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Abstract. Families of applications are steadily emerging for distinct settings such as 
embedded systems, navigational systems, financial applications or even web applications. 
This moves the attention from single application development to Software Product Line 
(SPL) development where the focus is on constructing reusable artefacts of the assembly 
line from which final products are obtained. This paper presents a first reported 
experience on measuring maintainability index for SPLs where the maintainability index 
of each feature is measured. This yields a number of benefits towards the global 
improvement of maintainability before the customer product of the SPL is built. 
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1. INTRODUCTION 

Software Product Lines (SPLs) are defined as "a set of software-intensive systems, 
sharing a common, managed set of features that satisfy the specific needs of a particular 
market segment or mission and that are developed from a common set of core assets in a 
prescribed way" [10]. 

The SPL paradigm distinguishes between domain engineering and application 
engineering, where construction of the reusable assets (a.k.a. platform) and their 
variability is separated from production of the product-line applications. The platform 
includes the architecture, software components, design models and, in general, any 
artefact that is liable to be reused [22]. 

The platform is the base on top of which products are created adding variability, which 
is expressed as features (i.e. increments in application functionality). Distinct techniques 
exist to realize feature implementations. Among them, AHEAD [1] provides an algebraic 
model (and tools), where the realization of each feature is separated. An SPL product is 
then obtained by composing the base with customer desired features.  

Quality measurement is a main requirement in software development. SPLs are not an 
exception. However, most measures and techniques use a holistic approach where the artefact 
to be measured is assessed as a whole. This could be contra-intuitive for SPL products which 
are obtained as the synthesis of a set of features. From this perspective, the question is 
whether the quality (whatever this means) of an SPL product can be obtained from the quality 
of the features the product supports. And this in turn, poses the question of how to assess 
feature quality. Notice that features are “inconclusive” pieces of code which do not make 
sense isolately but assembled to a base or platform. In this sense, they are different from 
components which can be run isolately. 

This feature-base measurement would permit users to select features based on the expected 
contribution the feature makes to the final quality of the SPL product. Or even to restrict the 
available products to those below a certain value for a specific quality attribute along the lines 
of the work described in [3]. 

To assess the feasibility of this approach, this work focuses on the Maintainability Index 
(MI) as the measure to be assessed. The MI is largely used to help reduce system's tendency 
toward "code entropy" or degraded integrity. Existing tools enable to measure MI for 
software products.  

The findings of this work include the difficulty of ascertaining MI by directly measuring 
the feature. Rather the feature impact is assessed as the difference between SPL products, 
some exhibiting the feature and others lacking the feature. This indirect way permits to assess 
the contribution of a feature by measuring proper products rather than adapting existing MI 
techniques to the “inconclusive products” that features represent. 

The rest of this paper is organized as follows. Section 2 reviews maintainability and 
AHEAD. Section 3 introduces the main ideas behind measuring SPL maintainability. Section 
4 presents our experience in doing so. Section 5 describes some future work and section 6 
concludes. 
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2. BACKGROUND 

2.1. Maintainability 

Maintainability is the ease with which a software system or component can be modified 
to correct faults, improve performance, or other attributes, or adapt to a changing 
environment [14]. 

The literature shows several efforts to characterize and quantify software 
maintainability. The most widely accepted propose the use of a polynomial regression 
model where regression analysis is used as a tool to explore the relationship between 
software maintainability and software metrics [25, 26]. 

Zhou determines maintainability measures as (i) a managerial assessment to quantify the 
cost of maintaining existing software systems, (ii) as a quality assessment and control 
mechanism to drive software development efforts, and as (iii) a mechanism to enforce 
maintainability standards prior to acceptance and/or delivery [26]. 

Van Emden defines complexity as “the way in which a whole is different from the 
composition of its parts” and analyses software complexity via Entropy [24]. Factor 
analysis is another statistical technique wherein metrics are orthogonalized into 
unobservable underlying factors, which are then used to model system maintainability 
[20]. 

A program's maintainability is calculated through a Maintainability Index (MI) [23], 
which uses a combination of widely-used and commonly-available measures. Note that all 
are based on average-per-code-module measurement. The MI of a program is a 
polynomial: 

 

( ) ( ) ( ) perCMaveLOCgaveVaveVMI ××+×−×−×−= 4.2sin50ln2.16'23.0ln2.5171     (1) 
 

where: 
aveV is the average Halstead Volume V per module [13], which is the computational 

complexity of a program’s module measured directly from source code. 
aveV(g') is the average extended cyclomatic complexity per module [18], which 

measures the number of linearly-independent paths through a program module. 
aveLOC is the average count of lines of code (LOC) per module. Non Commenting Source 

Statements (NCSSi) are measured.  
perCM is the average percent of lines of comments per module. 

 
The larger the MI, the more maintainable is the program. MI measurement is not a 

trivial task, which requires sophisticated tooling. SemanticDesignsii offers tools to measure 
MI for Java and C code [5]. MI has been widely used and tested in industrial cases 
[26,21]. These cases were compared by [11,20]. 

                                                 
i JavaNCSS. http://www.kclee.de/clemens/java/javancss/ 
ii Semantic Designs. http://www.semdesigns.com/ 
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Recent works evaluate SPL quality focusing on SPL architecture. They study different 
quality attributes such as modifiability [7,9], flexibility [16], and reusability [19]. 
Bengtsson studies maintainability by developing different change scenarios where the 
change impact is analyzed [6]. 

In these works, architecture’s maintainability was evaluated. Neither the whole SPL, 
nor the products were studied. 

2.2. AHEAD and Feature Oriented Programming 

Feature Oriented Programming (FOP) is a paradigm of SPL synthesis where features 
are the building blocks of products [4]. Features are units (i.e. incrementing application 
functionality) by which different products can be distinguished and defined within an SPL. 

In general, an SPL is characterised by the set of features it supports, e.g. 
 

 },1,2{ basefeaturefeatureMySPL =  (1)  
 

whereas a product is obtained as the synthesis of some of those features in the base or 
platform of the SPL. For instance  

 
basefeatureoduct
basefeatureoduct

basefeaturefeatureoduct

•=
•=

••=

23Pr
12Pr

121Pr

 (2)  

where • stands for synthesis or composition. 
Algebraic Hierarchical Equations for Application Design (AHEAD) is a model of FOP 

where each feature implementation (a.k.a. layer) encapsulates the set of files (a.k.a. 
artefacts) realizing its functionality [4].  

Feature realization is described as increments to functionality (a.k.a. refinements) that 
provides the required feature. The refinement depends on the artefact at hand. It is not the 
same the notion of refinement in Java that in XML. For Java artefacts, a refinement can 
introduce new data members, methods and constructors to a target class, as well as extend or 
override existing methods and constructors of that classiii. However, as refinement capability 
is not present in those vocabularies, AHEAD provides its own language. Hence, Jak is a 
Java-like language supporting refinementsiv. 

 

(a) 
feature BasePlatform ; 
class Foo { 
  int counter ; 
  int getCounter ()  
   { return counter; } 
} 

(b) 
feature Feature1 ; 
refines class Foo { 
  void reset ()  
  { counter=0; } 
} 

(c) 
feature Feature2 ; 
refines class Foo { 
  void reset ()  
  { counter=10; } 
} 

Figure 1. Jak Refinement 

                                                 
iii Refinement resembles regular inheritance. However, note that it is a mixin, i.e. a class whose superclass is 
parameterized [8]. The link to the superclass is not fixed until composition (in regular inheritance is fixed). 
iv Jak2java would transform Jak to Java [1]. 
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Figure 1a shows a base artefact Foo defining a variable member (counter), and a 
method (getCounter) realizing feature BasePlatform. Now consider that the realization of 
feature Feature1 implies leveraging previous class with a new method (reset). Figure 1b 
shows the definition of this refinement function in Jak [4]. Figure 1c shows another 
refinement Feature2 where the same reset method is defined. Feature2’s reset overrides 
previous method if the composition is Feature2•Feature1•BasePlatform. 

3. MEASURING MAINTAINABILITY INDEX FOR AHEAD’S SPL 

Focusing on Java, feature realization is achieved through Jak files. A first approach 
would be to measure directly Jak files. However, a number of problems prevented us from 
doing so. First, existing tools are targeted to Java or C. So, Jak-specific measurement 
tooling would be required. Second, Jak can be measured adapting existing MI. However, 
the measurement of refinements would require further study because a refinement is not a 
complete Java class, but an extension. So, it is likely that a new MI for refinements would 
be necessary. Third, refinements may override existing code which would make the MI 
result to change. Thus, there are some interactions among features we may want to detect. 
These feature interactions would affect to product’s MI [17]. 

In other words, feature addition does not always have a monotonic effect on the MI 
measure. The addition of a new feature could result in a reduction of the MI for the 
resulting product since a feature can make the code of the resulting product harder to 
maintain. Therefore, calculating the MI for each feature separately, and then, aggregating 
those values to obtain the MI of the product could be wrong. Unless with the AHEAD 
model for feature realization.  

As a result, an indirect way to measure feature MI was devised. Let P be the set of total 
products an SPL can generate. Let P+ and P- be a total cover of P, which refer to the 
products exhibiting feature F and the products that lack feature F, respectively. The MI 
impact for feature F can be ascertained from MI(P+) and MI(P-). 

This intuition is formalized in terms of a matrix. Each row stands for a product, and 
each column is an “incognita” that represents the MI contribution of a given feature F. 
Next section describes our experience on this for a sample case. 

4. EXPERIENCE FOR A SIMPLE CASE 

A simple calculator was developed to evaluate our ideas. MUKalk is a basic windows-GUI 
calculator offering basic operations (e.g. addition, multiplication, sinus, etc), different 
languages (e.g. English, Spanish, Basque, Polish), different presentation styles (e.g. casual, 
modern, classic), and different modes of operations (e.g. scholar, scientific). MUKalk 
consisted of 15 features, yielding hundreds of distinct calculator products [3]. 

We use all features (15) to build only a feature-representative subset of products (100). 
Then, the MI of each product was measured using SemanticDesigns’ tooling.  

Table 1 shows partially these results on the left-side. At first sight, note that the MI 
variation is low. Each built product size ranges from 133 KB to 170 KB. It takes around 10 
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seconds to build each product. 
 

Product Features MI 
P000 base 128.37
P001 base•plus 128.07
P002 base•plus•minus 127.91
P003 base•plus•mul 127.96
P004 base•plus•div 127.74
P005 base•plus•minus•mul 127.80
P006 base•plus•mul•minus 127.80
P007 base•plus•minus•div 127.60
... ...  

omittedequationsmore
xyzm

xyz
xy

x

baseplususmul

baseplusus

baseplus

base

__//
80,127
91,127
07,128
37,128

min

min

+++=

++=

+=
=

 

 Table 1. Product (partial) measures 

Next step was to create a system of equations with these results to get the values of MI for 
each feature (the equations system for MUKalk is partially shown on right-side at Table 1). 
To this end, we create a matrix where the rows contain equations. We have one row per 
product. The number of columns is the number of features. While creating this system, we 
assumed that • (composition operator) was addition. This assumption was backed by 
recent studies showing AHEAD’s duality where the rate of refinements within total is 
around 10%. Thus, the most of the code (90 %) are introductions [2]. Therefore, we can 
argue that • would be addition if the majority of the code is introduced. This premise was 
later confirmed in our experiments. 

MatLabv was used to resolve the matrix equation system. To this end, a vector 
(MI_vector) with all the MI values for products was created. Next, we show a partial 
vector with 16 values: 

 
MI_vector=[128.37,128.07,127.91,127.96,127.74,127.80,127.60, 

             127.65,127.51,128.01,127.91,127.69,127.60,128.07, 
           127.74,127.83]' 
 

Then, a matrix specifying product features (PF) was created. Note that 1 designates the 
feature was presented, whereas 0 means was not. Next, a partial matrix with features for 16 
products is shown. 

 
PF=[1,0,0,0,0;1,1,0,0,0;1,1,1,0,0;1,1,0,1,0;1,1,0,0,1; 
    1,1,1,1,0;1,1,1,0,1;1,1,0,1,1;1,1,1,1,1;1,0,1,0,0; 
    1,0,1,1,0;1,0,1,0,1;1,0,1,1,1;1,0,0,1,0;1,0,0,1,1; 
    1,0,0,0,1] 
 

MatLab used those entries (MI_vector  and PF) to resolve equation as follows: 
 
x=solveAxb (PF, MI_vector) // MatLab command to resolve this 

                                                 
v MatLab. http://www.mathworks.com/ 
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This command returned the values of each MI impact (xbase is feature base’s MI, yplus is 

feature addition or plus’s MI) for each feature: 

...
3425,0
1225,0

1750.0

1225.0
2225.128

min

−=
−=
−=

−=
=

div

mul

us

plus

base

n
m
z

y
x

 

The variation of the values (i.e. the partial impact on MI) were low (always below 1), it 
ranged from 0.1225 to 0.3425. MI decremented in all cases a feature was added. Remind that 
larger MI meant more maintainable. So, this result seemed reasonable. 

MatLab resolution provides a range of errors. The error for base feature was the highest. 
So, as the MI for the base must be fixed, we decided to reformulate MI_vector by 
decreasing all values with the value of Base’s MI, and resolving equation again. Then, we 
obtained slightly different values where the error decreased. 

4.1. Improving Feature MI 

The impact of MI is known from previous experience. As we noted, there are differences 
among feature’s MI. These differences are related to the complexity of a given feature 
implementation where the impact of MI is large (i.e. the decrement of MI is large). 

In this scenario, it enables to locate features where implementation should be improved in 
order to improve product’s MI. The focus should be placed on features most used. This 
depends on feature commonality (i.e. the number of products in an SPL where the feature 
appears) [3]. 

We may focus on features where either MI, either feature commonality are large. On these 
features, we can take design decisions such as (i) simplify feature code, (ii) refactor feature 
code, or (iii) split feature code among new created features. 

4.2. Optimizing Product MI 

Feature models (FM) are models where features are arranged in [12, 15]. It is the customer 
which uses FM to configure a product selecting desired features. In this scenario, we provide 
MI to those customers interested in future product maintainability. This information would 
help them during the decision taking process. Hence, MI together with other attributes (e.g. 
quality, cost or time) may be used to extract knowledge about the SPL. 

To do so, it is necessary to transform the FM into a reasoning framework such as the one 
presented in [3]. Doing so, it is possible to obtain information about the FM such as how 
many potential products are available from the FM, which is the lowest price for a product, 
and which is the best product in terms of quality, usability, performance, security, and so 
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forth. 
As we know the MI impact for each feature, we can use [3] to automate reasoning on 

maintainability. At this point, customer may ask something like “offer me only the set of 
products with a specific level of quality attributes”. The measures obtained before together 
with automated reasoning frameworks would provide an answer to these problems. 

5. FUTURE WORK 

Additional Maintainability Metrics. This work focused on the measurement of SPL’s MI 
based on current software product metrics. Nonetheless, there exists other software 
metrics such as the aptitude to be analyzed, the aptitude to be changed, stability, etc. 
Further studies are needed to measure them. 
 
Quality Attributes. Following the approach presented in this work, other quality 
attributes indexes can be measured for SPLs. Attributes such as productivity, usability, 
modifiability need further attention. 
 
Tool support. Some infrastructure was developed to automate the building of products and 
the gathering of measures. This infrastructure relies on scripting techniques. Specific tool 
support is needed in this field to ease SPL measurement. 
 
Different SPL approaches. There are distinct approaches to SPL from which we chose 
AHEAD. It would be interesting to construct the same SPL using different variability 
implementation techniques, and evaluate whether the same MI are obtained for the same 
product constructed with different approaches. 
 
Artefact heterogeneity. Currently quality attributes are intended to measure source code. 
However, other artefacts such as XML documents are increasingly used to develop 
applications. Mechanisms to measure quality attributes for them are envisioned. 
 
Feature dependency. A feature usually requires or excludes other features. These 
dependencies are represented through FM. We did not consider these dependencies. They 
should be considered in further studies. 
 

6. CONCLUSIONS 

The need for SPL measurement, and particularly maintainability, is a major issue 
currently in SPL development. We concentrated on AHEAD because it provides a 
systematic approach to SPL development where a model to separate artefacts within 
features is provided. 

This paper presented a first reported experience on measuring SPL maintainability. It 
introduced an initial model to measure it, and presented some experimental results with an 



G. Aldekoa, S. Trujillo, G. Sagardui, O. Díaz 

 9

in-house developed case study. Our results confirmed partially our assumptions that need to 
be evaluated with further cases. 

This work proposed the use of maintainability index to take design decisions that would 
improve globally maintainability. As well, we provided some insights on automated 
reasoning. Finally, some open issues for future work were proposed. 
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