AspectJ for Debugging

CSUG670 — Spring 2004

What is AspectJ?

* General-purpose AOP language
e Extension to Java
e Helps modularize crosscutting concerns

Brief History

e From Xerox PARC
— Reflection and MOP at Xerox PARC
— Open-implementation (white-box abstraction)

e From Northeastern
— Demeter traversals abstracted

— DSLs for each concern
= D for distributed computing
e COOL for synchronization
e RIDL for communication

* Crista Lopes went to PARC and AspectJ was
born in 1997

What is AspectJ?

 What Is crosscutting?

— A local concern in one view Is non-local In
another view [UBC]

— Two decompositions don't fit neatly together

[KI CZ a.I eS] E'_E'""%a‘fif ... ______ _ _ __ __=n@n——— _ @ @ @ @@ @ @ @ @ E

,:75_55 E:jé _—_§==||_EE NEEE ||uw
IR

(the obligatory picture)

What i1Is AOP?

e Quantification anc
[Filman,Friedman

Obliviousness

— Quantification: Se

parate un itary Statements

can affect multiple places in the code

— Obliviousness: These places are unaware of
these guantifications

* Plecing together decomposed concerns

[Hyper/J]

What i1Is AOP?

For Aspectd... modularization concerns through
aspects that place advice on join points

Joinpoints
— Points in the execution of a program

Advice

— Code to execute at these joinpoints — I.e. join points
trigger advice

Aspects
— Later

Language elements

e Join point model
— Dynamic
— Static
 Means of identifying join points
— Pointcuts
 Behavior at join points
— Advice

Join point model

What Dynamic Static
. . Points in call Class
Join points
graph members
!d_e ntn‘ymg Pointcuts Type patterns
join points
Semantics .
C . . Defining
of join Advice
. members
points

Dynamic join points

method
execution
join points

method call
join points

Dynamic join points
— Method & constructor call
— Method & constructor execution
— Field get & set
— Exception handler execution
— Static & dynamic initialization

Pointcuts

 Means of identifying join points
e EXx: Capture all calls to methods T & g,
and label these pointcuts pT & pg:

pointcut pf(): calls(void f());
pointcut pg(): calls(void g());

« Compose pT & pg into pall:
pointcut pall(Q): pfQ |l pPgO:

Advice

e Says what to do at a join point

 EX: Before all points matching pall, print
a message:

before() : pall() {
print(“a message™);
}

Language elements

Join Points Point cuts Advice
method call calls before

object creation (call to new) gets after

field get/set sets after throwing
exception handler execution instanceof after finally
method execution cflow, cflowbelow around

class-specific initialization
static initializer execution

user-defined
executions
handlers
initializations
staticinitializations
within

withincode

callsto

Aspects

* Aspects combine the three ideas into a

functional unit:

aspect A {
pointcut pf(): calls(void f(Q));
pointcut pg(): calls(void g());

pointcut pallQ: pTfQ Il pg;
before() : pall() {
print(““a message™);
}
}

ctlow (control flow)

pointcut JPQ: ..;
pointcut inflow(): cflow(JPO);

all join points on this slide are
within the control flow of
this join point JP

ctlowbelow (control flow 2)

pointcut JPQ: ..;
pointcut inflow(): cflowbelow(JP());

all join points on this slide are
within the control flow of
this join point JP

excluding JP

Examples

