
Specker Derivitive Game Requirements & Design
Generic to CNF/CSP Versions

Karl Lieberherr, Feng Zhou

College of Computer & Information Science
Northeastern University, 360 Huntington Avenue

Boston, Massachusetts 02115 USA.
{lieber,fengzhou}@ccs.neu.edu

1 Generic Requirements

We parameterize the Secker Derivitive Game (SDG) over the derivatives, raw materials etc. to be used. This
supports better separation of concerns at the requirements level. We can then formulate the important game
rules without knowing the details of the derivatives.

1.1 Parameterization

The SDG game is parameterized by a tuple C = (Typ, D, R,O, F,Q), where Typ is a set1 of types, D
(derivatives) is a set of pairs d = (t, p), where t ∈ Typ and 0 ≤ p ≤ 1. R (raw materials) is a set with each
element r ∈ R having a type typ(r) ∈ Typ. O is the set of outcomes for elements in R; we denote an outcome
for r as o(r) ∈ O. F (finished products) is a set of pairs (r, o(r)), with r ∈ R and o(r) ∈ O. Q (quality) is a
function that maps a finished product (r, o(r)) to [0, 1].

The game is about buying and selling derivatives. When a derivative d = (t, p) is offered, only its type t
and price p are known. The creator and buyer of a derivative need to do a min-max analysis for the type t,
which makes the game interesting. By min-max analysis we mean that it must be known what the worst-case
raw material is for a given type. The seller must know this to price the derivative properly and the buyer
must know this to decide whether the price is right. The buyer of a derivative will be paid the quality of the
finished product achieved for the raw material produced by the seller, after the derivative was bought.

SDG(C) is a tuple (P, account , store, config), where P is an ordered set of players, account is a function
that assigns a positive real number to each player. store is a function that assigns a pair (forSale, bought) to
each player, where forSale is a set of derivatives for sale and bought is a set of tuples (d, seller , r, f), where d is a
derivative, seller ∈ P , r ∈ R∪{absent} and f ∈ F∪{absent}. config is a tuple (init , maxTurns, timeslot , mindec),
which configures the game. This configuration tuple will be later expanded with specifics for the combinato-
rial structure2 to be used in the game. init is a positive real number, giving the initial amount of the account
of each player in P . maxTurns is the maximum number of turns the game will be played. timeslot is the
amount of time given to each player. mindec is a small real number which specifies the minimum decrement
when the price of a derivative is lowered.

1.2 Game Rules

The SDG(C) game has an asynchronous and a synchronous version. Here we define the synchronous version
where players operate sequentially; in the asynchronous version, players can buy and sell at any time.

The rules of the synchronous SDG(C) game are:

1. Main Objective. The winner of the game is the player with the most money in the player’s account at
the end of the game. The account value ranks the players. Players with the same account value have the
same rank.

1 All sets discussed are finite.
2 CNF or CSP for example.



2. Uniform Turns. Only one player is playing at a given time. When a player is done, the next player is
the next element in the ordered set P . A player may indicate that s/he is done in a variety of ways, for
example by creating a file. In other words, the players take turns in a uniform sequence.

3. Buy or Re-offer. To make derivatives more attractive, on each turn, a player must buy at least one
derivative offered for sale by other players or re-offer all derivatives for sale by all other players at a lower
price. When a derivative is bought the seller is paid by the buyer the price of the derivative.

4. Offer new derivative. On each turn, a player must offer a derivative whose type does not exist yet in the
store, or whose price is lower than the price of all other derivatives of the same type in the store.

5. Timely delivery. A player must deliver raw materials for derivatives bought from them in the previous
round. The type of the raw material must match type of the derivative.

6. Obligation to the finished product. The owner of a derivative is obliged to pay for a finished product
based on the quality achieved as soon as the finished product is delivered.

7. Price lowering. When lowering the price of a derivative, it must be lowered at least by mindec.
8. Bought once. A derivative may only be bought once from the store.
9. Positive account. Players must maintain a positive account.

10. Time limit. Players must finish within timeslot .
11. Consequences. Players that don’t comply with the rules are removed from the game. If a player is removed

from the game, its derivatives are removed from the store and its bought, but unfinished derivatives are
refunded to the buyer.

12. Completion. After maxTurns rounds, nothing can be bought but raw materials are still delivered and
finished until all outstanding obligations are met.

1.3 Archiving Concern

We want to be able to archive games for further analysis. We use the following 4 archiving transactions.

1. When a player p offers a derivative d, we archive create(p, d).
2. When a player p buys a derivative d from seller , we archive buy(seller , p, d).
3. When a player p delivers raw material r for derivative d, we archive deliverR(p, d, r).
4. When a player p delivers the finished product f = (r, o(r)) for raw material r and derivative d, we archive

deliverF (p, d, f).

Given a sequence of archived transactions, we can check whether the players followed the rules of the game.
For example, a player can only finish raw material for a derivative that was bought previously.

1.4 Security Concern

It must be difficult for the players to cheat, which is a so called non-functional requirement. Currently, we
do not implement this requirement, to avoid an overload, but in principle we should. It is not a good idea
to add security as an after-thought.

2 Specialization

2.1 For CNF

This specialization initiates learning about propositional calculus and basic combinatorics. Algorithms for
MAX-SAT are important to play the game well.

For this formulation, Typ = {r1, r2} where r1 and r2 are clause types. A clause type is a pair (l, p), where
p is a set of positive literals with l elements. R is the set of weighted CNF-formulas of type Typ, where each
clause has a positive integer weight. O is the set of all assignments for a CNF-formula. F is a pair (r, J),
where J ∈ O is an assignment for the CNF-formula r. Q(r, J) is the weighted fraction of satisfied clauses in
CNF-formula r under assignment J .

To make the sets finite we add the following configuration tuple:

(maxVars, maxClauses, maxWeight , maxClauseLength)

2



2.2 For CSP

This specialization initiates learning about Boolean constraint satisfaction. Algorithms for MAX-CSP are
important to play the game well.

For this formulation, Typ is the set of boolean relations of at most rank 3, of which there are 256. R is the
set of CSP(Typ)-formulas. A derivative is a set of relations in Typ and a price. O is a Boolean assignment
J for a CSP(Typ)-formula. F is a pair (r, J), where J is an assignment to the variables of r. Q(r, J) is the
weighted fraction of satisfied constraints in r under assignment J .

To make the sets finite we add the following configuration tuple:

(maxVars, maxConstraints, maxWeight)

3 Reflection on the course

We can recognize elements of the game in real life. You have selected this course based on a a set of features:
course description, college requirements, reputation, etc. Based on those features you have selected to take
my course. The features correspond to the type of a derivative which you buy only by knowing the type. Now
Feng and I are delivering raw materials (subprojects) within the constraints of the course features we agreed
upon. While we make the raw materials a bit hard for you, we do this with the objective of challenging
and expanding your intellectual capabilities in managing software development. (This is different than in
the game where we find hard raw materials to avoid a high payout.) You finish the raw materials by finding
solutions to the subprojects and you will be paid by the quality of your finished product (your grade). Your
real payout, however, is the set of new skills you learn about managing software development.

You can learn about managing software development by learning the theory and by practicing the man-
agement of a software development project. It is my belief that without having experienced a project, you
won’t absorb the theory well. That is why we experience the project of developing algorithmic players.

4 Design

The requirements don’t specify how the players communicate with each other. There are two options: a
centralized versus a decentralized design. We use a centralized design using an administrator. The players
and the administrator communicate through XML documents.

5 Implementation

We use Java as implementation language and a Java data binding tool to automatically generate parsers
and printers from an XML schema.

In the implementation we practice Adaptive Programming (AP). In AP, as little structural information
as possible is spread as narrowly as possible. (A good design principle in general not only for structural
information.)

Acknowledgements: Milena Georgieva Dimitrova has given detailed feedback on the requirements and
she has written the previous version of the requirements.

3


