Essence of Object-Orientation

* Encapsulate data and its related operations as
objects

— members and methods

* Protection of individual objects against each
other

- externally (to the system) available operations and
data

- internally (to the object) available operations and
data.

Inheritance: Code reuse or Behavioral
specialization?

* What does it mean to extend a class through
inheritance

- simply reuse code?
— specialize the behavior of the extended class?

- both?

e Can we capture in “the language” all of the
above meanings

- not design rules!

What does Java do?

* Implement a bounded stack
- There is a St ack implementation java.util.Stack

* Extend that one, half the code is already there!

-~

java.util.Stack

+empty():boolean
+pop():Object
+push(Object):Object
+peek():Object
+search(Object):int

!

BStack

-max_size:int
+push(Object):void
+pop():Object
+peek():Object

+empty():boolean
+Bstack():BStack

_ +size():int

What does Java do?

* Now BSt ack is a subtype of St ack !

* Can we freely substitute instances of St ack with
instances of BSt ack?

- Java compiler does not complain!

* Does it make sense to perform such a
replacement?

* Inheritance between classes in Java denotes both
code reuse and behavior specialization!

There are two things at play here

* The inheritance hierarchy denotes
— classes that share code
— classes that share behavior

* This treatment of the inheritance hierarchy is
fixed in the language

- e.g. BSt ack inherits code from St ack but is not a
subtype of St ack cannot be expressed.

* Behavioral specialization is enforced by
programmer

— Documented (if at all) in the APL.

Solutions ...

* Separate code inheritance from behavioral
inheritance

- POOL-I

— allows the definition of 2 hierarchies, code inheritance
and type inheritance

* Design By Contract

— specification of behavior as assertions

— runtime validation of assertions assists in
inappropriate behavioral extensions

Design By Contract

* Assertions provide the assumptions and
obligations of a method

- pre-condition: Assumptions made on the the state of
variables and/or object before execution can proceed
to the method body

— post-condition: Obligations expressed as conditions on
variables, object and return value(s) the method
should uphold to

* A method contract refers to the pre- and post-
condition of a method's specification. (Fiffel 88)

Example

cl ass St ack{ if false blame
the caller (Main)

pﬁbiic voi d push(Object ele){

@re{true}
@ost { peek() . equal s(el e)}
met hod body@

} | if false blame
cl ass Mai n{ the method (push)

pﬁbiic static void main(String args){
[/ create an |1 nstance of Stack
S. push(new | nteger(8));

Contract Checking, Subtypes and Blame

Assignment
— N
jéva.util.\?tack @)r E{ tr UE}
+push(ObjeCt)Z(;bjeCt @Ost { peek() : equal S(el e) }
BStack
;rgj)s(ﬁ(SiOZt?jirci):Object @)r 6{ Si Ze() <rmX_Si Ze}

@ost { peek() . equal s(el e)}

- N
cl ass Mal n{
public static void main(String args){
Stack s = new B$t aCk(1) : \Which contract
S. pusu(new | nteger(8)); should be checked?
S. push(new | nteger(9));
L P (ger (9)) Who gets blamed? }

9

Under the hood ...

pre

aStack:Stack

ost

Statically\

>

10

Walkthrough (calling a method)

- N
Stack s = new BStack(1);

s. push(new I nteger(8)),;
s. push(new I nteger(9)),;
N Y,

(1) Stack pre

- its is being used as a Stack

+ blame caller (main)
(2) Stack pre => BStack pre

- since BStack can appear in all places where Stack can it
should be able to deal with the same input as Stack

- Blame implementor of BStack not a proper subtype!

11

Walkthrough (returning from a method)

- N
Stack s = new BStack(1);

s. push(new I nteger(8)),;
s. push(new I nteger(9)),;
N Y,

(1) BStack post

- Bstack's code is to execute, verify stated obligations

- blame implementation of BStack push
(2) BStack post => Stack post

- BStack can appear in all places where Stack can, return
values have to also satisty Stack's post

- Blame implementor of BStack not a proper subtype!

12

Under the hood ...

Statically\
pre ost
aStack:Stack >
Runtime
aStack:BStack
pre post
/

13

Contract Checking in OO

* Method pre-condition
— blame caller

* Supertypes pre-condition implies subtypes pre-
condition

- blame subtype-not proper behavioral subtype
* Method post-condition
— blame method implementation

* Subtypes post-condition implies supertypes post-
condition

- blame subtype-not proper behavioral subtype

14

Bringing Aspects into the picture

* Consider aspects in the Aspect] Language

* There are no types for aspects
- as in the case of Classes in Java
* Aspects can

- add new behavior
- extend existing behavior

- replace existing behavior

* How do you ensure that your aspects “play nice”
with the existing program?

15

Using Aspects to extend behavior

* Base programmer does not control attachments

of aspects (ob.

ivious)

- tracing, profil

ing etc.

* Addition of these aspects should not break the
original system's assumptions

— aspects shoul

d behave!

* Introduce “Behavioral Aspects”

- extension of the ideas from behavioral subtyping

16

Example(1)

| nterface | Bag{
public void add(int Xx);
@ost{\ol d(si ze())+1 == size()
public int renove();
@pre{si ze() > 0}
@ost{\ol d(si ze())-1 == size()}
public int peek(int i);
@re{size()> && i >= 0}
@ost{\ol d(si ze()) == size()}
public int size();
@ost{\result >= 0}}

aspect Default{
pointcut rem(|IBag 0):call(* renove(..))&& target(0);

I nt around(lBag o0):ren(o){
| f(0.size()==0) return O;
el se return proceed(o0);}}

17

Example(1)

a N
cl ass Test{
| Bag bag = ... ;
pﬁbiic void enpty(){
whi | e(bag. si ze() > 0)
bag. renove() ; Compare the behavior observed
} ¥when calling empty with and without
the aspect Default attached.
aspect Default{
pointcut rem(|IBag 0):call(* renove(..))&& target(0);
I nt around(lBag o0):ren(o){
| f(0.size()==0) return O;
el se return proceed(o0);}}
- /

Example(2)

| nterface | Bag{
public void add(int Xx);
@ost{\ol d(si ze())+1 == size()
public int renove();
@pre{si ze() > 0}
@ost{\ol d(si ze())-1 == size()}
public int peek(int i);
@re{size()> && i >= 0}
@ost{\ol d(si ze()) == size()}
public int size();
@ost{\result >= 0}}

aspect C ever{
int index = 0 ;
poi ntcut ren(lBag 0):call(* renove(..))&& target(0);

I nt around(lBag o0):ren(o){
int ret = o.peek(index);
| ndex = (i ndex+l)% o. size();
return ret;}}

19

Example(2)

-

cl ass Test{

| Bag bag = .. .; \G\
publ ic void enmpty(){ “\\(\a

whi | e(bag. si ze() > 0%&

bag. rempve() Compare the behavior observed
} 03 (\kwhen calling empty with and without
O the aspect Clever attached.

aspect C ever{
int index = 0 ;
poi ntcut ren(lBag 0):call(* renove(..))&& target(0);

I nt around(lBag o0):ren(o){
int ret = o.peek(index);
| ndex = (i ndex+l)% o. size();
return ret;}}

Observations ...

* Programmers make mistakes
- with the power provided by AOP its even easier

* How easy was it to find the bug in the example?
- this was made up, simple and it fits on 4 slides

* AOP development tools help

- but they do not help in reasoning about programs

- visual help is good, but not good enough

* Contracts on aspects help in stating and
enforcing the assumptions and obligations of

aspect code. 5

Checking aspect contracts

* Aspect code extends behavior

* Should maintain the property

Added behavior via aspects does not break the original
system's behavior but only specializes it.

* The same principle as with proper behavioral

subtype

- only here there is no static check, everything is done

at runtime 29

Checking aspect contracts

° Atajoin point

— the join points (method call or execution) pre-
condition implies the advice pre-condition

- the advice post-condition implies the join points
(method call or execution) post-condition

* There is no explicit caller for advice
— its implicit when the pointcut descriptor matches.

* In the case of multiple advice on the same join
point

— Predecessor is also “caller” of current advice.

23

Blame assignment for around advice

e Pre-conditions

Advice
Pre
Method True False
Pre
True V4 X Bad Extension
False V4 X PCD

24

Blame assignment for around advice

e Post-conditions

Method
Post
Advice True False
Post
True V4 X Bad Extension
False V4 X PCD

25

Example(1) Revisited

| nterface | Bag{ h
public void add(int Xx);
@ost{\ol d(si ze())+1 == size()
public int renove();
@pre{si ze() > 0}
@ost{\ol d(si ze())-1 == size()}
public int peek(int i);
@re{size()> && i >= 0}
@ost{\ol d(si ze()) == size()}
public int size();
@ost{\result >= 0}}
aspect Default{
pointcut rem(|IBag 0):call(* renove(..))&& target(0);
@pr e{true}
@post{\old(\target(size()))-1 == \target(size()) ||
\old(\target(size())) == 0}
I nt around(lBag o0):ren(o){
| f(0.size()==0) return O;
el se return proceed(o0);}} y

26

Example(2) Revisited

| nterface | Bag{ h
public void add(int Xx);
@ost{\ol d(si ze())+1 == size()
public int renove();
@pre{si ze() > 0}
@ost{\ol d(si ze())-1 == size()}
public int peek(int i);
@re{size()> && i >= 0}
@ost{\ol d(si ze()) == size()}
public int size();
@ost{\result >= 0}}
aspect C ever{
int index = 0 ;
poi ntcut ren(lBag 0):call(* renove(..))&& target(0);
@pre{true}
@ost{\ol d(\target(size()))== \target(size())} 4]
I nt around(lBag o0):ren(o){
int ret = o.peek(index);
| ndex = (i1 ndex+1) % o. si ze();
return ret;}})

27

Example(2) Revisited

~
cl ass Test{
| Bag bag = ...;
public void enpty(){
whi | e(bag. si ze() > 0)
bag. renove() ;
}
- //

* During evaluation the following implication is
validated

(Eold(\target(size())) == \target(size()) => \old(size())-1 == size({]

e If LHS of => is TRUE then => is FALSE

- error is signaled, Cl ever is a bad extension

28

