

Specker Derivative Game (SDG)

Software Requirement Specifications
And

Design Implementation
By
Milena Georgieva Dimitrova and Jason Letourneau
This requirements document aims to convey the information about the SDG game (including general description, technical requirements, assumptions and dependencies) to the targeted users. The intended audience for this document includes the players/developers of this game.

The scope of this document is limited to providing the user with a high level understanding of the purpose of the game and the rules and technical requirements involved.

Specker Derivative Game is dedicated to and named after Professor Ernst Specker.

Table of Contents

1.
Introduction
1.1 Purpose

1.2 Scope

1.3 Definitions, Acronyms, and Abbreviations

1.4 References

1.5 Overview

1.5.1
Rules for the Game

1.5.2
Rules for the Players

1.5.3
Rules for the Transactions / Derivatives

2.
Game Control / Flow
2.1 Introduction
2.2 Input
2.3 Processing
2.4 Output
4.
Design Structure / Schemas
4.1
Configuration File

4.2
Blackboard Organization

4.3
History

4.4
Store

4.5
Players

4.6
Transactions
4.6.1
Create
4.6.2
Buy
4.6.3
Raw Material

4.6.4
Finished Product

4.6.5
[Players_name]_done

5.
Appendices:

A.
Clauses Explanation and Examples

B.
Transition System for SDG

C.
Future Work

1.
Introduction
The Specker Derivative Game (SDG) is a trading game in which an algorithmic trader sells and buys Derivatives and produces Finished Products out of Raw Materials. The game is a pure mental skill game such as chess, which has absolutely no element of chance whatsoever. The winner is solely determined by pure, unadulterated skill of how to deal with uncertainties (there is a form of bad luck: a derivative can go on sale and is too cheap, but it is not your turn to buy it).

1.1 Purpose
The game is a form of experiential learning in the Northeastern tradition. It should be implemented in a way that encourages capability reuse across an array of various similar products that can be created in the future. For the duration of the course the students have to extract reusable assets from old implementations of the game and configure those assets into new products in a SDG-like games family. The family will consist of games like SDG-SP08-1, SDG-SP08-2, etc. Ideally, at all times, there will be running players that successfully compete in the games. The students will make incremental changes to those running players. The purpose is to explore an unknown territory of financial derivatives, to learn more about selling and buying such derivatives until one has the knowledge that guarantees that one will never lose in SDG. Opponents who don't have this knowledge will lose the game.
1.2 Scope
In the initial/base game development, in order to encourage a Software Product Line development environment, the students will create a functional game by identifying and reusing assets from older games. There are five learning units in the initial phase. With the first learning unit, the students learn how to design data structures for the game, including representing the history of moves of a game. The second learning unit is used to check whether a history conforms to the rules of the game. It is inherently easier to check a history than to play the game actively. Code developed here is useful during the game to check that the players conform to the rules. In the third learning unit the students have to set up the rotating infrastructure for the game, abstracting from the details of the derivatives, the raw material and the finished product. This infrastructure could be used for other games. Then the infrastructure is specialized for SDG. This step involves defining interfaces that each program needs to obey. In which format are derivatives bought and sold? How are the raw material and the finished product represented? For the fourth learning unit the student create an algorithm for producing raw material. Initially this can be accomplished by generating the raw material randomly. This might create raw materials that lose money but it is not a bad starting point. In the fifth learning unit an algorithm for finishing the raw material is created. Again a good starting point is an algorithm that uses randomness.
1.3 Definitions, Acronyms, and Abbreviations
· Administrator - An entity used to control the game.
· Assignment –The set of literal values(True/False) assigned to a clause (A positive literal means the variable is set to true, a negative literal means the variable is set to false).
· Blackboard- A shared memory through which the players communicate.
· Buy – Purchase a derivate from the store. After the transaction the store field boughtBy is updated.
· Buyer/Owner – A player who purchases a derivate from the store.
· Clause - A list of distinct literals. SDG uses up to 3 literals.
· CNF - A CNF consists of a list of clauses in Conjunctive Normal Form (See Appendix A).
· Create [Derivative] – Add a new derivative to the store.
· Creator/Seller - A player who creates/offers a derivative for sale.
· Deliver[Raw Material] – Transferring of the raw material between the players involved in the transaction
· Deliver[Finished Product] – Transferring of the finished product between the players involved in the transaction
· Derivative – In SDG it is similar to a financial derivative. Financial derivatives are financial instruments whose value derives from the value of assets underlying them.
· Derivative Name – A unique name assigned to a derivative.
· Exchange Language- an XML markup language used to transfer information.
· Final Round - The last round of the game when no buying or offering is allowed. The only transactions that are processed are Finish and Deliver.
· Finished product - CNF plus assignment
· Finishing Raw Materials - Finding an assignment that satisfies many clauses (ideally it maximizes the number of satisfied clauses over all possible assignments).
· Game Configuration – Values for initializing the game constants specified in a config.dat file.
· Game Constants - Variables that remain constant throughout the game and are declared in the configuration file.
· Interchange Language - A language used for exchanging information.
· Literal - A positive or negative variable.
· Lower [Price] - Lower the price of an existing derivative.
· Minimal Difference – The minimal value a player should lower the price of a derivative.
· Offer [Derivative]- Offer a derivative for sale / put a derivative in the store.xml
· Player -An entity (algorithmic trader) in the game that buys/creates derivatives.
· Player’s Account - The amount of money each player has during the game.
· Player’s Name - A distinct name that is assigned to each player.
· Price of Derivative - The price of a derivate given by the creator.
· Quality [of Assignment] - The fraction of satisfied clauses among the total number of clauses.
· Quality [of Finished Product] - A weighted fraction of satisfied clauses.
· Payment Obligation – Creator payment once the Finished product is delivered at a price that is equal to the quality of the finished product.
· Raw Material - Boolean formulas in conjunctive normal form (CNF).
· requestRawMaterial(Derivative) - A message sent to/from the admin requesting raw material from the creator.
· Refunding – Giving money to a player who has bought a derivate from another player who has dropped out of the game
· Round - A fixed sequence of players’ turns.
· Satisfied clause – a clause with at least one satisfied literal.
· sendRawMaterial(Derivative) - A message sent to/from the admin transferring raw material to the buyer
· SGD – Specker Derivative Game
· Store – A place where all derivatives are maintained. Only the administrator writes the store. It is physically maintained in store.xml.
· Transaction – One of the Buy, Create, Deliver, Finish actions performed by players. The players transactions are contained in the [playerName]_done.xml and processed by the administrator.
· Turn - The time when the players play the game. In SDG a turn consists of different sets of actions (Buy, Create, Deliver, Finish) that the players perform.
· Type of Derivative – Expressed in pairs. The first number in the pair identifies the number of literals and the second the number of positive literals.
· Type of Raw Material - A list of relations, each represented by a pair of numbers.
· Weight of satisfied clause - The total weight of the clauses.
1.4 References
Original Specker Derivative Trading Game description as published by Professor Karl Lieberherr at http://www.ccs.neu.edu/home/lieber/evergreen/specker/game.html
1.5 Rules
1.5.1 Rules for the Game:
1. The game has an administrator and algorithmic traders (players).
2. There can be any number of players participating in the game and their parameters (name, account, turn) have to be specified in a players’ configuration file (players.xml).
3. The game terminates after a fixed number of rounds specified in the game’s configuration file (config.dat).
4. The winner of a game is the player with the most money in his/her account at the end of the game.
5. After the fixed number of rounds nothing can be bought or put on the market but raw materials are still delivered and finished until all outstanding obligations have been met.
6. The administrator is the only one who writes to the game’s store (store.xml).

7. As the liaison for the players’ communication, the administrator is the one who processes the file indicating the end of each player’s turn ([playerName]_done.xml).

8. The administrator is the only one updating the game’s history (history.xml) by appending the transactions from done player’s files ([playerName]_done.xml).
9. The administrator is the only one updating the players’ configuration file.
10. The administrator moves money between the players’ accounts as players buy and sell derivatives.
11. If a player drops from the game, the administrator removes the derivatives created by this player and refunds the buyers of the unfinished derivatives. The refund is the same as the original price for the derivative.
12. Each player starts with a 5 million initial budget used for purchasing derivatives.
13. During the game, the players take turns in a uniform sequence.
14. Each player gets a timeslot for doing computation during his/her turn and this timeslot is denoted in the game’s configuration file (config.dat).
15. Players are removed from the game if they do not maintain a positive balance in their account.
16. Players are removed from the game if they go beyond their timeslots.

17. Players are removed from the game if they do not comply with the
rules specified below.
1.5.2 Rules for the Players:
1. In the synchronous version of the game, the administrator is just an arbiter for the players’ actions but s/he does not invoke them. It is the players’ responsibility to keep track of their duties.

2. During each turn the players must:
a. Search the store and make decisions which derivatives to buy based on the available money. They must buy at least one derivative or reoffer all of the existing ones currently for sale by other players at a lower price.
b. Put up derivatives for sale.

c. Deliver raw materials for derivatives bought from them in the previous round.
d. Finish the received raw materials from other players and sell back the finished products to the creators at a price equal to their quality.
There’s no particular sequence in which those actions should be performed.
3. When lowering the prices of the derivatives, the players must reduce them with at least the minimal difference set in the game’s configuration file.
4. When creating a new derivative, the player should:

a. Put his/her name in the derivative’s creator field.

b. Give the derivative a unique name.
c.
Give the derivative a price strictly lower than other existing derivatives of the same type. All prices shall be real numbers in [0,1] range (fraction of a million $).
d. Give the derivative a type.
5. When delivering a raw material, the player should make sure that:

a. The raw material matches the type of the derivative.

b. The weight of each clause is less than or equal to the maxWeight specified in the game’s configuration file.

6. When buying a derivate, the player should make sure that:
a. The derivative exists in the store and is not bought before.

b. S/he is not the creator of the particular derivative.
7. When finishing a product, the player should be the buyer of the derivative.
8. The players should demonstrate they are done with their turns by writing a file (playerName_done.xml) to indicating that or it will be considered they have run over their timeslots.
1.5.3 Rules for the Transactions / Derivatives:
1. A derivative remains in the store until it is bought, an assignment has been generated for it, its creator has dropped off the game or the game ends.
2. Each derivative has a creator, a type T, unique name and a price. Those are the only attributes knows to the players at the time of the purchase.

3. Once a derivative is bought, the buyer becomes the owner of a derivative and has the right to request raw material for its type.
4. The “products” that are traded in the game go through 4 phases in the following sequence:
a.
being created/offered as derivative
b.
being purchased as derivative
c.
being delivered as raw material
d.
being returned as finished product

5. When derivatives are created/offered:
a.
They can also be created by lowering all the prices of the derivatives in the

store.
b.
They are put in the store at the end of the creator’s turn.

6. When derivates are bought:
a.
They shall be bought no more than once.
b.
Their raw material is available the next time it’s the buyer’s turn
4. When raw material for the derivatives is delivered:
a. The creator of the derivative is the one to deliver the raw material.

c. The original derivative, without the raw material, must be in the store
5. When finishing the raw material for derivatives.

a.
 The original derivative must be in the store.

b.

 The buyer/finisher will give/receive the difference for the

 [price of derivative – quality of finished product]
2
Game Control / Flow
2.1 Introduction
All transactions must be brokered through the administrator. S/he monitors the game rule violations while processing the transactions and taking appropriate action – e.g. dropping players from the game and refunding money. The administrator is assigned timeslots at the beginning and ending of the game, as well as between each player’s turn. If we have n=3 players, PL1, PL2, PL3, the timeslots are given in the following sequence: ADMIN PL1 ADMIN PL2 ADMIN PL3 ADMIN PL1 etc. until the game ends. This pattern generalizes to any number of players. The last activity will be by ADMIN because s/he terminates the game.
2.2
Inputs
The administrator initializes the game by reading the game configuration file and players’ configuration file. The players’ configuration file (players.xml) file is used for keeping track of the players that are currently in the game as well as the players’ account balances and current turns.
2.3 Processing

The administrator uses the data stored in the players’ configuration file to administer the game flow. In order to start a player’s turn, the administrator calls the player’s executable and the communication with him/her is achieved through the following commands:

ADMIN -> PL messages
//implicit commands not used in a synchronous version of the game

Advertise(List)

requestRawMaterial(Derivative)
requestFinishedProduct(Derivative, RawMaterial)
sendRawMaterial(Derivative)

sendFinishedProduct(RawMaterial, FinishedProduct)
Once the administrator is notified by the player that s/he is done with the computation for his/her turn (by writing a [playerName]_done.xml file) , the administrator processes the player’s transactions in the order they appear before calling the next player’s executable. S/he acts upon all <trans> nodes in the done file and copies the contents of <transactions> nodes into the history.
Valid types of transaction requests to the administrator:

a. Create derivative- the administrator adds a defined derivative to the store.
b. Buy derivative - the administrator tags a defined derivative in the store as bought.

c. Deliver raw material - The creator initiates the transaction when one of his/her derivatives is tagged as bought but has no raw material. The administrator then augments the derivative with parameters for Raw Material.
d. Finish raw material - Initiated by the players when they find a derivative bought by them that has Raw Material, but no Finished Product. It is the buyer that actually finishes the product and sends it to the Administrator. The administrator then augments derivative with parameters for the Assignments.
Those transactions are evoked with the following commands:

PL -> ADMIN messages

putInStore(Derivative)
buyFromStore(Derivative)
sendRawMaterial(Derivative, RawMaterial)
sendFinishedProduct(RawMaterial, FinishedProduct)

2.4 Outputs

After the player’s turn, the administrator updates the values in the player’s account and turn fields. If a player is to be dropped from the game because of a rule violation, the administrator makes note of that in the players’ configuration file. The administrator also updates the store and the history for the game. The history schema mimics the players’ done file schema. The only difference is that there is no delimiter to separate turns for the players. The store schema uses the <derivative> nodes from the <trans> node in the players’ done files and places them underneath a single <store> root node.

4.
Design structure / Schemas

(Note: all data in the following schemas is for example purposes only.)
4.1
Configuration File

The configuration file format is defined by the following schema. The blackboard path is an absolute path. The comment gives a typical value. This configuration file must exist in the root of the executing process location.
ConfigFile =
"timeLimit" "=" int // in seconds: 20

"maxVars" "=" int // n = 10,max. number of variables in any raw material

"maxClauses" "=" int // n^3 + n^2 + n == 1110

"maxWeight" "=" int // max. weight per clause, 100000

"maxTurns" "=" int // 20

"blackBoardPath" "=" StringWithoutQuotes

 // /home/your_login/csu670_blackboard or z:\\csu670game\\

"maxClauseLength" "=" int //3, max. number of clauses in raw material

"maxTypeLength" "=" int //2 number of pairs in the type

"initialMoney" "=" float // in millions: 5.0

4.2.
Blackboard Organization

The blackboard is the shared memory through which the players communicate. The communication of events happens through the store where all derivatives are centrally maintained. The folder structure for the game must adhere to the following – where [blackboard] denotes the configured path in the aforementioned configuration file (default: config.dat) and [examplePlayer1] and [examplePlayer2] denotes a well formed player name:

[blackboard]/

[blackboard]/store.xml

[blackboard]/players.xml

[blackboard]/playerName_done.xml

[blackboard]/history.xml

[blackboard]/config.dat

[blackboard]/players/[examplePlayer1]

[blackboard]/players/[examplePlayer1]/[examplePlayer1].jar

[blackboard]/players/[examplePlayer1]/somelibrary.jar

[blackboard]/players/[examplePlayer1]/any auxiliary file

[blackboard]/players/[examplePlayer2]

[blackboard]/players/[examplePlayer2]/[examplePlayer2].exe

[blackboard]/players/[examplePlayer2]/some library.dll
4.3.
History.xml
<history>

<trans>

[transaction type node]

[transaction specific parameters]

</trans>
.

.

.

<trans>

 [transaction type node]

[transaction specific parameters]

</trans>
</history>
4.4.
Store.xml
<store>

<derivative>
derivativeName> </derivativeName> <creator><playerName></playerName></creator>
 <price><money></money></price>
<derivativeType>
<clauseType>
<totalLiterals></totalLiterals>

<posLiterals></posLiterals>

 </clauseType>
<clauseType>

[clause type specifics]
</clauseType>
</derivativeType>

</derivative>
.
.

.

<derivative>
[derivative specific parameters]
</derivative>

</store>
4.5
Players.xml
<players>

<player>

<playerName></playerName>

(String)

<account><money></money></account>
(double)

<turn></turn>

(boolean)

</player>
.

.

.

<player>

<playerName></playerName>

(String)

<account><money></money></account>
(double)

<turn></turn>

(boolean)

</player>

</players>
4.6 Transactions
All Transactions are bounded by the <trans></trans> tags within the <transactions></transactions> root node in the schema – indicating that there can be multiple Player Transactions that will need to be processed within the root node. The type of Transaction is denoted as the first child node in the XML structure with the rest of the specific Transaction parameters defined subsequently.
4.6.1
Create
<trans>
<create />

<playerName></playerName>

<derivative>
[derivative specific parameters]
</derivative>
<digitalSignature />

</trans>

4.6.2
Buy
<trans>
<buy />

<playerName> </playerName>

[existing derivative descriptive XML from Create]
<boughtBy>
<playerName> </playerName>

</boughtBy>
</derivative>

<digitalSignature />
</trans>
 4.6.3
Raw Material
<trans>
<buy />

<playerName> </playerName>

[existing derivative descriptive XML from reate]

[existing derivative descriptive XML from Buy]

<rawMaterial>
<clause>
<weight></weight>

<literals>
<lit>
<pos />

<v></v>

</lit>
</literals>
</clause>
<clause>
[clause specific paramaters]
</clause>
</rawMaterial>

</derivative>

<digitalSignature />
</trans>
4.6.4
Finished Product

<trans>
<buy />

<playerName></playerName>

[existing derivative descriptive XML from Create]

[existing derivative descriptive XML from Buy]

[existing derivative descriptive XML from Deliver]

<finishedProduct>

<literal_list>

<lit>

<pos/>

<v>a</v>

</lit>

<lit>

<neg/>
<v>b</v>

</lit>

</literal_list>

</finishedProduct>
</derivative>

<digitalSignature />
</trans>
4.7 Players_name_done.xml
All transactions in a turn are placed in the single [playerName]_done.xml file delimited by the <trans> nodes in accordance with the previously defined schema.
<transactions>

[transaction nodes]

</transactions>
APPENDIX A
Clauses explanation and examples.
The clause (a !b !c) is of type (3,1) and the clause (!a !b !c !d) is of type (4,0). The type of a CNF is the union of the clause types. For example the CNF ((a) (b) (c) (!a !b) (!b !c)) is of type ((1,1) (2,0)).

There are 2 types for clauses of length 1: (1,0) and (1,1). There are 3 types for clauses of length 2: (2,0), (2,1) and (2,2). There are 4 types for clauses of length 3. So there is a total of 9 types of clauses There are 4 types for clauses of length 3. So there is a total of 9 types of clauses. Therefore there are (9 choose 2) = 9*8/2 = 36 different pairs plus 9 single types. Therefore the game only has 45 different kinds of derivatives.

Note that because a clause like (a !b !b) is an illegal clause (because it contains non-distinct literals), the concept of type of a CNF tells us precisely what kind of clauses are in the CNF.

APPENDIX B
Transition System for SDG
SDG consists of a sequence of transitions. A transition system is an appropriate formalism to describe the mechanics of SDG A transition has the form: State1 -> State2 provided Condition Example: Consider the following transitions:

Borrow transition

P1*[account a1, credit a2] request_to_borrow(P1,a3)

->

P1*[account a1+a3, credit a2+a3]

The above transition means: If we are in the state where it is player P1's turn (the *) with account value a1 and credit a2 and P1 requests to borrow a3 then we transition to the state where it is still P1's turn (the *) and the account value is a1+a3 and the credit a2+a3.

Buying transition

P1*[account a1] P2[account a2] S[offer d1 P2 c]

->

P1*[account a1-c] P2[account a2+c] S[buyer P1 offer d1 P2 c]

provided a1-c >=0.

P1 buys derivative d1 from P2 at price c provided there is enough money in the account.

Raw material delivery transition

P1 P2* S[buyer P1 offer d1 P2 c]

->

P1 P2* S[raw mat F buyer P1 offer d1 P2 c]

Finished material delivery transition

P1*[account a1] P2[account a2] S[raw mat F buyer P1 offer d1 P2 c]

->

P1*[account a1+fsat(M,F)] P2[account a2-fsat(M,F)] S[finished M raw mat F buyer P1 offer d1 P2 c]

provided a2-fsat(M,F) >= 0.

In English: Player P1 has finished the raw material F resulting in M with quality fsat(M,F). P1's account is increased and P2's account is decreased.

Finished material delivery transition (variant)

Finish: d1

P1*[account a1] P2[account a2] S[raw mat F buyer P1 offer d1 P2 c]

->

let pay(d1,M,F) = fsat(M,F) > d1.c ? 1 : 0;

P1*[account a1+pay(d1,M,F)] P2[account a2-pay(d1,M,F)] S[finished M raw mat F buyer P1 offer d1 P2 c]

provided a2-pay(d1,M,F) >= 0.

Explanation of symbols:

P1, P2: Players, P1*: it is player P1's turn

S : Store containing information about the state of all derivatives

[] : defines relevant information

offer d1 P2 c: derivative d1 sold by P2 at price c

account a1-c: deduct c from account a1

fsat(M,F): fraction of clauses satisfied by M in F

General form of a state transition for an SDG move: MOVE(parameters) PlayerInfo1 PlayerInfo2 StoreState1 -> PlayerInfo3 PlayerInfo4 StoreState2 provided predicate Transition system can be used for testing a player.

Appendix C

Future Work

The game can be expanded have an asynchronous version in which players can join at any time. This expansion will account for changes like:

1. The players will not need to take turns in a specific sequence.

2. The players will not need timeslots

3. The game will either terminate after a certain number of turns, but the winner will be determined some other way, or the game will not terminate and there will be no winner.

4. Since there are no turns, the players are not required to buy or sell.

5. Since there are no turns, the administrator will have to evoke the deliver raw material and deliver finished product transaction to ensure the correct flow of the game. The implicit communication commands from the synchronous version:
ADMIN -> PL messages
Advertise(List)

requestRawMaterial(Derivative)
requestFinishedProduct(Derivative, RawMaterial)

sendRawMaterial(Derivative)

sendFinishedProduct(RawMaterial, FinishedProduct)
will become explicit.

PAGE
4

