
An Empirical Study of the Demeter System

Pengcheng Wu and Mitchell Wand

College of Computer and Information Science
Northeastern University
Boston, MA 02115, USA�

wupc,wand � @ccs.neu.edu

ABSTRACT
We studied a substantial application that used the Demeter toolset
to determine how much manual coding was avoided by using the
Demeter tools. Our study provides evidence that use of the Demeter
tools avoids a considerable amount of manual coding.

1. INTRODUCTION
The Demeter system is a set of adaptive programming [8] tools
to support better implementation of the task of traversing object
structures in Java. It is a very common task in object-oriented pro-
gramming to implement traversals on the object structures where
a lot of low level and error-prone structural details have to be han-
dled. Manual implementations of traversals are error-prone. Even a
very careful programmer may write a traversal program traversing
wrong paths or missing some paths in the object structure. Once
those errors happen, debugging the traversal program is a difficult
task, since the code implementing the traversals is usually tangled
with the code for implementing other concerns.

Adaptive programming [8] supports high level descriptions (called
traversal strategies or strategy graphs) of the traversal paths using
graph primitives, which are automatically translated into the actual
low level traversal code as implemented in DemeterJ [4] and DAJ
[1] , or are interpreted at run time as implemented in DJ [10].

The goal of this work was to measure the extent to which use of
the Demeter system freed programmers from tedious traversal code
writing. To measure this, we took an algorithm [7] that simulated
how a human programmer might generate traversal code and ap-
plied it to a substantial Demeter application, which is the DemeterJ
compiler itself [4].

1.1 Traversal Generating Algorithms
The major difficulty in generating traversal code is that a traversal
may pass through a class multiple times, and we need to keep track
of where we are in the traversal. For example, consider the traversal
t1 = from A via B to E for the class structure shown in Figure 1. A
path for such a traversal would start at an A-Object. From there it

must take the edge to a B-Object. After that, it might pass through
any number of C-, D-, and A-Objects before reaching an E-Object.
The traversal code must keep track where it is in the traversal graph,
so that when the traversal reaches the second or later A-Object, it
will know that it can then proceed to the E-Object.

The Demeter system uses the TGA algorithm [9] to generate code
for traversals. This algorithm keeps track of its place in the traver-
sal by passing an argument of type BitSet that records which classes
have already been seen in the traversal. Thus we only need to gen-
erate at most one traversal method into each class for each traver-
sal and the total number of the traversal methods needed for each
traversal is linear in the size of the class graph in the worst case. Of
course, the traversal methods generated by the TGA algorithm will
have extra runtime overhead for checking the value of the BitSet
argument.

The FIRST algorithm [7] uses a different technique. It generates
traversal methods by calculating, for each pair of a source class
and a set of target classes, the set of edges from the source class
through which an object of one of the target classes is reachable.
It uses these sets in conjunction with the strategy graph to generate
the traversal methods. For the example t1 = from A via B to E
above, the code shown in Listing 1 would be generated. Instead of
passing a BitSet argument, the algorithm calls one of two methods
in class A, depending on where it is in the strategy graph. This
algorithm avoids the overhead of checking the BitSet argument, at
the expense of adding potentially exponentially many new methods
in the worst case [9] .

This code is similar to what a human programmer might produce.
We need this form of traversal code instead of a field-access path
like this.b.c.d because usually the objective of the traversal is to
perform some process along the traversal, not just get the target
objects. For example, we could attach Visitor objects [5] to the
traversal methods to execute user-defined actions.

A B D

C

E
b

0..1

d

c

a

e

Figure 1: UML Diagram

Listing 1: Traversal methods generated by the FIRST set based
algorithm

//for traversal: from A via B to E
class A {
void t1() {
if(b!=null) {
b.t1();

}
}
void t1prime() {
access(e);
if(b!=null) {
b.t1();

}
}

}

class B {
void t1() {
d.t1();

}
}

//class C is not involved in this traversal

class D {
void t1() {
a.t1prime();

}
}

2. EXPERIMENTAL PROCEDURE
2.1 Test Bed
Although there have been a number of applications developed with
the Demeter tools or methodology, including a mission-critical ap-
plication developed at Verizon [2], the largest application we know
of is the DemeterJ compiler itself [4].

To study how the use of traversals reduces the number of meth-
ods to be written manually, we studied the generate package of the
DemeterJ’s compiler, which is the largest package using traversal
strategies in the implementation. It has 413 classes (including inter-
faces) and 80 traversals in total. All kinds of possible relationships
between classes/interfaces are present in this package and for as-
sociation relationships, all kinds of multiplicities are present. The
package defines the syntax and the semantics of the DemeterJ’s
class dictionary language (for defining the class structure of a pro-
gram) and its traversal strategy language (for specifying traversal
paths over an object structure). The package also implements the
TGA algorithm.

As in many other language processing systems, we need to write a
large amount of traversal code over the Abstract Syntax Tree in the
implementation of this package. The goal of this experiment was to
study how hard it would have been to manually write those traversal
code on such a complex class structure without tool support.

0

5

10

15

20

25

30

35
Distribution of Number of Classes involved per Traversal

Number of Classes involved

N
um

be
r

of
 T

ra
ve

rs
al

s

2−7 8−12 13−18 19−23 24−29 30−34 51−54

Figure 2: Traversals by Number of Classes Involved

0

5

10

15

20

25

30

35
Distribution of Number of Traversal Methods per Traversal

Number of Traversal Methods involved

N
um

be
r

of
 T

ra
ve

rs
al

s

2−7 8−12 13−18 19−23 24−29 30−34 51−54

Figure 3: Traversals by Number of Methods Involved

To do this, we ran the FIRST algorithm on the 80 traversals and the
class graph of the generate package and collected metrics on the
generated methods. This algorithm closely mimics what a human
programmer might generate for these traversals.

2.2 Metric 1: Number of classes/methods in-
volved

To measure how much work have been saved for programmers by
using Demeter’s high level traversal specification and the FIRST
set based traversal generating algorithm, the metric of how many
traversal methods have been generated and how many classes have
been involved would be a good indicator. For the 80 traversals in
the generate package, the FIRST algorithm generated 871 methods
involving 185 of the 413 classes in the class hierarchy.

To get the flavor of how complex the traversal programs could be
for the 80 traversals, Figure 2. and Figure 3. are the histograms
for the number of classes into which the traversal methods are

generated and for the number of traversal methods generated for
each traversal. About 25% of the traversals are complex: the num-
ber of classes involved and the number of methods generated both
are larger than 12. There is even a traversal whose number of
classes involved and whose number of traversal methods gener-
ated are both larger than 50. Although the number is quite im-
pressive, it turns out that the traversal specification itself is not that
complex in that it only has the simplest form of from ClassDef to�

PartName,ClassSpec � . That utility traversal strategy was written
to reach two of the terminal nodes (PartName and ClassSpec) in
a large class ClassDef so that a Visitor object may be attached to
the traversal and perform corresponding process along the traversal.
Another observation about the two histograms is that they almost
have exactly the same shape. It suggests that a typical traversal
in this package only needs one traversal method for each class in-
volved. In this case, the FIRST algorithm is an ideal algorithm to
be used for generating traversal methods. Figure 2. also shows
the measure of scattering of the implementation of the traversal
concern if we don’t use the Demeter toolset or any other AOP lan-
guages or tools.

2.3 Metric 2: The abstractness of traversal
strategies

One of the advantages that the Demeter tools can provide is that
to implement a traversal that needs to go through a tediously long
object access path, one doesn’t have to specify the details of each
intermediate node/edge along the path. Instead, one only needs
to specify the path by giving milestone class nodes/edges along
the path using intuitive graph primitives, including via, bypassing
among others, then the traversal generating algorithms will handle
with the remaining details. This implementation strategy makes the
program less error-prone.

We use the measurement of abstractness of a traversal strategy to
quantify the ignored details of the traversal. The more abstract a
traversal strategy is, the more details are ignored and thus the pro-
gram is more robust under structural changes.

First, we define the length of a traversal strategy. A traversal strat-
egy is composed of a sequence of milestones, each of which is a
set of class nodes or edges in the class diagram. Those milestones
indicate the class nodes or edges the traversal has to go through
or bypass. For example, traversal strategy from

�
A � via

�
B,C � to�

D,E � has three sequential milestones:
�
A � ,

�
B,C � , and

�
D,E � .

The length of a traversal strategy is defined as
���������
	������������������������������� �"!$#

Then, we define the length of traversal method call paths for a
traversal as the largest number of association relationship edges that
a branch of the traversal methods call chain may cross, in which if
there is a loop, each of the association relationship edges along the
loop will be counted exactly once. The abstractness of a traversal
strategy is defined as the ratio of the length of traversal methods
call paths over the length of the traversal strategy, i.e.:

% ���&������'����(���"���������
)*��+-,.���
/�,.�����
% ���&������'.���(���"�����0�1�2,-34������,.�
���1�2,.����'.5�6

The histogram (Figure 4.) of the abstractness of the traversal
strategies in the generate package shows that quite a few traver-
sal strategies in that package have a high abstractness. Almost one

0

5

10

15

20

25

30

35

Abstratness

N
um

be
r

of
 T

ra
ve

rs
al

s

 [1,3.6] (6.2,8.8] (11.4, 14] (24.4, 27]
 (3.6,6.2] (8.8,11.4] (14, 16.6]

Figure 4: Traversals by Abstractness

third of the traversal strategies have the abstractness of larger than7 6 8
, in which 3 strategies even have the abstractness of larger than#9#�6 :

. Like the pattern we have found in Metric 1, the traversals hav-
ing high abstractness usually are not complex traversals, instead,
they tend to be simple straightforward traversals that try to reach
some terminal nodes contained in a large object. For example, the
simple strategy from ClassDef to

�
PartName,ClassSpec � has the

abstractness of
8�;

.

2.4 Metric 3: The fan out of traversal strate-
gies

Different traversal strategies may have different fan out properties.
Some traversal strategies tend to be very “thin” in that at each class
node along the traversal, there is only 1 association relationship
edge branch to go down to reach the target nodes; while some
strategies tend to have bigger fan out metrics in that at each class
node along the traversal, there may be multiple association rela-
tionship edge branches to go down to reach the target nodes. We
use formula < 	��=���������"�1�2,-34������,.�>���������
)*�

? ����'����(���"�1�2,-34� ����,��>���������
)���+�,����
/@,.�����

to approximate the fan out of a traversal strategy. Figure 5. is the
histogram of the fan out metrics of traversal strategies in the pack-
age. As you can tell from the figure, the traversals in this package
tend to be quite “thin”, i.e., usually there is only one association re-
lationship edge from a class that can lead the traversal to reach the
target nodes. The diagram is consistent with our another statistics
of the FIRST set size for all the traversals in the package, where
the average size of the FIRST sets of all potential pairs of classes
is very close to 1. Thin traversal strategies indicate that manual im-
plementation of the traversal methods would not be very difficult,
instead, the implementation could be just very tedious, which sup-
ports one of our suspicions about the software engineering help the
Demeter tools can offer.

2.5 Metric 4: The distribution of traversals
over classes and the association relation-
ships

0

5

10

15

20

25

30

35

40

45

Num(methods)/Length(callpath)

N
um

be
r

of
 T

ra
ve

rs
al

s

[1,1.39] (1.78,2.17] (2.56,2.95] (3.34,3.73] (4.12,4.51]
 (1.39, 1.78] (2.17,2.56] (2.95,3.34] (4.51,4.9]

Figure 5: Traversals by Fan Out

Usually in a class structure diagram, some classes are more “im-
portant” than other classes in the sense that the former are referred
much more frequently than the latter. It is also the case for traver-
sal strategies, i.e., some classes are referred much more frequently
than the rest. We call those classes the key classes.

By observing what classes are the key classes in program, we can
also determine which classes need special attention at design phase.
To make a program easier to evolve, we need to deliberately de-
sign those key classes at the very beginning in such a way that we
consider the possible requirement changes in the future and reflect
those considerations in the key classes. Those special deliberation
will make it unlikely that those key classes’ structures need to be
changed in the future when the predicted requirement changes re-
ally happen, thus the maintenance cost is reduced.

Figure 6. shows the histogram of the number of traversals a class in
the package may be involved. Most of the classes are only involved
in less than 5 traversals. However, we do have 3 classes involved
in nearly 40 traversals. These 3 classes (class Definition, ClassDef
and ClassGraphEntry) are the core framework classes defining the
class graph structure of a program, thus a lot of traversals need to
go through them to access the primary information.

Similar results are obtained for the histogram (Figure 7.) of the
number of traversals an association relationship in the package may
be involved. The result is consistent with the result of the distribu-
tion of traversals over classes, since the most frequently referred to
association edges are the edges directly related to the key classes
(This is not directly shown in the data collected. Instead, we man-
ually checked the most frequently referred edges to see how many
of them are directly related to the key classes.) .

3. RELATED WORK
There has been some work in evaluating the software-engineering
gains from the use of aspect-oriented techniques in real applica-
tions.

Coady and Kiczales [3] present their work on using AspectJ [6,
11] to refactor the FreeBSD operating system to analyze how As-

0

20

40

60

80

100

120

Number of Traversals

N
um

be
r

of
 C

la
ss

es

1−4 5−8 9−12 13−16 17−20 21−24 36−39

Figure 6: Classes by Traversals Involved

0

10

20

30

40

50

60

70

80

90

Number of Traversals

N
um

be
r

of
 A

ss
oc

ia
tio

n
R

el
at

io
ns

hi
ps

 1−5 6−10 11−14 15−19 20−23 24−28 38−41 42−46

Figure 7: Edges by Traversals Involved

pectJ might help improve software evolution. They first introduce
several aspects to the version 2 of the FreeBSD operating system,
then they roll them forward into their subsequent incarnations in
version 3 and 4 respectively. Their results show that the key bene-
fits of the AOP implementation are localized changeability, explicit
configurability, reduced redundancy, and subsequent modular ex-
tensibility.

Zhang and Jacobsen [12] give their empirical study on how As-
pectJ can be used to refactor the implementation of middleware
platforms. They first investigated several middleware implementa-
tions and identified that they all have crosscutting concerns. Then
they use AspectJ to refactor the implementations of those crosscut-
ting concerns. Their conclusion is that AspectJ does improve the
implementations of those concerns, while the runtime performance
remains the same as before.

4. CONCLUSION
We conclude this paper by summarizing the key points in the format
required by the workshop organizers.

4.1 Solution Name
Adaptive programming tools (Demeter system).

4.2 Problem Addressed
The problem that the Demeter system addresses is to separate the
implementation of traversal related concerns from the implementa-
tion of other concerns.

4.3 Brief Description of Demeter System
The Demeter system supports a high level descriptive language
called traversal strategy for programmers to specify the traversal
paths in an object structure. The actual traversal will be embodied
in either the traversal methods generated from the traversal strate-
gies by traversal generating algorithms or the run time interpreta-
tion of the traversal. Visitor objects can be attached to a traversal
for user-defined actions along the traversal.

4.4 Comprehensibility
Given that it is not unusual that a traversal may have a large number
of classes and methods involved (Metric 1) and a traversal may
have a very long traversal path while the traversal semantics could
actually be very simple (Metric 2), high level descriptive traversal
strategies capture the essences of traversals and thus promote the
comprehensibility.

4.5 Semantic Interactions
Although not directly shown in any metric, the fact that the Deme-
ter system uses the Visitor pattern for programmers to define cus-
tomized processing along the traversals has already improved the
semantic interactions between the implementation of the traversal
concern and other concerns.

4.6 Summary
We did an empirical study on what software engineering benifits
the Demeter system can provide in a real application to improve the
implementation of traversal related concerns and show the benefits
are nontrivial.

5. REFERENCES
[1] DAJ home page at sourceforge. http://daj.sourceforge.net.

Continuously updated.

[2] Luis Blando. The eel compiler using adaptive object oriented
programming and demeter/java. In
http://www.blando.info/luis/eelc/eelc v20.htm. Apr 1997.

[3] Yvonne Coady and Gregor Kiczales. Back to the future: A
retroactive study of aspect evolution in operating system
code. In Proceedings of the 2nd international conference on
Aspect-oriented software development, pages 50–59. ACM
Press, 2003.

[4] Demeter Research Group. Online Material on Adaptive
Programming and Demeter. In
http://www.ccs.neu.edu/research/demeter/. Northeastern
University, 1989-2003.

[5] Erich Gamma, Richard Helm, Ralph Johnson, and John
Vlissides. Design Patterns: Elements of Reusable
Object-Oriented Software. Addison-Wesley, 1995.

[6] Gregor Kiczales, Erik Hilsdale, Jim Hugunin, Mike Kersten,
Jeffrey Palm, and William Griswold. An Overview of
AspectJ. In Jorgen Knudsen, editor, European Conference on
Object-Oriented Programming, pages 327–353, Budapest,
2001. Springer Verlag.

[7] Karl Lieberherr and Mitchell Wand. Traversal semantics in
object graphs. Technical Report NU-CCS-2001-05, College
of Computer Science, Northeastern University, May 2001.

[8] Karl J. Lieberherr. Adaptive Object-Oriented Software: The
Demeter Method with Propagation Patterns. PWS
Publishing Company, Boston, 1996. 616 pages, ISBN
0-534-94602-X, entire book at
http://www.ccs.neu.edu/research/demeter/biblio/dem-
book.html.

[9] Karl J. Lieberherr, Boaz Patt-Shamir, and Doug Orleans.
Traversals of Object Structures: Specification and Efficient
Implementation. ACM Transactions on Programming
Languages and Systems, March 2004. To appear, currently
available at:
http://www.ccs.neu.edu/research/demeter/papers/strategies/revised-
toplas/final/strategies.ps.

[10] Doug Orleans and Karl Lieberherr. DJ: Dynamic Adaptive
Programming in Java. In Reflection 2001: Meta-level
Architectures and Separation of Crosscutting Concerns ,
Kyoto, Japan, September 2001. Springer Verlag. 8 pages.

[11] AspectJ Team. AspectJ home page.
http://www.eclipse.org/aspectj. Continuously updated.

[12] Charles Zhang and Hans-Arno. Jacobsen. Quantifying
aspects in middleware platforms. In Proceedings of the 2nd
international conference on Aspect-oriented software
development, pages 130–139. ACM Press, 2003.

