batory
UT-Austin Computer Sciences intro 62

Insight #3: Generalize ModularityInsight #3: Generalize Modularity

• A module is a containment hierarchy of related artifacts

J2EE EAR File

l i f

package

methods fields

class

constantsmethods

interface

deployment
descriptors

HTML
files

• Generalize module hierarchies to arbitrary depth contents

methods fields constantsmethods descriptors files

• Generalize module hierarchies to arbitrary depth, contents

Don Batory
UT-Austin Computer Sciences intro 63

Modularization of Multiple ProgramsModularization of Multiple Programs

system

client server

code UML HTML code UML HTML

*.java, *.class *.htmlstate-machines
...

*.java, *.class *.htmlclass diagrams
...

Modules contain all needed representations of a system

Don Batory
UT-Austin Computer Sciences intro 64

Modules are Nested VectorsModules are Nested Vectors

• Program as vector idea recurses:
each subrepresentation can itself be a vector

system
system= [client, server]

client = [codec, UMLc, HTMLc]
client server

y [,]

server = [codes, UMLs, HTMLs]client [codec, UMLc, HTMLc]

codec UMLc HTMLc codes UMLs HTMLs

server [codes, UMLs, HTMLs]

• Module is a (nested) vector
• Name of a subrepresentation is unique;Name of a subrepresentation is unique;

it defines its index position in a vector
Don Batory
UT-Austin Computer Sciences intro 65

Law of CompositionLaw of Composition

• Consider base program P and refinement R:

P = [AP, BP, CP,]
R = [AR, , CR, DR]

• implicit vector padding with blanks
• base programs have nulls (∅)
• refinements have identity functions (i)• refinements have identity functions (i)

• What is R ● P ?What is R P ?

Don Batory
UT-Austin Computer Sciences intro 66

Law of CompositionLaw of Composition

• R • P is:

P = [AP, BP, CP,]
R = [AR, , CR, DR]

R•P = [AR•AP, BP, CR•CP, DR]

• Says how composition distributes over
modularization

• Do you recognize this law?

Don Batory
UT-Austin Computer Sciences intro 67

Inheritance!Inheritance!

class representation vector representation

class P {
member AP;
member BP;

P = [AP, BP, CP,]
P;

member CP;
}

l R {e tends Pclass R {
member AR;
member CR;
member DR;

R = [AR, CR, DR]

extends P

R;

}

class R●P extends R {}
R●P = [AR●AP, BP, CR●CP, DR]

Don Batory
UT-Austin Computer Sciences intro 68

class R●P extends R {}

Simple ImplementationSimple Implementation

• Module hierarchies = nested vectors

vectordirectory

A = [Code, R.drc, Htm]
A

Code = [X.java, Y.java]
Code

R.drc
Htm

Htm = [W.htm, Z.htm]X.java W.htmY.java Z.htm

Don Batory
UT-Austin Computer Sciences intro 69

Simple ImplementationSimple Implementation

• Feature composition = directory compositionFeature composition = directory composition
– produces directory isomorphic to inputs

ABC

Code Htm

A

●Code Htm

B

=Code Htm

C

Code

X j Y j Z h

R.drc
Htm

X j W hY j

Code

R.drc
Htm=

X j W hY j Z h

Code

R.drc
Htm

X.java = X.java ● X.java

X.javaY.java Z.htmX.java W.htmY.javaX.java W.htmY.java Z.htm

Don Batory
UT-Austin Computer Sciences intro 70

j j j

Simple TheorySimple Theory

• Result computed algebraically by recursivelyResult computed algebraically by recursively
expanding and applying the law of composition

C = B ● AC = B ● A

= [CodeB, R.drcB, HtmB] ● [CodeA, R.drcA, HtmA]

= [CodeB ● CodeA, R.drcB ● R.drcA, HtmB ● HtmA]= [CodeB ● CodeA, R.drcB ● R.drcA, HtmB ● HtmA]

= [[X.javaB, Y.javaB] ● [X.javaA, Y.javaA], R.drcB ● R.drcA, [W.htmB,] ● [, Z.htmA]]

= [[X.javaB ● X.javaA, Y.javaB ● Y.javaA], R.drcB ● R.drcA, [W.htmB, Z.htmA]]

Don Batory
UT-Austin Computer Sciences intro 71

Note!Note!

• Each expression defines an artifact to be produced

C

Code

R.drc
Htm

X.java W.htmY.java Z.htm

C = [[X.javaB ● X.javaA, Y.javaB ● Y.javaA], R.drcB ● R.drcA, [W.htmB, Z.htmA]]

Don Batory
UT-Austin Computer Sciences intro 72

Polymorphism...Polymorphism...

• Composition operation ● is polymorphic

• law of composition says how vectors are composed

• different implementation of ● for each representation
» ● for code

th f ht l fil t» another ● for html files, etc.

• But what does refining a non code artifact mean?• But what does refining a non-code artifact mean?
• what general principle guides refinement?

Don Batory
UT-Austin Computer Sciences intro 73

Example: MakefilesExample: Makefiles

• Instructions to build parts of a system
• it is a language for synthesizing programs• it is a language for synthesizing programs

• When we synthesize code for a system, y y ,
we also have to synthesize a makefile for it

• Sounds good, but...
• what is a refinement of a makefile?????

Don Batory
UT-Austin Computer Sciences intro 74

MakefileMakefile

mymakey

main
compile A

common
compile X

clean
delete *.classdepends

compile B
compile C

compile Y
compile Z

command line> make main

Don Batory
UT-Austin Computer Sciences intro 75

Makefile RefinementsMakefile Refinements

mymake
note

collaborations!
y

main
compile A

common
compile X

clean
delete *.classdepends

ba

compile B
compile C

compile Y
compile Z

se
fo

compile D compile F

oocompile D compile F

delete *.ser

barcompile E

Question: what is a general paradigm for refining
non-code artifact types?

Don Batory
UT-Austin Computer Sciences intro 76

non code artifact types?

MakefilesMakefiles Have a Class Structure!Have a Class Structure!

<project myMake> class myMake {<project myMake>
<target main depends=“common”>

<compile A>
<compile B>

y {
void main {
{ ...

<co p e >
<compile C>

</target>
<target common>

}
void common {

<compile X>
<compile Y>
<compile Z>

/

...

}</target>
...

</project>

}
...

}

Don Batory
UT-Austin Computer Sciences intro 77

Insight #4: Principle of UniformityInsight #4: Principle of Uniformity

• Treat all artifacts equally, as objects or classes
• create analog in OO representationcreate analog in OO representation

• Refine non-code representations same as code
representations

• That is you can refine any artifact• That is, you can refine any artifact
• understand it as an object, collection of objects, or classes

• We are creating a theory of information
structure based on features

it k f d d ll th t ti• it works for code and all other representations

Don Batory
UT-Austin Computer Sciences intro 78

Big PictureBig Picture

• Most artifacts today (HTML, XML, etc.) have or can have
a hierarchical structure

• But there is no refinement relationship among artifacts!
• what’s missing are refinement operations for artifacts

• Need tools to refine instances of each artifact type
• MS Word?
• given such tools scale step-wise refinement scales without bounds• given such tools, scale step-wise refinement scales without bounds...

• Features modularize changes/additions to
all representations of a systemp y

• so all artifacts (code, makefiles, etc.) are updated consistently

• Compositions yield consistent representations of a system
l h• exactly what we want

• simple, elegant theory behind simple implementation
Don Batory
UT-Austin Computer Sciences intro 79

Product Member Synthesis OverviewProduct Member Synthesis Overview

declarative DSL • generalizes RQO paradigm
• scales to large systems

Engineer
artifacts of

specified systemEngineer

h1●g1●f1 generator

h●g●f

artifact1

specified system

h2●g2●f2

generator

generator
expression

artifact1

artifact2

h3●g3●f3 generator

expression
composition

and optimization ...

Don Batory
UT-Austin Computer Sciences intro 80

Recommended ReadingsRecommended Readings
• Batory, O'Malley. “The Design and Implementation of Hierarchical Software Systems

with Reusable Components”. ACM TOSEM, October 1992.

• Batory Sarvela Rauschmayer “Scaling Step Wise Refinement” IEEE TSE June 2004• Batory, Sarvela, Rauschmayer. Scaling Step-Wise Refinement . IEEE TSE, June 2004.

• Batory, Johnson, MacDonald, von Heeder. “Achieving Extensibility Through Product-
Lines and Domain-Specific Languages: A Case Study”. ACM TOSEM, April 2002.

• Batory, Chen, Robertson, Wang. “Design Wizards and Visual Programming
Environments for GenVoca Generators“. IEEE TSE, May 2000.

• Batory, Singhal, Thomas, Sirkin. “Scalable Software Libraries”. ACM SIGSOFT 1993.

• Batory. “Concepts for a Database System Compiler”. ACM PODS 1988.

• Börger, Schulte. “Defining the Java Virtual Machine as Platform for Provably Correct
Java Compilation” MFCS 1998Java Compilation . MFCS 1998.

• Baxter. “Design Maintenance Systems”. CACM, April 1992.

• Czarnecki Eisenecker Generative Programming – Methods Tools and ApplicationsCzarnecki, Eisenecker. Generative Programming Methods, Tools and Applications.
Addison-Wesley 2000.

Don Batory
UT-Austin Computer Sciences intro 81

Recommended ReadingsRecommended Readings
• Czarnecki, Bednasch, Unger, Eisenecker. “Generative Programming for Embedded

Software: An Industrial Experience Report”. GPCE 2002.

Dijk t A Di i li f P i P ti H ll 1976• Dijkstra. A Discipline of Programming. Prentice-Hall, 1976.

• Ernst. “Higher-Order Hierarchies”. ECOOP 2003.

G l All O k bl “A hit t l Mi t h Wh it i h d t b ild S t• Garlan, Allen, Ockerbloom. “Architectural Mismatch or Why it is hard to build Systems
out of existing parts”. ICSE 1995.

• Flatt, Krishnamurthi, Felleisen. “Classes and Mixins”. ACM POPL 1998.

• Harrison, Ossher. “Subject-Oriented Programming (A Critique of Pure Objects)”.
OOPSLA 1993.

• Kang et al “Feature Oriented Domain Analysis Feasibility Study” SEI 1990Kang, et al. Feature Oriented Domain Analysis Feasibility Study . SEI 1990.

• Kang, et al. “FORM: A Feature-Oriented Reuse Method with Domain-Specific
Reference Architectures”. Annals of Software Engineering 1998, 143-168.

• Kiczales, et al. “An Overview of AspectJ”. ECOOP 2001.

Don Batory
UT-Austin Computer Sciences intro 82

Recommended ReadingsRecommended Readings
• Lieberherr. Adaptive Object-Oriented Software. PWS publishing, 1995.

• Mezini, Lieberherr. “Adaptive Plug-and-Play Components for Evolutionary Software
Development” OOPSLA 1998Development . OOPSLA 1998.

• Mezini, Ostermann. “Conquering Aspects with Caesar”. AOSD 2003.

• Mezini Ostermann “Variability Management with Feature-Oriented ProgrammingMezini, Ostermann. Variability Management with Feature Oriented Programming
and Aspects”. SIGSOFT 2004.

• McDirmid, Flatt, and Hsieh. “Jiazzi: new-Age Components for Old-Fashioned Java”.
OOPSLA 2001.

• Ossher and Tarr. “Using Multi-Dimensional Separation of Concerns to (Re)Shape
Evolving Software.” CACM October 2001.

• Ossher and Tarr “Multi dimensional separation of concerns and the Hyperspace• Ossher and Tarr. Multi-dimensional separation of concerns and the Hyperspace
approach”. In Software Architectures and Component Technology (M. Aksit, ed.),
2002

• Reenskaug, et al. “OORASS: Seamless Support for the Creation and Maintenance of g, pp
Object-Oriented Systems”. Journal of OO Programming, 5(6): October 1992.

Don Batory
UT-Austin Computer Sciences intro 83

Recommended ReadingsRecommended Readings
• Simonyi. “The Death of Computer Languages, the Birth of Intentional Programming”.

NATO Science Committee Conference, 1995.

S d ki B t “I l ti L d D i ith Mi i L ” ECOOP 1998• Smaragdakis, Batory. “Implementing Layered Designs with Mixin Layers”. ECOOP 1998.

• Smaragdakis, Batory. “Scoping Constructs for Program Generators”. GCSE 1999.

• Smaragdakis Batory “Mixin Layers: An Object Oriented Implementation Technique for• Smaragdakis, Batory. Mixin Layers: An Object-Oriented Implementation Technique for
Refinements and Collaboration-Based Designs “. ACM TOSEM April 2002.

• Tarr, et al. “N Degrees of Separation: Multi-Dimensional Separation of Concerns”. ICSE
1999.

• Van Hilst, Notkin. “Using Role Components to Implement Collaboration-Based Designs”.
OOPSLA 1996.

Don Batory
UT-Austin Computer Sciences intro 84

The AHEAD Tool SuiteThe AHEAD Tool Suite

Don Batory
Department of Computer Sciences

University of Texas at Austin
batory@cs utexas edubatory@cs.utexas.edu

www.cs.utexas.edu/users/dsb/

Copyright is held by the author/owner(s).
Presented at: Lipari School for Advances in Software EngineeringPresented at: Lipari School for Advances in Software Engineering
July 8 - July 21, 2007, Lipari Island, Italy

Composer ToolComposer Tool

• Key tool in AHEAD Tool Suite (ATS) is composer
• composer expands AHEAD expression to yield target system• composer expands AHEAD expression to yield target system

feat1

feat2 composer
feat321

feat2

feat3

composer

feat321 = feat3 ● feat2 ● feat1

> composer –target=feat321 feat1 feat2 feat3

Don Batory
UT-Austin Computer Sciences tools 2

Jak FilesJak Files

• Program in extended-Java files
• Jak(arta) files()

• Java + feature declarations, etc.
• Jak is an extensible language• Jak is an extensible language

• AHEAD is bootstrappedAHEAD is bootstrapped
• Most AHEAD tools are written in Jak

Don Batory
UT-Austin Computer Sciences tools 3

Other Tools...Other Tools...

• Besides composer
• jak2java – translates Jak files to Java files
j javac compiler• javac – javac compiler

• reform – Jak or Java file formatter/pretty-printer
• others...

f1

f2
f321 f321jak2java javac f321

f2

f3

composer jak2java javac

> cd <model-directory>
> composer –target=...p g
> reform *.jak
> jak2java *.jak
> reform *.java
> javac * java

Don Batory
UT-Austin Computer Sciences tools 4

> javac *.java

JakJak--File Composition ToolsFile Composition Tools

• composer invokes Jak-specific tools to compose
Jak filesJak files

• two tools now: jampack and mixin
• jak2java translates Jak to Java

A.jak
(from feat 1)

A.jak
(from feat 2)

jampack
or mixin

A.jak
(composed)

jak2java A.java

A.jak
(from feat 3)

step #1 step #2

Don Batory
UT-Austin Computer Sciences tools 5

jampackjampack

• Flattens “inheritance” hierarchies
• takes expression as input, produces single file as outputp p p g p
• basically macro expansion with a twist...

class top {
int a;
void foo() {...}

}

class top {
int a;

{ }}

refines class top {

void foo() {...}
int b;
int bar() {...}

}
int b;
int bar() {...}

}

}

Don Batory
UT-Austin Computer Sciences tools 6

jampackjampack

• jampack may not be composition tool of choice
• look at typical debugging cycleyp gg g y
• problem: manual propagation of changes
• reason: jampack doesn’t preserve feature boundaries

A.jak
(from f1)

A.jak
(from f2)

jampack A.jak
(composed)

jak2java A.java

A.jak
(from f3)

translate
debug
update

compose

propagate

Don Batory
UT-Austin Computer Sciences tools 7

propagate

mixinmixin

• Encodes class and its refinements as an inheritance
hierarchyy

SoUrCe “A/top.jak”

class top {
int a;
void foo() {...}

abstract class top$$A {
int a;
void foo() {...}

}}

refines class top {

}

SoUrCe “B/mid.jak”

refines class top {
int b;
int bar() {...}

}

public class top extends top$$A {
int b;
int bar() {...}

}

Don Batory
UT-Austin Computer Sciences tools 8

}

unmixinunmixin

• Edit, debug composed A.jak files
• unmixin propagates changes from composed file to• unmixin propagates changes from composed file to

original feature files automatically

A.jak
(from feat 1)

A.jak
(composed)

jak2java A.javaA.jak
(from feat 2)

unmixin

translate
debug
update

A.jak
(from feat 3)

propagate

Don Batory
UT-Austin Computer Sciences tools 9

Composable RepresentationsComposable Representations

• Current list...

– *.jak – extended Java files (Jakarta)
– class

AHEAD tools
are written in

extended Java.
– interface
– state machine (ex: embedded DSL) AHEAD has been

bootstrapped so
that its tools have

– *. equation – named expression files
– *. b – grammar files

that its tools have
been written using

AHEAD tools.

– *. drc – design rule files
– others...

Don Batory
UT-Austin Computer Sciences tools 10

Demo...Demo... see files,
compositionscompositions

model
tree
view

Don Batory
UT-Austin Computer Sciences tools 11file view

Cultural EnrichmentCultural Enrichment

• Note algebraic underpinning...

feat321jak2java

feat1

feat2 composer
feat321 javac feat321

f3 f2 f1j k2j ()

feat3

j ()

• Same paradigm as AHEAD

P = f3 ● f2 ● f1jak2java()javac()

• Same paradigm as AHEAD
• progressively elaborating a containment hierarchy
• can optimize expression (not this one...)

Don Batory
UT-Austin Computer Sciences tools 12

Cultural EnrichmentCultural Enrichment

• To see connection, watch how module hierarchy is
transformed...

• adding new artifacts is example of module refinement

feat1

feat2

feat3

composer
feat321 feat321jak2java javac feat321

module
produced:

• Big picture: lots of operations on AHEAD modules

produced:

Big picture: lots of operations on AHEAD modules
• seems that lots of optimizations are possible too...

Don Batory
UT-Austin Computer Sciences tools 13

A Simple ExampleA Simple ExampleA Simple ExampleA Simple Example

to illustrate concepts, tools

Don Batory
UT-Austin Computer Sciences tools 14

Domain of Graph ApplicationsDomain of Graph Applications

• A grammar is a simple way to express family of
related applicationsrelated applications

• tokens are features
• sentences are feature compositions

cycle checking

undirected

directed
graph

depth-first

breadth-first
search

vertex numbering

connected regions

...
choose one

choose at least one
choose one

Don Batory
UT-Austin Computer Sciences tools 15

Example Family MembersExample Family Members

cycle checking

undirected

directed
graph

depth-first

breadth-first
search

vertex numbering

connected regions

...

undirected
graph

depth-first
search

cycle checking

vertex numbering

directed
graph

breadth-first
search

connected regions

...

Don Batory
UT-Austin Computer Sciences tools 16

It is Easy to...It is Easy to...

– Imagine a GUI tool
that allows you to
specify any possible
combination

• declarative language

• tool generates an g
explanation of your
specification

• and identifies errors
(and suggests
corrections) when
combinations of features

See next lecture on
Verification of

Feature Compositionscombinations of features
are not possible

Don Batory
UT-Austin Computer Sciences tools 17

Feature Compositions

That’s Easy... That’s Easy...

• So too is creating the underlying FOP model:

Gpl = {

DIRECTED – directed graphs

UNDIRECTED di t d h
constants

UNDIRECTED – undirected graphs

BFS – breadth first search

d h fi hDFS – depth first search

CYCLE – cycle checking

functions

NUMBER – vertex numbering

REGIONS – connected regions
...
}

Don Batory
UT-Austin Computer Sciences tools 18

}

Constructing ApplicationsConstructing Applications

demo

graph_app = region ● vertex ● dfs ● directed
= vertex ● region ● dfs ● directed

automatic
mapping

= vertex ● region ● dfs ● directed

Don Batory
UT-Austin Computer Sciences tools 19

Recommended ReadingsRecommended Readings

• Batory, “A Tutorial on Feature Oriented Programming and the AHEAD Tool Suite”, January
2003.

• Batory, Sarvela, Rauschmayer, "Scaling Step-Wise Refinement", IEEE TSE, June 2004.

• Batory, Cardone, and Smaragdakis, “Object-Oriented Frameworks and Product-Lines”. SPLC
1999.

• Ernst, “Higher-Order Hierarchies”, ECOOP 2003.

• Holland, “Specifying Reusable Components Using Contracts”, ECOOP 1992, 287-308.

• Lee, Siek, and Lumsdaine, “The Generic Graph Component Library”, OOPSLA 1999.

• Lopez-Herrejon and Batory, “A Standard Problem for Evaluating Product-Line Methodologies”,
GCSE 2001.

• Smaragdakis and Batory, “Implementing Layered Designs with Mixin Layers”, ECOOP 1998.

• Smaragdakis and Batory, “Mixin Layers: An Object-Oriented Implementation Technique for
Refinements and Collaboration-Based Designs”, ACM TOSEM, March 2002.

Don Batory
UT-Austin Computer Sciences tools 20

Verification of Verification of
F t C itiF t C itiFeature CompositionsFeature Compositions

Don Batory
Department of Computer Sciences

University of Texas at Austin
batory@cs utexas edubatory@cs.utexas.edu

www.cs.utexas.edu/users/dsb/

Copyright is held by the author/owner(s).
Presented at: Lipari School for Advances in Software EngineeringPresented at: Lipari School for Advances in Software Engineering
July 8 - July 21, 2007, Lipari Island, Italy

IntroductionIntroduction

• Fundamental problem: not all compositions
of features are correctof features are correct

• but code can still be generated!• but code can still be generated!
• and maybe code will still compile!
• and maybe code will run for a while!and maybe code will run for a while!
• impossible for users to figure out what went wrong!

Don Batory
UT-Austin Computer Sciences verify 2

IntroductionIntroduction

• Must verify correctness of compositions automatically
• not all features are compatiblenot all features are compatible
• selection of a feature may enable others, disable others

D i ifi t i t id tif l l iti• Domain-specific constraints identify legal compositions

• Want process of applying/testing constraints to beWant process of applying/testing constraints to be
automatic

• too easy for users to make mistakes

• Presentation overview:
• tool demonstrationtool demonstration
• present theory behind the tool

Don Batory
UT-Austin Computer Sciences verify 3

Tool DemoTool Demo

• Illustrate on Graph Product Line
• has been applied to much larger examplespp g p

• Declarative domain-specific language
t t t D ll b• counterpart to Dell web page

• Constraints propagated as selections are madeCo st a ts p opagated as se ect o s a e ade
• cannot specify incorrect design

C d b d l ifi ti• Can debug model specifications
• by verifying known properties of feature combinations

Don Batory
UT-Austin Computer Sciences verify 4

Tool DemoTool Demo

Don Batory
UT-Austin Computer Sciences verify 5

Feature Diagrams and GrammarsFeature Diagrams and Grammars
(The Theory Behind The Tool)(The Theory Behind The Tool)

Grammar Feature
Diagram

?
Diagram

Don Batory
UT-Austin Computer Sciences verify 6

Feature DiagramsFeature Diagrams

• Feature diagrams are standard product-line notations
• declarative way to specify products by selecting features

• FDs are trees:
• leaves are primitive features
• internal nodes are compound featuresinternal nodes are compound features
• parent-child are containment relationships

carcar

Car BodyTransmissionEnginePulls Trailer Car BodyTransmissionEnginePulls Trailer

AutomaticManualElectricGasoline

Don Batory
UT-Austin Computer Sciences verify 7

AutomaticManualElectricGasoline

How To Read Feature DiagramsHow To Read Feature Diagrams

• Mandatory – features that are required
• Optional – features that are optional• Optional – features that are optional
• And – all subfeatures (children) are selected
• Alternative – only 1 subfeature can be selected
• Or – 1+ or 0+ subfeatures can be selected

carcar

Car BodyTransmissionEnginePulls Trailer

and

Car BodyTransmissionEnginePulls Trailer

AutomaticManualElectricGasoline

or: 1+ choose1

Don Batory
UT-Austin Computer Sciences verify 8

AutomaticManualElectricGasoline

Another ExampleAnother Example

• What is a legal product specification?

– E is ?

– R is ? andR is ?

– S is ?

and

choose1 and

• Sound familiar?
– de Jonge and Visser 2002:

FDs are graphical representations of grammars
– “GenVoca Grammars” 1992:

grammar defines legal orders in which features can be composedgrammar defines legal orders in which features can be composed

Don Batory
UT-Austin Computer Sciences verify 9

Recall GPL ModelRecall GPL Model

Gpl = {

DIRECTED – directed graphs

UNDIRECTED – undirected graphs
constants

BFS – breadth first search

DFS – depth first search
functions

CYCLE – cycle checking

NUMBER – vertex numbering

STRONGC – strongly connectedg y
...
}

Don Batory
UT-Austin Computer Sciences verify 10

GPL GrammarGPL Grammar

Gpl : Alg+ [Src] Wgt Gtp;

Gt DIRECTED | UNDIRECTED h t k iGtp : DIRECTED | UNDIRECTED ;

Wgt : WEIGHTED | UNWEIGHTED ;

each token is an
AHEAD

constant or
function

Src : DFS | BFS ;

Alg : NUMBER | CONNECTED | STRONGC

A t f thi d fi iti f f t

Alg : NUMBER | CONNECTED | STRONGC
| CYCLE | MSTPRIM | MSTKRUSKAL | SHORTEST ;

A sentence of this grammar defines a composition of features

Prog = NUMBER • CYCLE • BFS • UNWEIGHTED • DIRECTED

Don Batory
UT-Austin Computer Sciences verify 11

Mapping of FDs to GrammarsMapping of FDs to Grammars

Diagram Grammar

S : e1 [e2] en ;and

… S …

S : e1 | e2 | en ;
choose1

S : e1 | e2 | en ;

... S+ S+ ...

S : e1 | e2 | en ;
or: 1+

Don Batory
UT-Austin Computer Sciences verify 12

Example: Convert FD to GrammarExample: Convert FD to Grammar

E : R S ;
and

R : g | h | i ;

S : a [b] c ;

choose1 and

• Application defined by Feature Model = sentence of grammar E

S : a [b] c ;

• Resulting grammar is a GenVoca grammar (1992)

Don Batory
UT-Austin Computer Sciences verify 13

Grammars and Propositional FormulasGrammars and Propositional FormulasGrammars and Propositional FormulasGrammars and Propositional Formulas

Grammar Feature
Diagram

Propositional
Formula

?

Don Batory
UT-Austin Computer Sciences verify 14

Formula

Propositional FormulaPropositional Formula

• Set of boolean variables and a propositional logic
predicate that constrains values of these variablespredicate that constrains values of these variables

• Standard ¬ ∨ ∧ ⇒ ⇔ operationsStandard ¬, ∨, ∧, ⇒, ⇔ operations

• Nonstandard:o sta da d
• atmost1(e1...ek) – at most one ei is true

• Insight: A grammar is a compact representation of
a propositional formulaa propositional formula

Don Batory
UT-Austin Computer Sciences verify 15

Mapping Productions to FormulasMapping Productions to Formulas

• Given production: R : P1 | ... | Pn ;

• R can be referenced in two ways:

R
Pattern Predicate

R ⇔ P1 ∨ P2 ∨ ... ∨ Pn

R R ⇔ (P1 ∨ P2 ∨ ∨ Pn)

... R+ ...
(choose 1 or more)

... R ...
(choose 1)

R ⇔ (P1 ∨ P2 ∨ ... ∨ Pn)
∧ atmost1(P1,P2, ..., Pn)

Don Batory
UT-Austin Computer Sciences verify 16

Mapping Patterns to FormulasMapping Patterns to Formulas

• T1 T2 ... Tn :: P

formula: P⇔T1 ^ P⇔T2 ^ ... ^ P⇔Tn

• T1 [T2] Tn :: Q• T1 [T2] ... Tn :: Q

formula: Q⇔T1 ^ T2⇒Q ^ ... ^ Q⇔TnQ⇔T1 T2⇒Q ... Q⇔Tn

Don Batory
UT-Austin Computer Sciences verify 17

Example: Grammars to FormulasExample: Grammars to Formulas

• Convert each production, pattern to formula
• Take conjunction of all formulas• Take conjunction of all formulas
• Conjoin root of grammar

E : R S ; E ⇔ R ^ E ⇔ SE : R S ;

R : g | h | i ;

E ⇔ R E ⇔ S

R ⇔ (g ∨ h ∨ i) ^

^

R : g | h | i ;

S : a [b] c ;

(g)
atmost1(g, h, i)

S⇔a ^ b⇒S ^ S⇔c

^

E
^

grammar
propositional formula

Don Batory
UT-Austin Computer Sciences verify 18

p p
A sentence of E satisfies the propositional formula

and vice versa

Last ExampleLast Example

car

Car BodyTransmissionEnginePulls Trailer

C ⇔CB ^ C ⇔T ^ C ⇔E ^ Pt⇒C

AutomaticManualElectricGasoline

Tr⇔(Auto ∨ Man) ^ atmost1(Auto,Man)

Car⇔CB ^ Car⇔Tr ^ Car⇔Eng ^ Pt⇒Car

^

Eng ⇔(Ele ∨ Gas)
^

C
^

Don Batory
UT-Austin Computer Sciences verify 19

Car

RecapRecap

• We can map any AHEAD model or
Feature Diagram to a propositional formulaFeature Diagram to a propositional formula

• But what about constraints?• But what about constraints?

Any additional arbitrary propositional formulas• Any additional, arbitrary propositional formulas
conjoined onto grammar formula

• Ex: if features i and b are incompatibleEx: if features i and b are incompatible,
add the formula

i b b i)i ∨ b ⇒ ¬ (b ∧ i)
Don Batory
UT-Austin Computer Sciences verify 20

Example: Additional Constraints in GPLExample: Additional Constraints in GPL

• Straight from Graph Algorithm Text

Don Batory
UT-Austin Computer Sciences verify 21

GPL Model Specification GPL Model Specification

Gpl : Alg+ [Src] Wgt Gtp;
Gtp : DIRECTED | UNDIRECTED ;

|Wgt : WEIGHTED | UNWEIGHTED ;
Src : DFS | BFS ;
Alg : NUMBER | CONNECTED

| STRONGC | CYCLE | MSTPRIM
| |

grammar

| MSTKRUSKAL | SHORTEST ;
%%
NUMBER implies Gtp and Src;
CONNECTED implies UNDIRECTED and Src;
C C i li G d SCYCLE implies Gtp and DFS;
SHORTEST implies DIRECTED and WEIGHTED;

STRONGC implies DIRECTED and DFS;

constraints

MSTKRUSKAL or MSTPRIM implies
UNDIRECTED and WEIGHTED;

Don Batory
UT-Austin Computer Sciences verify 22

RecapRecap

• An AHEAD Model is a propositional formula!An AHEAD Model is a propositional formula!
• primitive features and compound features are variables

• Grammar:
• specifies order in which features are composed
• ordering very important for AHEAD

• Additional propositional constraints:• Additional propositional constraints:
• weed out incompatible feature combinations

Don Batory
UT-Austin Computer Sciences verify 23

Declarative DomainDeclarative Domain--Specific LanguagesSpecific LanguagesDeclarative DomainDeclarative Domain Specific LanguagesSpecific Languages

GenVoca
Grammar

Feature
Diagram

?

Propositional DDSLs

?

Don Batory
UT-Austin Computer Sciences verify 24

Formula

Declarative LanguagesDeclarative Languages

• Features enable declarative program specifications
• that’s what feature diagrams are for!
• counterpart of SQL, Dell web pages

• Want a declarative GUI DSL that acts like a
syntax-directed editor

• user selects desired features
• tool precludes specifying incorrect programsy g g

Don Batory
UT-Austin Computer Sciences verify 25

Constraint PropagationConstraint Propagation

• 1980’s result from Artificial Intelligence

• Logic Truth Maintenance System
• boolean constraint propagation (BCP) algorithm• boolean constraint propagation (BCP) algorithm
• takes a boolean predicate, set of variable assignments as input,

deduces other variable assignments as output
i l ffi i t l ith• very simple, efficient algorithm

• See: Forbus and de Kleer, ,
Building Problem Solvers, MIT Press 1993.

• BDDs (Binary Decision Diagrams) are also popular
Don Batory
UT-Austin Computer Sciences verify 26

Debugging Feature ModelsDebugging Feature ModelsDebugging Feature ModelsDebugging Feature Models

very useful model debugging aid

Don Batory
UT-Austin Computer Sciences verify 27

Debugging Feature ModelsDebugging Feature Models

• We know features A and B are compatible
• let Pmodel be the predicate of our feature model
• Pmodel ∧ A ∧ B must be satisfiable

that is, is there a product that has both A and B?

• Satisfiability (SAT) Solver
• off-the-shelf tool that automatically determines if a boolean predicate is

satisfiablesatisfiable
• very efficient

• Basis for feature model debugginggg g
• provide a script of compatible, incompatible features and

verify that our feature model has these properties
• solver confirms known properties of a model

Don Batory
UT-Austin Computer Sciences verify 28

ExperienceExperience

• Has worked well...

• Use off the shelf constraint solvers

• Predicates are simple• Predicates are simple

• Reason: architects think in terms of features
• if predicates were really complicated

– architects couldn’t design
– people couldn’t program
– because it would be too difficultbecause it would be too difficult

• We are making explicit what is implicit now...

Don Batory
UT-Austin Computer Sciences verify 29

There’s More...There’s More...

• Benavides noticed you could add numerical
attributes to grammarg

Don Batory
UT-Austin Computer Sciences verify 30

There’s More... and is Very Exciting!There’s More... and is Very Exciting!

• Allow features to have additional parameters
• property listsproperty lists

• Generalize predicates to include constraints on
numeric variables

• select product that maximizes/minimizes criteria
(performance!)(performance!)

• restrict products based on performance requirements, criteria
• use standard Constraint Satisfaction Problem (CSP) Solvers

• see: Benavides, et al. “Automated Reasoning on Feature
Models”, CAISE 2005

Don Batory
UT-Austin Computer Sciences verify 31

FutureFuture

• Basic result:
software design is a satisfiability problemsoftware design is a satisfiability problem
• does there exist a system that satisfies the following set of

constraints?

• Research: to find optimal system configurations• Research: to find optimal system configurations
automatically

• true automatic programming!

• counterpart to relational query optimizersp q y p

Don Batory
UT-Austin Computer Sciences verify 32

Recommended ReadingsRecommended Readings
• Batory and O'Malley. “The Design and Implementation of Hierarchical Software Systems with Reusable

Components”. ACM TOSEM, October 1992.

• Batory and Geraci “Composition Validation and Subjectivity in GenVoca Generators” IEEE TSE Feb 1997• Batory and Geraci. Composition Validation and Subjectivity in GenVoca Generators , IEEE TSE, Feb 1997.

• Batory, “Feature Models, Grammars, and Propositional Formulas”, SPLC 2005.
•

Benavides, Trinidad, and Ruiz-Cortes, “Automated Reasoning on Feature Models”, Conference
• on Advanced Information Systems Engineering (CAISE) July 2005on Advanced Information Systems Engineering (CAISE), July 2005.

• Beuche, Papajewski, and Schroeoder-Preikschat, “Variability Management with Feature Models”, Science of
Computer Programming, Volume 53, Issue 3, Pages 333-352, December 2004.

• Czarnecki and Eisenecker. Generative Programming: Methods, Tools, and Applications. Add.-Wes., 2000.g g , , pp ,

• Forbus and de Kleer, Building Problem Solvers, MIT Press 1993.

• de Jong and Visser, “Grammars as Feature Diagrams”, 2002.
http://www.cwi.nl/events/2002/GP2002/papers/dejonge.pdf

• Neema, Sztipanovits, and Karsai, “Constraint-Based Design Space Exploration and Model Synthesis”,
EMSOFT 2003, LNCS 2855, p. 290-305.

• Perry, “The Logic of Propagation in the Inscape Environment”, ACM SIGSOFT 1989.

• Zhang, Gao, Jacobsen, “Towards Just-in-time Middleware Architectures”, AOSD 2005.
Don Batory
UT-Austin Computer Sciences verify 33

Program Refactoring, Program Refactoring,
PP S th iS th iProgram Program Synthesis,Synthesis,

and Model Driven Designand Model Driven Design
Don Batory

Department of Computer Sciences
University of Texas at Austin

batory@cs utexas edubatory@cs.utexas.edu
www.cs.utexas.edu/users/dsb/

Copyright is held by the author/owner(s).
Presented at: Lipari School for Advances in Software Engineering

Don Batory
UT-Austin Computer Sciences

Presented at: Lipari School for Advances in Software Engineering
July 8 - July 21, 2007, Lipari Island, Italy

This LectureThis Lecture

• Sketch where I see
• automated software design & maintenance is headed

• Essential complexity of software structurey
• is exposed when program construction and design is viewed as

a computation

• Architectural Metaprogramming
• programs are values
• transformations map programs to programstransformations map programs to programs
• operators map transformations to transformations

Don Batory
UT-Austin Computer Sciences meta 2

Architectural MetaprogrammingArchitectural Metaprogramming

• Lies at core of many important areas in software
design and maintenance:design and maintenance:

• refactorings are behavior-preserving transformations

• feature-based and aspect-based software synthesis use
behavior-extending transformations

• model driven design uses both to map
platform independent models (PIMs) to

l tf ifi d l (PSM)platform specific models (PSMs)

• Lecture reveals a bigger world in which FOP lies

Don Batory
UT-Austin Computer Sciences

Lecture reveals a bigger world in which FOP lies

meta 3

Relationship of Design to Set ArithmeticRelationship of Design to Set Arithmetic

• Is basic to engineering

• Computer Aided Design (CAD) tools enable engineers to
express designs by adding, subtracting, and transforming
volumes from which properties of designs are derivedvolumes from which properties of designs are derived

• Architectural metaprogramming offers a program analog:
b dd d bt t d d t f dprograms can be added, subtracted, and transformed

• set arithmetic captures essential design concepts

• accidental complexities and limitations of languages, tools, and
implementations are abstracted away

Don Batory
UT-Austin Computer Sciences meta 4

Upcoming Topics Upcoming Topics –– Four “Mini” TalksFour “Mini” Talks

• Basics of Architectural Metaprogramming
then reflect on 2006 advances in

• Program Refactoring
• Danny Dig & Ralph Johnson (Illinois)Danny Dig & Ralph Johnson (Illinois)

• Program Synthesis
• Roberto Lopez-Herrejon (Oxford) & Christian Lengauer (Passau)• Roberto Lopez-Herrejon (Oxford) & Christian Lengauer (Passau)

• Model Driven Design
• Salva Trujillo & Oscar Diaz (Basque Country)• Salva Trujillo & Oscar Diaz (Basque Country)

• All topics describe systems that have been built
step back and gi e a simple e planation of their res lts

Don Batory
UT-Austin Computer Sciences

• step back and give a simple explanation of their results

meta 5

#1: Basics of Architectural #1: Basics of Architectural
MetaprogrammingMetaprogramming

Architectural
Metaprogramming
Architectural
Metaprogrammingra

m
m

in
g

na
l E

di
tio

n
ra

m
m

in
g

na
l E

di
tio

n

Architectural
Metaprogrammingra

m
m

in
g

na
l E

di
tio

n

etap og a g
Personal Edition

etap og a g
Personal Edition

M
et

ap
ro

gr
Pr

of
es

si
on

M
et

ap
ro

gr
Pr

of
es

si
on

etap og a g
Personal Edition

M
et

ap
ro

gr
Pr

of
es

si
on

scalable solutions for
mission-critical designs
scalable solutions for
mission-critical designs
scalable solutions for
mission-critical designs

Don Batory
UT-Austin Computer Sciences meta 6

Architectural MetaprogrammingArchitectural Metaprogramming

• Programs are values

• Here is a value
(Java definition of class C):

class C {
int x;

id i () { }(Java definition of class C): void inc() {...}
...

}

• Here is another value: class D {
void compute()
{ }{..}
..

}

Don Batory
UT-Austin Computer Sciences meta 7

11stst Operation: + (Sum)Operation: + (Sum)

• Let D = and C =class D {
void compute()

class C {
int x;p ()

{..}
}

;
void inc() {...}

}

• D + C =
class D {

void compute()
class C {

int x;void compute()
{..}

}

int x;
void inc() {...}

}

Don Batory
UT-Austin Computer Sciences meta 8

Another ExampleAnother Example

• Let C1 = and C2 =class C {
void comp() { }

class C {
int x;void comp() {..}

}
int x;
void inc() {...}

}

• C1 + C2 = class C {
void comp () {..}

class C {

int x;

}

int x;
void inc() {...}

}

Don Batory
UT-Austin Computer Sciences meta 9

+ (Sum) is Disjoint Set Union+ (Sum) is Disjoint Set Union

• Has expected properties

• 0 is identity (null program)

P = 0 + P = P + 0

• commutative (because disjoint set union is commutative)

A + P = P + A

• associative (because disjoint set union is associative)

(A + B) + C = A + (B + C)

Don Batory
UT-Austin Computer Sciences meta 10

22ndnd Operation: Operation: –– (Sub)(Sub)

• Subtraction is set difference

(D + C) – C = D

• Has expected properties:

• Left associative P C D = ((P C) D)• Left associative P – C – D = ((P – C) – D)

• Not commutative P – C ≠ C – P

• Identity P – 0 = P

Don Batory
UT-Austin Computer Sciences meta 11

33rdrd Operation: Distributive TransformationsOperation: Distributive Transformations

• Transformation is a function that maps programs to other p p g
programs

• Rename(p,q,r) – in program “p” replace name “q” with “r”Rename(p,q,r) in program p replace name q with r

class C {class C {

=

class C {
int z;
void inc() {.. z ..}
...

}

class C {
int x;
void inc() {..x..}
...

}

Rename(, C.x, C.z)

}}

Don Batory
UT-Austin Computer Sciences meta 12

Another ExampleAnother Example

class D {
void compute()

class D {
void compute()void compute()

{..}
..

}

Rename(, C.x, C.z)
void compute()
{..}
..

}

=

• Called a fixed point:Called a fixed point:
• a value x such that f(x) = x

• Distributive transformations have lots of fixed pointsDistributive transformations have lots of fixed points

Don Batory
UT-Austin Computer Sciences meta 13

A Key Property of Distributive TransformationsA Key Property of Distributive Transformations

• Transformations we consider distribute over + and –

f(A + B) = f(A) + f(B)

f(C – D) = f(C) – f(D)

• Here’s an example...

Don Batory
UT-Austin Computer Sciences meta 14

Example of DistributivityExample of Distributivity

class D {
void compute()
{..}

class D {
void compute()
{..}

class D {
void compute()
{..}Rename(, C.x, C.z)

=

..
}

l C {

..
}

..
}

+

class C {
int z;
void inc() {..z..}

class C {
int x;
void inc() {..x..}
...

class C {
int x;
void inc() {..x..}Rename(, C.x, C.z)

Rename(, C.x, C.z)

...
}

...
}

...
}

Don Batory
UT-Austin Computer Sciences meta 15

Structures & PropertiesStructures & Properties

• Structure – what are the parts and how are they connected?

a solid bounded by six equal squares,
the angle between any two adjacent
f i i ht l

cube
faces is a right angle.

• Properties of structure – attributes derivable from structure

f 6E2 h E i d l th• surface area = 6E2 ; where E is edge length

• volume = E3

Don Batory
UT-Austin Computer Sciences

volume E

meta 16

Software AnalogsSoftware Analogs

• Structure of a program is a meta expression

P = f1(C + D + f2(E + F))

• Property of a program – is derived from program structureIn this lecturep y p g p g

• compilers verify type correctness of programs
(in addition to translating program to bytecodes)

In this lecture,
I focus on program structure.

• other research guarantees other properties (ex. security) of programs –
also enforced by special compilers

Results on properties
are presented elsewhere.

• but it is possible to write programs that don’t have the properties
we want – still have to check

Don Batory
UT-Austin Computer Sciences meta 17

#2: Advances in Program Refactoring#2: Advances in Program Refactoring#2: Advances in Program Refactoring#2: Advances in Program Refactoring

Don Batory
UT-Austin Computer Sciences meta 18

RefactoringRefactoring

• Is a program transformation that changes the structure of a
program, but not its behavior

• rename methods
• move method from subclass to superclass
• ...

• Most design patterns are end-products of refactorings

• Common IDEs (Eclipse, Visual Studio, IntelliJ)
have refactoring tools or plug-ins

• Here’s an interesting refactoring problem

Don Batory
UT-Austin Computer Sciences meta 19

Evolution of APIsEvolution of APIs

• Use of components (e.g. frameworks, libraries) are
common in software development

build systems faster and cheaper• build systems faster and cheaper

• Application Program Interface (API) of a component –
set of (Java) interfaces and classes that are exported toset of (Java) interfaces and classes that are exported to
application developers

• ideally, APIs don’t change, but of course they do!
• when APIs change, client code must also change
• very disruptive event in program development

• Need an easy and safe way to update applications when
component’s API changescomponent s API changes

Don Batory
UT-Austin Computer Sciences meta 20

A Common API ChangeA Common API Change

• Move Method
• instance method becomes static method of host classNote: although component code changes,

li t d t l h• moved method takes instance of home class as extra argument
• all references to old method are replaced with call to new method

move m() update update

client code must also change

But a component developer doesn’t have the client code

class home { class bar {
void y() {

class host {
static X m(home f) X m(..) { ... }

()
to class host call

update
call

p p

void b() { f.m();
}

}

y() {

f.m(..)
}

}

...
}

static X m(..,home f)
{ ... }

X m(..) { ... }

host.m(..,f)host.m(..,f)

} }

Component Client Code
Don Batory
UT-Austin Computer Sciences meta 21

Component Client Code

This Change is a MetaThis Change is a Meta--ExpressionExpression

μPnew = Poldρ •

class home { class bar {
void y() {

class host {
static X m(home f) X m(..) { ... }

void b() { f.m();
}

}

y() {

f.m(..)
}

}

...
}

static X m(..,home f)
{ ... }

X m(..) { ... }

host.m(..,f)host.m(..,f)

} }

Component Client Code
Don Batory
UT-Austin Computer Sciences meta 22

Component Client Code

Other Common API ChangesOther Common API Changes

• Move Field

• Delete Method
• usually done after a method is renamed or moved• usually done after a method is renamed or moved

• Change Argument Type
e replace arg ment t pe ith its s pert pe• ex: replace argument type with its supertype

• Replace Method Call
ith th th t i ti ll i l t d i th l• with another that is semantically equivalent and in the same class

• Lots of others...

Don Batory
UT-Austin Computer Sciences

• preliminary work suggests all can be written as meta expressions

meta 23

ResultResult

• Dig & Johnson paper:

“How do APIs Evolve: A Story of Refactoring”
Jour. Software Maintenance & Evolution:
Research & Practice 2006

• Manually analyzed change logs, documentation, etc. of
different versions of 5 medium to large systemsdifferent versions of 5 medium to large systems
(50K to 2M LOC)

• Eclipse, Struts, JHotDraw...

• Found over 80% of API changes are refactorings
• means LOTS of tedious & error-prone updates can be automated

Don Batory
UT-Austin Computer Sciences

• explain elegance of their solution using architectural metaprogramming
meta 24

In the FutureIn the Future

• Programmers will use advanced IDEs that “mark”
API classes, methods, fields

• only way marked elements can change is by refactorings (β)
• “private” component edits modeled by transformations (e)

β3••e3••e2••β2••β1••e1 version
0

version
1

=β1β2••β3••

transformations to be applied
to update client code w.r.t.

changes in API

• API updates β is a projection of changes where
“private” edits are removed

β = changes in API

Don Batory
UT-Austin Computer Sciences

private edits are removed

meta 25

Client Update MetaClient Update Meta--Function UFunction U

client
program

U = client
program

β version
1

–– version
0

++

client
program

= client
code

version
0

++U β version
1

–– version
0

++

thi i t h

version
1

client
code

= ++β

this is not how
result is presented by

Dig and Johnson;
it is an architectural
metaprogramming

Don Batory
UT-Austin Computer Sciences meta 26

1code p g g
expression of their

results

In the FutureIn the Future

• IDEs will be component evolution calculators

• IDEs will create update functions like U for distribution
• distribute meta-functions, not components

U(x)U(x)U(x)U(x)U(x)U(x)

U(x)U(x)U(x)
• IDEs will apply functions to code bases to automatically update them

Architectural metaprogramming is at the core of this technology

Don Batory
UT-Austin Computer Sciences

• Architectural metaprogramming is at the core of this technology

meta 27

#3: Advances in Program Synthesis#3: Advances in Program Synthesis#3: Advances in Program Synthesis#3: Advances in Program Synthesis

Don Batory
UT-Austin Computer Sciences meta 28

BackgroundBackground

• Previous lectures have presented basic ideas on
feature modularity and product linesfeature modularity and product lines

• But now let’s look inside the structure of features• But now, let s look inside the structure of features
and see how it is related to

aspect-oriented programming (AOP)aspect o e ted p og a g (O)

• find similarities and differences between aspects and features

Don Batory
UT-Austin Computer Sciences meta 29

What Are FOP Features?What Are FOP Features?

• If we peer inside features we see familiar ideas popularized
by AOP

• here I use ideas of AOP

• Introduction – adds new members to existing classes
• corresponds to metaprogramming addition

• Advice – modifies methods at particular points, p p ,
called join points

• quantification means advise all parts of a program – distributivity!
• advice is a distributive transformation
• advice is behavior-extending not behavior-preserving

• No “subtraction” in AOP or in FOP

Don Batory
UT-Austin Computer Sciences meta 30

IntroductionIntroduction

• Incrementally add new members, classes

class C {

Program P

void foo(){ }

String b;
}

void foo(){..}
int i;

}

class D {
i bString bar;

int cnt(){..}
}

Don Batory
UT-Austin Computer Sciences meta 31

}

MetaMeta--Algebra InterpretationAlgebra Interpretation

P = C.b + C.foo + C.i + D.bar + D.cnt

class C {

Program P

void foo(){ }

String b;
}

void foo(){..}

int i;

}

class D {
St i bString bar;
int cnt(){..}

}

Don Batory
UT-Austin Computer Sciences meta 32

AdviceAdvice

• Defined in terms of events called join points
• when method is called
• when method is executed
• when a field is updated
• ...

• Advice: when particular join points occur, execute a given
piece of code

• Although advice has a “dynamic” interpretation, we can
give it a “static” metaprogramming interpretationgive it a static metaprogramming interpretation

Don Batory
UT-Austin Computer Sciences meta 33

Advice ExampleAdvice Example

Program P

class C {
int i,j;
void setI (int x){ i=x; }

g

void setI (int x){ i=x; }
void setJ (int x){ j=x; }

}

f () i (id ())after(): execution (void C.set*(..))
{ print(“hi”); }print(“hi”);print(“hi”);

Don Batory
UT-Austin Computer Sciences meta 34

MetaMeta--Algebra InterpretationAlgebra Interpretation

Program P

class C {
int i,j;
void setI (int x){ i=x; }

g

’void setI (int x){ i=x; }
void setJ (int x){ j=x; }

}

f () i (id ())

’

after(): execution (void C.set*(..))
{ print(“hi”); }print(“hi”);print(“hi”);

P = hi()C.i + C.j + C.setI + C.setJhi(C.i) + hi(C.j) + hi(C.setI) + hi(C.setJ)C.i + C.j + hi(C.setI) + hi(C.setJ)C.i + C.j + C.setI’ + C.setJ’

Don Batory
UT-Austin Computer Sciences meta 35

Structure of FeaturesStructure of Features

• Features are metaprogramming functions that:
• advise (a) an existing program (x)advise (a) an existing program (x)
• introduce new terms (i) adds new

code
changes existing code to

integrate new functionality

F(x) = if + af (x)

• Composition:

G() iig g + a+ agg ()()F() iiff + a+ aff ()()==BB bb

Don Batory
UT-Austin Computer Sciences meta 36

In the FutureIn the Future

• Many (narrow) domains will be well-understood
• know problems, solutions

• Complexity controlled by standardization
ifi d d l ti l i “ t d d” f t (lik D ll)• programs specified declaratively using “standard” features (like Dell)

• Compilers will be program calculators
• inhale source code• inhale source code
• generate meta-expression, maybe optimize expression
• evaluate to synthesize program

• Architectural metaprogramming is at core of these
technologies

Don Batory
UT-Austin Computer Sciences meta 37

An Interesting QuestionAn Interesting QuestionAn Interesting QuestionAn Interesting Question
Architectural
Metaprogramming
Architectural
Metaprogrammingra

m
m

in
g

na
l E

di
tio

n
ra

m
m

in
g

na
l E

di
tio

n

Architectural
Metaprogrammingra

m
m

in
g

na
l E

di
tio

n

What is the Relationship
Between Advice and Refactorings?

etap og a g
Professional Edition

etap og a g
Professional Edition

M
et

ap
ro

gr
Pr

of
es

si
on

M
et

ap
ro

gr
Pr

of
es

si
on

etap og a g
Professional Edition

M
et

ap
ro

gr
Pr

of
es

si
on

scalable solutions for
mission-critical designs
scalable solutions for
mission-critical designs
scalable solutions for
mission-critical designs

Don Batory
UT-Austin Computer Sciences meta 38

Big PictureBig Picture

• Refactorings and advice are both transformations

• Suppose I have a refactoring and advice to apply to a
program. What does it mean to compose them?

• Advice does not modify a refactoring

a refactoring is not a language construct;a refactoring is not a language construct;
there are no join points in a refactoring

R f t i dif th t i l d d i• Refactoring can modify programs that include advice

Don Batory
UT-Austin Computer Sciences meta 39

ExampleExample

Program P

R (C t* C SET*)

class C {
int i,j;
void setI (int x){ i=x; }
void setJ (int x){ j x }

SETI
SETJRename(, C.set*, C.SET*) void setJ (int x){ j=x; }

}

after(): execution (void C.set*(..))

SETJ

C.SET*
{ print(“hi”); }

change method
names change advice

declaration

Don Batory
UT-Austin Computer Sciences meta 40

MetaMeta--AlgebraAlgebra

• Remember differential operators in calculus?Remember differential operators in calculus?
• they transform expressions

∂(a+b+c) ∂a + ∂b + ∂c∂(a+b+c) = ∂a + ∂b + ∂c
∂y ∂y ∂y ∂y

each term is transformed

ii + a(x)+ a(x) ii ++ a (a (x)x)ββ((ii + a(x))+ a(x)) ββ((ii) +) + ββ(a)((a)(ββ(x))(x))

• Rename refactoring is similar
– it transforms each term of a meta expression

Don Batory
UT-Austin Computer Sciences

ii + a(x) = + a(x) = ii + + a (a (x)x)ββ((ii + a(x)) = + a(x)) = ββ((ii) +) + ββ(a)((a)(ββ(x))(x))

meta 41

HomomorphismsHomomorphisms

• Such a mapping is an example of a:

structure preserving map between algebras• structure-preserving map between algebras

• Grounded in Category Theory• Grounded in Category Theory
• theory of mathematical structures and their relationships
• more later...

Don Batory
UT-Austin Computer Sciences meta 42

How MetaHow Meta--Calculation ProceedsCalculation Proceeds

Program P

R (C t* C SET*)

class C {
int i,j;
void setI (int x){ i=x; }
void setJ (int x){ j x }

SETI
SETJRename(, C.set*, C.SET*) void setJ (int x){ j=x; }

}

after(): execution (void C.set*(..))

SETJ

C.SET*
{ print(“hi”); }

hi (C.i + C.j + C.setI + C.setJ)β(hi (C.i + C.j + C.setI + C.setJ))β(hi)(β(C.i) + β(C.j) + β(C.setI) + β(C.setJ)) β(hi)(C.i + C.j + β(C.setI) + β(C.setJ))β(hi)(C.i + C.j + C.SETI + C.SETJ)HI (C.i + C.j + C.SETI + C.SETJ)

Don Batory
UT-Austin Computer Sciences meta 43

RecapRecap

• Architectural meta-algebra is getting more
interesting

• refactorings are operators on meta expressions that have
higher-precedence than advice

• The rewrite rules for a refactoring R is:

R(a + b) = R(a) + R(b)

R(b) R() R(b)R(a – b) = R(a) – R(b)

R(a •• b) = R(a) • • R(b)

Don Batory
UT-Austin Computer Sciences meta 44

Another Interesting QuestionAnother Interesting QuestionAnother Interesting QuestionAnother Interesting Question

What does AspectJ really do?

Skip

Don Batory
UT-Austin Computer Sciences meta 45

Skip

Basic Differences of FOP and Basic Differences of FOP and AspectJAspectJ

• Aspects don’t compose

• to this day, you cannot express all aspect files as a composition
of simpler aspect files

• reason: rules for ordering around, before, after advice are
incomprehensibleincomprehensible

• see AspectJ documentation

• Unbounded quantificationUnbounded quantification

• AspectJ applies advice after all introductions have been made
• FOP applies advise at different stages of program developmentFOP applies advise at different stages of program development

• Why does AspectJ use unbounded quantification?

Don Batory
UT-Austin Computer Sciences meta 46

Tutorial Tutorial –– Method RefinementMethod Refinement

• Features refine individual methods by before,
around after advicearound, after advice

C

before
void m() code

before

after

basefeature()

Don Batory
UT-Austin Computer Sciences meta 47

Aspects Originate From MetaClasses ~1990Aspects Originate From MetaClasses ~1990

• Don’t think of programs, think of interpreters and
refining interpreters with new featuresrefining interpreters with new features

interpreterinterpreter
program

m()
hi void load()

load program
add(y(){..})
add(x(){..})

void methcall() code
print(“hi”);

n()

p()

hi

hi

basefeature1()
hi

hi
feature2()

void y() { ..q()..}

void x() { r() }
feature3()

Don Batory
UT-Austin Computer Sciences meta 48

hivoid x() {..r()..}

InsightInsight

• When you define advise or introductions in AspectJ,
you are refining (adding features to) the Java interpreter!

effects of advice are PROGRAM WIDE• effects of advice are PROGRAM WIDE
• advises entire program (no matter when introductions are made)
• “unbounded” advice basic to AOP

• When you refine a program in FOP
• effects of advise limited to the current state of a program’s design
• “bounded advice”

• Refining programs ≠ refining language interpreters!

Hi t i ll i t l ft d i (il• Historically, incremental software design (e.g., agile
programming) never “refines” interpreters, only “programs”

Don Batory
UT-Austin Computer Sciences meta 49

Example of Example of UnBoundedUnBounded QuantificationQuantification

Program P’

class C {
int i,j ;
void setI (int x){ i=x; }

g

,k
’void setI (int x){ i=x; }

void setJ (int x){ j=x; }

}
f () i (id ())

void setK (int x){ k=x; }
’
’

after(): execution (void set*(..))
{ print(“hi”); }print(“hi”);print(“hi”);print(“hi”);

hi•()P’ = C.i+C.j+C.setI+C.setJC.k + C.setK +

Don Batory
UT-Austin Computer Sciences meta 50

Example of Example of BoundedBounded QuantificationQuantification

Program P

class C {
int i,j ;
void setI (int x){ i=x; }

g

,k
’void setI (int x){ i=x; }

void setJ (int x){ j=x; }

}
f () i (id ())

void setK (int x){ k=x }
’

after(): execution (void set*(..))
{ print(“hi”); }print(“hi”);print(“hi”);

P = C.i+C.j+C.setI+C.setJC.k + C.setK + hi•()

Don Batory
UT-Austin Computer Sciences meta 51

Different Kinds of QuantificationDifferent Kinds of Quantification

• May need both because they are doing
semantically different things for different purposes

• bounded advice standard for program synthesis
• unbounded advice used for invariants – program-wide

constraints

• Architectural metaprogramming shows these
di ti tidistinctions

Don Batory
UT-Austin Computer Sciences meta 52

Looking ForwardLooking Forward

• Notice:

• refactorings
• advice
• introductions

• modify structure of code
but could also modify structure of grammars, makefiles,
xml documents, MDD models ... as well

• Generalizing meta-algebra beyond code structures
to non-code structures...to non code structures...

• theory applies to all documents that can be synthesized

Don Batory
UT-Austin Computer Sciences meta 53

#4: Advances in #4: Advances in
Model Driven DesignModel Driven Design

Architectural
Metaprogramming
Architectural
Metaprogrammingra

m
m

in
g

na
l E

di
tio

n
ra

m
m

in
g

na
l E

di
tio

n

Architectural
Metaprogrammingra

m
m

in
g

na
l E

di
tio

n

etap og a g
Enterprise Edition

etap og a g
Enterprise Edition

M
et

ap
ro

gr
Pr

of
es

si
on

M
et

ap
ro

gr
Pr

of
es

si
on

etap og a g
Enterprise Edition

M
et

ap
ro

gr
Pr

of
es

si
on

scalable solutions for
mission-critical designs
scalable solutions for
mission-critical designs
scalable solutions for
mission-critical designs

Don Batory
UT-Austin Computer Sciences meta 54

IntroductionIntroduction

• Model Driven Design (MDD) is an emerging
paradigm for software creation

• uses domain-specific languages (DSL)
• encourages automation
• exploits data exchange standards

• Model is written in a DSL
• captures particular details of program’s design
• several models are needed to specify a program

• models can be derived from other models by
transformationstransformations

• program synthesis is transforming high-level models into
executables (which are also models)

Don Batory
UT-Austin Computer Sciences

• Bezivin “Everything is a Model”

meta 55

MDD ToolsMDD Tools

• OMG’s Model Driven Architecture (MDA)
• define models in terms of UML
• transform models using graph transformations (QVT)

• First and best works I’ve seen is Vanderbilt’s
M d l I t t d C ti (MIC) dModel Integrated Computing (MIC) and
Tata’s MDD work and MasterCraft tools

• Lots of other groups:
• Eclipse
• Microsoft’s Software Factories• Microsoft s Software Factories
• Borland
• ...

Don Batory
UT-Austin Computer Sciences meta 56

Metaprogramming ConnectionMetaprogramming Connection

• MDD embraces concept that
program development is a

• Common example

computation

– claim: MDD is a metaprogramming
di

java source

paradigm

– models are values
javac

– transformations are functions that
map models to models

class files

javac transforms
java source to

class files

Don Batory
UT-Austin Computer Sciences meta 57

Interesting QuestionInteresting Question

• If javac is a transformation, is it distributive?

javac()

class D {
void compute()
{ }
classfile for D

class D {
void compute()
{ }

javac is not distributive!
javac() {..}

..
}

+

{..}
..

}

javac()
Although there is research by Ancona et. al. on

javac()

class C {
int x;
void inc() {..x..}

+
=

classfile for C

class C {
int x;
void inc() {..x..}

javac()

Separate Class Compilation
j ()() { }

...
}

...
} that makes it so…

Don Batory
UT-Austin Computer Sciences meta 58

More Typical MDD Example: PinkCreekMore Typical MDD Example: PinkCreek

• Work with S. Trujillo and
O. Diaz sc

• Portlet is a web component ctrl

• PinkCreek is an MDD case
study for synthesizing
portlets

act-sk view-sk

• Uses transformations to
map an annotated state

act

code sk

view

jsp skp
chart (SC) to different
representations
(Java, JSP code)

code-sk

code

jsp-sk

jsp

Don Batory
UT-Austin Computer Sciences meta 59

Portlet Synthesis MetaprogramPortlet Synthesis Metaprogram

sc

ctrl

act-sk view-sk

act

code-sk

view

jsp-skcode sk

code

jsp sk

jsp
Example of using transformations

to derive different models
or representations of a program

Don Batory
UT-Austin Computer Sciences meta 60

or representations of a program

Another Interesting QuestionAnother Interesting QuestionAnother Interesting Question...Another Interesting Question...

As FOP and MDD are both
metaprogramming paradigms,

how do they combine?how do they combine?

Don Batory
UT-Austin Computer Sciences meta 61

In the FutureIn the Future

• Features “extend” or “refine” models

A l• An example:

F(x) = i + a(x)

java source refined java sourceF

() ()

is the F→F’

javacjavac

is the F→F
mapping a

homomorphism?
open question

refined class filesclass files
F’

F’(x) = i’ + a’(x)

Don Batory
UT-Austin Computer Sciences meta 62

() ()

Fundamental RelationshipFundamental Relationship

• Relationship between transformations that
derive models and those that refine modelsderive models and those that refine models

M0 M1
F

M0

T T

M1

D0 D1
F’

Don Batory
UT-Austin Computer Sciences meta 63

How Commuting Diagrams are CreatedHow Commuting Diagrams are Created

statechart

B • F • G • H • K

java source

bytecode

jarfile

• Begin with derivation of representations of base program
• Each feature refines each of these representations

Don Batory
UT-Austin Computer Sciences

Each feature refines each of these representations

meta 64

Property of Commuting DiagramsProperty of Commuting Diagrams

start

end

• Given model in upper left, often want to compute model in lower right
• Any path from upper left to lower right should produce same result
• Each path represents a different metaprogram that produces same result

Don Batory
UT-Austin Computer Sciences

• Each path represents a different metaprogram that produces same result

meta 65

Example: Refining State Charts in PinkCreekExample: Refining State Charts in PinkCreek

• Features refine state charts by adding
new states transitions annotations etcnew states, transitions, annotations, etc.

Base

Seat • Base

Don Batory
UT-Austin Computer Sciences meta 66

How State Charts are Refined in PinkCreekHow State Charts are Refined in PinkCreek

base
tl t

refined
tl t

sc0 sc1

portlet portlet

ctrl0

act-sk0

ctrl1

act-sk1

act0
view-sk0

view0
act1

view-sk1

view1

code-sk0

code0

jsp-sk0
code-sk1

code1

jsp-sk1

Don Batory
UT-Austin Computer Sciences meta 67

code0
jsp0

code1
jsp1

Commuting Diagrams in PinkCreekCommuting Diagrams in PinkCreek

• Features map space of
artifacts by refining them

B
•F1

•F2
F3

y g

• Composing features

•F3
•F4

•F5
•F6

sweeps out the
commuting diagrams to
traverse to synthesize y
portlet representations

Don Batory
UT-Austin Computer Sciences meta 68

Portlet SynthesisPortlet Synthesis

• Start at upper left
compute nodes on
lower right

start
lower right

• #1: refine models and
then derivethen derive

• #2: derive representations and
then refine

end
then refine

• #2 is faster by a factor of 2-3
endend

• Diagrams tell us different ways
in which programs can be
synthesized

endend

Don Batory
UT-Austin Computer Sciences meta 69

Benefit: Interesting OptimizationBenefit: Interesting Optimization

• Which way is faster?
• (A) compose transformations see ICSE 2007 paper (A) compose transformations
• (B) transform compositions

500

by Trujillo et al.

300
350
400
450
500

c

B

A -T

A

50
100
150
200
250se

c

A+B-T

0
50

1 2 5 10 15 20 23

features

Don Batory
UT-Austin Computer Sciences meta 70

ExperienceExperience

• Our tools initially did not satisfy properties
commuting diagramsg g

• synthesizing via different paths yielded different results
• exposed errors in our tools & specifications

• Significance of commuting diagrams
• validity checks provide assurance on the correctness of our

d l b t ti tl t ifi ti d t lmodel abstractions, portlet specifications, and our tools
• applies also to individual transformations

(as they too have commuting diagrams)

• win – better understanding, better model, better tools
• reduce problem to its essence

Don Batory
UT-Austin Computer Sciences meta 71

In the FutureIn the Future

• Theory, methodology, tools of architectural
metaprogramming use elementary ideas from

• where homomorphisms, pushouts, commuting diagrams arise...p , p , g g

• finding utility in relating software structures to mathematical
structures

• preliminary results are encouraging

Conclusions

Don Batory
UT-Austin Computer Sciences meta 72

Conclusions

A Brief Tutorial on Category TheoryA Brief Tutorial on Category TheoryA Brief Tutorial on Category TheoryA Brief Tutorial on Category Theory

Conclusions

Don Batory
UT-Austin Computer Sciences meta 73

Conclusions

A Brief Tutorial on Category TheoryA Brief Tutorial on Category Theory

• Category is a directed
graph with special

r0properties

• Nodes are objects,

r0

r1
j ,

edges are arrows

• Arrows are maps that

r2

r3
r6

Arrows are maps that
compose

• Arrow composition is

r3

r4

r7

r8• Arrow composition is
associative r5

r8

r9

Don Batory
UT-Austin Computer Sciences

• Identity arrows
meta 74

A Category A Category –– Look Familiar? Look Familiar?

• Category is a directed
graph with special
properties sc0

portlet

properties

• Nodes are objects,
edges are arrows

sc0

ctrl0

edges are arrows

• Arrows are maps that
compose

act-sk0

act0
view-sk0

compose

• Arrow composition is
associative

act0

code-sk0

view0

jsp-sk0associative

• Identity arrows are implied
code0

jsp sk0

jsp0

Don Batory
UT-Austin Computer Sciences meta 75

FunctorsFunctors

• Structure preserving map between 2 categories
• embedding of category J into B such that J’s connectivity properties

are preserved

• Manifest functor between isomorphic categories
• map each object, arrow in J to the corresponding object, arrow in Bmap each object, arrow in J to the corresponding object, arrow in B

j0 b0

j1

j2

b1

b2

j3
j6

j7
b3

b6

b7

Don Batory
UT-Austin Computer Sciences meta 76

category J category B

Functors Functors –– Look Familiar?Look Familiar?

• Structure preserving map between 2 categories
• embedding of category J into B such that J’s connectivity properties

are preserved

• Manifest functor between isomorphic categories
• map each object, arrow in J to the corresponding object, arrow in Bmap each object, arrow in J to the corresponding object, arrow in B

sc0 sc1

ctrl0

act0

ctrl1

act1
features

are functors

code0
view0

jsp0
code0

view1

jsp1

Don Batory
UT-Austin Computer Sciences meta 77

base portlet refined portlet

Next StepsNext Steps

• Can express many of the ideas of architectural
metaprogramming in terms of categorical conceptsmetaprogramming in terms of categorical concepts

• Much more to come...

Don Batory
UT-Austin Computer Sciences meta 78

ConclusionsConclusionsConclusionsConclusions

Don Batory
UT-Austin Computer Sciences meta 79

ConclusionsConclusions

• Extraordinarily good at:
• languages

• Not good at:
• languagesg g

• compilers
• optimizations
• analyses

g g
• compilers
• optimizations
• analysesy

• for programming in the

y

• programming in the
large because we don’t

p g g
small because we:

• understand abstractions
• their models

large because we don’t
fully:

• understand abstractionstheir models
• their relationships
• their integration

• their models
• their relationships
• their integration

Don Batory
UT-Austin Computer Sciences

g

meta 80

My Message: Getting CloserMy Message: Getting Closer

• Fundamental ideas of metaprogramming
• programs are values, transformations, operators

• Provide a simple explanation of technologies that are being
developed and built in isolation – there is a lot in common
with simple mathematical descriptionswith simple mathematical descriptions

• Recent work in program refactoring, synthesis, and
d l d i d i i i l l f imodel driven design are raising level of automation
• success is not accidental
• examples of paradigm called architectural metaprogramming

that we are only now beginning to recognizethat we are only now beginning to recognize
• many details and connections to other work are still not

understood

Don Batory
UT-Austin Computer Sciences meta 81

In the Future...In the Future...

• Build tools, languages, and compilers to
implement metaprogramming abstractionsimplement metaprogramming abstractions

• improve structure of programs

• higher-level languages & declarative languages

• IDEs will be component evolution calculators

• compilers will be program calculators

• our understanding of programs, their representations, and their g p g p
manipulation will be greatly expanded beyond source code

• Exciting future awaits us

Don Batory
UT-Austin Computer Sciences

g

meta 82

Recommended ReadingsRecommended Readings
• Ancona, Damiani, Drossopoulou. “Polymorphic Bytecode: Compositional Compilation for Java-like

Languages”, POPL 2005.

• Batory “Multi-Level Models in Model-Driven Development Product-Lines and Metaprogramming”Batory. Multi Level Models in Model Driven Development, Product Lines, and Metaprogramming ,
IBM Systems Journal, 45#3, 2006.

• Batory. “From Implementation to Theory in Product Synthesis”, POPL 2007 keynote.

• Bezivin “From Object Composition to Model Transformation with the MDA” TOOLS’USA 2001• Bezivin. From Object Composition to Model Transformation with the MDA , TOOLS USA 2001.

• Binkley, et al. “Automated Refactoring of Object Oriented Code into Aspects”, ICSM 2005.

• Brown, Booch, Iyengar, Rumbaugh, Selic. “An MDA Manifesto”, Chapter 11 in Model-Driven
A hit t St i ht f th M t F k l d P di Edit M h Kiff P 2004Architecture Straight from the Masters, Frankel and Parodi, Editors, Meghan-Kiffer Press, 2004.

• Cole, Borba. “Deriving Refactorings for AspectJ”, AOSD 2005.

• Dig, Comertoglu, Marinov, Johnson. “Automated Detection of Refactorings in Evolving Components”, g, Co e og u, a o , Jo so u o a ed e ec o o e ac o gs o g Co po e s ,
ECOOP 2006.

• Dig, Johnson. “How do APIs Evolve? A Story of Refactoring”, Journal of Software Maintenance and
Evolution, 18#2, 2006.

Don Batory
UT-Austin Computer Sciences

• Hanenberg, et al. “Refactoring of Aspect-Oriented Software”. Net.ObjectDays 2003.
.

meta 83

Recommended ReadingsRecommended Readings
• Kleppe, Warmer, Bast. MDA Explained: The Model-Driven Architecture -- Practice and Promise,

Addison-Wesley, 2003.

• Kulkarni, Reddy. “Model-Driven Development of Enterprise Applications”, in UML Modeling
Languages and Applications, Springer LNCS 3297, 2005.Languages and Applications, Springer LNCS 3297, 2005.

• Lopez-Herrejon, Batory, and Lengauer. “A Disciplined Approach to Aspect Composition”, PEPM 2006.

• Monteiro, Fernandes. “Towards a Catalog of Aspect-Oriented Refactorings”, AOSD 2005.

• Pierce. Basic Category Theory for Computer Scientists, MIT Press, 1991.

• Schmidt. “Model-Driven Engineering”. IEEE Computer 39(2), 2006.

• Smith. “A Generative Approach to Aspect Oriented Programming”, GPCE 2004.

• Sunyé, Pollet, Le Traon, Jézéquel. “Refactoring UML Models”. Int Conf. UML, 2001.

• Sztipanovits Karsai “Model Integrated Computing” IEEE Computer April 1997• Sztipanovits, Karsai. Model Integrated Computing , IEEE Computer, April 1997.

• Trujillo, Batory, Diaz. “Feature Oriented Model-Driven Development: A Case Study for Portlets”, ICSE
2007.

Don Batory
UT-Austin Computer Sciences

• Zhang, Lin, Gray. “Generic and Domain-Specific Model Refactoring using a Model Transformation
Engine”, in Model-driven Software Development, Springer 2005.

meta 84

Feature Interactions and Feature Interactions and
P C bP C bProgram CubesProgram Cubes

Don Batory
Department of Computer Sciences

University of Texas at Austin
batory@cs utexas edubatory@cs.utexas.edu

www.cs.utexas.edu/users/dsb/

Copyright is held by the author/owner(s).
Presented at: Lipari School for Advances in Software EngineeringPresented at: Lipari School for Advances in Software Engineering
July 8 - July 21, 2007, Lipari Island, Italy

Feature InteractionsFeature Interactions

• Are unavoidable

• Features interact by changing each others code
or behavior

• This lecture looks at one fundamental form of
feature interaction called

Program Cubes (or Cubes)
• there are other forms of interaction• there are other forms of interaction

• Formalized as tensors (multi-dimensional arrays)o a ed as e so s (u d e s o a a ays)

Don Batory
UT-Austin Computer Sciences tensors 2

A Micro ExampleA Micro ExampleA Micro ExampleA Micro Example

Don Batory
UT-Austin Computer Sciences tensors 3

The Calculator ModelThe Calculator Model

• Product line of calculators
• what operations do you want in your calculator?p y y

C = {
B // bBase, // base program

Add, // add
Sub, // subtraction functions

constant

Form, // format
...

}

functions

Add●BaseSub●Form●Form●Add●Base

• How to express calculators with optional front-ends?
• none, command-line, GUI1, GUI2, etc

Don Batory
UT-Austin Computer Sciences tensors 4

RefactorRefactor Model C: Separate Core from GUIModel C: Separate Core from GUI

Base BaseBase

C CoreGui1

b bb

calc.jak Gui1.jak calc.jakGui1.jak

b

Base
b

Base
b

Base

...
Add

...

Add

...

Add= ●
b bb

calc.jak Gu1.jak

Sub

calc.jak

S b

Gui1.jak

S b

Add Add
b

Add

Sub

calc jak Gui1 jak

Sub

calc jak

Sub

Gui jak

b

Sub
b

Sub
b

Sub

Don Batory
UT-Austin Computer Sciences tensors 5

calc.jak Gui1.jak calc.jakGui1.jak

Model SynthesisModel Synthesis

• We are synthesizing models!

• A meta model is a model of models
• product-line of FOP models

MM = [Core Gui Gui Gui]MM = [Core, Gui1, Gui2, ..., Guin]

• Features of MM are themselves base models or
model refinements!

Core = [Base, Add, Sub, Form ...] // base calculator model []

Gui1 = [Base, Add, Sub, Form ...] // Gui1 extensions to Core

Guin = [Base, Add, Sub, Form ...] // Guin extensions to Coren [, , ,] n

Don Batory
UT-Austin Computer Sciences tensors 6

Model SynthesisModel Synthesis

• To get desired model, compose Core with desired Gui
C = Gui ● Core // original modelC = Gui1 ● Core // original model

Desired = Guin ● Core // desired model

• To specify a calculator need pair of expressions
• expression to produce a model
• expression to produce a calculatorexpression to produce a calculator

• Vast symmetries are fundamental and common to FOP
and program familiesp g

• Now let’s look at the mathematics behind all this

Don Batory
UT-Austin Computer Sciences tensors 7

TensorsTensorsTensorsTensors

Don Batory
UT-Austin Computer Sciences tensors 8

TensorsTensors

• n-dimensional arrays

• The rank of a tensor is the number of array indices
required to describe it

• cube is a 3D array (tensor of rank 3)cube is a 3D array (tensor of rank 3)
• matrix is a 2D array (tensor of rank 2)
• vector is a 1D array (tensor of rank 1)
• scalar is a 0D array (tensor of rank 0)

• Number of elements along an index is its dimension

• Example: a rank 3 tensor of dimension (2,5,7) is a
3-dimensional array of size 2 × 5 × 7

Don Batory
UT-Austin Computer Sciences tensors 9

Basic Tensor ConceptsBasic Tensor Concepts

Tensor Notation Tensor Product
• Cross product of

• # of indices indicates rank
of tensor

• name of index is unimportant

Cross product of
elements of 2 tensors

T ⊗ S Mname of index is unimportant

• Mij – tensor of rank 2

Tij ⊗ Skn = Mijkm

Mij tensor of rank 2

• Mijkn – tensor of rank 4

• T is of rank t dim dt
• S is of rank s dim ds

ijkn

• Scalar is rank 0 • M is of rank t+s
dim dt×dsdim dt×ds

Don Batory
UT-Austin Computer Sciences tensors 10

Tensor Product ExampleTensor Product Example

• Ri = [A, B, C] tensor rank 1 dim 3
• S = [D E F G] tensor rank 1 dim 4• Sk = [D, E, F, G] tensor rank 1 dim 4

AD AE AF AG
result is tensor of
rank 2 = 1+1

Ri ⊗ Sk = BD BE BF BG

CD CE CF CG

rank 2 = 1+1

dimension 3×4

CD CE CF CG

Don Batory
UT-Austin Computer Sciences tensors 11

Tensor Product ExampleTensor Product Example

• Tl = [X, Y] tensor rank 1 dim 2

ADXADX AEXAEX AFXAFX AGXAGX

BDXBDX BEXBEX BFXBFX BGXBGX

ADX AEX AFX AGX

BDX BEX BFX BGX

result is tensor of
rank 3 = (1+1)+1

dimension (3×4)×2(R ⊗ S) ⊗ T = ADY AEY AFY AGYBDXBDX BEXBEX BFXBFX BGXBGX

CDXCDX CEXCEX CFXCFX CGXCGX

BDX BEX BFX BGX

CDX CEX CFX CGX

dimension (3×4)×2(Ri ⊗ Sk) ⊗ Tl = ADY AEY AFY AGY

BDY BEY BFY BGYCDXCDX CEXCEX CFXCFX CGXCGXCDX CEX CFX CGX

CDY CEY CFY CGY

Don Batory
UT-Austin Computer Sciences tensors 12

Tensor ContractionTensor Contraction

• Aggregation of entries of a tensor reduces its rank

• Example: contracting k index of tensor Tikm yields Sim

Sim = Σk Tikm rank 2im k ikm rank 2
dimension

(3×2)

rank 3

dim (3×4×2)

ADXADX AEXAEX AFXAFX AGXAGX

BDXBDX BEXBEX BFXBFX BGXBGX
ADYADY AEYAEY AFYAFY AGYAGY

ADX AEX AFX AGX

BDX BEX BFX BGX
ADY AEY AFY AGY

ADX AEX AFX AGX

BDX BEX BFX BGX

+ + +

+ + +
ADYADY AEYAEY AFYAFY AGYAGY++ ++ ++ADY AEY AFY AGY+ + +

i

k
m

BDXBDX BEXBEX BFXBFX BGXBGX

CDXCDX CEXCEX CFXCFX CGXCGX
BDYBDY BEYBEY BFYBFY BGYBGY

CDYCDY CEYCEY CFYCFY CGYCGY

BDX BEX BFX BGX

CDX CEX CFX CGX
BDY BEY BFY BGY

CDY CEY CFY CGY

BDX BEX BFX BGX

CDX CEX CFX CGX+ + +
BDYBDY BEYBEY BFYBFY BGYBGY

CDYCDY CEYCEY CFYCFY CGYCGY

++ ++ ++

++ ++ ++

BDY BEY BFY BGY

CDY CEY CFY CGY

+ + +

+ + +

Don Batory
UT-Austin Computer Sciences tensors 13

CDYCDY CEYCEY CFYCFY CGYCGYCDY CEY CFY CGY CDYCDY CEYCEY CFYCFY CGYCGY++ ++ ++CDY CEY CFY CGY+ + +

Tensor ContractionTensor Contraction

• Order of aggregation does not matter!

scalar = Σikm Tikm

= Σi Σk Σm Tikm
There are 3! different

summation orders
all yield the same

scalar result

= Σm Σi Σk Tikm

scalar result

= ...
Don Batory
UT-Austin Computer Sciences tensors 14

Tensor ProjectionTensor Projection

• Remove elements from dimensions
t l i l ti i t l l• not a classical operation in tensor calculus

• similar to data cubes of database systems

M Π M
C1

C2

C3

Cc..
Mijk

C1

C2

C3

Πi∈(1..3) k∈(1..3) Mijk

B3

Bb..

1

B3

Bb..

B1

B2

B1

B2

3

Don Batory
UT-Austin Computer Sciences tensors 15

A1 A2 A3 Aa
..

1

A1 A2 A3

Program CubesProgram CubesProgram CubesProgram Cubes

Don Batory
UT-Austin Computer Sciences tensors 16

Program Cubes (PCs)Program Cubes (PCs)

• Are a fundamental design technique in FOP

• Given model F = [Fn, ... F2, F1] // notice vector

• Let program G = F8 + F4 + F2 + F1

• where + denotes composition operator ●

• Can write G as:
G = Σ i (8 4 2 1) FiG Σ i∈(8,4,2,1) Fi

Don Batory
UT-Austin Computer Sciences tensors 17

Generalize InterpretationGeneralize Interpretation

• An FOP model is a vector
• F = [F F F]• F = [Fn, ... F2, F1]
• no longer a set
• tensor of rank 1, dimension n,

• A program G = Σ i (8 4 2 1) Fi• A program G = Σ i∈(8,4,2,1) Fi
• is a projection of model F

that includes only the needed featuresy
• features in the vector are in composition order
• vector is then contracted to a scalar

Don Batory
UT-Austin Computer Sciences tensors 18

Program CubesProgram Cubes

• Use n rank-1 FOP models called dimension
models to specify features or indices along a p y g
dimension

Cc.. M

• A 3-D model M with
A, B, C as dimension B

C1

C2

C3

A, B, C as dimension
models

• A = [A1, ... Aa]
B [B B] B2

B3

Bb..

• B = [B1, ... Bb]
• C = [C1, ... Cc]

A A A A

B1

B2

..

Don Batory
UT-Austin Computer Sciences tensors 19

A1 A2 A3 Aa

Program CubesProgram Cubes

• M is a tensor product: A ⊗ B ⊗ C

• M has a×b×c entries Cc.. M

E t M i l t th B

C1

C2

C3

• Entry Mijk implements the
interaction of features
(Ai, Bj, Ck) B2

B3

Bb..

(i j k)

• examples shortly

A A A A

B1

B2

..

Don Batory
UT-Austin Computer Sciences tensors 20

A1 A2 A3 Aa

NN--Dimensional ModelsDimensional Models

• A program is now specified by n expressions
• 1 per dimensionp

• Program P in product-line of M has 3 expressions:g p p

P = A6 + A3 + A1 = Σ i∈(6 3 1) Ai6 3 1 i∈(6,3,1) i

P = B7 + B4 + B3 + B2 = Σ j∈(7 4 3 2) Bj7 4 3 2 j∈(7,4,3,2) j

P = C9 + C1 = Σ k∈(9 1) Ck9 1 k∈(9,1) k

Don Batory
UT-Austin Computer Sciences tensors 21

Contracting TensorsContracting Tensors

• The 3-expression specification of P is translated
into an M expression scalar by contracting Minto an M expression scalar by contracting M
along each dimension

P = Σ i∈(6,3,1) Σ j∈(7,4,3,2) Σ k∈(9,1) Mijk
A indices B indices C indices

• Really a projection and contraction to a scalar:

A indices B indices C indices

P = Σ ijk (Π i∈(6,3,1) Π j∈(7,4,3,2) Π k∈(9,1) Mijk)
Don Batory
UT-Austin Computer Sciences tensors 22

Contracting TensorsContracting Tensors

• Order in which dimensions are summed
(contracted) does not matter!(contracted) does not matter!

P = Mi j kΣ j∈(7,4,3,2) Σ i∈(6,3,1)Σ k∈(9,1) i,j,k

B indices A indicesC indices

• Commutativity property of tensor contraction

• Provided that dimensions are orthogonal
• this needs to be proven

Don Batory
UT-Austin Computer Sciences tensors 23

Significance is Scalability!Significance is Scalability!

• Complexity of program is # of features

• Given n dimensions with d features per dimension

• program complexity is O(dn)
• using cubes O(d×n)

• ex: program P specified by 3×4×2 features of M or
only 3 + 4 + 2 dimensional features!

• FOP program specifications are exponentially
shorter when using cubesshorter when using cubes

Don Batory
UT-Austin Computer Sciences tensors 24

Academic LegacyAcademic Legacy

• “Extensibility Problem” or “Expression Problem”
• classical problem in Programming Languages• classical problem in Programming Languages
• see papers by: Cook, Reynolds, Wadler, Torgensen
• focus is on achieving data type and operationfocus is on achieving data type and operation

extensibility in a type-safe manner
operation
f tfeatures

how operation j
is implemented in(i j)structure

features

is implemented in
structure i

tensor entries are
refinements

(i,j)

Don Batory
UT-Austin Computer Sciences tensors 25

Academic LegacyAcademic Legacy

• Multi-Dimensional Separation of Concerns
(MDSoC)(MDSoC)

• Tarr, Ossher IBM

• Cubes are tensor formulation of MDSoC and
Expression ProblemExpression Problem

• review a micro example (~35 line programs)

th l l (35K li)• then a large example (~35K line programs)
synthesis of the AHEAD Tool Suite

fi ll t h i t th lit f di i• finally techniques to prove orthogonality of dimensions

Don Batory
UT-Austin Computer Sciences tensors 26

Micro ExampleMicro ExampleMicro ExampleMicro Example

Calculator Model revisited

Don Batory
UT-Austin Computer Sciences tensors 27

Calculator MatrixCalculator Matrix

• View product-line as a matrix
• Tensor product of Calc ⊗ GUI = CT• Tensor product of Calcr ⊗ GUIc = CTrc

GUI model

...

CoreGUI1 Cmd GUI2 ...

...

...

...

Sub
Form
...

Sub2Subc

Form2Formc

......

Sub1

Form1

...

Sub

Form

Calc
model

...

...
Add
Base

Add2Addc

Base2Basec

Add1

Base1
Base

Add
model

Don Batory
UT-Austin Computer Sciences tensors 28

Calculator Synthesis is Tensor ContractionCalculator Synthesis is Tensor Contraction

• Define which GUI features to compose
• MyCalc = GUI1 + CoreMyCalc GUI1 + Core
• project and contract the matrix

...

Core

...

GUI1

...

Cmd GUI2

Sub
Form
...

Sub

Form

Sub1

Form1

...

Sub2Subc

Form2Formc

......

Add
BaseBase

Add Add1

Base1

Add2Addc

Base2Basec

Don Batory
UT-Austin Computer Sciences tensors 29

Calculator Synthesis is Tensor ContractionCalculator Synthesis is Tensor Contraction

• Define which GUI features to compose
• MyCalc = GUI1 + CoreMyCalc GUI1 + Core
• project and contract the matrix

...

Core

...

GUI1

... +

+

Sub
Form
...

Sub

Form

Sub1

Form1

...

+

+

Add
BaseBase

Add Add1

Base1

+

+

Don Batory
UT-Austin Computer Sciences tensors 30

Calculator Synthesis is Tensor ContractionCalculator Synthesis is Tensor Contraction

• Define which Calc features to compose
• MyCalc = Add + BaseMyCalc Add + Base
• project and contract the matrix

...... ... +

CoreGUI1 +

Sub
Form
...

Sub

Form

Sub1

Form1

...

+

+

Add
BaseBase

Add Add1

Base1

+

+

Don Batory
UT-Austin Computer Sciences tensors 31

Calculator Synthesis is Tensor ContractionCalculator Synthesis is Tensor Contraction

• Define which Calc features to compose
• MyCalc = Add + BaseMyCalc Add + Base
• project and contract the matrix

MyCalc = Add1 + Add + Base1 + Base

CoreGUI1 +process is symmetrical
i l l if Add

BaseBase

Add Add1

Base1

+

+

+get equivalent result if
rows are contracted

first

Don Batory
UT-Austin Computer Sciences tensors 32

Calculator Synthesis is Tensor ContractionCalculator Synthesis is Tensor Contraction

• Define which Calc features to compose
• MyCalc = Add + BaseMyCalc Add + Base
• project and contract the matrix

CoreGUI1 Cmd GUI2

......

Sub
Form
...

Sub

Form

Sub1

Form1

...

Sub2Subc

Form2Formc

......

Add
BaseBase

Add Add1

Base1

Add2Addc

Base2Basec

Don Batory
UT-Austin Computer Sciences tensors 33

Calculator Synthesis is Tensor ContractionCalculator Synthesis is Tensor Contraction

• Define which Calc features to compose
• MyCalc = Add + BaseMyCalc Add + Base
• project and contract the matrix

CoreGUI1 Cmd GUI2

Add
BaseBase

Add Add1

Base1

Add2Addc

Base2Basec
+ + + + +

Don Batory
UT-Austin Computer Sciences tensors 34

Calculator Synthesis is Tensor ContractionCalculator Synthesis is Tensor Contraction

• Define which GUI features to compose
• MyCalc = GUI1 + CoreMyCalc GUI1 + Core
• project and contract the matrix

CoreGUI1 Cmd GUI2

Add
BaseBase

Add Add1

Base1
+ +

Add2Addc

Base2Basec
+ + +

Don Batory
UT-Austin Computer Sciences tensors 35

Calculator Synthesis is Tensor ContractionCalculator Synthesis is Tensor Contraction

• Define which GUI features to compose
• MyCalc = GUI1 + CoreMyCalc GUI1 + Core
• project and contract the matrix

MyCalc = Add1 + Base1 + Add + Base

CoreGUI1 +

Add
BaseBase

Add Add1

Base1
+ + ++

Don Batory
UT-Austin Computer Sciences tensors 36

Calculator Synthesis is Tensor ContractionCalculator Synthesis is Tensor Contraction

• Note generated expressions are not syntactically
identicalidentical

• columns, rows:

MyCalc = Add + Add + Base + Base

• rows, columns:

MyCalc = Add1 + Add + Base1 + Base

,

MyCalc = Add1 + Base1 + Add + Base

• Expressions are equal because Add and Base1
are commutative (orthogonal)(g)

• see how we prove this property later…
Don Batory
UT-Austin Computer Sciences tensors 37

When to Use Multiple Dimensions?When to Use Multiple Dimensions?

• Rule: When adding a feature requires the
lock-step updating of many other featureslock-step updating of many other features

• row feature updates all columnsrow feature updates all columns

• column feature updates all row features

Don Batory
UT-Austin Computer Sciences tensors 38

A Macro ExampleA Macro ExampleA Macro ExampleA Macro Example

Synthesizing the AHEAD Tool Suite

Don Batory
UT-Austin Computer Sciences tensors 39

PerspectivePerspective

• So far, our models customize individual programs
• set of all such programs is a product-lineset of all such programs is a product line

• Tool Suite is an integrated set of programs,
each with different capabilities

• MS Office (Excel, Word, Access, ...)

• Question: Do features scale to tool suites?
• product-line of tool suitesproduct line of tool suites

Don Batory
UT-Austin Computer Sciences tensors 40

IDEs: A Tool SuiteIDEs: A Tool Suite

• Integrated Development Environment (IDE)
it f t l t it d b d t• suite of tools to write, debug, document programs

• AHEAD variant: Java language extensibility

compiler formatter edit debugger

Java

SmSm
(state machine DSL)

I i i l f t l !!!
Don Batory
UT-Austin Computer Sciences tensors 41

In principle, features scale!!!

The Problem The Problem –– Declarative IDEDeclarative IDE

From this declarative DSL spec, how do we generate AHEAD tools?

Don Batory
UT-Austin Computer Sciences tensors 42

Define Dimensional Model #1Define Dimensional Model #1

• AHEAD Model of Java Language Dialects

functions (optional features)constant

• Dialects of Java specified by expression

J = [Java, Sm, Tmpl, Ds, ...]

p y p

Jak = Tmpl + Sm + Java // java + p // j
// state machines +
// templates

…

Don Batory
UT-Austin Computer Sciences tensors 43

Define Orthogonal Model #2Define Orthogonal Model #2

• Tools can be specified by a different, orthogonal model

functions (optional features)constant

IDE = [Parse, ToJava, Harvest, Doclet, ...]

• Different tools have different expressions

jak2java ToJava + Parsejak2java = ToJava + Parse

jedi = Doclet + Harvest + Parse

Don Batory
UT-Austin Computer Sciences tensors 44

...

Tool SpecificationTool Specification

• Defined by a pair of expressions
• one defines tool languageg g
• other defines tool actions

• ex: jedi (i e javadoc) for the Jak dialect of Java• ex: jedi (i.e., javadoc) for the Jak dialect of Java

jedi = Tmpl + Sm + Java // using J Model

• Synthesize jedi by projecting and contracting the

jedi = Doclet + Harvest + Parse // using IDE Model

Synthesize jedi by projecting and contracting the
tensor product of the J and IDE models

Don Batory
UT-Austin Computer Sciences tensors 45

Tensor for Tensor for jedijedi

• Rows are language features
• Columns are tool features
• Entries are modules (refinements) that implement a

language feature for a tool feature
• Shows relationship between IDE and J modelsp

D l H P

JDoclet JHarvestJava

Doclet Harvest Parse

JParse
Cube

fSDoclet SHarvestSm

Tmpl

SParse

TDoclet THarvest TParse

for
jedi

Don Batory
UT-Austin Computer Sciences tensors 46

Tensor for Tensor for jedijedi

• Composition of these modules yields jedi
• Synthesize jedi expression by contracting the• Synthesize jedi expression by contracting the

tensor according to its dimensional expressions

D l H P

JDoclet JHarvestJava

Doclet Harvest Parse

JParse
Tensor

fSDoclet SHarvestSm

Tmpl

SParse

TDoclet THarvest TParse

for
jedi

Don Batory
UT-Austin Computer Sciences tensors 47

Contract the Tensor!Contract the Tensor!

• IDE expression
jedi = Doclet + Harvest + Parsejedi = Doclet + Harvest + Parse

• Tells us the column summation order

D l H PD l H PD l H P

JDoclet JHarvestJava

Doclet Harvest Parse

JParse
Sum Harvest

ith P
Sum remaining

columns
JDoclet JHarvestJava

Doclet Harvest Parse

JParseJDoclet JHarvestJava

Doclet Harvest Parse

JParse+

++

+

SDoclet SHarvestSm

Tmpl

SParse

TDoclet THarvest TParse

with Parsecolumns
SDoclet SHarvestSm

Tmpl

SParse

TDoclet THarvest TParse

SDoclet SHarvestSm

Tmpl

SParse

TDoclet THarvest TParse

+

+

+

+

Don Batory
UT-Austin Computer Sciences tensors 48

Now Contract the RowsNow Contract the Rows

• J expression
jedi = Tmpl + Sm + Javajedi = Tmpl + Sm + Java

• Tells us the row summation order

D l H PD l H PD l H P

JDoclet JHarvestJava

Doclet Harvest Parse

JParse++JDoclet JHarvestJava

Doclet Harvest Parse

JParse
Sum Java
d S R

++
+

JDoclet JHarvestJava

Doclet Harvest Parse

JParse
now add

++

+ +

++
SDoclet SHarvestSm

Tmpl

SParse

TDoclet THarvest TParse

+

+

+

+

SDoclet SHarvestSm

Tmpl

SParse

TDoclet THarvest TParse

and Sm Rows+

+

+

+

SDoclet SHarvestSm

Tmpl

SParse

TDoclet THarvest TParse

Tmpl Row +

+

+

+
++

Don Batory
UT-Austin Computer Sciences tensors 49

Resulting ExpressionResulting Expression

jedi = (TDoclet + THarvest + TParse) +
(SDoclet + SHarvest + SParse) +
(l)(JDoclet + JHarvest + JParse)

Using Cubes we can synthesize an expression for a
language-dialect specific tool

Don Batory
UT-Austin Computer Sciences tensors 50

Using Cubes to GenerateUsing Cubes to Generate

• Tool Suites...

Don Batory
UT-Austin Computer Sciences tensors 51

ProductProduct--Line TensorLine Tensor

• That relates J and IDE models
• Rows are language features
• Columns are tool features
• Entries implement feature interactions (refinements)

P T J H t D l t Si t

Java

Parse ToJava Harvest Doclet Signat

JParse J2Java JHarvest JDoclet JSig

Sm

Tmpl

SParse

TParse

S2Java

T2Java

SHarvest

THarvest

SDoclet

TDoclet

SSig

TSig

Ds DParse D2Java DHarvest DDoclet DSig

Don Batory
UT-Austin Computer Sciences tensors 52

To Synthesize IDE ToolsTo Synthesize IDE Tools

• Project unneeded rows and columns
• directly from IDE GUI input

l j di j k2j f J S T l• example: jedi, jak2java for Java + Sm + Tmpl

Java

Parse ToJava Harvest Doclet Signat

JParse J2Java JHarvest JDoclet JSig

Sm

Tmpl

SParse

TParse

S2Java

T2Java

SHarvest

THarvest

SDoclet

TDoclet

SSig

TSig

Ds DParse D2Java DHarvest DDoclet DSig

Don Batory
UT-Austin Computer Sciences tensors 53

Tensor for IDE ToolsTensor for IDE Tools

• Contract rows
• Note the semantics of the result...

P T J H t D l tP T J H t D l tP T J H t D l t

Java

Parse ToJava Harvest Doclet

JParse J2Java JHarvest JDocletJava

Parse ToJava Harvest Doclet

JParse J2Java JHarvest JDoclet
+ + + +

Java

Parse ToJava Harvest Doclet

JParse J2Java JHarvest JDoclet
+ + + +

Sm

Tmpl

SParse

TParse

S2Java

T2Java

SHarvest

THarvest

SDoclet

TDoclet

Sm

Tmpl

SParse

TParse

S2Java

T2Java

SHarvest

THarvest

SDoclet

TDoclet

Sm

Tmpl

SParse

TParse

S2Java

T2Java

SHarvest

THarvest

SDoclet

TDoclet
+ + + +

Don Batory
UT-Austin Computer Sciences tensors 54

Yields Expression For Each Tool Feature!Yields Expression For Each Tool Feature!

Parse = TParse + SParse + JParse

ToJava = T2Java + S2Java + J2Java

Harvest = THarvest + SHarvest + JHarvest

• And we know expressions for each tool!

Doclet = TDoclet + SDoclet + JDoclet

And we know expressions for each tool!

jak2java = ToJava + Parse

jedi = Doclet + Harvest + Parse
...

Don Batory
UT-Austin Computer Sciences tensors 55

IDE Generator is SimpleIDE Generator is Simple

• For each selected tool, evaluate its expression

And generate the code
for each tool

automatically!automatically!

Don Batory
UT-Austin Computer Sciences tensors 56

Generator of IDE Tool SuiteGenerator of IDE Tool Suite

Engineer h1+g1+f1 generator jak2java

h2+g2+f2

f

generator jedi
cube

h3+g3+f3 generator ...generator

Don Batory
UT-Austin Computer Sciences tensors 57

Experimental ResultsExperimental ResultsExperimental ResultsExperimental Results

Don Batory
UT-Austin Computer Sciences tensors 58

Bootstrapping AHEADBootstrapping AHEAD

• We contracted a tensor of rank 3,
dimension (8×6×8) to generate 5 tools of the
AHEAD T l S iAHEAD Tool Suite

Tool Features

Lang
Features 3 d di i

Lang
Features

Features 3rd dimension captures
language feature interactions

Don Batory
UT-Austin Computer Sciences tensors 59

Bootstrapping AHEADBootstrapping AHEAD

• Contract tensor to produce IDE model, from which
we can generate tool expressiong p

Tool Features

Lang
Features

Sum 3rd dimension
Sum rowsFeatures

Lang
Features

IDE ModelIDE Model

Don Batory
UT-Austin Computer Sciences tensors 60

Results of AHEAD BootstrapResults of AHEAD Bootstrap

• 90 distinct features

• Typical tool contains 20-30 features
• most tools share 10 features

• Generated Java for each tool is ~35K LOC

• Generating well close to 150K from simple, declarative
specifications

• exactly what we want

• Making designs for multiple tools to conform to a tensor
• controlling the complexity of tool suitescontrolling the complexity of tool suites

Don Batory
UT-Austin Computer Sciences tensors 61

Tensor Representations Scale!!Tensor Representations Scale!!

• Micro example ~150 LOC totalp

• AHEAD example ~150K LOC totalp

• 3 orders of magnitude!

• Cubes apply to all levels of abstraction equally

• Cubes scale to much larger systems

Don Batory
UT-Austin Computer Sciences tensors 62

Proving Commutativity PropertiesProving Commutativity Properties
of Tensorsof Tensors

On going work…

Don Batory
UT-Austin Computer Sciences tensors 63

Contracting TensorsContracting Tensors

• We assumed a basic property of tensors

• Order in which dimensions are contracted
does not matter

• commutativity property that we have to verify

C b d t b th l t l• Cubes need not be orthogonal, as next example
shows

Don Batory
UT-Austin Computer Sciences tensors 64

Example of NonExample of Non--Orthogonal CubeOrthogonal Cube

• A non-orthogonal Cube

by rows first

by columns
first

Don Batory
UT-Austin Computer Sciences tensors 65

So What?So What?

• Contract tensors differently to provide different views of
software

• viewing modules from language feature viewpoint or tool feature view
point is occasionally useful

• Properties derived in one view (contraction), might not hold
in other views

• Edits or code repairs performed in one view might not work
correctly in other views

• Need consistent views!!
• simple design changes can make a cube orthogonalsimple design changes can make a cube orthogonal

Don Batory
UT-Austin Computer Sciences tensors 66

A Fix: An Orthogonal CubeA Fix: An Orthogonal Cube

• An orthogonal cube and its contraction

Don Batory
UT-Austin Computer Sciences tensors 67

Properties to PreserveProperties to Preserve

• Same program must be synthesized when tensor
dimensions are contracted in any ordery

• For a tensor A of rank 2:

Σi Σk Aik = Σk Σi Aik

• For a tensor of rank n, there are n! summation orders,
all must produce equivalent resultsa us p oduce equ a e esu s

• Need algorithms to verify these properties

Don Batory
UT-Austin Computer Sciences tensors 68

Orthogonality PropertyOrthogonality Property

• Reduces to testing 2D matrix

F h b b l h f ll i h ld• For the above to be equal, the following must hold

• composition of the bottom left and upper right quadrants
must commutemust commute

Don Batory
UT-Austin Computer Sciences tensors 69

aa2121 and aand a1212 commute ifcommute if

• (1) they do not add or refine the same member
• they add or refine non-overlapping sets of methods and• they add or refine non-overlapping sets of methods and

variables

• (2) they do not refer to members added by each
other

• Both conditions are easy to verify;
th h d t i d i ffi i tlthe hard part is doing so efficiently

• brute force doesn’t work as it would be hideously slow

Don Batory
UT-Austin Computer Sciences tensors 70

Essence of the AlgorithmEssence of the Algorithm

• For an arbitrary rank, dimension tensor T

• For every member m added or refined in feature F, store it
along with the coordinates of F in T in a hash table

• If a prior definition of m exists (meaning it was added or
refined by another feature G), see if the coordinates of F

d G fli t d if th d if F d G b l iand G conflict and if they do, see if F and G can belong in
the same product

• if so, T is not orthogonal, g

• Similar analysis for references
• Almost linear in the size of the code base
Don Batory
UT-Austin Computer Sciences tensors 71

Example: Bali Tools of ATSExample: Bali Tools of ATS

f t

require refines
method defined
in composer |
bali2jak |feature

model
grammar

bali2jak | ...

Don Batory
UT-Austin Computer Sciences tensors 72

Example ErrorExample Error

• Require refines method defined in Composer

public Object driver(String[] args) throws Throwable {
setVersion("v2003.02.17") ;

composer.main

...
Collector collector = collectSources(inpFiles) ;
...
return collector ;

}

i j i (i []) {

require.main
public Object driver(String args[]) throws Throwable {

setVersion("v2002.09.03") ;
return Super(String[]).driver(args) ;

}

Don Batory
UT-Austin Computer Sciences tensors 73

Another ErrorAnother Error

require and
codegen

both refine
method in baligrammar method in bali

Don Batory
UT-Austin Computer Sciences tensors 74

Example ErrorExample Error

• Require and Codegen both refine method in Bali
bali.main

public Object driver(String args[]) throws Throwable {
...
return parseTree ;

}

public Object driver(String args[]) throws Throwable {

codegen.main

}

setVersion("v2002.09.04") ;
return Super(String[]).driver(args) ;

}

require main
public Object driver(String args[]) throws Throwable {

setVersion("v2002.09.03") ;
return Super(String[]).driver(args) ;

}

require.main

Don Batory
UT-Austin Computer Sciences tensors 75

}

Other StatisticsOther Statistics

• Fast – didn’t find errors in JPL

Don Batory
UT-Austin Computer Sciences tensors 76

InsightsInsights

• Oddly, we didn’t find serious errors in the ATS
designsdesigns

• only benign (inconsequential) errors were found

• Created these designs long before we had any
analysis toolsy

• suggests that creating orthogonal tensors is not difficult

Don Batory
UT-Austin Computer Sciences tensors 77

Final CommentsFinal CommentsFinal CommentsFinal Comments

Don Batory
UT-Austin Computer Sciences tensors 78

Future WorkFuture Work

• Commutativity or “orthogonal” properties have a
simple description in category theory

• deep interconnection with our use of tensors

• Other forms of feature interactions• Other forms of feature interactions
• generalization of the ideas presented here seem to account for

many of such interactions
• developing theories and supporting tools for thisp g pp g

• Additional analyses
• want to analyze product-lines to ensure that all legalwant to analyze product lines to ensure that all legal

compositions of features yield type safe programs

• Thaker, Batory, Kitchin, Cook.
“S f C iti f P d t Li ” GPCE 2007“Safe Composition of Product Lines”, GPCE 2007

Don Batory
UT-Austin Computer Sciences tensors 79

Recommended ReadingsRecommended Readings
• Batory, Lopez-Herrejon, Martin, “Generating Product-Lines of Product Families”,

Automated Software Engineering 2002.

• Batory Liu Sarvela “Refinements and Multi Dimensional Separation of Concerns” ACM• Batory, Liu, Sarvela, Refinements and Multi-Dimensional Separation of Concerns , ACM
Sigsoft 2003.

• M. Calder, M. Kolberg, E.H. Magill, and S. Reiff-Marganiec, “Feature Interaction:
A Critical Review and Considered Forecast”.Computer Networks, January 2003.

• Cook “Object-Oriented Programming versus Abstract Data Types”. Workshop on
Foundations of Object-Oriented Languages, Lecture Notes in Computer Science, Vol.
173. Spring-Verlag, (1990) 151-178

• Harrison and Ossher, “Subject-Oriented Programming (A Critique of Pure Objects)”,
OOPSLA 1993, 411-427.

• Kay, “Tensor Calculus”, Shaums Outlines, 1988.y, , ,

• J. Liu, D. Batory, and C. Lengauer. "Feature Oriented Refactoring of Legacy
Applications", ICSE 2006.

Don Batory
UT-Austin Computer Sciences tensors 80

Recommended ReadingsRecommended Readings
• Ossher and Tarr, “Using Multi-Dimensional Separation of Concerns to (Re)Shape

Evolving Software.” CACM 44(10): 43-50, October 2001.

• Reynolds “User defined types and procedural data as complementary approaches to• Reynolds User-defined types and procedural data as complementary approaches to
data abstraction”. Reprinted in C.A. Gunter and J.C.Mitchell, Theoretical Aspects of
Object-Oriented Programming, MIT Press,1994.

• Thaker, “Design and Analysis of MultiDimensional Program Structures”, M.Sc. Thesis, , g y g , ,
Dept. Computer Sciences, University of Texas at Austin, 2006.

• Thaker, Batory, Kitchin, Cook, “Towards Safe Composition of Product-Lines”, GPCE
2007.

• Tarr, Ossher, Harrison, and Sutton, “N Degrees of Separation: Multi-Dimensional
Separation of Concerns”, ICSE 1999.

• Torgensen “The Expresion Problem Revisited “Four new solutions using generics”Torgensen The Expresion Problem Revisited. Four new solutions using generics ,
ECOOP 2004.

• Wadler “The expression problem”. Posted on the Java Genericity mailing list (1998)

Don Batory
UT-Austin Computer Sciences tensors 81

