
XML Representation of Constraint Networks

Version 2.0

Organising Committee of the
Second International Competition of CSP Solvers

Abstract

In this document, we present a new extended format to represent con-
straint networks using XML. This format allows representing constraints
defined either in extension or in intention. It also allows to reference
global constraints. It will be used for the second international competi-
tion of CSP solvers which will be held during summer and winter 2006.

Revisions of this document

May 23, 2006

Two new attributes (maxConstraintArity and maxSatisfiableConstraints)
of element <presentation> have been introduced. They are optional (and will
not be considered for the 2006 competition).

Impact on the 2006 competition: none as such attributes will be removed
from instances under canonical form.

August 2, 2006

The use of operators eq and ne with Boolean arguments is deprecated (see
subsection 2.5). Instead of using ne, you can use xor and instead of using
eq, you can use not with xor. Certainly, new operators (iff , if , . . .) will be
introduced in the future. The interest of removing (in the medium term) the
use of eq and ne with Boolean arguments is that it simplifies typing control of
expressions and parsing.

Impact on the 2006 competition: none as instances involving predicates
which use operators eq and ne with Boolean arguments will be discarded.

1 Introduction

For the second international competition of CSP solvers which will be held
during summer 2006, it has been decided to deal with constraint networks in-
volving finite domains and constraints defined in extension or in intention. It

1

1 INTRODUCTION 2

means that, in such networks, domains (associated with variables) correspond
to finite sets of values, and constraints are either explicitly defined by sets of
tuples, or implicitly defined by predicates.

In order to avoid any ambiguity, we briefly introduce constraint networks. A
constraint network consists of a finite set of variables such that each variable X
has an associated domain dom(X) denoting the set of values allowed for X, and
a finite set of constraints such that each constraint C has an associated relation
rel(C) denoting the set of tuples allowed for the variables vars(C) involved in C.
A solution to a constraint network is an assignment of values to all the variables
such that all the constraints are satisfied. A constraint network is said to be
satisfiable if it admits at least a solution. The Constraint Satisfaction Problem
(CSP), whose task is to determine whether or not a given constraint network is
satisfiable, is NP-complete. A constraint network is also called CSP instance.

To propose an XML representation of constraint networks, one has to ad-
dress the main issue of representing constraints. When a constraint is given in
intention, a predicate has to be introduced and when a constraint is given in
extension, a set of tuples has to be introduced. More precisely, constraints can
be represented by giving:

• a predicate that determines whether a given tuple is allowed or not,

• or a set of allowed tuples, called supports,

• or a set of unallowed (or forbidden) tuples, called conflicts.

Important Remark 1 The description given by this document exploits both
BNF (Backus Naur Form) and XML structures, and may sometimes appear as
approximative. However, note that the objective of this document is to be as
precise as possible while preserving human-readability. For a more rigourous
description, one can see the DTD (Document Type Definition) or XML schema
(available in April, 2006) that is associated with format 2.0. Also, a tool (called
checker) that will validate instances (it is not possible to perform all verifications
using a DTD or a schema) in format 2.0 will be furnished.

Important Remark 2 The format proposed in this document represents a
compromise between structuration and readibility. However, we keep some free-
dom by taking into account several representations of predicate expressions.

Important Remark 3 This format is accompanied by :

• a XML schema,

• three parsers, one written in C++ (which provides an interface suitable
for solvers written in C) and the two other ones written in Java (using
DOM and SAX, respectively),

• a tool called solutionChecker that allows to compute the number of con-
straints violated by a full variable assignment (of course, a number of
violated constraints equal to 0 corresponds to a solution),

2 XML REPRESENTATION 3

• a tool called instanceChecker that allows to validate instances and to
convert constraints defined in intention into constraints defined in exten-
sion.

• a tool called instanceShuffler that allows to shuffle variables and con-
straints of a given instance.

For more information about such tools, see http://www.cril.univ-artois.fr/

~lecoutre/research/tools/tools.html

2 XML Representation

Each CSP instance is represented following the format given in Figure 1 where
q, n, r, p and e respectively denote the number of distinct domains, the number
of variables, the number of distinct relations, the number of distinct predicates
and the number of constraints. Note that q ≤ n as the same domain definition
can be used for different variables, r ≤ e and p ≤ e as the same relation or
predicate definition can be used for different constraints. Thus, each instance
is defined by an XML element which is called instance and which contains
four, five or six elements. Indeed, it is possible to have one instance defined
without any reference to a relation or/and to a predicate. Then, the elements
<relations> and <predicates> may be missing (in this case, it means that only
global constraints are referenced).

Each basic element (<presentation>, <domain>, <variable>, <relation>,
<predicate> and <constraint>) of the representation admits an attribute called
name. The value of the attribute name must be a valid identifier according to
the most common rules (start with a letter or underscore and further contain
letters, digits or underscores). More precisely, an identifier is defined (in BNF
notation) as follows:

<identifier> ::= <letter> | "_" { <letter> | <digit> | "_" }

<letter> ::= "a".."z" | "A".."Z"

<digit> ::= "0".."9"

Identifiers are case-sensitive. Useful in the rest of the document, separators
and integers are defined as follows:

<whitespace> ::= " " | "\t" | "\n" | "\r"

<separator> ::= <whitespace> | { <whitespace> }

<integer> ::= ["+" | "-"] <digit> {<digit>}

Remark 1 The format 2.0 described in this paper is not an extension of the
format 1.1 proposed for the first competition of CSP solvers. It means that an
instance represented using the format 1.1 does not respect the new format 2.0.

Remark 2 In the representation of any instance, it is not possible to find sev-
eral attributes ”name” using the same identifier.

Remark 3 In the body of any element of the document, one can insert an
<extension> element in order to put any information specific to a solver.

2 XML REPRESENTATION 4

<instance>

<presentation

name = ’put here the instance name’

...

format = ’XCSP 2.0’ >

Put here the description of the instance

</presentation>

<domains nbDomains=’q’>

<domain

name = ’put here the domain name’

nbValues = ’put here the number of values’ >

Put here the list of values

</domain>

...

</domains>

<variables nbVariables=’n’>

<variable

name = ’put here the variable name’

domain = ’put here the name of a domain’

/>

...

</variables>

<relations nbRelations=’r’>

<relation

name = ’put here the name of the relation’

arity = ’put here the arity of the relation’

nbTuples = ’put here the number of tuples’

semantics = ’put here either supports or conflicts’ >

Put here the list of tuples

</relation>

...

</relations>

<predicates nbPredicates=’p’>

<predicate

name = ’put here the name of the predicate’ >

<parameters>

put here a list of formal parameters

</parameters>

<expression>

Put here one (or more) representation of the predicate expression

</expression>

</predicate>

...

</predicates>

<constraints nbConstraints=’e’>

<constraint

name = ’put here the name of the constraint’

arity = ’put here the arity of the constraint’

scope = ’put here the scope of the constraint’

reference = ’put here the name of a relation, a

predicate or a global constraint’>

...

</constraint>

...

</constraints>

</instance>

Figure 1: XML representation of a CSP instance

2 XML REPRESENTATION 5

2.1 Presentation

The XML element called <presentation> admits a set of attributes and may
contain a description (a string) of the instance :

<presentation

name = ’put here the instance name’

maxConstraintArity = ’put here the greatest constraint arity’

nbSolutions = ’put here the number of solutions’

solution = ’put here a solution’

maxSatisfiableConstraints = ’the maximum number of satisfied constraints’

format = ’XCSP 2.0’ >

Put here the description of the instance

</presentation>

The attribute name must be a valid identifier while the attribute format
must be given the value ’XCSP 2.0’. All other attributes of <description>
are optional as they only provide human-readable information. The attribute
maxConstraintArity is of type integer and denotes the greatest arity of all
constraints involved in the instance. The attribute nbSolutions can be given
an integer value denoting the total number of solutions of the instance, an
expression of the form ’at least k’ with k being a positive integer or ’?’.

For example,

• nbSolutions = ’0’ indicates that the instance is unsatisfiable,

• nbSolutions = ’3’ indicates that the instance has exactly 3 solutions,

• nbSolutions = ’at least 1’ indicates that the instance has at least 1
solution (and, hence, is satisfiable),

• nbSolutions = ’?’ indicates that it is unknown whether or not the in-
stance is satisfiable,

The attribute solution indicates a solution if one exists and has been found.
The attribute maxSatisfiableConstraints can be given an integer value denot-
ing the maximum number of constraints that can be satisfied, an expression of
the form ’at least k’ with k being a positive integer or ’?’.

2.2 Domains

The XML element called domains admits an attribute which is called nbDomains
and contains some occurrences (at least, one) of an element called domain, one
for each domain associated with at least one variable of the instance. The at-
tribute nbDomains is of type integer and its value is equal to the number of oc-
currences of the element domain. Each element domain admits two attributes,
called name and nbV alues and contains a list of values, as follows:

<domain

name = ’put here the domain name’

nbValues = ’put here the number of values’ >

Put here the list of values

</domain>

2 XML REPRESENTATION 6

The attribute name corresponds to the name of the domain and its value
must be a valid identifier. The attribute nbV alues is of type integer and its
value is equal to the number of values of the domain. The content of the
element <domain> gives the list (set) of integer values included in the domain.
The description of (the content of) a domain takes the form (in BNF notation):

<domainDescription> ::= <domainPiece> {<separator> <domainPiece>}

<domainPiece> ::= <integer> | <integer> ".." <integer>

To summarize, a domain is defined from some pieces that correspond to
single values and ranges of integer values. For example,

• 1 5 10 corresponds to the set {1, 5, 10}.

• 1..3 10..14 corresponds to the set {1, 2, 3, 10, 11, 12, 13, 14}.

Note that nbV alues gives the number of values of the domain (i.e. the
domain size), and not, the number of domain pieces. Note also that one (or
more) space character is used as a separator of domain pieces.

2.3 Variables

The XML element called variables admits an attribute which is called nbV ariables
and contains some occurrences of an element called variable, one for each vari-
able of the instance. The attribute nbV ariables is of type integer and its value
is equal to the number of occurrences of the element variable. Each element
variable is empty but admits two attributes, called name and domain, as fol-
lows:

<variable

name = ’put here the variable name’

domain = ’put here the name of a domain’

/>

The attribute name corresponds to the name of the variable and its value
must be a valid identifier. The value of the attribute domain gives the name of
the associated domain. It must correspond to the value of the name attribute
of a domain element.

2.4 Relations

If present, the XML element called relations admits an attribute which is called
nbRelations and contains some occurrences (at least, one) of an element called
relation, one for each relation associated with at least a constraint of the in-
stance. The attribute nbRelations is of type integer and its value is equal to
the number of occurrences of the element relation.

Each element relation admits four attributes, called name, arity, nbTuples
and semantics, and contains a list of tuples that represents either allowed tuples
(supports) or unallowed tuples (conflicts). It is defined as follows:

2 XML REPRESENTATION 7

<relation

name = ’put here the name of the relation’

arity = ’put here the arity of the relation’

nbTuples = ’put here the number of tuples’

semantics = ’put here either supports or conflicts’ >

Put here the list of tuples

</relation>

The attribute name corresponds to the name of the relation and its value
must be a valid identifier. The attribute arity is of type integer and its value
is equal to the arity of the relation. The attribute nbTuples is of type integer
and its value is equal to the number of tuples of the relation. The attribute
semantics can only be given two values: ’supports’ and ’conflicts’. Of course,
if the value of semantics is ’supports’ (resp. ’conflicts’), then it means that the
list of tuples correspond to allowed (resp. unallowed) tuples. The content of the
element <relation> gives the list (set) of tuples of the relation. For a binary
relation, the description of (the content of) a relation takes the form (in BNF
notation):

<binaryRelationDescription> ::= [<binaryTupleList>]

<binaryTupleList> ::= <binaryTuple> | <binaryTuple> "|" <binaryTupleList>

<binaryTuple> ::= <integer> <separator> <integer>

For ternary relations, one has just to consider tuples formed from 3 values,
etc. For example, a list of binary tuples is:

0 1|0 3|1 2|1 3|2 0|2 1|3 1

while a list of ternary tuples is:

0 0 1|0 2 1|1 0 1|1 2 0|2 1 1|2 2 2

Note that an empty list of tuples is authorized by the syntax. Also, remark
that one (or more) space character is used as separator of tuple values, and that
’|’ is used as separator of tuples.

Remark 4 Strictly speaking, an element <relation> does not correspond to a
well-defined relation. Indeed, the Cartesian product on which the relation should
be defined is not precised. However, it allows to associate an element <relation>
with constraints whose domains (i.e. Cartesian products corresponding to their
scopes) are different.

2.5 Predicates

If present, the XML element called predicates admits an attribute which is
called nbPredicates and contains some occurrences (at least, one) of an element
called predicate, one for each predicate associated with at least a constraint
of the instance. The attribute nbPredicates is of type integer and its value is
equal to the number of occurrences of the element predicate.

Each element predicate admits one attribute, called name, and contains two
elements, called <parameters> and <expression>. It is defined as follows:

2 XML REPRESENTATION 8

<predicate

name = ’put here the name of the predicate’ >

<parameters>

put here a list of formal parameters

</parameters>

<expression>

Put here one (or several) representation(s) of the predicate expression

</expression>

</predicate>

The attribute name corresponds to the name of the predicate and its value
must be a valid identifier. The element <parameters> contains a list of formal
parameters as follows (in BNF notation):

<formalParameters> ::= [<formalParametersList>]

<formalParametersList> ::= <formalParameter>

| <formalParameter> <separator> <formalParametersList>

<formalParameter> ::= <type> <separator> <identifier>

<type> ::= "int"

Each parameter is then defined by a pair composed of its name and the name
of its type. For the moment, the only authorized type is ’int’ (denoting integer
values). However, in the future, we project to take into account other types:
”bool”, ”string”, etc. Note that one (or more) space character is used between
formal parameters and between the type and the name of a parameter.

The element <expression> contains one (or more) representation of the pred-
icate expression.

Remark 5 For the 2006 competition, only the functional representation de-
scribed below will be considered.

2.5.1 Functional Representation

It is possible to insert a functional representation of the predicate expression by
inserting in <expression> an element <functional> which contains any boolean
expression defined as follows:

<integerExpression> ::=

<integer> | <identifier>

| "neg(" <integerExpression> ")"

| "abs(" <integerExpression> ")"

| "add(" <integerExpression> "," <integerExpression> ")"

| "sub(" <integerExpression> "," <integerExpression> ")"

| "mul(" <integerExpression> "," <integerExpression> ")"

| "div(" <integerExpression> "," <integerExpression> ")"

| "mod(" <integerExpression> "," <integerExpression> ")"

| "pow(" <integerExpression> "," <integerExpression> ")"

| "min(" <integerExpression> "," <integerExpression> ")"

| "max(" <integerExpression> "," <integerExpression> ")"

2 XML REPRESENTATION 9

<booleanExpression> ::=

"false" | "true"

| "not(" <booleanExpression> ")"

| "and(" <booleanExpression> "," <booleanExpression> ")"

| "or(" <booleanExpression> "," <booleanExpression> ")"

| "xor(" <booleanExpression> "," <booleanExpression> ")"

| "eq(" <booleanExpression> "," <booleanExpression> ")" <DEPRECATED>

| "eq(" <integerExpression> "," <integerExpression> ")"

| "ne(" <booleanExpression> "," <booleanExpression> ")" <DEPRECATED>

| "ne(" <integerExpression> "," <integerExpression> ")"

| "ge(" <integerExpression> "," <integerExpression> ")"

| "gt(" <integerExpression> "," <integerExpression> ")"

| "le(" <integerExpression> "," <integerExpression> ")"

| "lt(" <integerExpression> "," <integerExpression> ")"

Hence, any constraint in intention can be defined by a predicate which cor-
responds to an expression built from (boolean and integer) constants and the
introduced set of functions (operators). The semantics of operators is given by
Table 1. Overflows, divisions by zero and integer divisions are discussed in the
document dealing with the format rules for the competition.

Operation Arity Syntax Semantics MathML

Arithmetic (operands are integers)
Opposite 1 neg(x) -x <minus>

Absolute Value 1 abs(x) | x | <abs>
Addition 2 add(x,y) x + y <plus>

Substraction 2 sub(x,y) x - y <minus>
multiplication 2 mul(x,y) x * y <times>

Integer Division 2 div(x,y) x div y <quotient>
Remainder 2 mod(x,y) x mod y <rem>

Power 2 pow(x,y) xy <power>
Minimum 2 min(x,y) min(x,y) <min>
Maximum 2 max(x,y) max(x,y) <max>

Relationnal (operands are integers)
Equal to 2 eq(x,y) x = y <eq>

Different from 2 ne(x,y) x 6= y <neq>
Greater than or equal 2 ge(x,y) x ≥ y <geq>

Greater than 2 gt(x,y) x > y <gt>
Less than or equal 2 le(x,y) x ≤ y <leq>

Less than 2 lt(x,y) x < y <lt>

Logic (operands are Booleans)
Logical not 1 not(x) not x <not>
Logical and 2 and(x,y) x and y <and>
Logical or 2 or(x,y) x or y <or>
Logical xor 2 xor(x,y) x xor y <xor>
Logical iff 2 iff(x,y) x iff y <iff>

Table 1: Operators used to build predicate expressions

Remark that variables can occur ; their names must correspond to the names
of formal parameters. To illustrate this, let us consider the predicate that allows

2 XML REPRESENTATION 10

defining constraints involved in any instance of the queens problem. It corre-
sponds to: X 6= Y ∧|X−Y | 6= Z. We obtain using the functional representation:

<predicate name="P0">

<parameters>

int X int Y int Z

</parameters>

<expression>

<functional>

and(ne(X,Y),ne(abs(sub(X,Y)),Z))

</functional>

</expression>

</predicate>

2.5.2 MathML Representation

MathML is a language dedicated to represent mathematical expressions. We can
represent predicate expressions using a subset of this language. It is possible
to insert an XML representation of the predicate expression by inserting in
<expression> an element called <math> which contains any boolean expression
defined (in BNF notation) as follows:

<integerExpression> ::=

"<cn>" <integer> "</cn>"

| "<ci>" <identifier> "</ci>"

| "<apply> <minus/>" <integerExpression> "</apply>"

| "<apply> <abs/>" <integerExpression> "</apply>"

| "<apply> <plus/>" <integerExpression> <integerExpression> "</apply>"

| "<apply> <minus/>" <integerExpression> <integerExpression> "</apply>"

| "<apply> <times/>" <integerExpression> <integerExpression> "</apply>"

| "<apply> <quotient/>" <integerExpression> <integerExpression> "</apply>"

| "<apply> <rem/>" <integerExpression> <integerExpression> "</apply>"

| "<apply> <power/>" <integerExpression> <integerExpression> "</apply>"

| "<apply> <min/>" <integerExpression> <integerExpression> "</apply>"

| "<apply> <max/>" <integerExpression> <integerExpression> "</apply>"

<booleanExpression> ::=

"<false/>"

| "<true/>"

| "<apply> <not/>" <booleanExpression> "</apply>"

| "<apply> <and/>" <booleanExpression> <booleanExpression> "</apply>"

| "<apply> <or/> <booleanExpression> <booleanExpression> "</apply>"

| "<apply> <xor/> <booleanExpression> <booleanExpression> "</apply>"

| "<apply> <eq/>" <integerExpression> <integerExpression> "</apply>"

| "<apply> <neq/>" <integerExpression> <integerExpression> "</apply>"

| "<apply> <gt/>" <integerExpression> <integerExpression> "</apply>"

| "<apply> <geq/>" <integerExpression> <integerExpression> "</apply>"

| "<apply> <lt/>" <integerExpression> <integerExpression> "</apply>"

| "<apply> <leq/>" <integerExpression> <integerExpression> "</apply>"

For more information, see http://www.w3.org/Math or http://www.dessci.com/en/

support/tutorials/mathml/content.htm. For example, to represent X 6= Y ∧ |X −
Y | 6= Z, we can write:

2 XML REPRESENTATION 11

<predicate name="P0">

<parameters> int X int Y int Z </parameters>

<expression>

<math>

<apply>

<neq/> <ci> X </ci> <ci> Y </ci>

</apply>

<apply>

<neq/>

<apply>

<abs/>

<apply> <minus/ > <ci> X </ci> <ci> Y </ci> </apply>

</apply>

<ci> Z </ci>

</apply>

</math>

</expression>

</predicate>

2.5.3 Postfix Representation

It is possible to insert a postfix representation (not fully described in this doc-
ument) of the predicate expression by inserting in <expression> an element
<postfix>. For example, to represent X 6= Y ∧ |X − Y | 6= Z, we can write:

<predicate name="P0">

<parameters>

int X int Y int Z

</parameters>

<expression>

<postfix>

X Y ne X Y sub abs Z ne and

</postfix>

</expression>

</predicate>

2.5.4 Infix Representation

It is possible to insert an infix representation (not fully described in this doc-
ument) of the predicate expression by inserting in <expression> an element
<infix>. For example, to represent X 6= Y ∧ |X − Y | 6= Z, we can write (using
a C syntax for the boolean expression):

<predicate name="P0">

<parameters>

int X int Y int Z

</parameters>

<expression>

<infix syntax="C">

X != Y && abs(X-Y) != Z

</infix>

</expression>

</predicate>

2 XML REPRESENTATION 12

2.6 Constraints

The XML element called <constraints> admits an attribute which is called
nbConstraints and contains some occurrences (at least, one) of an element
called <constraint>, one for each constraint of the instance. The attribute
nbConstraints is of type integer and its value is equal to the number of occur-
rences of the element <constraint>.

Each element <constraint> admits four attributes, called name, arity, scope
and reference, and potentially contains some elements:

<constraint

name = ’put here the name of the constraint’

arity = ’put here the arity of the constraint’

scope = ’put here the scope of the constraint’

reference = ’put here the name of a relation, of

predicate or a global constraint’>

...

</constraint>

The attribute name corresponds to the name of the constraint and its value
must be a valid identifier. The attribute arity is of type integer and its value is
equal to the arity of the constraint (that is to say, the number of variables in its
scope). The value of the attribute scope denotes the set of variables involved in
the constraint. It must correspond to a list of variable names where each name
corresponds to the value of the name attribute of a variable element. One (or
more) space character is used as a separator.

There are three alternatives to represent constraints. Indeed, it is possible
to introduce:

• constraints in extension

• constraints in intention

• global constraints

2.6.1 Constraints in extension

The value of the attribute reference must be the name of a relation. It means
that it must correspond the value of the name attribute of a <relation> element.

The element <constraint> is empty when it represents a constraint defined
in extension.

For example,

<constraint name="C0" scope="X0 X1" reference="rel0" />

2.6.2 Constraints in intention

The value of the attribute reference must be the name of a predicate. It means
that it must correspond to the value of the name attribute of a <predicate>
element.

2 XML REPRESENTATION 13

The element <constraint> contains an element <parameters> when it rep-
resents a constraint defined in intention. The element <parameters> contains
a list of effective parameters which corresponds to either integers or names of
variables (which must occur in the scope of the constraint). One (or more) space
character is used as a separator.

For example:

<constraint name="C0" scope="X0 X1" reference="P0">

<parameters>

X0 X1 1

</parameters>

</constraint>

The semantics is the following. Given a tuple built by assigning a value to
each variable belonging to the scope of the constraint, the predicate expression
is evaluated after replacing each occurrence of a formal parameter corresponding
to an effective parameter denoting a variable with the assigned value. The tuple
is allowed iff the expression evaluates to true.

Note that it is possible for an effective parameter to be any kind of expres-
sions. However, it will not be considered for the 2006 competition.

2.6.3 Global constraints

The value of the attribute reference must be the name of a global constraint,
prefixed by “global:”. As the character ’:’ cannot occur in any valid identifier,
it avoids some potential collision with other identifiers.

The element <constraint> may contain an element <parameters> when it
represents a global constraint. If present, the element <parameters> contains
a sequence of parameters specific to the global constraint. As a consequence,
the description of such parameters must be given for each global constraint. It
is then clear that, for each global constraint, we have to indicate in a separate
document, its name (the one to be referenced), its parameters (and the way they
are structured in XML) and its semantics. Below, we provide such information
for two global constraints.

Constraint allDifferent

Semantics all variables must take different values.

Parameters none

Example

<constraint name="C0" scope="X0 X1 X2 X3" reference="global:allDifferent" />

Alternatives This constraint can be represented in intention by introduc-
ing a predicate that represents a conjunction of inequalities. It can also be
converted into a clique of binary notEqual constraints.

3 VALIDITY OF INSTANCES 14

References For some information, e.g. see [2, 4, 1].

Constraint weightedSum

Semantics
∑k

i=1 ki ∗Xi op ki+1 where ki denotes an integer, Xi the ith

variable occurring in the scope of the constraint, op a relational operator in
{=, 6=, >,≥, <,≤}, and ki+1 an integer.

Parameters There is a first parameter (an element <list>) containing k
pairs composed of one integer (coefficient) and one variable identifier. Space is
used as a separator between pairs and between integers and variable identifiers.
All coefficients must be non null and all variable identifiers must be different
and must occur in the scope of the constraint. There is a second parameter (an
element op) containing a string denoting the relational operator. This string
must belong to {eq, ne, ge, gt, le, lt} (see Table 1). There is a third parameter
which is an integer (and which is not enclosed in any element).

Example X0 + 2X1− 3X2 > 12

<constraint name="C2" scope="X0 X1 X2" reference="global:weightedSum">

<parameters>

<list> 1 X0 2 X1 -3 X2 </list>

<op> gt </op>

12

</parameters>

</constraint>

Alternatives This arithmetic constraint can be represented in intention
(using the grammar described earlier in the paper). It is interesting to note
that:

•
∑k

i=1 ki ∗Xi = ki+1 ⇔
∑k

i=1 ki ∗Xi ≥ ki+1 ∧
∑k

i=1 ki ∗Xi ≤ ki+1

•
∑k

i=1 ki ∗Xi 6= ki+1 ⇔
∑k

i=1 ki ∗Xi > ki+1 ∨
∑k

i=1 ki ∗Xi < ki+1

•
∑k

i=1 ki ∗Xi > ki+1 ⇔
∑k

i=1 ki ∗Xi ≥ ki+1 − 1

•
∑k

i=1 ki ∗Xi < ki+1 ⇔
∑k

i=1−ki ∗Xi > −ki+1

References This arithmetic constraint is related to the constraint called
sum ctr in [1]. Some information can also be found in [3].

3 Validity of Instances

See Section 6 of the following document: http://www.cril.univ-artois.fr/

~lecoutre/research/tools/tools.pdf.

4 SOME EXAMPLES 15

4 Some examples

In Figures 2 and 3, one can see the XML representation of the 4 queens instance.
In Figures 4, 5 and 6, one can see the XML representation of a CSP instance
involving 5 variables and 5 constraints.

• C0: X0 6= X1

• C1: X3−X0 ≥ 2

• C2: X2−X0 = 2

• C3: X1 + 2 = |X2−X3|

• C4: X1 6= X4

Finally, in Figures 7 and 8, one can see the XML representation of the 3
magic square instance. The global constraints weightedSum and allDifferent
are used.

References

[1] N. Beldiceanu, M. Carlsson, and J. Rampon. Global constraint catalog.
Technical Report T2005-08, Swedish Institute of Computer Science, 2005.

[2] J.C. Régin. A filtering algorithm for constraints of difference in CSPs. In
Proceedings of AAAI’94, pages 362–367, 1994.

[3] J.C. Régin and M. Rueher. A global constraint combining a sum constraint
and difference constraints. In Proceedings of CP’00, pages 384–395, 2000.

[4] W.J. van Hoeve. The alldifferent constraint: a survey. In Proceedings of
the Sixth Annual Workshop of the ERCIM Working Group on Constraints,
2001.

REFERENCES 16

<instance>

<presentation name="Queens" nbSolutions="at least 1" format="XCSP 2.0">

This is the 4-queens instance represnted in extension.

</presentation>

<domains nbDomains="1">

<domain name="dom0" nbValues="4">

1..4

</domain>

</domains>

<variables nbVariables="4">

<variable name="X0" domain="dom0"/>

<variable name="X1" domain="dom0"/>

<variable name="X2" domain="dom0"/>

<variable name="X3" domain="dom0"/>

</variables>

<relations nbRelations="3">

<relation name="rel0" arity="2" nbTuples="10" semantics="conflicts">

1 1|1 2|2 1|2 2|2 3|3 2|3 3|3 4|4 3|4 4

</relation>

<relation name="rel1" arity="2" nbTuples="8" semantics="conflicts">

1 1|1 3|2 2|2 4|3 1|3 3|4 2|4 4

</relation>

<relation name="rel2" arity="2" nbTuples="6" semantics="conflicts">

1 1|1 4|2 2|3 3|4 1|4 4

</relation>

</relations>

<constraints nbConstraints="6">

<constraint name="C0" arity="2" scope="X0 X1" reference="rel0"/>

<constraint name="C1" arity="2" scope="X0 X2" reference="rel1"/>

<constraint name="C2" arity="2" scope="X0 X3" reference="rel2"/>

<constraint name="C3" arity="2" scope="X1 X2" reference="rel0"/>

<constraint name="C4" arity="2" scope="X1 X3" reference="rel1"/>

<constraint name="C5" arity="2" scope="X2 X3" reference="rel0"/>

</constraints>

</instance>

Figure 2: The 4-queens instance in extension

REFERENCES 17

<instance>

<presentation name="Queens" nbSolutions="at least 1" format="XCSP 2.0">

This is the 4-queens instance represented in intention.

</presentation>

<domains nbDomains="1">

<domain name="dom0" nbValues="4">

1..4

</domain>

</domains>

<variables nbVariables="4">

<variable name="X0" domain="dom0"/>

<variable name="X1" domain="dom0"/>

<variable name="X2" domain="dom0"/>

<variable name="X3" domain="dom0"/>

</variables>

<predicates nbPredicates="1">

<predicate name="P0">

<parameters> int X int Y int Z </parameters>

<expression>

<functional> and(ne(X,Y),ne(abs(sub(X,Y)),Z)) </functional>

</expression>

</predicate>

</predicates>

<constraints nbConstraints="6">

<constraint name="C0" arity="2" scope="X0 X1" reference="P0">

<parameters> X0 X1 1 </parameters>

</constraint>

<constraint name="C1" arity="2" scope="X0 X2" reference="P0">

<parameters> X0 X2 2 </parameters>

</constraint>

<constraint name="C2" arity="2" scope="X0 X3" reference="P0">

<parameters> X0 X3 2 </parameters>

</constraint>

<constraint name="C3" arity="2" scope="X1 X2" reference="P0">

<parameters> X1 X2 1 </parameters>

</constraint>

<constraint name="C4" arity="2" scope="X1 X3" reference="P0">

<parameters> X1 X3 2 </parameters>

</constraint>

<constraint name="C5" arity="2" scope="X2 X3" reference="P0">

<parameters> X2 X3 1 </parameters>

</constraint>

</constraints>

</instance>

Figure 3: The 4-queens instance in intention

REFERENCES 18

<instance>

<presentation name="Test" format="XCSP 2.0">

This is another instance represented in extension.

</presentation>

<domains nbDomains="3">

<domain name="dom0" nbValues="7">

0..6

</domain>

<domain name="dom1" nbValues="3">

1 5 10

</domain>

<domain name="dom2" nbValues="10">

1..5 11..15

</domain>

</domains>

<variables nbVariables="5">

<variable name="X0" domain="dom0"/>

<variable name="X1" domain="dom0"/>

<variable name="X2" domain="dom1"/>

<variable name="X3" domain="dom2"/>

<variable name="X4" domain="dom0"/>

</variables>

<relations nbRelations="4">

<relation name="rel0" arity="2" nbTuples="7" semantics="conflicts">

0 0|1 1|2 2|3 3|4 4|5 5|6 6

</relation>

<relation name="rel1" arity="2" nbTuples="25" semantics="conflicts">

1 0|1 1|1 2|1 3|1 4|1 5|1 6|2 1|2 2|2 3|2 4|2 5|2 6|3 2|3 3|

3 4|3 5|3 6|4 3|4 4|4 5|4 6|5 4|5 5|5 6

</relation>

<relation name="rel2" arity="2" nbTuples="1" semantics="supports">

5 3

</relation>

<relation name="rel3" arity="3" nbTuples="17" semantics="supports">

0 1 3|0 5 3|0 10 12|1 1 4|1 5 2|1 10 13|2 1 5|2 5 1|2 10 14|

3 10 5|3 10 15|4 5 11|4 10 4|5 5 12|5 10 3|6 5 13|6 10 2

</relation>

</relations>

<constraints nbConstraints="5">

<constraint name="C0" arity="2" scope="X0 X1" reference="rel0"/>

<constraint name="C1" arity="2" scope="X3 X0" reference="rel1"/>

<constraint name="C2" arity="2" scope="X2 X0" reference="rel2"/>

<constraint name="C3" arity="3" scope="X1 X2 X3" reference="rel3"/>

<constraint name="C4" arity="2" scope="X1 X4" reference="rel0"/>

</constraints>

</instance>

Figure 4: Test Instance in extension

REFERENCES 19

<instance>

<presentation name="Test" format="XCSP 2.0">

This is another instance represented in intention.

</presentation>

<domains nbDomains="3">

<domain name="dom0" nbValues="7">

0..6

</domain>

<domain name="dom1" nbValues="3">

1 5 10

</domain>

<domain name="dom2" nbValues="10">

1..5 11..15

</domain>

</domains>

<variables nbVariables="5">

<variable name="X0" domain="dom0"/>

<variable name="X1" domain="dom0"/>

<variable name="X2" domain="dom1"/>

<variable name="X3" domain="dom2"/>

<variable name="X4" domain="dom0"/>

</variables>

<predicates nbPredicates="4">

<predicate name="P0">

<parameters> int X int Y </parameters>

<expression>

<functional> ne(X,Y) </functional>

</expression>

</predicate>

<predicate name="P1">

<parameters> int X int Y int Z </parameters>

<expression>

<functional> ge(sub(X,Y),Z) </functional>

</expression>

</predicate>

<predicate name="P2">

<parameters> int X int Y int Z </parameters>

<expression>

<functional> eq(sub(X,Y),Z) </functional>

</expression>

</predicate>

<predicate name="P3">

<parameters> int X int Y int Z int T </parameters>

<expression>

<functional> eq(add(X,Y),abs(sub(Z,T))) </functional>

</expression>

</predicate>

</predicates>

...

Figure 5: Test Instance in intention (to be continued)

REFERENCES 20

...

<constraints nbConstraints="5">

<constraint name="C0" arity="2" scope="X0 X1" reference="P0">

<parameters> X0 X1 </parameters>

</constraint>

<constraint name="C1" arity="2" scope="X0 X3" reference="P1">

<parameters> X3 X0 2 </parameters>

</constraint>

<constraint name="C2" arity="2" scope="X0 X2" reference="P2">

<parameters> X2 X0 2 </parameters>

</constraint>

<constraint name="C3" arity="3" scope="X1 X2 X3" reference="P3">

<parameters> X1 2 X2 X3 </parameters>

</constraint>

<constraint name="C4" arity="2" scope="X1 X4" reference="P0">

<parameters> X1 X4 </parameters>

</constraint>

</constraints>

</instance>

Figure 6: Test Instance in intention (continued)

REFERENCES 21

<instance>

<presentation name="Magic Square" format="XCSP 2.0">

This is the magic square of order 3.

</presentation>

<domains nbDomains="1">

<domain name="dom0" nbValues="9">

1..9

</domain>

</domains>

<variables nbVariables="9">

<variable name="X0" domain="dom0"/>

<variable name="X1" domain="dom0"/>

<variable name="X2" domain="dom0"/>

<variable name="X3" domain="dom0"/>

<variable name="X4" domain="dom0"/>

<variable name="X5" domain="dom0"/>

<variable name="X6" domain="dom0"/>

<variable name="X7" domain="dom0"/>

<variable name="X8" domain="dom0"/>

</variables>

<constraints nbConstraints="8">

<constraint name="C0" arity="3" scope="X0 X1 X2" reference="global:weightedSum">

<parameters>

<list> 1 X0 1 X1 1 X2 </list>

<op> eq </op>

15

</parameters>

</constraint>

<constraint name="C1" arity="3" scope="X3 X4 X5" reference="global:weightedSum">

<parameters>

<list> 1 X3 1 X4 1 X5 </list>

<op> eq </op>

15

</parameters>

</constraint>

<constraint name="C2" arity="3" scope="X6 X7 X8" reference="global:weightedSum">

<parameters>

<list> 1 X6 1 X7 1 X8 </list>

<op> eq </op>

15

</parameters>

</constraint>

<constraint name="C3" arity="3" scope="X0 X3 X6" reference="global:weightedSum">

<parameters>

<list> 1 X0 1 X3 1 X6 </list>

<op> eq </op>

15

</parameters>

</constraint>

...

Figure 7: The 3-magic square (to be continued)

REFERENCES 22

...

<constraint name="C4" arity="3" scope="X1 X4 X7" reference="global:weightedSum">

<parameters>

<list> 1 X1 1 X4 1 X7 </list>

<op> eq </op>

15

</parameters>

</constraint>

<constraint name="C5" arity="3" scope="X2 X5 X8" reference="global:weightedSum">

<parameters>

<list> 1 X2 1 X5 1 X8 </list>

<op> eq </op>

15

</parameters>

</constraint>

<constraint name="C6" arity="3" scope="X0 X4 X8" reference="global:weightedSum">

<parameters>

<list> 1 X0 1 X4 1 X8 </list>

<op> eq </op>

15

</parameters>

</constraint>

<constraint name="C7" arity="3" scope="X2 X4 X6" reference="global:weightedSum">

<parameters>

<list> 1 X2 1 X4 1 X6 </list>

<op> eq </op>

15

</parameters>

</constraint>

<constraint name="C8" arity="9" scope="X0 X1 X2 X3 X4 X5 X6 X7 X8"

reference="global:allDifferent" />

</constraints>

</instance>

Figure 8: The 3-magic square (continued)

