
PML: Toward a High-Level Formal Language for

Biological Systems

Bor-Yuh Evan Chang Manu Sridharan

Report No. UCB/CSD-03-1251

June 2003

Computer Science Division (EECS)
University of California
Berkeley, California 94720

Abstract

Documentation of knowledge about biological pathways is often informal and vague,
making it difficult to efficiently synthesize the work of others into a holistic understand-
ing of a system. Several researchers have proposed solving this problem by modeling
pathways using formal computer languages, which have a precise and consistent seman-
tics. While precise, many of these languages may be too low-level to feasibly model
complex pathways. We have developed the Pathway Modeling Language (PML), a
high-level language for modeling pathways. PML is based on a biological metaphor
of molecules with binding sites and has special constructs for handling compartment
changes in pathways. Our preliminary work has shown that PML’s language constructs
serve as a promising basis for modeling complex pathways in a readable and composable
manner.

1

1 Introduction

Biological processes are highly complex systems of which our understanding is vague at
best. Decades of experimentation to understand biological pathways in cells and recent
advances in genomics have led to a wealth of information but only in a very fragmented
form. Each scientist or group may have vastly different experimental procedures and data
representations, making it difficult for a single scientist to holistically understand a system
studied by multiple groups. Eventually, someone goes through the arduous task of synthe-
sizing this knowledge, perhaps into a textbook form. Simplifying this process could speed
scientific understanding and discovery.

In this paper, we investigate the use of formal computer languages for describing bio-
logical pathways. Currently, biological pathways are conveyed through prose or graph-like
diagrams with loose semantics. The ambiguity and informality of such representations can
make their interpretation error-prone. The use of formal languages in describing pathways
would oblige the modeler to make important assumptions explicit, allow him to directly run
simulations based on the description (catching obvious errors early), and possibly generate
human-readable graphical representations. Moreover, since formal languages have consis-
tent semantics, models written in these languages by different research groups should be
more composable than informal models.

We have designed a high-level modeling language for pathways called PML (Pathway
Modeling Language). PML is more structured than previously proposed formal languages,
leading to more readable and composable models. PML constructs also have a fairly con-
sistent biological metaphor. Finally, we have also developed a novel method for modeling
biological compartments.

After discussing the merits and drawbacks of previous work in Section 1.1 and some
preliminaries in Section 1.2, we discuss the goals of our work in Section 1.3. We present
PML through some example models of biological systems in Section 2, followed by a full
presentation of PML and its semantics in Section 3. Then, we give a model of cotrans-
lational translocation on the endoplasmic reticulum (ER) membrane to demonstrate the
composability of PML in Section 4. Finally, we discuss the benefits of PML and future
work in Section 5.

1.1 Related Work

Traditionally, biological pathways have been abstracted mathematically using chemical ki-
netic models. In this model, a biological system is modeled by a series of chemical/biochem-
ical equations with variables representing reactants and products. For example, a central
notion in biochemistry is the Michaelis-Menten equation for describing enzyme kinetics,
which is based on the following abstract model:

E + S
k−−−⇀↽−−−

k−1

ES
kcat−−−→ E + P (1)

where E stands for the enzyme, S for the substrate, and P for the product; k, k−1, and
kcat represent experimentally-determined rate constants for the corresponding reactions.
From this, we can derive differential equations to describe enzymes that follow this model.

2

This approach does capture a useful abstraction and has several advantages including being
very well studied, having a considerable theoretical basis, and offering numerous simulation
tools and methodologies. However, the variables in chemical kinetic models do not directly
correspond to biological entities, as they would for elements in a chemical equation. Typ-
ically, we view a system as composed of biological entities that may undergo modification
or state-change. This distinction is blurred in the biochemical equation in that a variable
more closely corresponds to a biological entity in a specific state. In Equation (1), it is
implicit that S is modified to become P rather than S leaving and P entering the system.
Also, without careful specification, it is unclear how various equations relate to each other,
making decomposability very difficult.

McAdams and Shapiro have integrated the traditional biochemical kinetic modeling
with circuit diagrams and simulations akin to circuits in electrical engineering for describ-
ing the bacteriophage λ lysis-lysogeny decision circuit [MS95]. Though the timescale for
switching in electrical versus genetic circuits are vastly different, there are similar timing
and delay effects. Analysis of these timing and delay effects are particularly difficult and
error-prone in both electrical and genetic circuits. Such a representation makes connections
between various equations clearer forcing a more thorough understanding of the assump-
tions on timing and sequencing of events. Also, some level of abstraction can be achieved
by selectively choosing which elements to associate a kinetic model and which to model as
simple logic gates.

Pathway databases [Kar01] organize and store information about molecules and their
interactions in a symbolic form and provide various ways of querying the database. The
goal is to enable scientists to more easily relate pieces of what is known and enable analyses
that would otherwise be impossible. Most databases store information in an object-oriented
and hierarchical manner, which is akin to how we normally characterize biological entities.
However, in many cases, the representation does not precisely describe the dynamic behavior
of a pathway, especially when molecules change form and move between compartments. Our
work is complimentary to pathway databases in that we seek suitable representations that
clearly captures the dynamic behavior of pathways, while databases are currently more
suitable for describing static configurations.

Petri nets are probably the most prevalent formalism used to represent the dynamic
behavior of biological systems [GP98]. An advantage of Petri nets is that they have an
inherent graphical nature similar to common representations in biochemistry. At a high-
level, a Petri net consists of places, transitions, and tokens. The state of the system is
a marking that specifies the number (and possibly type of tokens) on each place. Input
and output functions govern which transitions can fire, which lead to new markings. The
biological interpretation typically associates a place with a molecular specie, a token with
a molecule, and a transition with a reaction. Another advantage of Petri nets are that
stochastic extensions that associate delays and/or rates, which are necessary to faithfully
capture some aspects of biological systems, are well-studied. However, Petri nets are still
very similar to chemical kinetic models in that each state of a molecular specie is represented
by a place (rather than simply the biological entity). Moreover, it seems difficult to have a
modular and easily composable representation for complex entities. In fact, Petri nets have
been most successful in studying pathways in a rather low-level chemical perspective.

Recently, several researchers have proposed modeling biological pathways as concur-

3

rent computational processes utilizing mathematical formalisms, such as process alge-
bras [RSS01, PRSS01, RS03, DL03]. Regev et al. have suggested various forms of the
π-calculus [Mil99] as a framework for abstracting biological pathways in this manner. The
π-calculus was intended to capture the essence of concurrent computation in a minimalistic
manner to enable formal study, similar in spirit to the λ-calculus or the Turing machine
for sequential computation. It defines a small, yet powerful, language with well-defined
semantics (briefly discussed in Section 1.2). A notable distinction of the π-calculus with
respect to other process algebras is the notion of mobility that enables dynamic rearrange-
ment of the network topology. This is particularly relevant in modeling dynamic changes in
interactability of biological entities. This approach combines many of the advantages of the
other modeling methodologies. Like Petri nets, the π-calculus has well-defined operational
semantics that crisply describe the dynamic behavior of the system and facilitates simula-
tion in a straightforward manner, but like pathway databases, the focus is on describing
locally the properties of a biological entity.

1.2 The π-calculus

Since the π-calculus [Mil99] is the basis for the work on which we build [RSS01, PRSS01,
RS03] and it underlies our work as well, we present an explanation of the basics here.

The π-calculus is a simple, well-studied formalism for modeling concurrent, communi-
cating processes. Processes and channels are the fundamental constructs of the π-calculus.
A process performs a sequence of send and receive actions on channels. Messages sent
on channels are themselves the names of channels, a key feature known as mobility. By
sending the names of channels around to other processes, one can dynamically change the
connections between processes. Mobility makes the π-calculus quite powerful and suitable
for modeling a variety of concurrent systems.

The syntax of the monadic π-calculus is as follows:

Processes P ,Q ::= 0 inert process
| (P | Q) parallel composition
| !P replication
| new u P channel creation
| M sums

Sums M ,N ::= u(v).P receive v on u
| u〈v〉.P send v on u
| M + N non-deterministic choice

The process that does nothing is represented by 0. The parallel composition of two processes
creates a process in which the guard (the leading send or receive action) of each process
may be executed. Replication essentially corresponds to an infinite number of copies of
the process. The new construct scopes channel names, allowing for some processes to
communicate on private channels invisible to other processes. For sums, sends and receives
of channels have a straightforward syntax. Non-deterministic choice between sums M and N
means that either the guard of M or N will be chosen for execution, and the sum which was
not chosen will be consumed. Note, this variant known as the monadic π-calculus specifies
that exactly one channel name must be sent in each action; the polyadic π-calculus, which

4

allows for any number of channel names to be sent in an action, has a simple translation
to the monadic π-calculus.

The operational semantics of the π-calculus is defined in terms of the the reduction
judgment P −→ P ′, which is defined inductively as follows:

(u(v).P + M) | (u〈w〉.Q + N) −→ [w/v]P | Q

P −→ P ′

P | Q −→ P ′ | Q
P −→ P ′

new u P −→ new u P ′
P ≡ P ′ P ′ −→ Q ′ Q ′ ≡ Q

P −→ Q

The first rule says that if one process is sending w on channel u, and another process is
receiving v on channel u, then this can be reduced by removing the send/receive action
pair and replacing v with w in the receiving process. The second rule allows for reduction
on one side of a parallel composition. The third rule allows for reduction inside a scoping
construct. The final rule says that P can be reduced to Q if P is congruent to P ′, P ′

reduces to Q′, and Q′ is congruent to Q. The congruence relation ≡ is defined as follows:

Parallel composition: P | 0 ≡ P , P | Q ≡ Q | P , P | (Q | R) ≡ (P | Q) | R
Scoping: P | new x Q ≡ new x (P | Q) if x �∈ fn(P),

new x 0 ≡ 0, new xy P ≡ new yx P
Replication: !P ≡ P | !P

where fn(P) are the free channel names in P . The definitions for parallel composition say
that the inert process can be reduced away and that parallel composition is commutative
and associative. The first definition for scoping says that if P does not refer to some scoped
variable x, we can move a new declaration for x from a process in parallel with P outside
of P ; this transformation is called scope extrusion. The last congruence definition allows
a process to be reduced from within a replication operator by making a copy outside the
operator.

1.3 Contributions

After investigating prior work in formal abstractions of biological systems as described
above, we note an important distinction between the various approaches. Petri net-based
and π-calculus-based models introduce a fixed and consistent formal computational model
for describing biological pathways to facilitate sharing, direct simulation, and formal rea-
soning, while traditional chemical kinetic models seem to impart different computational
models for each pathway. Pursuing other formal approaches is tempting. For example,
applying the general methodology of rewrite systems seems natural, as we often view a
pathway as a series of reactions (such as binding and modification); however, it is unclear
how this approach would yield a better computational model for concurrent systems and
seems prone to degenerating into developing a machine model on a per pathway basis.

As we are generally concerned about the dynamic behavior of inherently concurrent
biological pathways, abstracting them as concurrent systems seems a natural fit. With
this view, the π-calculus is a reasonable basis for formally abstracting biological pathways.
It is unclear whether any radically different machine model would be much better suited.

5

Figure 1: A graphical view of a Michaelis-Menten reaction.

However, there are still a number of issues with deriving models in the π-calculus. While
the π-calculus may be an effective language for simulation and formal reasoning, it seems
too low-level for direct description of biological pathways. The same parallel can be drawn
in programming at high-level source languages versus the language computers interpret. In
Regev et. al [RSS01, PRSS01, RS03], the structure and modularization of their models is
not immediately evident, making it difficult to safely compose them. Compositionality is an
important feature for any modeling language, as one should be able to easily take detailed
models of different parts of a pathway, written by different researchers, and plug them
together. Also, the correspondence between biological objects and π-calculus constructs
does not seem to be always consistent. For example, a private channel in the π-calculus is
used for compartmentalization and complexing and a global channel to indicate chemical
complementarity, but the two get mixed resulting in non-standard match and mismatch
checks. In fact, the handling of compartments is awkward, and it is not clear to the present
authors if moving molecules between compartments can be reasonably modeled following
their methodology.

We have designed PML to address the deficiencies in modeling biological pathways
directly in the π-calculus. It is our hope that PML’s metaphor of binding sites, princi-
pled structuring, and special handling of compartments will make it suitable for writing
understandable and composable models of complex biological systems.

2 PML Models

In this section, we present our modeling language, PML, through two example models that
illustrate its features.

2.1 Michaelis-Menten Model

PML is largely inspired by an informal graphical style for presenting reactions used in Regev
and Shapiro [RS03]. A Michaelis-Menten reaction described in Equation (1) is depicted in
this style in Figure 1. Initially, the protein and enzyme have compatible binding sites,

6

indicated by the complementary notches in the molecules, allowing them to react. When
reacting, the enzyme and protein molecule are “attached” and can therefore perform further
private interactions. If the reaction goes forward, the protein is transformed to have a new
binding site; it can no longer bind to the enzyme, but it has a new capability to bind to
other molecules.

This view of pathways, as reactions that change the binding capabilities of molecules
underlies PML. In PML, each dependent set of binding sites is modeled as a domain
(a molecule can in general consist of multiple independent domains). The enzyme in a
Michaelis-Menten reaction is modeled as a domain as follows:

1 domain Enzyme = dom ()
2 create (release substrate, release product)
3 bind substrate # put (release substrate, release product) −>
4 [release substrate, release product]
5 release substrate # put () −> init
6 release product # put () −> init
7 init = [bind substrate]
8 end

At any point in time, each domain has a set of active binding sites. Initially, the Enzyme
domain has the bind substrate site active (specified by the init declaration); this is the site
through which the enzyme can bind to the protein in Figure 1. The behavior of an enzyme
after it binds with a protein is defined by the rule for the bind substrate site (lines 3 and 4).
Here, the enzyme “puts” two binding sites, release substrate and release product, that
it has created locally and then activates those two binding sites (specified after the −>).Note
that the bind substrate site is not active after this transition—an enzyme cannot bind
to two proteins simultaneously. Binding sites are created locally to perform reactions with
individual molecules, as opposed to an arbitrary molecule in a particular class. Any protein
molecule can bind to the bind substrate site of an enzyme, but only proteins that have
already bound to the enzyme can react on its release substrate or release product
site; the protein molecule learns of these sites since they are “put” by the enzyme in the
reaction on bind substrate.

As Figure 1 shows, there are two possible results after the protein and enzyme bind; in
either case, the enzyme remains unchanged. This behavior is reflected in the rules for the
release substrate and release product sites (lines 5 and 6). After a reaction at either
site, the enzyme returns to its init state (with only the bind substrate site active). A
non-deterministic choice determines whether a reaction occurs on the release substrate
site or on the release product site, corresponding to the reverse and forward reactions,
respectively. An extension of PML could allow for annotating the rules for these sites with
reaction rates to more accurately reflect the probability of each reaction direction, but we
do not yet deal with this issue.

The behavior of the protein molecule is encapsulated in its own domain.

1 domain Protein = dom ()
2 bind substrate # get (release substrate, release product) −>
3 [release substrate, release product]

7

4 with
5 release substrate # get () −> init
6 release product # get () −> [bind product]
7 end
8 bind product # ...
9 init = [bind substrate]

10 end

Initially, the protein has its bind substrate site active, allowing it to bind to the en-
zyme. When it binds to an enzyme on the site, it gets the release substrate and
release product sites from the enzyme and then activates those sites. Depending on
which of these sites is used for the next reaction, the protein either returns to its initial
state (line 5), re-enabling the bind substrate site, or it progresses (line 6), enabling a new
bind product site that will allow reactions with new molecules (elided). We declare the
rules for the release substrate and release product sites in a with construct, as they
are bound in the get construct.

group MichaelisMenten = grp ()
create (bind substrate, bind product)

domain Enzyme = dom ()
create (release substrate, release product)
bind substrate # put (release substrate, release product) −>

[release substrate, release product]
release substrate # put () −> init
release product # put () −> init
init = [bind substrate]

end

domain Protein = dom ()
bind substrate # get (release substrate, release product) −>

[release substrate, release product]
with

release substrate # get () −> init
release product # get () −> [bind product]

end
bind product # ...
init = [bind substrate]

end

compose <Enzyme(), Protein()>
end

Figure 2: Full PML model of a Michaelis-Menten reaction.

We group these two domains together to describe the whole reaction in Figure 2. A
group construct simply groups together other groups and domains. The bind substrate
and bind product sites are created in this group, as they are only relevant to this reaction.

8

The compose declaration indicates that the initial state of the system is one enzyme molecule
and one protein molecule.

Note in Regev and Shapiro [RS03], this reaction is modeled with the substrate and
product being separate named entities. As discussed in Section 1.1, this decomposition
can be somewhat misleading, as it is not clear whether the substrate is transformed into
the product or whether the substrate is consumed and the product is generated. PML’s
syntactical structuring makes this distinction clear, as the latter case would have been
represented by a spawning of a new molecule in the release product rule of Protein, as
follows:

release product # get () −> []<Product()>

In this case, the set of active sites following the execution of the rule is empty, indicating
that the substrate is consumed and the product is explicitly created.

2.2 Compartments

PML has special syntactic constructs for compartments. Ideally, molecules are specified
independently of their compartment membership, so that different compartment member-
ships can then be employed in different pathways without changing the specification of
the molecule. This seems closer to the biology, as the description of a molecule should
not change depending on where it is located. The specification style displayed in Regev
et al. [RSS01] does not appear to have this property; every entity in a pathway must be
explicitly parameterized by its compartment membership, then before each reaction, the
compartment must be checked before proceeding. Furthermore, while their models allow
for restricted communication based on compartments, it is not clear to the present authors
how they would model a dynamic change in compartment membership of a molecule, a key
property of many pathways.

The compartment constructs of PML are illustrated in Figure 3. Here, we have two
simple molecules, MolA and MolB. When a MolB molecule interacts with a MolA molecule on
the bind a site, its bind b site becomes active allowing it to participate in further reactions
(elided). We model a system in which MolA and MolB begin in different compartments and
therefore cannot interact. If MolA is transported from its compartment to the compartment
with MolB, then it can interact with MolB. The Cytosol compartment contains one MolA
molecule, and the ER compartment contains one MolB molecule (declared with compose,
just as in groups). The CytERBridge molecule bridges the Cytosol and ER compartment
allowing molecules to be transported across the membrane that separates the compartments.
Since bridge domains are not contained in a single compartment, we must explicitly declare
in which compartment its binding sites are exposed. In this case, its bind a site is exposed
to the Cytosol compartment. We also give the bind a rule in CytERBridge an explicit
name CytERTrans. Explicit names can be added to any rule for clarity, and they are
necessary in the more general case where there are multiple rules for a single binding site.
Any molecule binding on the bind a site of a CytERBridge molecule (in this case, MolA)
will be transported from the Cytosol compartment to the ER compartment, as indicated
with the declaration to ER in the CytERTrans rule. Our compartment syntax admits a clean
separation between molecule behavior and compartment membership and allows for simple
modeling of compartment changes through bridges.

9

group CompExample = grp ()
create (bind a, bind b)
domain MolA = dom ()
bind a # put () −> init
init = [bind a]

end
domain MolB = dom ()
bind a # get () −> [bind b]
bind b # ...
init = [bind a]

end
compartment Cytosol = com ()

compose <MolA()>
end
compartment ER = com ()

compose <MolB()>
end
domain CytERBridge = bridge dom ()

{CytERTrans} Cytosol bind a to ER # get () −> init
init = [CytERTrans]

end
compose <ER(),Cytosol(),CytERBridge()>

end

Figure 3: Compartments example.

3 Semantics of PML

We define the semantics of PML in terms of the semantics of the π-calculus via two trans-
lations: from a PML model to CorePML, a subset of PML that does not have compartment
and bridge constructs along with some other simplifications, and from CorePML to the
π-calculus. A complete description of the syntax of PML and a formal presentation of the
CorePML to π-calculus translation is given in the appendix.

Note that in the absence of a more complete type system, we assume some basic well-
formedness conditions on PML models as input to our translation. All references to named
entities (rules, domains, groups, etc.) must be resolvable. Note, identifiers are lexically-
scoped, i.e., they are only accessible within the block they are declared and any nested
blocks. The outermost group of a PML model must not take any parameters, as it cannot
be instantiated. We disallow recursive instantiations of groups or domains, as this does
not seem to make sense biologically—we have not seen recursive biological structures in
pathways. We also have some constraints on which site names can be put in a transition
rule, explained further in the following section.

3.1 PML to CorePML

CorePML is a subset of PML designed to be explicit and have only essential syntactic
constructs, thereby simplifying further translation. CorePML has the following properties:

10

� All rules in CorePML have explicit rule names.

� All identifiers in a CorePML model are unique.

� There is at most one create declaration in each CorePML domain and group, and this
declaration appears first in the domain or group.

� CorePML has no compartment or bridge constructs.

Any well-formed PML model can be transformed to satisfy the first three properties in
a straightforward manner. The first property is satisfied by taking any rule without an
explicit rule name and making the name of the binding site the explicit rule name, i.e., the
binding site name is the implicit name of the rule. Identifiers can be made unique by doing
α-renaming where necessary. Finally, once all references to binding site names are checked
to see that they respect the create declarations in the original model (i.e. they do not
reference a binding site name that has not been declared previously), all create declarations
in each domain and group can be combined and moved to the top of the domain or group.

The only property of CorePML that is not satisfied through a trivial transformation of
any well-formed PML model is the lack of compartment and bridge constructs. We present
an algorithm for translating away compartment constructs from PML informally, illustrated
for the example in Figure 3. A model output from this translation must satisfy the following
two conditions:

1. Two molecules initially in different compartments must not be able to interact with
each other.

2. An interaction between a molecule m and a bridge must respect the compartment
change declaration in the bridge; after the interaction, m can interact with molecules
in the target compartment and cannot interact with molecules in the source compart-
ment.

Together, these properties imply that at any time, molecules in different compartments
cannot interact.

We satisfy property 1 with a simple renaming of domains and binding sites. For each
domain D composed or spawned in some compartment C , we create a new domain D C
specific to C (we know a domain is spawned in a compartment if another domain initially
in that compartment spawns it, or if it is spawned by some domain in a rule that may
also cause the spawning domain to move to that compartment). All non-local binding
sites b mentioned in D C (those that are not created in the domain or received in some
rule) are renamed b C to ensure that reactions on that site can only occur with other
molecules in C . We also change all spawn constructs to spawn domains particular to the
initial compartment. As an example, the copy of the MolA molecule from Figure 3 for the
Cytosol compartment would look like the following:

domain MolA Cytosol = dom ()
bind a Cytosol # put () −> init
init =[bind a Cytosol]

end

11

Since MolB only appears in the ER, there will be no MolB molecules with a bind a Cytosol
site, and therefore the MolA and MolB molecules in different compartments will not be able
to react initially. Note that if the MolA domain was also composed in the ER compartment,
we would have created a MolA ER domain, and these molecules would be able to interact
with MolB ER molecules initially.

Satisfying property 2 is slightly more complicated. First, for each non-bridge domain
that can change compartments, we add rules to allow it to interact appropriately in any
compartment where it may eventually reside. The set of possible compartments for a do-
main D is determined as follows. Let a compartment change site be a binding site in a bridge
domain that causes a compartment change, e.g., the bind a site in the CytERBridge do-
main. We first find all the compartment change sites S that D can interact with. Then, the
possible compartments for D are the target compartments seen in the bridge rules for each
S , plus the initial compartment of D . For MolA, the possible compartments are Cytosol,
its initial compartment, and ER, its compartment after interacting with the CytERBridge
domain on the bind a site. Now that we know the set of possible compartments for each
domain, we add the necessary rules for that domain to interact in all of those compart-
ments. For the MolA Cytosol domain, we need to add a rule so that it can interact in the
ER domain:

domain MolA Cytosol = dom ()
bind a Cytosol # put () −> init
bind a ER # put () −> init ER
ruleset init ER = [bind a ER]
init = [bind a Cytosol]

end

We must also create new rule sets for the new compartment (e.g. init ER). In general, any
set of rules can be named with this declaration. The init rule set has special meaning, as
described earlier in Section 2.

Finally, we must add rules to domains to properly handle the actual compartment
change. To do this, we must first ensure that we know exactly when a molecule is interacting
with a bridge, so we do not erroneously transfer molecules between compartments. For
each compartment change site S in bridge B , we rename S to a fresh name S B . In our
example, we rename the bind a Cytosol site in CytERBridge (already renamed once to
satisfy property 1) to bind a CytERBridge. Now, we add rules for these newly named
compartment change sites to the appropriate domains as follows. We make a copy of the
rule for the compartment change site as previously named, change the name to match
the new compartment change site, and change the right-hand site of the rule to refer to
binding sites and domains (if any are spawned) for the new compartment. For example, in
MolA Cytosol, we add the following rule:

bind a CytERBridge # put () −> init ER

Now, when a MolA Cytosol domain interacts with the CytERBridge domain, it activates
its bind a ER site, indicating its compartment change from Cytosol to ER. The final trans-
formed version of our model is seen in Figure 4; no references to compartments or bridges
remain. Applying this transformation to remove compartment declarations, along with

12

group CompExample = grp ()
create (bind a Cytosol, bind a CytERBridge, bind a ER, bind b ER)
domain MolA Cytosol = dom ()
bind a Cytosol # put () −> init
bind a ER # put () −> init ER
bind a CytERBridge # put () −> init ER
ruleset init ER = [bind a ER]
init = [bind a Cytosol]

end
domain MolB ER = dom ()
bind a ER # get () −> [bind b ER]
bind b ER # ...
init = [bind a ER]

end
group Cytosol = grp ()

compose <MolA Cytosol()>
end
group ER = grp ()

compose <MolB ER()>
end
domain CytERBridge = dom ()

{CytERTrans} bind a CytERBridge # get () −> init
init = [CytERTrans]

end
compose <ER(),Cytosol(),CytERBridge()>

end

Figure 4: Final result of translation to eliminate compartments.

the simpler transformations discussed previously, converts any PML model to a CorePML
model.

To perform the above transformation, we must restrict the way in which compartment
change sites are used. The translation relies on a syntactic analysis being able to identify
precisely all potential interactions on compartment change sites. Therefore, compartment
change sites cannot be “put” onto other sites in any rule, since the receiver of the com-
partment change site may also receive other sites through that reaction, and we cannot
distinguish these cases syntactically. In our example, no rule can put the bind a site. For
similar reasons, bridge domains cannot receive compartment change sites through a reaction.
Sites are generally transferred between molecules to facilitate further private reactions and
thus are created locally. Therefore, it seems that these restrictions on transferring non-local
sites do not significantly hinder expressiveness.

3.2 CorePML to the π-calculus

In this section, we present informally our translation from CorePML to the π-calculus; a
formal presentation is given in Section B. At the top-level, a CorePML model consists
of several group and domain declarations with a compose statement, corresponding to all
of these entities existing simultaneously in the pathway. In the π-calculus, this behavior

13

corresponds to a parallel composition of the translations of the groups and domains. For
example, the Michaelis-Menten model in Figure 2 would be translated to the π-calculus as
�Enzyme� | �Protein�, where �Enzyme� and �Protein� are the π-calculus translations of the
Enzyme and Protein domains, respectively.

For translating domains, we adopt the strategy of uniformly making each rule a “func-
tion”. For example, the π-calculus term for the bind substrate rule of the Enzyme domain
in Figure 2 is

!(bsToken().bind substrate〈release substrate, release product〉.rsToken〈〉 + rpToken〈〉)

We create a token channel for each function, e.g. bsToken, to be used for calling a function;
a call is performed by sending on the token channel, and the function does not perform
its action until receiving on the token channel. We translate binding sites as π-calculus
channels, put actions as π-calculus sends, and get actions as π-calculus receives; we see
above the put on the bind substrate site translated in this example. After performing
its put or get action, the rule function enables the new set of binding sites with the choice
operator that non-deterministically calls one of the newly enabled site’s rule function. In
this example, we send on either the rsToken channel or the rpToken channel, corresponding
to calling either the rule function for release substrate or release product. Finally, we
encapsulate the entire rule function in the π-calculus replication operator; this allows the
function to be called any number of times (i.e. an unrestricted function). One nice aspect
of this translation is that it handles both recursive and non-recursive references to rules
uniformly.

The translation of a domain is a parallel composition of all its rule functions with a
non-deterministic choice of sends on the token channels corresponding to rules in the init
set. Here is the full translation of the Enzyme domain:

!(bsToken().bind substrate〈release substrate, release product〉.rsToken〈〉 + rpToken〈〉)
| !(rsToken().release substrate〈〉.bsToken〈〉)
| !(rpToken().release product〈〉.bsToken〈〉)
| bsToken〈〉

The first three lines are the rule functions for the bind substrate, release substrate,
and release product rules, and the final line corresponds to the init declaration, calling the
bind substrate rule function. Note that we ignore handling the scoping of channel names
properly here; this issue and other details are handled fully in the formal presentation.

4 Example: Cotranslational Translocation

In this section, we present an abstract model of the cotranslational translocation of a general
secretory protein across the ER membrane [LBZ+99, page 698] to test the effectiveness of
PML in capturing some important aspects of compartmentalization, such as transport
across a membrane. We then modify this model to describe the synthesis and insertion into
the ER membrane of the GLUT1 glucose transporter [LBZ+99, page 706] to emphasize the
few changes that need to be made.

14

4.1 Targeting the ER Lumen

In this model, an arbitrary protein is translated by a ribosome and transferred from the
cytosol of a cell into the lumen of the endoplasmic reticulum (ER) cotranslationally. In
our abstraction, a ribosome begins translating some mRNA exposing a signal sequence.
The signal sequence attracts an SRP (signal recognition particle) that binds to the signal
sequence, suspending translation. The SRP and SRP receptor (located on the ER mem-
brane) interaction drags the ribosome complex close to the membrane. The signal sequence
then interacts with the translocon gate, opening it as SRP disassociates from the complex.
Translation resumes into the translocon pore, transporting the growing polypeptide into ER
lumen. In the ER lumen, a signal peptidase cleaves the signal sequence, and then Hsc70
chaperones bind to the growing polypeptide, facilitating the proper transport and folding
of the nascent chain.

The mRNA is abstracted as a domain with a single site that initiates translation. Degra-
dation of mRNA is ignored but could be introduced as another site.

domain mrna = dom ()
translate # get (done) −> done
with
done # get () −> translate

end
init = [translate]

end

Upon reacting on the translate site, the mRNA instance gets a done site that is used by
the bound ribosome to signal when translation has completed.

An abstract ribosome in this model can only interact with an mRNA to begin translation
(indicated by having one global site translate), which instantiates/creates a growingPoly-
peptide with two private sites for signaling completion and suspension.

domain ribosome = dom ()
create (mrnaDone, polypeptideDone, polypeptideSuspend)

translate # put (mrnaDone) −> [mrnaDone,polypeptideSuspend]
<growingPolypeptide(polypeptideDone,polypeptideSuspend)>

mrnaDone # put () −> [polypeptideDone]
polypeptideDone # put () −> [translate,polypeptideDone]

polypeptideSuspend # get (restart) −> [restart]
with
restart # get () −> [mrnaDone,polypeptideSuspend]

end

init = [translate]
end

Upon interacting with an mRNA, a private site mrnaDone is exchanged between these
particular instances of the ribosome and the mRNA for indicating completion of translation.

15

The growing polypeptide is an abstraction for the polypeptide while it is being translated
that interacts with several entities.

domain growingPolypeptide = dom (done,suspend)
(* Translation may complete at any time. *)
{badDone} done # get () −> []<badProtein()>
{goodDone} done # get () −> []<goodProtein()>

(* SRP interaction with the signal sequence causes suspension. *)
srpSigseq # get (sigseqBound) −> [suspend]
with
sigseqBound # get () −> [restart]

end

create (restart)
suspend # put (restart) −> [sigseqBound]
restart # put () −> [badDone, transloconSigseq, cleaveSigseq]

(* Translocon interaction with the signal sequence. *)
transloconSigseq # get (transloconBound) −> [transloconBound]
with
transloconBound # put (done) −> [badDone,cleaveSigseq]

end

(* Signal sequence cleavage. *)
cleaveSigseq # get () −> [hsc70Polypeptide, badDone]

(* Hsc70 chaperone interaction. *)
hsc70Polypeptide # get () −> [goodDone]

init = [badDone, srpSigseq, transloconSigseq, cleaveSigseq]
end

In developing this model, we found several aspects of its behavior unclear or incompletely
specified from the prose description; these ambiguities were not apparent until we pursued
this formalization. For example, what happens if the translation completes before SRP
binds? It may be an implicit assumption that SRP is present at such high concentration
that there is negligible probability of this happening. We chose to model that translation
could finish at anytime, but we distinguish the formation of a “good” protein versus a
“bad” protein depending on whether some required interactions take place (such as Hsc70
binding) before translation completes. Another ambiguity from the prose description is
whether or not the translocon can bind to the signal sequence without SRP. Indeed, SRP
is not essential for this pathway to function correctly [HB00]. This illustrates that writing
formal models can lead to asking important questions about the functioning of a system and
finding potential deficiencies in existing knowledge to explore. Finally, note that though
in our description that the signal sequence cleavage and Hsc70 chaperone interaction do
not occur until the polypeptide reaches the ER lumen, there is no explicit mention of these
conditions; they instead will be enforced when we instantiate a growingPolypeptide in

16

a particular compartment. This is fairly close to biology in that we would expect that a
functional signal peptidase could cleave such a signal sequence in vitro, meaning it is the
compartmentalization that prevents the interaction, not the chemical complementarity.

The SRP and SRP receptor have some straightforward interactions.

domain srpreceptor = dom ()
srpSrpreceptor # get () −> init
init = [srpSrpreceptor]

end

domain srp = dom ()
create (sigseqBound)
srpSigseq # put (sigseqBound) −> [srpSrpreceptor]
srpSrpreceptor # put () −> [sigseqNear]
sigseqNear # put () −> [sigseqBound]
sigseqBound # put () −> init
init = [srpSigseq]

end

The signal sequence and translocon interaction does not in fact require SRP but in reality
is required to make the probability of interaction feasible. While we do not currently
support any stochastic modeling, it should be easy to incorporate annotations associated
with any set of active binding sites. In our model, the transition involving sigseqNear
would signal the translocon that a signal sequence is near, thereby increasing the probability
of interaction (if we had the ability to specify this).

The translocon is a membrane protein potentially with sites on either the cytosol or
ER lumen side. We thus indicate it as a bridge and must qualify in which compartment its
sites are.

domain translocon = bridge dom ()
create (sigseqBound)

(* Transfer the other molecule to the ER. *)
Cytosol transloconSigseq to ER # put (sigseqBound) −>
[sigseqBound]

ER sigseqBound # get (done) −> [done]
with
Cytosol done # get () −> init

end

(* Presumably increase the probability of binding the
signal sequence. *)

Cytosol sigseqNear # get () −> [transloconSigseq]

init = [transloconSigseq,sigseqNear]
end

17

Whatever interacts with the translocon on the sigseqBind site in the cytosol is transferred
into the ER. This ensures that the knowledge of compartmentalization is confined to the
compartment declarations and bridge declarations. As alluded to in the SRP representation,
after the translocon gets the “signal sequence near” indication (i.e. interaction on the
sigseqNear site), the only possible next reaction is to the bind the signal sequence with
presumably higher probability.

The signal peptidase and Hsc70 abstractions are fairly simple. After interacting with
the polypeptide, it simply returns to the initial state ready to modify/chaperone the next
polypeptide.

domain signalpeptidase = dom ()
cleaveSigseq # put () −> init
init = [cleaveSigseq]

end

domain hsc70 = dom ()
hsc70Polypeptide # put () −> init
init = [polypeptideBind]

end

Note, we have modeled that one hsc70 binding to the nascent chain is sufficient to produce
a “good” protein. We can view this as the collective of Hsc70 chaperones required to yield
the proper folding.

Finally, we place the domains in the proper compartments and for convenience, group
everything together.

group ERCotranslationalTranslocation = grp ()
create (transloconSigseq, sigseqNear, cleaveSigseq, hsc70Polypeptide)

compartment Cytosol = com ()
create (translate, srpSrpreceptor, srpSigseq)
domain mrna = dom ... end
domain ribosome = dom ... end
domain growingPolypeptide = dom ... end
domain srp = dom ... end
domain srpreceptor = dom ... end
compose <mrna(), ribosome(), srp(), srpreceptor()>

end

compartment ER = com ()
domain signalpeptidase = dom ... end
domain hsc70 = dom ... end
compose <signalpeptidase(), hsc70()>

end

domain translocon = bridge dom ... end
compose <Cytosol(), ER(), translocon()>

end

18

4.2 Targeting the ER Membrane

We modify the model in the previous section to target a protein with α-helical transmem-
brane segments, such as the GLUT1 glucose transporter, into the ER membrane [LBZ+99,
page 706]. The difference in the translocation of these proteins is that the polypeptide has a
signal anchor (not at the N-terminus) and then continues with alternations between special
segments called stop transfers and signal anchors; these segments are generally α-helices.
The SRP binds to the first signal anchor, but upon translocation, the N-terminal is left in
the cytosol. When the stop transfer becomes exposed, an interaction pushes the pair of
α-helices into the inner membrane space with the segment between them residing in the ER
lumen. Then, this process repeats for each pair of signal anchor and stop transfer segments.

First, we have an abstraction for the GLUT1 protein when it is functional and has been
correctly inserted. We do not model any of its further interactions, so we leave the body
of its declaration empty, but any implementation is possible.

domain glut1 = bridge dom ()
init = []

end

The growingPolypeptide is modified to have a stop transfer site transloconStoptrans-
fer. We also simplify and assume that if the signal sequence gets bound, then a proper
GLUT1 protein (glut1) will be produced; this eliminates the goodDone rule. Also, we
remove the cleaveSigseq and hsc70Polypeptide sites because they are unused in this
model, though this is not necessary.

domain growingPolypeptide = dom (done,suspend)
{badDone} done # get () −> []<badProtein()>

(* SRP interaction with the signal sequence remains the same. *)
srpSigseq # get (sigseqBound) −> ...

(* Translocon interaction with the signal sequence puts the stop
transfer site. *)

transloconSigseq # get (transloconBound) −> [transloconBound]
with

create (transloconStoptransfer)
transloconBound # put (done, transloconStoptransfer) −>

[transloconStoptransfer]

transloconStoptransfer # get () −> []<glut1()>
end

init = [badDone, srpSigseq, transloconSigseq]
end

Note, in the model above, as soon as the transloconStoptransfer occurs the glut1
protein is formed. This abstracts the multi-step signal-anchor/stop-transfer process into
one step. We have also modeled more explicitly the multi-step reaction, but since we model

19

no other interactions for the intermediate forms, there is not much gain for that level of
detail.

The translocon is almost the same except that on interaction on transloconSigseq, it
no longer does a compartment transfer; interactions on a new site for the stoptransfer
cause a compartment transfer into the InnerERMembraneSpace (which we also create).

domain translocon = bridge dom ()
create (sigseqBound)

Cytosol transloconSigseq # put (sigseqBound) −> [sigseqBound]

ER sigseqBound # get (done) −> [stoptransfer]
with
Cytosol stoptransfer to InnerERMembraneSpace # put () −> [done]
Cytosol done # get () −> init

end

Cytosol sigseqNear # get () −> [transloconSigseq]

init = [transloconSigseq,sigseqNear] (* same as before *)
end

These minor modifications to these two domains are the only ones that need to be made,
a promising sign for the composability of PML.

5 Conclusion

We have presented PML, a high-level language for modeling biological pathways. By ab-
stracting away low-level details, PML makes models easier to write and understand. The
understandability of PML models is also aided by its consistent biological metaphor of
binding sites, its structuring, and its special syntax for compartments. PML seems to be a
good start for developing a language suitable for writing modular and readable models of
complex pathways.

Benefits of PML. Modeling using PML has several advantages over direct modeling
in the π-calculus. Each domain is an independent part of a molecule, composed of a set
of dependent binding sites that changes dynamically, corresponding to transformations in
the molecule. In contrast, the π-calculus models we have seen use channels to represent
binding sites on molecules, shared membership in a compartment, and communication
between different parts of the same molecule. This overloading of the semantics of channels
makes their models difficult to understand; a loose analogy in programming languages may
be reading Java code versus reading assembly. When reading a model written in PML,
one can, at least, immediately make a rough sketch to see what is going on. In fact, as
mentioned earlier, the illustrative diagrams of molecules with binding sites in Regev and
Shapiro [RS03] partially inspired the structure of PML.

Another benefit of using PML is our handling of cell compartments. As acknowledged
in Regev and Shapiro [RS03], their use of private channels to represent shared membership

20

in a compartment has a number of drawbacks. First, this method is not as biologically
faithful; each molecule must “know” about its compartment membership when in actuality,
molecules simply reside in a compartment and do not inherently behave differently based
on their compartment membership. Second, for strict correctness, the private compartment
channel must be checked at every transition since two molecules in different compartments
should not be able to react. It is easy to not perform these checks properly making exten-
sion with new compartments that contain similar molecules difficult. Also, even performing
this check properly is awkward, as one must check for both identical compartments and bio-
logical complementarity (a proper put/get pair) simultaneously, requiring an extra equality
checking construct not typically included in the standard π-calculus. PML’s explicit con-
structs for compartments alleviate all these issues, as compartment handling is done through
a translation invisible to the modeler. Thus, domains can be modeled without knowledge
of compartments and can be placed in several different compartments with the intended
behavior. Also, we have not found a model directly written in the π-calculus that transfers
a molecule between compartments, which we handle with PML’s bridge construct. Note
that Regev mentions an extension of their π-calculus variant with direct support for com-
partments, but we did not have access to a description of this variant to perform a direct
comparison.

Using a high-level language allows the modeler to ignore certain details of any imple-
mentation of the language. We give the semantics of PML as a translation to the π-calculus,
but a simulator need not implement this translation directly. If another intermediate rep-
resentation could be simulated more efficiently, it could easily be employed without any
change to the models. In contrast, the lack of a consistent structure in Regev’s π-calculus
models may make it more difficult to translate them to a different format. In fairness, we
have not actually implemented PML and simulated large pathway descriptions with it, so
we may not completely understand all the issues involved in simulation.

A final benefit of PML is its increased composability and modularity. Our consistent
metaphor for language constructs makes it easier for different groups to decompose their
descriptions with the same structure, making them easier to plug together. Since names
can be introduced arbitrarily in π-calculus models, they do not have natural structures
upon which to modularize. Note that we may still have composability problems because
of the lack of types in PML; a type system with proper interfaces for domains and groups
would greatly aid principled composability.

Future Work. Much work remains to be done to increase the usability of PML. One
issue that must still be resolved is how to properly name domains and binding sites. Names
should reflect the function of a domain or binding site in its context, but it is difficult to
create appropriate names when one is only modeling the functionality of a single pathway.
For example, if molecules M1 and M2 interact in a pathway, it is tempting to call the binding
site M1M2Bind when in fact the binding mechanism is probably more general. It is also
not clear whether names of binding sites should be verbs reflecting the action performed
by the molecule during the reaction or nouns reflecting the properties that allow another
molecule to bind at that site. These naming issues can affect composability and readability,
as a person used to a certain naming style may have trouble reading a model written by
someone using a completely different style.

21

Another difficult issue is how to properly model proximity of molecules within a com-
partment. Often, certain reactions serve only to move other molecules closer together,
facilitating their reaction. Modeling these molecules independently does not capture their
distance from each other, making the model somewhat biologically unfaithful (since it al-
lows the molecules to interact independent of their distance from each other). We currently
handle these situations in an ad-hoc manner, either using a shared private site for proximity
as in Regev’s work or using a signal site to only enable a reaction after previous steps have
occurred to ensure proper spatial relations. A more general solution to this issue would be
of great benefit in the modeling of many pathways.

For simulations of our models to be useful, they must contain quantitative information
about molecular concentrations, reaction rates, etc. We believe that PML easily admits all
the quantitative information given in Priami et al.’s extensions to the π-calculus [PRSS01].
Molecular concentrations are easily admitted into compose declarations, and reaction rates
can be placed on each rule for a binding site. Furthermore, each specification of the set
of active sites for a domain can include probability annotations, reflecting the relative
likelihood of rules executing in that situation. In future work, we would like to implement
a simulator (or translate to Regev’s language to use their simulator) and model some more
realistic pathways to understand exactly what quantitative information is necessary.

Longer term directions for this work include typing and graphical tools. A stronger type
system could improve the language in many ways, making it safer and more easily compos-
able. One could imagine typing binding sites based on their polarity, the length of tuples
transferred through the site, and perhaps other biologically-motivated characterizations.
Existing type systems for the π-calculus may serve as a starting point for a type system for
PML. A graphical tool could possibly make it much easier to write the initial structure of
a model. Given our metaphor for domains and binding sites, it seems that one should at
least be able to draw domains and complementary binding sites, and then perhaps specify
the details of transitions textually. Automatically generating graphical descriptions from
textual models in PML could also aid in their understandability.

Acknowledgments. We would like to thank Roger Brent and his group for valuable
discussions regarding the benefit of formal descriptions of biological systems and Aviv
Regev for helping us better understand biological modeling in the π-calculus.

References

[DL03] Vincent Danos and Cosimo Laneve. Core formal molecular biology. In Pierpaolo
Degano, editor, 12th European Symposium on Programming (ESOP), volume
2618 of LNCS, pages 302–318, Warsaw, Poland, April 2003.

[GP98] Peter J. E. Goss and Jean Peccoud. Quantitative modeling of stochastic systems
in molecular biology by using stochastic Petri nets. Proceedings of the National
Academy of Science USA, 95(12):6750–6755, 1998.

[HB00] Anat A. Herskovits and Eitan Bibi. Association of Escherichia coli ribosomes
with the inner membrane requires the signal recognition particle receptor but

22

is independent of the signal recognition particle. Proceedings of the National
Academy of Sciences USA, 97(9):4621–4626, 2000.

[Kar01] Peter D. Karp. Pathway databases: A case study in computational symbolic
theories. Science, 293(5537):2040–2044, 2001.

[LBZ+99] Harvey Lodish, Arnold Berk, S.Lawrence Zipursky, Paul Matsudaira, David Bal-
timore, and James Darnell. Molecular Cell Biology, chapter 17. W.H. Freeman,
New York, New York, United States, fourth edition, 1999.

[Mil99] Robin Milner. Communicating and Mobile Systems: the π-calculus. Cambridge
University Press, 1999.

[MS95] Harley H. McAdams and Lucy Shapiro. Circuit simulation of genetic networks.
Science, 269(5224):650–656, August 1995.

[PRSS01] Corrado Priami, Aviv Regev, Ehud Shapiro, and William Silverman. Applica-
tion of a stochastic name passing calculus to representation and simulation of
molecular processes. Information Processing Letters, 80(1):25–31, 2001.

[RS03] Aviv Regev and Ehud Shapiro. The pi-calculus as an abstraction for biomolecular
systems. Submitted for publication, 2003.

[RSS01] Aviv Regev, William Silverman, and Ehud Shapiro. Representation and simu-
lation of biochemical processes using the pi-calculus process algebra. In Pacific
Symposium on Biocomputing 2001 (PSB2001), volume 6, pages 459–470, Hawaii,
January 2001.

[SW01] Davide Sangiorgi and David Walker. The π-calculus: A Theory of Mobile Pro-
cesses. Cambridge University Press, Cambridge, United Kingdom, 2001.

23

A PML Syntax

In this section, we present the complete syntax of PML. Comments are any sequence
of characters between the comment delimiters (* and *) with proper nesting. We have
three classes of identifiers for rules, rule sets, sites, and blocks (i.e. domains, groups, and
compartments) with ruleid , rulesetid , siteid , and id ranging over the respective classes.
Identifiers can contain letters, numbers, underscore, and single quotes, and they must start
with a letter. A name for any set of rules can be created with a ruleset declaration; as
discussed in Section 2, the special init set specifies the initial set of active binding sites
(rules).

We use the following conventions for presenting the grammatical rules. The seq suffix is
used to range over comma-separated sequences. For example, ruleidseq ranges over comma-
separated sequences of ruleids. The 〈·〉 brackets are used to indicate optional phrases. By
convention, we use lowercase italics for a variable ranging over some class written with
initial caps; for example, domexp ranges over DomExp.

Domains

domexp ::= 〈bridge〉
dom(siteidseq) domdesc init = [ruleidseq] end

| id domain identifiers
domdecl ::= domain id = domexp
domdesc ::= · empty

| domdesc1 domdesc2 sequence
| ruleset rulesetid = [ruleidseq] rule set declarations
| createdecl create sites
| 〈{ruleid}〉 〈id〉 siteid 〈to id〉 # put (siteidseq) put rules

−> ruleset 〈<instanceseq>〉
| 〈{ruleid}〉 〈id〉 siteid 〈to id〉 # get (siteidseq) get rules

−> ruleset 〈<instanceseq>〉 〈with domexp end〉
createdecl ::= create (siteidseq)
ruleset ::= init the initial set

| rulesetid declared sets
| [ruleidseq] basic sets

Groups

grpexp ::= 〈bridge〉
grp(siteidseq) grpdesc compose <instanceseq> end

| id group identifiers
grpdecl ::= group id = grpexp
grpdesc ::= · empty

| grpdesc1 grpdesc2 sequence
| createdecl create sites
| domdecl domain declarations
| grpdecl group declarations
| comdecl compartment declarations

instance ::= id(siteidseq)

Compartments

comexp ::= com(siteidseq) grpdesc compose <instanceseq> end
| id compartment identifier

comdecl ::= compartment id = comexp

24

B Formal Translation from CorePML to the π-calculus

Recall that at the top-level, a pathway in CorePML is a compose of a set of instantiations of
domains and groups. More explicitly, we say that a model at the top-level is an expression
of the form

modeldesc compose <instance1, instance2, . . . , instancen>

where
modeldesc ::= · empty

| modeldesc1 modeldesc2 sequence
| domdecl domain declarations
| grpdecl group declarations

We then define the translation to the π-calculus inductively on the structure of a CorePML
model (modeldesc).

Intuitively, every domain and group represents some biological entity, and we translate
them into π-calculus processes. A compose declaration in the π-calculus is then a parallel
composition of each of the instantiations. A domain is the smallest unit of mutually de-
pendent binding sites. The rules indicate what dynamic behavior occurs upon a binding
interaction on that site, specifically what set of binding sites are present in the next state.
We then can represent the next reaction as a competition between all the binding sites in
the present site. This can be expressed by choice between the representation of each of the
rules. Because these rules can be recursive, this translates to a use of replication in the
π-calculus in a similar manner to handling recursive definitions [Mil99, SW01].

First, let Exp be the set of domain and group expressions (DomExp and GrpExp) and
δ : Id → Exp be a mapping from identifiers to domain and group expressions with δ ranging
over ∆. Also, we will need to generate fresh names, we call a token for translating reaction
rules. We write [y/x]P as capture-avoiding substitution of y for x in P .

We define the translation for group descriptions (grpdesc) �·�grpdesc : GrpDesc → ∆ →
∆ as possibly extending an environment that maps identifiers to domain or group expres-
sions and use this same translation function for model descriptions (modeldesc) as they are
simply a subset of group descriptions.

�·�grpdesc δ
def= δ

�grpdesc1 grpdesc2�grpdesc δ
def= �grpdesc2�grpdesc (�grpdesc1�grpdesc δ)

�domain id = domexp�grpdesc δ
def= δ[id �→ domexp]

�group id = grpexp�grpdesc δ
def= δ[id �→ grpexp]

The domain and group declarations extend δ and sequencing composes the translations.
The translation of domain descriptions �·�δdomdesc · : DomDesc → ∆ → P → P translates

the reaction rules into a π-calculus process that for each rule. We assume that we have a
mapping ρ : RuleId → Token from rule identifiers to fresh tokens and have made sure any
lexical scoping constraints have been respected.

�·�δdomdesc P
def= P

�domdesc1 domdesc2�
δ
domdesc P

def= �domdesc2�
δ
domdesc (�domdesc1�

δ
domdesc P)

25

Like group descriptions, sequencing just composes the translation.

�{ruleid} siteid # put (siteid1, siteid2, . . . , . . . , siteidm)

−> [ruleid1, ruleid2, . . . , ruleidk]<instance1, instance2, . . . , instancen>�δdomdesc P

def= !
(
t().siteid〈siteid1, siteid2, . . . , siteidm〉.
(
ρ(ruleid1)〈〉 + ρ(ruleid2)〈〉 + · · · + ρ(ruleidk)〈〉
| �instance1�exp δ | �instance2�exp δ | · · · | �instancen�exp δ

))

| P

where t = ρ(ruleid)

For a put rule, we send on the channel corresponding to the site, and enable the next set
of sites. Also, any instantiations are translated. As noted above, the rules that describe
binding reactions on sites can be recursive and can be translated by using replication.
Rather than distinguishing between recursive and non-recursive rules, we translate each
rule uniformly, treating rules, in essence, as unrestricted (non-linear) function definitions
and function calls.

�{ruleid} siteid # get (siteid1, siteid2, . . . , . . . , siteidm)
−> [ruleid1, ruleid2, . . . , ruleidk]<instance1, instance2, . . . , instancen>

with domdesc end�δdomdesc P

def= !
(
t().siteid(siteid1, siteid2, . . . , siteidm).
(
ρ(ruleid1)〈〉 + ρ(ruleid2)〈〉 + · · · + ρ(ruleidk)〈〉
| �instance1�exp δ | �instance2�exp δ | · · · | �instancen�exp δ

| �domdesc�δdomdesc 0
))

| P

where t = ρ(ruleid)

The translation for get is similar to put except that the knowledge of the other sites yields
possibly new sites in the with clause.

Instantiations are made with the compose construct that intuitively places a molecule
described by the grp or dom expression in the pathway. We equate sites with channels
in the π-calculus using the same names in both domains. To translate an instantiation,
the translation function �·�exp : Exp → ∆ → P creates names for the local names and
substitutes the names given by the instantiation for the parameters in the body of the
translation group or domain expression.

26

�grp(siteid1, siteid2, . . . , siteidn)
create (siteid ′′

1, siteid
′′
2, . . . , siteid

′′
m)

grpdesc
compose <instance1, instance2, . . . , instancek>

end (siteid ′
1, siteid

′
2, . . . , siteid

′
n)�exp δ

def= [siteid ′
1, siteid

′
2, . . . , siteid

′
n/siteid1, siteid2, . . . , siteidn](

new siteid ′′
1, siteid ′′

2, . . . , siteid ′′
m

�instance1�exp δ′ | �instance2�exp δ′ | · · · | �instancek�exp δ′
)

where δ′ = �grpdesc�grpdesc δ

The body of the group expression translates to parallel composition on the instances given
by its compose declaration. The instances can be of any of the declarations in δ or the
domains or groups declared in this group.

�dom(siteid1, siteid2, . . . , siteidn)
create (siteid ′′

1, siteid
′′
2, . . . , siteid

′′
m)

domdesc
init = [ruleid1, ruleid2, . . . , ruleidk]

end (siteid ′
1, siteid

′
2, . . . , siteid

′
n)�exp δ

def= [siteid ′
1, siteid

′
2, . . . , siteid

′
n/siteid1, siteid2, . . . , siteidn](

new siteid ′′
1, siteid ′′

2, . . . , siteid ′′
m, ρ(ruleid1), . . . , ρ(ruleidp)

�domdesc�·domdesc 0 | ρ(ruleid1)〈〉 + ρ(ruleid2)〈〉 + · · · + ρ(ruleidk)〈〉
)

For domains, we must also create new declarations for all rule tokens, ensuring their proper
scoping (the above translation assumes there are p rules in the domain). The init construct
translates to a choice of sending on the tokens for the rules in the set.

�id(siteid ′
1, siteid

′
2, siteid

′
n)�exp δ

def= �δ(id)(siteid ′
1, siteid

′
2, siteid

′
n)�exp δ

This translation simply looks up the expression corresponding to the name in an expression,
and then performs the translation of the instantiation of the expression.

Finally, we can define the translation function �·� from models in CorePML to the
polyadic π-calculus.

�modeldesc compose <instance1, instance2, . . . , instancen>�

def= �instance1�exp δ′ | �instance2�exp δ′ | · · · | �instancen�exp δ′

where δ′ = �modeldesc�grpdesc ·

We translate the model description into the domain/group expression environment and
then compose the translations of the instantiations in parallel in that environment.

27

