
16-1Embedded Systems

Software Testing

Lecture 16

Embedded Systems 16-2

Suggested Reading
Testing Computer Software, Cem Kaner, Jack Falk,

Hung Quoc Nguyen
– Used as framework for much of this lecture

Software Engineering: A Practitioner’s Approach,
Robert Pressman
– Chapters 17 & 18

The Art of Designing Embedded Systems, Jack Ganssle
– Chapter 2: Disciplined Development
– Chapter 3: Stop Writing Big Programs

The Mythical Man-Month, Frederick P. Brooks, Jr.
The Practice of Programming, Brian Kernighan & Rob Pike
Why Does Software Cost So Much? and Other Puzzles of the

Information Age, Tom DeMarco

Embedded Systems 16-3

Overview

Big Picture
– What testing is and isn’t
– When to test in the project development schedule
– Incremental vs. Big Bang

How to test
– Clear box vs. black box
– Writing test harnesses

• Software only
• Software and hardware

– Selecting test cases
• What code to test
• What data to provide

Embedded Systems 16-4

Testing

Brooks (MMM): Preferred time distribution – mostly planning
and testing

The sooner you start coding, the longer it will take to finish
the program

Planning
33%

System
Test
25%

Coding
17%

Compon
ent Test

25%

Embedded Systems 16-5

Philosophy of Testing

Common misconceptions
– “A program can be tested completely”
– “With this complete testing, we can ensure the program

is correct”
– “Our mission as testers is to ensure the program is

correct using complete testing”

Questions to be answered
– What is the point of testing?
– What distinguishes good testing from bad testing?
– How much testing is enough?
– How can you tell when you have done enough?

Embedded Systems 16-6

Clearing up the Misconceptions

Complete testing is impossible
– There are too many possible inputs

• Valid inputs
• Invalid inputs
• Different timing on inputs

– There are too many possible control flow paths in the program
• Conditionals, loops, switches, interrupts…
• Combinatorial explosion
• And you would need to retest after every bug fix

– Some design errors can’t be found through testing
• Specifications may be wrong

– You can’t prove programs correct using logic
• If the program completely matches the specification, the spec may still

be wrong
– User interface (and design) issues are too complex

Embedded Systems 16-7

What is the Objective of Testing?

Testing IS NOT “the process of verifying the program works correctly”
– You can’t verify the program works correctly
– The program doesn’t work correctly (in all cases), and probably won’t ever

• Professional programmers have 1-3 bugs per 100 lines of code after it
is “done”

– Testers shouldn’t try to prove the program works
• If you want and expect your program to work, you’ll unconsciously

miss failures
• Human beings are inherently biased

The purpose of testing is to find problems
– Find as many problems as possible

The purpose of finding problems is to fix them
– Then fix the most important problems, as there isn’t enough time to fix all

of them
– The Pareto Principle defines “the vital few, the trivial many”

• Bugs are uneven in frequency – a vital few contribute the majority of
the program failures. Fix these first.

Embedded Systems 16-8

Software Development Stages and Testing
1. Planning

– System goals: what it will do and why
– Requirements: what must be done
– Functional definition: list of features and functionality
– Testing during Planning: do these make sense?

2. Design
– External design: user’s view of the system

• User interface inputs and outputs; System behavior given inputs
– Internal design: how the system will be implemented

• Structural design: how work is divided among pieces of code
• Data design: what data the code will work with (data structures)
• Logic design: how the code will work (algorithms)

– Testing during Design
• Does the design meet requirements?
• Is the design complete? Does it specify how data is passed

between modules, what to do in exceptional circumstances, and
what starting states should be?

• How well does the design support error handling? Are all
remotely plausible errors handled? Are errors handled at the
appropriate level in the design?

Embedded Systems 16-9

Software Development Stages

3. Coding and Documentation
– Good practices interleave documentation and testing with coding

• Document the function as you write it, or once you finish it
• Test the function as you build it. More on this later

4. Black Box Testing and Fixing
– After coding is “finished” the testing group beats on the code,

sends bug reports to developers. Repeat.
5. Post-Release Maintenance and Enhancement

• 42% of total software development budget spent on user-
requested enhancements

• 25% adapting program to work with new hardware or other
programs

• 20% fixing errors
• 6% fixing documentation
• 4% improving performance

Embedded Systems 16-10

Development and Testing Approach: Incremental vs. Big Bang Testing

Incremental Testing
– Code a function and then test it (module/unit/element testing)
– Then test a few working functions together (integration testing)

• Continue enlarging the scope of tests as you write new functions
– Incremental testing requires extra code for the test harness

• A driver function calls the function to be tested
• A stub function might be needed to simulate a function called by

the function under test, and which returns or modifies data.
• The test harness can automate the testing of individual functions to

detect later bugs

Big Bang Testing
– Code up all of the functions to create the system
– Test the complete system

• Plug and pray

Embedded Systems 16-11

Why Test Incrementally?

Finding out what failed is much easier
– With BB, since no function has been thoroughly tested, most probably

have bugs
– Now the question is “Which bug in which module causes the failure I see?”
– Errors in one module can make it difficult to test another module

• If the round-robin scheduler ISR doesn’t always run tasks when it
should, it will be hard to debug your tasks!

Less finger pointing = happier team
– It’s clear who made the mistake, and it’s clear who needs to fix it

Better automation
– Drivers and stubs initially require time to develop, but save time for future

testing

Embedded Systems 16-12

Mapper Development Plan

Configure U0, U2
 for Rx at NMEA speed

Test Rx on U0
 using PC

Configure ISRs to
 use UART queues

Test Rx on U0
 using GPS

Test NMEA decoder with
 GPS connected to UART

Test harness to feed canned
 NMEA data into Rx queues

Test NMEA decoder with
 canned NMEA data

Write NMEA
decoder functions

Test NMEA decoder
 with sentence strings as arguments

Write code to extract
 sentences from Rx queue

Add ISR triggering
of tasks

Add NPE RR Scheduler

Create sonar task
(polling, no record creation)

Create GPS task
(polling, no record creation)Write read switch task Write display task

Test polling-driven tasks Add record creation
 to GPS task

Test interrupt-driven tasks

Test system operation

Test record creation
from GPS and sonar

Write bit-bang
SPI driver

Test with scope

Test DataFlash basics:
load buffer, write to page,

read from page,
read from buffer

Port DataFlash
code from Atmel

Test DataFlash
 record handling

Test data download
 with DataFlash

Define data
record format

Write record
 create/decode functions

Test record creation
 and decoding

Write data
download task

Test data download
task with canned records

Test GPS and sonar
 record storage in DataFlash

Define user interface

Test user interface

Development Tasks

Development = Σ(coding + testing)
Task dependency graph shows an overview of the sequence of

– What software must be written
– When and how it is tested

Nodes represent work
– Ellipse = code, Box = test

Arrows indicate order

Embedded Systems 16-13

Overview

Big Picture
– What testing is and isn’t
– When to test in the project development schedule
– Incremental vs. Big Bang

How to test
– Bug reports
– Clear box vs. black box testing
– Writing test harnesses

• Software only
• Software and hardware

– Test plan and selecting test cases
• What code to test
• What data to provide

Embedded Systems 16-14

Bug Report
Goal: provide information to get bug fixed

– Explain how to reproduce the problem
– Analyze the error so it can be described in as few steps as possible
– Write report which is complete, easy to understand, and non-antagonistic

Sections
– Program version number
– Date of bug discovery
– Bug number
– Type: coding error, design issue, suggestion, documentation conflict,

hardware problem, query
– Severity of bug: minor, serious, fatal
– Can you reproduce the bug?
– If so, describe how to reproduce it
– Optional suggested fix
– Problem summary (one or two lines)

Embedded Systems 16-15

Clear Box (White Box) Testing
How?

– Exercise code based on knowledge of how program is written
– Performed during Coding stage

Subcategories
– Condition Testing

• Test a variation of each condition in a function
– True/False condition requires two tests
– Comparison condition requires three tests

» A>B? A < B, A == B, A > B

• Compound conditions
– E.g. (n>3) && (n != 343)

– Loop Testing
• Ensure code works regardless of number of loop iterations
• Design test cases so loop executes 0, 1 or maximum number of times
• Loop nesting or dependence requires more cases

Embedded Systems 16-16

Black Box Testing

Complement to white box testing
Goal is to find

– Incorrect or missing functions
– Interface errors
– Errors in data structures or external database access
– Behavioral or performance errors
– Initialization and termination errors

Want each test to
– Reduce the number of additional tests needed for reasonable

testing
– Tell us about presence or absence of a class of errors

Embedded Systems 16-17

Comparing Clear Box and Black Box Testing

Clear box
– We know what is inside the box, so we test to find internal

components misbehaving
– Large number of possible paths through program makes it

impossible to test every path
– Easiest to do during development

Black box, behavioral testing
– We know what output the box should provide based on given

inputs, so we test for these outputs
– Performed later in test process

Embedded Systems 16-18

Test Harness

Components
– Driver: provide data to function

under test
– Stub: simulate an as-of-yet-

unwritten function
• May need stub functions to

simulate hardware
Conditional compilation
Automation

��� ������	
�������
������������������
����������
���	����� �������

!

����"�����������#���� �	$��������
��� ��
%&������	$������''���
�����������#���
((������)����	�����������
������*+,-�.�/�00��1+�2�.�/��

��3����"����4���	�����
!

!

��� �������#�������
((���������	����$������& 5�����
((����#������
��%��&������3�
��� ��������.�/�
������1+�2�.�/�6�+�2�.�/�7���
������*+,-�.�/�6�+,-�.�/�7���
���	�����

!

8�������"9�",-:�;
8�������+,-�.�/��;��
8�������+�2�.�/��5���

8���"9�",-:
8�����������.�/�������	
��

8����
8�����������.�/����5

8�����

Embedded Systems 16-19

Passing Input Data to Functions

Code gets data from…
– Arguments – easy to handle
– Global variables (including global data

structures) – require some “glue” code to
configure/preload

Example: Testing decoding of recorded NMEA
sentences from sonar

– Don’t have sonar connected to board
– Instead load U0RxQ with NMEA sentences

������

����

�����
����	�

�����
����
	������

��������

	����
�����

����"����-+9��������3�������
	���3������� ��
������
%&������$�������<�=<�=���
>�9�?	�	�������3�@�A-�B�B2�>C���
�$�������<�=���(�����������3�
��?	�	�� (

������������������� ��;�
"��D�E������-+9�������������
����

!
!

�����������&����$�������<F=<=����
GHI22�BCBC���C�CEAB"�4J9/CBC���C�C�"�BKA�B��4J9/CJC;5��C.CK�""9BI
 �4L�L�GC
GH���K"C���C�C���C+C���C4 �ML�L�GC������GH���E"C���C���C5�� �NL�L�GC
GHE""D.C���CCC�F�MC�F�MCN5�OC4 ;;L�L�GC�GHE""D�C���CCK ;4L�L�GC
GH.P.QPCCCCC���C-C���CD ��L�L�GC��������GH.P+"PC55��C� ;ML�L�GC
GH.P./PC�F�MC-C�F�MC- ��L�L�GC����������GG!�!

Embedded Systems 16-20

Test Plans

A test plan is a general document describing the general test
philosophy and procedure of testing. It will include:

Hardware/software dependencies
Test environments
Description of test phases and functionality tested each

phase
List of test cases to be executed
Test success/failure criteria of the test phase
Personnel
Regression activities

Embedded Systems 16-21

Test Cases

A test case is a specific procedure of testing a particular
requirement. It will include:

Identification of specific requirement tested
Test case success/failure criteria
Specific steps to execute test

Embedded Systems 16-22

Test Case Example
Test Case L04-007:
Objective: Tested Lab 4 requirement 007.
Passing Criteria: All characters typed are displayed on LCD and

HyperTerminal window.
Materials needed: Standard Lab 4 setup (see test plan).
1. Attach RS-232c cable between the SKP board and a PC.
2. Start HyperTerminal on PC at 300 baud, 8 data bits, 2 stop bits, even

parity.
3. Type “a” key on PC. Ensure it is displayed on SKP board LCD, and

in the PC HyperTerminal window.
4. Test the following characters: CR, A, a, Z, z, !, \, 0, 9

Embedded Systems 16-23

A Good Test…
Has a high probability of finding an error

– Tester must have mental model of how software might fail
– Should test classes of failure

Is not redundant
– Testing time and resources are limited
– Each test should have a different purpose

Should be “best of breed”
– Within a set of possible tests, the test with the highest likelihood of finding

a class of errors should be used

Should be neither too simple nor too complex
– Reduces possibility of one error masking another

Should test rarely used as well as common code
– Code which is not executed often is more likely to have bugs
– Tests for the common cases (e.g. everything normal) do not exercise

error-handling code
– We want to ensure we test rare cases as well

Embedded Systems 16-24

Equivalence Partitioning

Divide input domain into data classes
Derive test cases from each class
Guidelines for class formation based on input condition

– Range: define one valid and two invalid equivalence classes
R ������1N��@@���*O���S

• Valid Equivalence Class: 7<x<30
• Invalid Equivalence Class 1: x <= 7
• Invalid Equivalence Class 2: x >= 30

– Specific value: one valid and two invalid equivalence classes
R �������5���S

• Valid Equivalence Class: x == 20
• Invalid Equivalence Class 1: x < 20
• Invalid Equivalence Class 2: x > 20

– Member of a set: one valid and one invalid equivalence classes
– Boolean: one valid and one invalid equivalence classes

Embedded Systems 16-25

Examples of Building Input Domains

Character strings representing integers
– Valid: optional ‘–’ followed by one or more decimal digits

• 5, 39, -13451235
– Invalid: strings not matching description above

• 61-, 3-1, Five, 6 3, 65.1
Character strings representing floating point numbers

– Valid: optional ‘–’ followed by one or more decimal digits, optional ‘.’
followed by one or more decimal digits

• 9.9, -3.14159265, 41
– Invalid: strings not matching above description

• 3.8E14, frew, 11/41
Character strings representing latitude

– Valid:
• Degrees: integer string >= -180 and <= 180 followed by °
• Minutes: floating point string >= 0.0 and < 60.0 followed by ’
• 31° 15.90’, 31° 15.90’

– Invalid: strings not matching description
• 310° 15.90’, 1° -15’, 30° 65.90’

Embedded Systems 16-26

Regression Tests

A set of tests which the program has failed in the past
When we fix a bug, sometimes we’ll fix it wrong or break

something else
– Regression testing makes sure the rest of the program still works

Test sources
– Preplanned (e.g. equivalence class) tests
– Tests which revealed bugs
– Customer-reported bugs
– Lots of randomly generated data

Embedded Systems 16-27

Testability- How Easily Can A Program Be Tested?

How we design the software affects testability
• Operability – The better it works, the more efficiently it can be tested.

– Bugs add overhead of analysis and reporting to testing.
– No bugs block the execution of the tests.
– The product evolves in functional stages (allowing concurrent testing)

• Observability – What you see is what you test.
– A distinct output is generated for each input
– System state and variables should be visible or queriable during

execution (past states and variables too)
– Incorrect output is easily identified
– Internal errors are detected through self-testing, and are automatically

reported
– Source code is accessible

Embedded Systems 16-28

More Characteristics of Testability
• Controllability – The better we can control the software, the more

testing can be automated and optimized.
– All possible outputs can be generated through some combination of inputs
– All code is executable through some combination of input
– Software and hardware states can be controlled directly by the test

engineer
– Input and output formats are consistent and structured
– Tests can be conveniently specified, automated and reproduced

• Decomposability – By controlling the scope of testing, we can more
quickly isolate problems and perform smarter retesting
– Software is built from independent modules
– Modules can be tested independently

• Simplicity – The less there is to test, the more quickly we can test it.
– Functional simplicity – no extra features beyond requirements
– Structural simplicity – partition architecture to minimize the propagation of

faults
– Code simplicity – a coding standard is followed for ease of inspection and

maintenance

Embedded Systems 16-29

More Characteristics of Testability

• Stability – The fewer the changes, the fewer the
disruptions to testing.
– Changes to software are infrequent and controlled
– Changes to software do not invalidate existing tests
– Software recovers well from failures

• Understandability – The more information we have, the
smarter we will test
– The design is well understood
– Dependencies among components are well understood
– Technical documentation is

• Instantly accessible
• Well organized
• Specific, detailed and accurate

