
AspectJ for Debugging

CSU670 – Spring 2004

What is AspectJ?

• General-purpose AOP language
• Extension to Java
• Helps modularize crosscutting concerns

Brief History
• From Xerox PARC

– Reflection and MOP at Xerox PARC
– Open-implementation (white-box abstraction)

• From Northeastern
– Demeter traversals abstracted
– DSLs for each concern

• D for distributed computing
• COOL for synchronization
• RIDL for communication

• Crista Lopes went to PARC and AspectJ was
born in 1997

What is AspectJ?

• What is crosscutting?
– A local concern in one view is non-local in

another view [UBC]
– Two decompositions don’t fit neatly together

[Kiczales]

logging

(the obligatory picture)

What is AOP?

• Quantification and Obliviousness
[Filman,Friedman]
– Quantification: Separate unitary statements

can affect multiple places in the code
– Obliviousness: These places are unaware of

these quantifications
• Piecing together decomposed concerns

[Hyper/J]

What is AOP?

• For AspectJ… modularization concerns through
aspects that place advice on join points

• Joinpoints
– Points in the execution of a program

• Advice
– Code to execute at these joinpoints – i.e. join points

trigger advice
• Aspects

– Later

Language elements

• Join point model
– Dynamic
– Static

• Means of identifying join points
– Pointcuts

• Behavior at join points
– Advice

Join point model

What Dynamic Static

Join points Points in call
graph

Class
members

Identifying
join points Pointcuts Type patterns

Semantics
of join
points

Advice Defining
members

Dynamic join points

a Line

dispatch

method call
join points

method
execution
join points

• Dynamic join points
– Method & constructor call
– Method & constructor execution
– Field get & set
– Exception handler execution
– Static & dynamic initialization

Pointcuts

• Means of identifying join points
• Ex: Capture all calls to methods f & g,

and label these pointcuts pf & pg:
pointcut pf(): calls(void f());
pointcut pg(): calls(void g());

• Compose pf & pg into pall:
pointcut pall(): pf() || pg();

Advice

• Says what to do at a join point
• Ex: Before all points matching pall, print

a message:
before() : pall() {

print(“a message”);
}

Language elements
Join Points Point cuts Advice
method call
object creation (call to new)
field get/set
exception handler execution
method execution
class-specific initialization
static initializer execution

calls
gets
sets
instanceof
cflow, cflowbelow
user-defined
executions
handlers
initializations
staticinitializations
within
withincode
callsto

before
after
after throwing
after finally
around

Aspects

• Aspects combine the three ideas into a
functional unit:

aspect A {
pointcut pf(): calls(void f());
pointcut pg(): calls(void g());
pointcut pall(): pf() || pg();
before() : pall() {
print(“a message”);

}
}

cflow (control flow)

a Point

a Line

all join points on this slide are
within the control flow of

this join point JP

a Point

pointcut JP(): …;
pointcut inflow(): cflow(JP());

cflowbelow (control flow 2)

a Point

a Line

all join points on this slide are
within the control flow of

this join point JP

excluding JP

a Point

pointcut JP(): …;
pointcut inflow(): cflowbelow(JP());

Examples

