
1

Aspect Oriented Programming

Programming Languages Seminar

Presenter: Barış Aktemur
University of Illinois
18 Feb. 2004

Mostly taken from Bedir Tekinerdogan’s slides

2

Outline

Introduction
Problems
Terminology
Aspect-Oriented Programming
Languages/Frameworks

Compositional Filters
AspectJ
Hyper/J
DemeterJ

Conclusions

3

Introduction
Evolution of Programming Languages

Assembly/Machine Languages
Formula Translation
Procedural Programming
Structured Programming
Functional Programming
Logic Programming
Programming with abstract data types

Evolution of Software Design
Monolithic ---> Modular

4

Design Principles Modularity
Abstraction

Focus only on relevant properties

Decomposition
Divide software into separately named and addressable modules

Encapsulation
Group related things together.

Information Hiding
Hide implementation details from the outside

Separation of Concerns
Ensure that each module only deals with one concern
Low Coupling

aim for low coupling among the modules

High Cohesion
aim for high cohesion within one module

5

Separation of Concerns
Cohesion

Maximize cohesion within a component
i.e. Cohesive component performs only one concern/task
required changes can be easily localized and will not
propagate

Coupling
Highly coupled components have many
dependencies/interactions
Minimize coupling between components

reduces complexity of interactions
reduces ‘ripple’ effect

6

Advantages of separation of concerns
Understandability
Maintainability
Extensibility
Reusability
Adaptability

Separation of Concerns directly supports quality factors.

Lack of Separation of Concerns negatively impacts quality factors.

7

Example - Figure Editor
A figure consists of several figure elements. A figure
element is either a point or a line. Figures are drawn
on Display. A point includes X and Y coordinates. A line
is defined as two points.

8

Example - Figure Editor - Design

Components are
- Cohesive
- Loosely Coupled
- Have well-defined interfaces

(abstraction, encapsulation)

Nice Modular
Design!

Display

Figure FigureElement*

Point Line
getX()

getY()
getP1

setP1
setX(int)

setY(int)

setP1(Point)

setP2(Point)

2

9

Crosscutting Concern - Example
Notify ScreenManager if a figure element moves

Display

Figure FigureElement*

Point Line
getX()

getY()
getP1

setP1

DisplayTracking
setX(int)

setY(int)

setP1(Point)

setP2(Point)

2

10

class DisplayTracker {

static void updatePoint(Point p)
{

this.display(p);
....

}
static void updateLine(Line l)
{

this.display(l);
....

}

Display

Figure FigureElement*

Point Line
getX()

getY()
getP1

setP1

setX(int)

setY(int)

setP1(Point)

setP2(Point)

2

DisplayTracker

Example: Display Tracking Crosscutting
Concern

class Point {
void setX(int x) {

DisplayTracker.updatePoint(this);
this.x = x;

}
}

class Line {
void setP1(Point p1 {
DisplayTracker.updateLine(this);
this.p1 = p1;

}
}

11

Example - Tracing - Design
Trace the execution of all operations...

Display

Figure FigureElement*

Point Line
getX()

getY()
getP1

setP1

setX(int)

setY(int)

setP1(Point)

setP2(Point)

2

Tracer

traceEntry

traceExit

Tracing

12

class Point {
void setX(int x) {

_x = x;

}
}

class Tracer {

static void traceEntry(String str)
{

System.out.println(str);
}
static void traceExit(String str)
{

System.out.println(str);
}

}

Scattered
Concern

Example - Tracing

Display

Figure FigureElement*

Point Line
getX()

getY()
getP1

setP1

setX(int)

setY(int)

setP1(Point)

setP2(Point)

2

Tracer
Tangling Code

class Line {
void setP1(Point p1 {

_p1 = p1;

}
}

Tracer.traceEntry(“Entry Line.set”);

Tracer.traceExit(“Exit Line.set”);

Tracer.traceEntry(“Entry Point.set”);

Tracer.traceExit(“Exit Point.set”);

13

Example – Tracing and Display Tracking

Display

Figure FigureElement*

Point Line
getX()

getY()
getP1

setP1

setX(int)

setY(int)

setP1(Point)

setP2(Point)

2

Tracer

trace

Tracing

Display Tracker

14

Crosscutting, Scattering and Tangling
Crosscutting

concern that inherently relates to multiple components.
results in scattered concern and tangled code
non-functional requirements likely to crosscut

Scattering
Single concern affects multiple modules

Tangling
multiple concerns are interleaved in a single module

15

Example of crosscutting concerns
Synchronization
Real-time constraints
Error-checking
Object interaction constraints
Memory management
Persistency
Security
Caching
Logging
Monitoring
Testing
Domain specific optimization
...

16

Aspect-Oriented Software Development
Provides better separation of concerns by explicitly
considering crosscutting concerns (as well)
Does this by providing explicit abstractions for
representing crosscutting concerns, i.e. aspects
and composing these into programs, i.e. aspect
weaving or aspect composing.
As such AOSD improves modularity
and supports quality factors such as

maintainability
adaptability
reusability
understandability
...

17

Basic AOP technologies
Composition Filters

University of Twente, The Netherlands

AspectJ
XEROX PARC, US

DemeterJ/DJ
Northeastern University, US

Multi-dimensional separation of
Concerns/HyperJ

IBM TJ Watson Research Center, US

18

History of AOP languages
OO languages

MOP
(1985)

CLOS-MOP

Crosscutting
aspects (1996)

AspectJ
(1997)

Scripts (Francez 81)

Reflection
(Smith 81)

Sina
interface predicates

(1988)

Composition Filters
(1992)

AI
(semantic

networks 79)

Composition Filters
with superimposition

(2001)

Law of Demeter
(1988)

Adaptive
programming

(1992)

AspectJ
(2000)

http://trese.cs.utwente.nl

19

AspectJ

A general purpose AO programming language
just as Java is a general-purpose OO language
unlike examples in ECOOP’97 paper

domain specific languages for each aspect

an integrated extension to Java
accepts all java programs as input
outputs .class files compatible with any JVM
integrated with tools

20

Example – Without AOP
class Line {

private Point _p1, _p2;

Point getP1() { return _p1; }
Point getP2() { return _p2; }

void setP1(Point p1) {
Tracer.traceEntry(“entry setP1”);
_p1 = p1;
Tracer.traceExit(“exit setP1”);

}

void setP2(Point p2) {
Tracer.traceEntry(“entry setP2”);
_p2 = p2;
Tracer.traceExit(“exit setP2”);

}

class Point {

private int _x = 0, _y = 0;

int getX() { return _x; }
int getY() { return _y; }

void setX(int x) {
Tracer.traceEntry(“entry setX”);

_x = x;
Tracer.traceExit(“exit setX”)
}
void setY(int y) {
Tracer.traceEntry(“exit setY”);

_y = y;
Tracer.traceExit(“exit setY”);
}

}

class Tracer {

static void traceEntry(String str)
{

System.out.println(str);
}
static void traceExit(String str)
{

System.out.println(str);
}

}

Tangling Code

Scattered
Concern

21

Example – With AOP

class Line {
private Point _p1, _p2;

Point getP1() { return _p1; }
Point getP2() { return _p2; }

void setP1(Point p1) {
_p1 = p1;

}
void setP2(Point p2) {
_p2 = p2;

}
}

class Point {

private int _x = 0, _y = 0;

int getX() { return _x; }
int getY() { return _y; }

void setX(int x) {
_x = x;

}
void setY(int y) {
_y = y;

}
}

aspect Tracing {
pointcut traced():
call(* Line.* ||
call(* Point.*);

before(): traced() {
println(“Entering:” +

thisjopinpoint);

void println(String str)
{<write to appropriate stream>}

}
}

Aspect is defined in a separate module
Crosscutting is localized
No scattering; No tangling
Improved modularity

22

Aspect Language Elements
join point (JP) model

certain principled points in program execution such as method
calls, field accesses, and object construction

means of identifying JPs
picking out join points of interest (predicate)
pointcuts: set of join points

means of specifying behavior at JPs
what happens
advice declarations

23

Modularizing Crosscutting
Joinpoints: any well-defined point of execution in a program such
as method calls, field accesses, and object construction
Pointcut: predicate on joinpoints selecting a collection of
joinpoints.

Display

Figure FigureElement*

Point Line
getX()

getY()
getP1

setP1

setX(int)

setY(int)

setP1(Point)

setP2(Point)

2

Tracer
pointcut traced():

call(* Line.*) ||
call(* Point.*);

24

Joinpoints
method call join points

when a method is called
method reception join points

when an object receives a message
method execution join points

when the body of code for an actual method executes
field get joint point

when a field is accessed
field set joint point

when a field is set
exception handler execution join point

when an exception handler executes
object creation join point

when an instance of a class is created

25

Some primitive pointcuts
call(Signature)

picks out method or constructor call based on Signature
execution(Signature)

picks out a method or constructor execution join point based on Signature

get(Signature)
picks out a field get join point based on Signature

set(Signature)
picks out a field set join point based on Signature

handles(TypePattern)
picks out an exception handler of any of the Throwable types of TypePattern

instanceOf(ClassName)
picks out join points of currently executing objects of class ClassName

within(ClassName)
picks out join points that are in code contained in ClassName

withinCode(Signature)
picks out join points within the member defined by methor or constructor (Signature)

cflow(pointcut)
picks out all the join points in the control flow of the join points picked out by the
pointcut

26

Advice

Piece of code that attaches to a pointcut and thus
injects behavior at all joinpoints selected by that
pointcut.

example:
before (args): pointcut

{ Body }

where before represents a before advice type (see next slide).

Can take parameters with pointcuts

27

Advice Types

Advice code executes
before, code is injected before the joinpoint
before (args): pointcut

{ Body }

after, code is injected after the joinpoint
after (args): pointcut

{ Body }

around, code is injected around (in place of) code
from joinpoint
ReturnType around (args): pointcut

{ Body }

JP

Advice

JP

Advice

Advice

JP

28

Aspect

A modular unit of cross-cutting behavior.
Like a class, can have methods, fields, initializers.
can be abstract, inherit from classes and abstract
aspects and implement interfaces.
encapsulates pointcuts and advices
can introduce new methods / fields to a class

AspectX

AspectY

classX

AspectY

AspectX

classY
x

29

Example - AspectJ

class Line {
private Point _p1, _p2;

Point getP1() { return _p1; }
Point getP2() { return _p2; }

void setP1(Point p1) {
_p1 = p1;

}
void setP2(Point p2) {
_p2 = p2;

}
}

class Point {

private int _x = 0, _y = 0;

int getX() { return _x; }
int getY() { return _y; }

void setX(int x) {
_x = x;

}
void setY(int y) {
_y = y;

}
}

aspect Tracing {
pointcut traced():
call(* Line.* ||
call(* Point.*);

before(): traced() {
println(“Entering:” +

thisjopinpoint);

after(): traced() {
println(“Exit:” +

thisjopinpoint);

void println(String str)
{<write to appropriate stream>}

}
}

pointcut

advice

aspect

30

Code Weaving
Before compile-time (pre-processor)
During compile-time
After compile-time
At load time
At run-time

31

Example - AspectJ

aspect MoveTracking {
private static boolean _flag = false;

public static boolean testAndClear() {
boolean result = _flag;
_flag = false;
return result;

}

pointcut moves():
receptions(void Line.setP1(Point)) ||
receptions(void Line.setP2(Point));

static after(): moves() {
_flag = true;

}
}

32

DemeterJ / DJ
Law Of Demeter

Each unit should only have limited knowledge about
other units: only about units “closely” related to the
current unit.

“Each unit should only talk to its friends.”
“Don’t talk to strangers.”

Goal: Reduce behavioral dependencies between
classes.
Loose coupling

33

Applying LoD
A method must be able to traverse links to obtain its
neighbors and must be able to call operations on them.
But it should not traverse a second link from the
neighbor to a third class.
Methods should communicate only with preferred
suppliers:

immediate parts on this
objects passed as arguments to method
objects which are directly created in method
objects in global variables
No other calls allowed

---> Scattering

34

Solution is Adaptive Programming
Encapsulate operation into one place thereby avoiding
scattering
Specify traversal over (graph) structure in a succinct
way thereby reducing tangling.
Navigation strategy

35

Use of Visitors
import edu.neu.ccs.demeter.dj.*;
// define strategy

String strategy=“from BusRoute through BusStop to Person”

class BusRoute {
// define class graph
static Classgraph cg = new ClassGraph();
int printCountWaitingPersons(){ // traversal/visitor weaving

//define visitor
Visitor v = new Visitor()

public void before(Person host){ r++; … }
public void start() { r = 0;}
…

}
cg.traverse(this, strategy, v);
...

}

	Aspect Oriented ProgrammingProgramming Languages SeminarPresenter: Barış AktemurUniversity of Illinois18 Feb. 2004
	Outline
	Introduction
	Design Principles  Modularity
	Separation of Concerns
	Advantages of separation of concerns
	Example - Figure Editor
	Example - Figure Editor - Design
	Crosscutting Concern - Example
	Example: Display Tracking
	Example - Tracing - Design
	Example - Tracing
	Example – Tracing and Display Tracking
	Crosscutting, Scattering and Tangling
	Example of crosscutting concerns
	Aspect-Oriented Software Development
	Basic AOP technologies
	AspectJ
	Example – Without AOP
	Example – With AOP
	Aspect Language Elements
	Modularizing Crosscutting
	Joinpoints
	Some primitive pointcuts
	Advice
	Advice Types
	Aspect
	Example - AspectJ
	Code Weaving
	Example - AspectJ
	DemeterJ / DJ
	Applying LoD
	Solution is Adaptive Programming
	Use of Visitors

