
1

Essence of Object-Orientation

● Encapsulate data and its related operations as
objects
– members and methods

● Protection of individual objects against each
other
– externally (to the system) available operations and

data
– internally (to the object) available operations and

data.

2

Inheritance: Code reuse or Behavioral
specialization?

● What does it mean to extend a class through
inheritance
– simply reuse code?
– specialize the behavior of the extended class?
– both?

● Can we capture in “the language” all of the
above meanings
– not design rules!

3

What does Java do?

java.util.Stack

+empty():boolean
+pop():Object
+push(Object):Object
+peek():Object
+search(Object):int

BStack

-max_size:int
+push(Object):void
+pop():Object
+peek():Object
+empty():boolean
+Bstack():BStack
+size():int

● Implement a bounded stack
– There is a Stack implementation java.util.Stack

● Extend that one, half the code is already there!

4

What does Java do?

● Now BStack is a subtype of Stack !
● Can we freely substitute instances of Stack with

instances of BStack?
– Java compiler does not complain!

● Does it make sense to perform such a
replacement?

● Inheritance between classes in Java denotes both
code reuse and behavior specialization!

5

There are two things at play here

● The inheritance hierarchy denotes
– classes that share code
– classes that share behavior

● This treatment of the inheritance hierarchy is
fixed in the language
– e.g. BStack inherits code from Stack but is not a

subtype of Stack cannot be expressed.

● Behavioral specialization is enforced by
programmer
– Documented (if at all) in the API.

6

Solutions ...

● Separate code inheritance from behavioral
inheritance
– POOL-I
– allows the definition of 2 hierarchies, code inheritance

and type inheritance

● Design By Contract
– specification of behavior as assertions
– runtime validation of assertions assists in

inappropriate behavioral extensions

7

Design By Contract

● Assertions provide the assumptions and
obligations of a method
– pre-condition: Assumptions made on the the state of

variables and/or object before execution can proceed
to the method body

– post-condition: Obligations expressed as conditions on
variables, object and return value(s) the method
should uphold to

● A method contract refers to the pre- and post-
condition of a method's specification. (Eiffel 88)

8

Example

class Stack{
 ...
public void push(Object ele){

@pre{true}
@post{peek().equals(ele)}

 // method body
}...
}

class Main{
 ...
public static void main(String args){
 // create an instance of Stack

s.push(new Integer(8));

1

2
3

if false blame
the caller (Main)

if false blame
the method (push)class Main{

 ...
public static void main(String args){
 // create an instance of Stack

s.push(new Integer(8));

9

Contract Checking, Subtypes and Blame
Assignment

java.util.Stack

+push(Object):Object

BStack

-max_size:int
+push(Object):Object

@pre{true}
@post{peek().equals(ele)}

@pre{size()<max_size}
@post{peek().equals(ele)}

class Main{
 ...
public static void main(String args){

Stack s = new BStack(1);
s.push(new Integer(8));
s.push(new Integer(9));

Which contract
should be checked?

Who gets blamed?

10

Under the hood ...

aStack:Stack

aStack:BStack

Statically

Runtime

pre

pre post

post

11

Walkthrough (calling a method)

(1) Stack pre
• its is being used as a Stack
• blame caller (main)

(2) Stack pre => BStack pre
• since BStack can appear in all places where Stack can it

should be able to deal with the same input as Stack
• Blame implementor of BStack not a proper subtype!

Stack s = new BStack(1);
s.push(new Integer(8));
s.push(new Integer(9));

12

Walkthrough (returning from a method)

(1) BStack post
• Bstack's code is to execute, verify stated obligations
• blame implementation of BStack push

(2) BStack post => Stack post
• BStack can appear in all places where Stack can, return

values have to also satisfy Stack's post
• Blame implementor of BStack not a proper subtype!

Stack s = new BStack(1);
s.push(new Integer(8));
s.push(new Integer(9));

13

Under the hood ...

aStack:Stack

aStack:BStack

Statically

Runtime

pre

pre post

post

14

Contract Checking in OO
● Method pre-condition

– blame caller

● Supertypes pre-condition implies subtypes pre-
condition
– blame subtype-not proper behavioral subtype

● Method post-condition
– blame method implementation

● Subtypes post-condition implies supertypes post-
condition
– blame subtype-not proper behavioral subtype

15

Bringing Aspects into the picture

● Consider aspects in the AspectJ Language
● There are no types for aspects

– as in the case of Classes in Java

● Aspects can
– add new behavior
– extend existing behavior
– replace existing behavior

● How do you ensure that your aspects “play nice”
with the existing program?

16

Using Aspects to extend behavior

● Base programmer does not control attachments
of aspects (oblivious)
– tracing, profiling etc.

● Addition of these aspects should not break the
original system's assumptions
– aspects should behave!

● Introduce “Behavioral Aspects”
– extension of the ideas from behavioral subtyping

17

Example(1)

interface IBag{
public void add(int x);
 @post{\old(size())+1 == size()
public int remove();
 @pre{size() > 0}
 @post{\old(size())-1 == size()}
public int peek(int i);
 @pre{size()>i && i >= 0}
 @post{\old(size()) == size()}
public int size();
 @post{\result >= 0}}

aspect Default{
 pointcut rem(IBag o):call(* remove(..))&& target(o);

int around(IBag o):rem(o){
if(o.size()==0) return 0;
else return proceed(o);}}

18

Example(1)

aspect Default{
 pointcut rem(IBag o):call(* remove(..))&& target(o);

int around(IBag o):rem(o){
if(o.size()==0) return 0;
else return proceed(o);}}

class Test{
IBag bag = ...;

 ...
public void empty(){

while(bag.size() > 0)
bag.remove();

}
Compare the behavior observed

when calling empty with and without
the aspect Default attached.

19

Example(2)

interface IBag{
public void add(int x);
 @post{\old(size())+1 == size()
public int remove();
 @pre{size() > 0}
 @post{\old(size())-1 == size()}
public int peek(int i);
 @pre{size()>i && i >= 0}
 @post{\old(size()) == size()}
public int size();
 @post{\result >= 0}}

aspect Clever{
 int index = 0 ;
 pointcut rem(IBag o):call(* remove(..))&& target(o);

int around(IBag o):rem(o){
int ret = o.peek(index);
index = (index+1)% o.size();
return ret;}}

20

Example(2)

aspect Clever{
 int index = 0 ;
 pointcut rem(IBag o):call(* remove(..))&& target(o);

int around(IBag o):rem(o){
int ret = o.peek(index);
index = (index+1)% o.size();
return ret;}}

class Test{
IBag bag = ...;

 ...
public void empty(){

while(bag.size() > 0)
bag.remove();

}
Compare the behavior observed

when calling empty with and without
the aspect Clever attached. Does not Terminate!

21

Observations ...

● Programmers make mistakes
– with the power provided by AOP its even easier

● How easy was it to find the bug in the example?
– this was made up, simple and it fits on 4 slides

● AOP development tools help
– but they do not help in reasoning about programs
– visual help is good, but not good enough

● Contracts on aspects help in stating and
enforcing the assumptions and obligations of
aspect code.

22

Checking aspect contracts

● Aspect code extends behavior
● Should maintain the property

Added behavior via aspects does not break the original
system's behavior but only specializes it.

● The same principle as with proper behavioral
subtype
– only here there is no static check, everything is done

at runtime

23

Checking aspect contracts

● At a join point
– the join points (method call or execution) pre-

condition implies the advice pre-condition
– the advice post-condition implies the join points

(method call or execution) post-condition

● There is no explicit caller for advice
– its implicit when the pointcut descriptor matches.

● In the case of multiple advice on the same join
point
– Predecessor is also “caller” of current advice.

24

Blame assignment for around advice

● Pre-conditions

Method
 Pre

Advice
 Pre

True

True False

False

✔

✔ ✗ PCD

✗ Bad Extension

25

Blame assignment for around advice

● Post-conditions

Advice
 Post

Method
 Post

True

True False

False

✔

✔ ✗ PCD

✗ Bad Extension

26

Example(1) Revisited

interface IBag{
public void add(int x);
 @post{\old(size())+1 == size()
public int remove();
 @pre{size() > 0}
 @post{\old(size())-1 == size()}
public int peek(int i);
 @pre{size()>i && i >= 0}
 @post{\old(size()) == size()}
public int size();
 @post{\result >= 0}}

aspect Default{
 pointcut rem(IBag o):call(* remove(..))&& target(o);
@pre{true}
@post{\old(\target(size()))-1 == \target(size()) ||

 \old(\target(size())) == 0}
int around(IBag o):rem(o){

if(o.size()==0) return 0;
else return proceed(o);}}

27

Example(2) Revisited

interface IBag{
public void add(int x);
 @post{\old(size())+1 == size()
public int remove();
 @pre{size() > 0}
 @post{\old(size())-1 == size()}
public int peek(int i);
 @pre{size()>i && i >= 0}
 @post{\old(size()) == size()}
public int size();
 @post{\result >= 0}}

aspect Clever{
 int index = 0 ;
 pointcut rem(IBag o):call(* remove(..))&& target(o);
@pre{true}
@post{\old(\target(size()))== \target(size())}
int around(IBag o):rem(o){

int ret = o.peek(index);
index = (index+1)% o.size();
return ret;}}

28

Example(2) Revisited

class Test{
IBag bag = ...;

 ...
public void empty(){

while(bag.size() > 0)
bag.remove();

}

● If LHS of => is TRUE then => is FALSE
– error is signaled, Clever is a bad extension

\old(size())-1 == size()\old(\target(size())) == \target(size()) =>

● During evaluation the following implication is
validated

