
© 2007 David S. Rosenblum

Advanced Analysis and Design
Architectural Styles

Professor David S. Rosenblum
Department of Computer Science

http://www.cs.ucl.ac.uk/staff/D.Rosenblum/

© 2007 David S. RosenblumAdvanced Analysis & Design (GS02/4022)

Architectural Styles

‘A set of design rules that identify the kinds of components
and connectors that may be used to compose a system or
subsystem, together with local or global constraints on
the way the composition is done’

— Shaw & Clements, 1996

• A family or class of architectures sharing a common
pattern of structural organization

© 2007 David S. RosenblumAdvanced Analysis & Design (GS02/4022)

The Pantheon
Rome, Italy

Analogy with Civil Architecture
The Classical Style

© 2007 David S. RosenblumAdvanced Analysis & Design (GS02/4022)

Nôtre-Dame Cathedral
Paris, France

Analogy with Civil Architecture
The Gothic Style

© 2007 David S. RosenblumAdvanced Analysis & Design (GS02/4022)

Irvine, California, USA

Analogy with Civil Architecture
The Mediterranean Style

© 2007 David S. RosenblumAdvanced Analysis & Design (GS02/4022)

Common Software Architectural Styles
Shaw & Garlan, 1996 (1)

• Dataflow Systems
 Batch sequential
 Pipes and filters

• Call-and-Return Systems
Main program and subroutines
Object-oriented systems
Hierarchical layers (onion layers)

• Independent Components
Communicating processes (client/server and peer-to-peer)
 Event systems
 Implicit invocation

© 2007 David S. RosenblumAdvanced Analysis & Design (GS02/4022)

Common Software Architectural Styles
Shaw & Garlan, 1996 (2)

• Virtual Machines
 Interpreters
 Rule-based systems

• Data-Centered Systems (Repositories)
Databases
Hypertext systems
 Blackboards

© 2007 David S. RosenblumAdvanced Analysis & Design (GS02/4022)

Characterising Architectural Styles

• Component and connector characteristics
• Allowed configurations
• Underlying computational model
• Stylistic invariants
• Common examples of its use
• Advantages and disadvantages
• Common specialisations

© 2007 David S. RosenblumAdvanced Analysis & Design (GS02/4022)

• Components
 Individual programs transforming input data to output data

• Connectors
 Unidirectional or bidirectional data streams

• Configurations
 Parallel linear composition of program invocations

• Underlying computational model
 Sequential data flow and transformation

• Stylistic invariants
 Every component has one input predecessor connector and one output

successor connector
• Common specializations

 Pipelines: single linear composition of pipes and filters
 Bounded pipes, typed pipes

The primary architectural style supported by UNIX

The Pipe-and-Filter Style

© 2007 David S. RosenblumAdvanced Analysis & Design (GS02/4022)

% pic mydoc.t | eqn | tbl | troff | lpr

pic eqn tbl troff lpr

Component ConnectorLegend:

Pipe-and-Filter Example
UNIX Text Processing

© 2007 David S. RosenblumAdvanced Analysis & Design (GS02/4022)

Pipe-and-Filter
Advantages and Disadvantages

• Advantages
 Simple, intuitive, efficient composition of components
High potential for reuse
 Easy to evolve and enhance
 Potential for limited amount of concurrency

• Disadvantages
 Batch-oriented processing
Must agree on lowest-common-denominator data format
 Limited application domain: stateless data transformation

© 2007 David S. RosenblumAdvanced Analysis & Design (GS02/4022)

The Layered System Style

• Components
 Programs or subprograms

• Connectors
 Procedure calls or system calls

• Configurations
 ‘Onion’ or ‘stovepipe’ structure, possibly replicated

• Underlying computational model
 Procedure call/return

• Stylistic invariants
 Each layer provides a service only to the immediate layer ‘above’

(at the next higher level of abstraction) and uses the service only
of the immediate layer “below” (at the next lower level of
abstraction)

© 2007 David S. Rosenblum

Application

Presentation

Session

Transport

Network

Data Link

Physical

Application

Presentation

Session

Transport

Network

Data Link

Physical

Network

Data Link

Physical

Network

Data Link

Physical

Layered System Example
OSI Protocol Stack

© 2007 David S. RosenblumAdvanced Analysis & Design (GS02/4022)

Layered System
Advantages and Disadvantages

• Advantages
 Effective separation of concerns
Well-defined levels of abstraction
 Reduced impact of change when changes don’t affect layer

interfaces

• Disadvantages
 Performance degrades with too many layers
Can be difficult to assign functionality cleanly to the ‘right’ layer

© 2007 David S. RosenblumAdvanced Analysis & Design (GS02/4022)

The Blackboard Style

• Components
 Blackboard client programs

• Connector
 Blackboard: shared data repository, possibly with finite capacity

• Configurations
Multiple clients sharing single blackboard

• Underlying computational model
 Synchronised, shared data transactions, with control driven

entirely by blackboard state

• Stylistic invariants
All clients see all transactions in the same order

© 2007 David S. RosenblumAdvanced Analysis & Design (GS02/4022)

Chat TranscriptChat Client Chat Client

Chat Client Chat Client

Chat Client

Blackboard Example
An Online Chat Room

© 2007 David S. RosenblumAdvanced Analysis & Design (GS02/4022)

Blackboard
Advantages and Disadvantages

• Advantages
General style suitable for network-based applications, including

network database servers

• Disadvantages
 Blackboard becomes a bottleneck with too many clients

© 2007 David S. RosenblumAdvanced Analysis & Design (GS02/4022)

Event-Based Systems and the
Implicit Invocation Style

• Components
 Programs or program entities that announce and/or register

interest in events
» Events represent happenstances inside an entity that may (or

may not) be of interest to other entities

• Connectors
 Direct registration with announcing entities
 Or, explicit event broadcast and registration infrastructure

• Configurations
 Implicit dependencies arising from event announcements and

registrations

• Underlying computational model
1. Event announcement is broadcast
2. Procedures associated with registrations (if any) are invoked

© 2007 David S. RosenblumAdvanced Analysis & Design (GS02/4022)

Debug events

Interactive
Program
Debugger

Application
Program

Breakpoint
Routine

Set breakpoint line 10

Implicit Invocation Example
Program Debugging (1)

© 2007 David S. RosenblumAdvanced Analysis & Design (GS02/4022)

Debug events

Interactive
Program
Debugger

Application
Program

Breakpoint
Routine

line 10

Implicit Invocation Example
Program Debugging (2)

© 2007 David S. RosenblumAdvanced Analysis & Design (GS02/4022)

Interactive
Program
Debugger

Application
Program

Breakpoint
Routine

Line 8 reached
Debug events

line 10

Implicit Invocation Example
Program Debugging (3)

© 2007 David S. RosenblumAdvanced Analysis & Design (GS02/4022)

Interactive
Program
Debugger

Application
Program

Breakpoint
Routine

Line 10 reached
Debug events

line 10

Implicit
Invocation!

Implicit Invocation Example
Program Debugging (4)

© 2007 David S. RosenblumAdvanced Analysis & Design (GS02/4022)

Implicit Invocation
Advantages & Disadvantages

• Advantages
Allows for decoupling and autonomy of components
 Enhances reuse and evolution

» Easy to introduce new components without affecting existing
ones

• Disadvantages
Components announcing events have no guarantee of getting a

response
Components announcing events have no control over the order of

responses
 Event abstraction does not cleanly lend itself to data exchange
Difficult to reason about behaviour of an announcing component

independently of components that register for its events

© 2007 David S. RosenblumAdvanced Analysis & Design (GS02/4022)

What other styles can you think of?

Some Criteria for
Selecting and Comparing Styles

• Control flow
• Data flow
• Application
• Distribution
• Scalability
• what else?

