
Visit at MIT:
Daniel Jackson’s Lectures on 

Coupling
Karl Lieberherr

http://ocw.mit.edu/6/6.170/f01/index.html



Decoupling I and II

• Daniel Jackson (son of Michael Jackson, 
author of the Jackson Design Method) has 
two lectures on coupling in his SE class.

• Because we are also focussing on coupling 
(LoD), let’s learn from the MIT software 
engineering course.

• The LoD also encourages the use of Java 
interfaces to reduce coupling. 



Overview

• Specifications: Essential for decoupling
• Uses and depends relationships
• Decomposition is beneficial

– Division of labor
– Reuse
– Modular analysis
– Localized change



Alternative to Functional 
decomposition

• A much better strategy is to develop a 
system structure consisting of multiple 
parts at a roughly equal level of 
abstraction.



Uses relationship

The most basic relationship between parts is the uses 
relationship. We say that a part A uses a part B if A refers 
to B in such a way that the meaning of A depends on the 
meaning of B. 

When A and B are executable code, the meaning of A is its 
behaviour when executed, so A uses B when the 
behaviour of A depends on the behaviour of B.



What can we do with the 
uses-diagram?

• Reasoning. Suppose we want to 
determine whether a part P is correct. 
Aside from P itself, which parts do we 
need to examine?

• Construction Order. The uses diagram 
helps determine what order to build the 
parts in.



Problem with uses diagram

• There’s a problem with the uses 
diagram though. Most of the analyses 
we’ve just discussed involve finding all 
parts reachable or reaching a part.

• It would be much better if reasoning 
about a part, for example, required 
looking at only the parts it refers to.



Specifications

• The solution to this problem is to have 
instead a notion of dependence that stops 
after one step. To reason about some part A, 
we will need to consider only the parts it 
depends on. 

• To make this possible, it will be necessary for 
every part that A depends on to be complete, 
in the sense that its description completely 
characterizes its behaviour.

• It cannot itself depend on other parts. Such a 
description is called a specification.



Specifications

• A specification cannot be executed, so we’ll 
need for each specification part at least one 
implementation part that behaves according 
to the specification. 

• Our diagram, the dependency diagram, 
therefore has two kinds of arcs. An 
implementation part may depend on a 
specification part, and it may fulfill or meet a 
specification part.



From uses to depends

• In comparison to what we had before, 
we have broken the uses relationship 
between two parts A and B into two 
separate relationships. 

• By introducing a specification part S, we 
can say that A depends on S and B 
meets S. 



A

S

B

uses

T

depends meets

A

S

meets depends

A depends on 
the 
specification 
of B



What has improved?

• This is a much more useful and 
powerful framework than uses. The 
introduction of specifications brings 
many advantages:
– Weakened Assumptions. When A uses B, 

it is unlikely to rely on every aspect of B. 
Specifications allow us to say explicitly 
which aspects matter.



Reuse

• Reuse. To identify a subsystem – a 
collection of parts – that can be reused, 
we have to check that none of its parts 
use any other parts not in the 
subsystem. The same determination 
tells us how to find a minimal subsystem 
for initial implementation.



Interpret as dependence diagram

• Specifications are so useful that we’ll assume 
that there is a specification part 
corresponding to every implementation part in 
our system, and we’ll conflate them, drawing 
dependences directly from implementations 
to implementations. 

• In other words, a dependence arc from A to B 
means that A depends on the specification of 
B.



Techniques for Decoupling

• So far, we’ve discussed how to represent 
dependences between program parts. We’ve 
also talked about some of the effects of 
dependencies on various development 
activities.

• In every case, a dependence is a liability: it 
expands the scope of what needs to be 
considered. So a major part of design is 
trying to minimize dependences: to decouple 
parts from one another.



quantity and quality

• Decoupling means minimizing both the quantity 
and quality of dependences. The quality of a 
dependence from A to B is measured by how 
much information is in the specification of B 
(which, recall from above, is what A actually 
depends on). The less information, the weaker the 
dependence. 

• In the extreme case, there is no information in the 
dependence at all, and we have a weak 
dependence in which A depends only on the 
existence of B.



Techniques to reduce coupling

• The most effective way to reduce 
coupling is to design the parts so that 
they are simple and well defined, and 
bring together aspects of the system 
that belong together and separate 
aspects that don’t.



Facade

• The facade pattern involves interposing 
a new implementation part between two 
sets of parts. The new part is a kind of 
gatekeeper: every use by a part in the 
set S of a part in the set B which was 
previously direct now goes through it. 
This often makes sense in a layered 
system, and helps to decouple one 
layer from another.



Hiding representation

• A specification can avoid mentioning 
how data is represented. Then the parts 
that depend on it cannot manipulate the 
data directly; the only way to manipulate 
the data is to use operations that are 
included in the specification of the used 
part.



Polymorphism

• A program part C that provides 
container objects has a dependence on 
the program part E that provides the 
elements of the container. For some 
containers, this is a weak dependence, 
but it need not be: C may use E to 
compare elements (eg., to check for 
equality, or to order them). Sometimes 
C may even use functions of E that 
mutate the elements.



Command Pattern
(Callbacks)

• See design pattern book



Coupling Due to Shared 
Constraints

• There’s a different kind of coupling 
which isn’t shown in a module 
dependency diagram. Two parts may 
have no explicit dependence between 
them, but they may nevertheless be 
coupled because they are required to 
satisfy a constraint together.



Coupling Due to Shared 
Constraints

• To avoid this kind of coupling, you have 
to try to localize functionality associated 
with any constraint in a single part. 

• This is what Matthias Felleisen calls 
‘single point of control’ in his novel 
introduction to programming in Scheme.

• We need AOSD to do this well!



Conclusion

• If we can decouple the parts so that 
each of the properties we care about is 
localized within only a few parts, then 
we can establish the correctness of the 
properties locally, and be immune to the 
addition of new parts.



Example: Instrumenting a 
program

• we’ll study some decoupling 
mechanisms in the context of an 
example that’s tiny but representative of 
an important class of problems.

• we want to report incremental steps of a 
program as it executes by displaying 
progress line by line.



First solution

• Intersperse statements such as
System.out.println (o +“Message 1”);

at 5 places.



Problems

• What if we want to print to a file or time 
stamp the messages?
System.out.println (o +“Message2: ” + 
new Date ());

• 5 lines to change



StandardReporter.report(m,o);

Second solution
public class StandardReporter {
public static void report (String msg, Object o) {
System.out.println (o + msg);

}
}

public class StandardReporter {
public static void report (String msg, Object o) {
System.out.println (o + msg + “ at: “ + new Date ());

}
}



core

ui

Standard
Reporter



Problem

• This scheme is far from perfect though. 
Factoring out the functionality into a 
single class was a good idea, but the 
code still has a dependence on the 
notion of writing to standard out.



Third Solution
public interface Reporter {

void report 
(String msg, Object o);

}

void download (Reporter r, …) {
…
r.report (“message3”, o );
…

}

public class StandardReporter implements Reporter {
public void report (String msg, Object o) {
System.out.println (o + msg + “ at: “ + new Date ());

}
}



Third Solution

public class VisitorReporter implements Reporter {
Visitor rv;
public VisitorReporter (Visitor c) {rv = c;}
public void report (String msg, Object o) {

o.print(rv);
System.out.println (msg + “ at: “ + new Date ());

}
}

s.download (new VisitorReporter (new PrintVisitor()), …);



core

ui

Standard
Reporter

Reporter

Main Visitor
Reporter

Many problems in
software engineering
can be solved through
another level of
indirection.



Decoupling successful!

• We’ve successfully decoupled the 
output mechanism from the program, 
breaking the dependence of the core of 
the program on its I/O.

• The key property of this scheme is that 
there is no longer a dependence of any 
class of the core package on a class in 
the ui package.



Useful idiom!

• This idiom is perhaps the most popular 
use of interfaces, and is well worth 
mastering.



Connection to Law of Demeter

• OF/CF
• Count as violations:

– sending a message to global variable
– calling a global method



Connection to the Law of 
Demeter

• In this example, following the Law of 
Demeter (minimizing violations) invites the 
introduction of a Java interface.

• This is an interesting kind of transformation 
that improves adherance to LoD.



Connection to Law of Demeter

• 1. Solution
– 5 references to global variable System.out

• 2. Solution
– 5 references to global method 

StandardReporter.report(..)
– 1 call to global variable System.out

• 3. Solution
– 1 call to global variable System.out



Connection to Law of Demeter
• 1. Solution

– OF(5 calls to global variable on different lines) 5
– CF(5 calls to global variable)  5

• 2. Solution (abstraction by parameterization)
– OF(5 calls to global method on different lines + 5 calls to 

global variable on one line) 6
– CF(5 calls to global method + 1 call to global variable) 6

• 3. Solution
– OF(5 calls to global variable on one line) 1
– CF(1 call to global variable)  1



Conclusions

• The LoD also encourages the use of 
interfaces. Points in the same direction as 
Jackson’s lecture.

• Jackson points out: Decoupling means 
minimizing both the quantity and quality 
of dependences. How can we improve 
the LoD to deal with quality? Currently 
we focus on quantity.



Conclusions

• What other transformations exist that reduce 
violations to the Law of Demeter?


	Visit at MIT:Daniel Jackson’s Lectures on Coupling
	Decoupling I and II
	Overview
	Alternative to Functional decomposition
	Uses relationship
	What can we do with the uses-diagram?
	Problem with uses diagram
	Specifications
	Specifications
	From uses to depends
	What has improved?
	Reuse
	Interpret as dependence diagram
	Techniques for Decoupling
	quantity and quality
	Techniques to reduce coupling
	Facade
	Hiding representation
	Polymorphism
	Command Pattern(Callbacks)
	Coupling Due to Shared Constraints
	Coupling Due to Shared Constraints
	Conclusion
	Example: Instrumenting a program
	First solution
	Problems
	Second solution
	Problem
	Third Solution
	Third Solution
	Decoupling successful!
	Useful idiom!
	Connection to Law of Demeter
	Connection to the Law of Demeter
	Connection to Law of Demeter
	Connection to Law of Demeter
	Conclusions
	Conclusions

