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What is AspectJ?

• General-purpose AOP language
• Extension to Java
• Helps modularize crosscutting concerns



Brief History
• From Xerox PARC

– Reflection and MOP at Xerox PARC
– Open-implementation (white-box abstraction)

• From Northeastern
– Demeter traversals abstracted
– DSLs for each concern

• D for distributed computing
• COOL for synchronization
• RIDL for communication

• Crista Lopes went to PARC and AspectJ was 
born in 1997



What is AspectJ?

• What is crosscutting?
– A local concern in one view is non-local in 

another view [UBC]
– Two decompositions don’t fit neatly together 

[Kiczales]

logging

(the obligatory picture)



What is AOP?

• Quantification and Obliviousness 
[Filman,Friedman]
– Quantification: Separate unitary statements 

can affect multiple places in the code
– Obliviousness: These places are unaware of 

these quantifications
• Piecing together decomposed concerns 

[Hyper/J]



What is AOP?

• For AspectJ… modularization concerns through 
aspects that place advice on join points

• Joinpoints
– Points in the execution of a program

• Advice
– Code to execute at these joinpoints – i.e. join points 

trigger advice
• Aspects

– Later



Language elements

• Join point model
– Dynamic
– Static

• Means of identifying join points
– Pointcuts

• Behavior at join points
– Advice



Join point model
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Dynamic join points

a Line

dispatch

method call 
join points

method 
execution 
join points

• Dynamic join points
– Method & constructor call
– Method & constructor execution
– Field get & set
– Exception handler execution
– Static & dynamic initialization



Pointcuts

• Means of identifying join points
• Ex: Capture all calls to methods f & g, 

and label these pointcuts pf & pg:
pointcut pf(): calls(void f());
pointcut pg(): calls(void g());

• Compose pf & pg into pall:
pointcut pall(): pf() || pg();



Advice

• Says what to do at a join point
• Ex: Before all points matching pall, print 

a message:
before() : pall() { 

print(“a message”); 
}



Language elements
Join Points Point cuts Advice
method call
object creation (call to new)
field get/set
exception handler execution
method execution
class-specific initialization
static initializer execution

calls
gets
sets
instanceof
cflow, cflowbelow
user-defined
executions
handlers
initializations
staticinitializations
within
withincode
callsto

before
after
after throwing
after finally
around



Aspects

• Aspects combine the three ideas into a 
functional unit:

aspect A {
pointcut pf(): calls(void f());
pointcut pg(): calls(void g());
pointcut pall(): pf() || pg();
before() : pall() { 
print(“a message”); 

}
}



cflow (control flow)

a Point

a Line

all join points on this slide are 
within the control flow of

this join point JP

a Point

pointcut JP(): …;
pointcut inflow(): cflow(JP());



cflowbelow (control flow 2)

a Point

a Line

all join points on this slide are 
within the control flow of

this join point JP

excluding JP

a Point

pointcut JP(): …;
pointcut inflow(): cflowbelow(JP());



Examples


